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Abstract

Motivated by a common mathematical finance topic, we discuss the reciprocal of the exit
time from a cone of planar Brownian motion which also corresponds to the exponential
functional of Brownian motion in the framework of planar Brownian motion. We prove a
conjecture of Vakeroudis andYor (2012) concerning infinite divisibility properties of this
random variable and present a novel simple proof of the result of DeBlassie (1987), (1988)
concerning the asymptotic behavior of the distribution of the Bessel clock appearing in
the skew-product representation of planar Brownian motion, as t → ∞. We use the
results of the windings approach in order to obtain results for quantities associated to the
pricing of Asian options.
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1. Introduction

Windings of two-dimensional processes, and especially of planar Brownian motion, have
several applications in financial mathematics, when the exponential functionals of Brownian
motion are of special interest. A fundamental example is the pricing of Asian options (see, e.g.
[13], [19], [20], and [36]–[38]), where the payout of an Asian call option is defined as

E

[(
1

t

∫ t

0
ds exp(βs + νs)−K

)+]
,

where (βu, u ≥ 0) is a real Brownian motion, ν ∈ R, and the nonnegative number K is the
strike price. It is easy to show (see, e.g. [38] for further details) that the computation of this
expectation simplifies to the computation of

E

[(∫ t

0
ds exp(βs + νs)−K

)+]
,

which follows from

E

[∫ t

0
ds exp(βs + νs)

]
.
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Windings and Asian options 727

In particular,Yor [36] contains a more detailed discussion for the distribution of the exponential
functional

A
(ν)
t :=

∫ t

0
ds exp(βs + νs)

taken up to a random time Tλ which follows the exponential distribution with parameter λ > 0
and is independent from β. More precisely, Yor [35] obtained

2A(ν)Tλ
d= Q1,a

2Gb

d= 1 − U1/a

2Gb
,

whereQ1,a ∼ beta(1, a),Gb ∼ gamma(b), U ∼ U [0, 1], a = ( 1
2ν)+ 1

2

√
2λ+ ν2, b = a−ν,

and the random variables are assumed to be independent. The class of generalized gamma
convolution distributions (GGC) is an important subclass of infinitely divisible distributions.
Bondesson [6] devoted much attention to the study of this class. At this stage, we observe that
Gb ∼ GGC and that 1/Q1,a ∼ GGC (see [8]) for the last result. From the stability property
by product (see [7]), we easily conclude that 1/A(ν)Tλ ∼ GGC. This result gives a flavor of what
we will obtain in Subsection 2.2.

We mainly deal with such exponential functionals and we investigate their distribution
properties. The key observation of our approach is the fact that exponential functionals are
strongly related to the windings of associated processes (see, e.g. Proposition 2.1) and this
offers a possible direction to describe them. Indeed, instead of using an independent random
time such as Tλ above, one may study the exponential functional up to the first hitting time of a
specific level by another independent real Brownian motion, and this is related to the windings
of planar Brownian motion as we demonstrate. The results of the exponential functional in
the framework of windings may be used to study the asymptotic behavior of the exponential
functional of interest. The goal of this paper is first to explore the distribution of exponential
functionals in terms of planar processes and then to use this in order to discuss the exponential
that we meet in the pricing of Asian options. Note that windings of different process types
(e.g. jump processes) are related to different kinds of exponential functionals (e.g. exponential
functionals of Lévy processes), hence, to different types of Asian options.

We first study exponential functionals in terms of planar Brownian motion, i.e. taken up to
an independent random time different from the case mentioned above, i.e. (we suppose here
that ν = 0 but at the end of the paper we will also discuss the case where ν 	= 0)∫ T

γ
c

0
exp(2βs) ds,

where (γu, u ≥ 0) is another real Brownian motion independent from β and the exit time T γ

is given by (1.2). For more precise connection with the windings, see Proposition 2.1.
We also discuss the exponential functional associated to jump processes, i.e.∫ t

0
exp(αξs) ds,

where (ξu, u ≥ 0) is a (nonsymmetric) Lévy process and α ∈ (0, 2) is a constant. As we
will see, this exponential functional is again related to the study of an associated planar stable
process with index of stability α.

We consider the following processes:

• Z = (Zt , t ≥ 0) a planar Brownian motion (BM);

• U = (Ut , t ≥ 0) a planar stable process of index α ∈ (0, 2),
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728 W. JEDIDI AND S. VAKEROUDIS

both starting from a point different from 0 and, without loss of generality, we may consider that
they are both issued from 1. ForW = Z or U and α ∈ (0, 2], we formally define the clock, its
inverse, and the winding process, respectively, for all t ≥ 0, by

HW
t =

∫ t

0

ds

|Ws |α , AW(u) = inf{t ≥ 0, HW(t) > u} and θWt = Im

(∫ t

0

dWs

Ws

)
.

(1.1)
Note that the planar BM case, i.e.W = Z, corresponds to α = 2. We also define the exit times
from a cone of single and of double border of a process V (V will be W or a functional of W
in the sequel) by

T Vc = inf{t ≥ 0 : Vt ≥ c} and T |V |
c = inf{t ≥ 0 : |Vt | ≥ c}, c > 0. (1.2)

For the planar BM case (W = Z), it is well known (see, e.g. [16]) that since Z0 	= 0, the
process Z does not visit almost surely the point 0 but keeps winding around it infinitely often.
Hence, its continuous winding process θZt is well defined. We also recall the skew-product
representation of planar BM (see, e.g. [24]), i.e.

log |Zt | + iθZt =
∫ t

0

dZs
Zs

= (βu + iγu)
∣∣∣
u=HZ

t

, (1.3)

where (βu + iγu, u ≥ 0) denotes another planar BM starting from log 1 + i0 = 0 and HZ

is given by (1.1) with α = 2 (for the Bessel clock HZ , see also [34]). It is straightforward
that the two σ -fields σ {|Zt |, t ≥ 0} and σ {βu, u ≥ 0} are identical, whereas (γu, u ≥ 0) is
independent from (|Zt |, t ≥ 0). Note that the inverse of HZ is represented by the functional

AZ(t) = inf{u ≥ 0, HZ(u) > t} =
∫ t

0
ds exp(2βs). (1.4)

We refer the interested reader to, e.g. [22] for more details about planar BM.
Unlike planar BM, it is not possible to define the winding number directly for the isotropic

planar stable process U ; see [3], [12], and [17]. However, we can consider a path on a finite-
time interval [0, t] and ‘fill in’ the gaps with line segments in order to obtain the curve of a
continuous function f : [0, 1] → C such that f (0) = 1. The origin 0 is polar and U has no
jumps across 0 almost surely, thus, we have f (u) 	= 0 for every u ∈ [0, 1] and the process of
the winding number of U around 0, θU = (θUt , t ≥ 0), is well defined, has càdlàg paths of
absolute length greater than π , and is given by

exp(iθUt ) = Ut

|Ut | , t ≥ 0.

ForW = Z orU , we study the exit times from a cone of single and of double border, i.e. the
stopping times T θ

W
and T |θW | given by (1.2), and also the asymptotic behavior of the associated

winding process.
The rest of the paper is organized as follows. We start by discussing windings and the asso-

ciated version of Spitzer’s asymptotic theorem (that corresponds to the large-time asymptotics)
first for planar BM, and then for isotropic planar stable processes (note that for the latter it is not
exactly an analogue of Spitzer’s asymptotic theorem but mostly a large-time asymptotics result).
In Section 2 we characterize the distribution of the exit times from a single and from a double
border cone which corresponds also to the exponential functional of BM in the framework of
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planar BM. Then we turn our interest to infinite divisibility properties of this quantity and we
prove a conjecture of Vakeroudis and Yor [30, Remark 3.2]. In Subsection 2.3 we present a
new simple proof of DeBlassie’s result (see [10] and [11]) stating that if R(s) denotes a Bessel
process then, for every u > 0 and for every λ > 0,

P

(∫ t

0
R−2
s ds ≤ u

)
= O(t−λ) as t → ∞.

Recall that

HZ
t :=

∫ t

0

1

|Zs |2 ds =
∫ t

0
R−2
s ds,

hence, the last result corresponds to the asymptotic behavior of the Bessel clock associated
to planar BM HZ as t → ∞. The initial proof of DeBlassie used results of Burkholder
together with a theorem taken from Port and Stone [23]. Here, we propose a novel elementary
self-contained proof.

In Section 3 we focus on the windings of isotropic planar stable processes where a large-time
asymptotics result due to Bertoin and Werner [3] is presented for the sake of completeness for
use in the following section. Finally, in Section 4 we deal with application of the previous results
to the pricing of Asian options. More precisely, we discuss separately the case of exponential
functionals of BM and the one of Lévy processes.

To recapitulate, the main results of the paper are the following:

• we prove a conjecture of Vakeroudis and Yor [30] concerning infinite divisibility proper-
ties of the inverse of the exponential functional in terms of planar BM;

• we propose a novel simple self-contained proof of DeBlassie’s result [10], [11] concerning
the distribution of the Bessel clock appearing in the skew-product representation of planar
BM for t → ∞;

• we use results concerning exponential functionals in terms of windings in order to study
exponential functionals needed for the pricing of Asian options by invoking Williams’
‘pinching method’.

Our approach has intrinsic theoretical interest since it provides further characterization
of the exponential functional associated to different stochastic processes, including analytic
properties (e.g. infinite divisibility properties). On the other hand, it provides a new direction
and perspectives in order to proceed to the pricing of different types of Asian options, such as
the ones associated to jump (Lévy) processes.

2. Planar BM

2.1. Windings and exponential functionals

We first recall our main tool, which is Bougerol’s celebrated identity in law; see [9]. It states
that if (βu, u ≥ 0) and (β̂u, u ≥ 0) are two independent linear BMs both started from 0, then
we have the identity

sinh(βt )
d= β̂

AZt (β)=
∫ t

0 ds exp(2βs)
for every fixed t ≥ 0. (2.1)

For the proof and other developments of this identity, see [28] and the references therein.
We study Bougerol’s identity in law in terms of planar BM, which is strongly related to
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exponential functionals of BM as we will demonstrate. To that end, we recall that the exit
times T γc and T |γ |

c for the BM γ associated to θZ are given by (1.2). We are now ready to state
our first result; see also [27] and [29].

Proposition 2.1. It holds that

T θ
Z

c = AZ
T
γ
c

and T |θZ |
c = AZ

T
|γ |
c

.

Proof. The proof follows by the skew-product representation (θZt = γHZ
t
) and using the fact

that AZ is the inverse of HZ (see also (1.4)), i.e.

T θ
Z

c = inf{t : θZt = c} = inf{t : γHZ
t

= c} = inf{AZs : γs = c} = AZ
T
γ
c

when s = HZ
t . The second relation follows similarly. �

From now on, all the results may be stated either for AZ
T
γ
c

(respectively, AZ
T

|γ |
c

) or for T θ
Z

c

(respectively, T |θZ |
c ). For applications in the mathematical finance framework, we will mostly

use the former notation.
We recall Spitzer’s celebrated asymptotic theorem for planar BM; see [26]. For other proofs,

see, e.g. [31] and the references therein.

Theorem 2.1. (Spitzer’s asymptotic theorem [26].) The following convergence in law holds:

2

log t
θZt

d−→ C1, t → ∞,

where C1 denotes a standard Cauchy distributed random variable.

We introduce the function

ϕ(x) = arg sinh2(
√
x) = log2(

√
x + √

1 + x) (2.2)

which plays a key role in the rest of the paper. The next proposition is essentially from [27]
and [29] and we state its proof for the sake of completeness.

Proposition 2.2. The distributions ofAZ
T
γ
c

andAZ
T

|γ |
c

are characterized by the following Gauss–

Laplace transforms: for all x ≥ 0 and m = π/2c, we have

cE

[√
π

2AZ
T
γ
c

exp

(
− x

2AZ
T
γ
c

)]
= 1√

1 + x

c2

c2 + ϕ(x)
, (2.3)

cE

[√√√√ 2

πAZ
T

|γ |
c

exp

(
− x

2AZ
T

|γ |
c

)]
= 1√

1 + x
fm(x), (2.4)

where ϕ is given by (2.2) and

fm(x) = 2

(
√

1 + x + √
x)m + (

√
1 + x − √

x)m
= 1

cosh(
√
m2ϕ(x))

. (2.5)
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Remark 2.1. These Gauss–Laplace transforms fully characterize the distributions of AZ
T
γ
c

and AZ
T

|γ |
c

. By some analytic computations, we can explore further the distributional properties
of these random variables. From, e.g. (2.4), we can obtain the density function of AZ

T
|γ |
c

.
For further details, see, e.g. [27] and [29].

Proof of Proposition 2.2. LetN denote a random variable following the distributionN (0,1).
Bougerol’s identity (2.1) applied for t = T

γ
c yields the identities

sinh(βT γc )
d= β̂AZ

T
γ
c

d=
√
AZ
T
γ
c
N,

which, in turn, lead to, for every fixed c > 0,

sinh(Cc)
d= β̂AZ

T
γ
c

, (2.6)

where (Cc, c ≥ 0) is a standard Cauchy process. We denote by hc the probability density
function of Cc, i.e.

hc(y) = c

π(c2 + y2)
, y ∈ R.

Recalling, from (2.2), that arg sinh(y) = √
ϕ(y2) = log(y + √

1 + y2) and identifying the
densities of the two variables involved in (2.6), we obtain

1√
1 + y2

hc(arg sinh y) = 1√
1 + x2

hc(

√
ϕ(y2))

for the left-hand side and

E

[
1√

2πAZ
T
γ
c

exp

(
− y2

2AZ
T
γ
c

)]

for the right-hand side. Performing the change of variable x = y2, we obtain (2.3). Equation
(2.4) follows by Bougerol’s identity in law applied for T |γ |

c and by the same arguments as
previously stated, since the density of β

T
|γ |
c

is given by (see, e.g. [5])

1

2c

1

cosh(my)
= 1

c

1

emy + e−my . �

2.2. Infinite divisibility properties

We will see that (2.3) and (2.4) yield infinite divisibility properties for the inverse of AZ
T
γ
c

and AZ
T

|γ |
c

. For this purpose, we need some preparation.

Let BF denote the class of Bernstein functions, CBF the subclass of complete Bernstein
functions, and TBF the sub-subclass of Thorin Bernstein functions; see [25] for more details.
The class of infinitely divisible (ID) distributions (respectively, class of Bondesson distributions
(BO) and class of generalized gamma convolution (GGC) distributions ) corresponds to the
distribution of a positive random variable X whose Laplace transform is such that

E[e−xX] = e−φ(x), x ≥ 0, φ ∈ BF (respectively, CBF, TBF).

Thus, φ is represented by

φ(x) = dx +
∫
(0,∞)

(1 − e−xu) ν(du),
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where d ≥ 0, the associated Lévy measure ν satisfies
∫
(0,∞)

min(1, u)ν(du) < ∞, and the
subclass CBF (respectively, TBF) corresponds to the case where ν is absolutely continuous
with density function l such that

u �→ l(u) is completely monotone (respectively, u �→ ul(u)). (2.7)

The inclusions TBF ⊂ CBF ⊂ BF ⊂ justify the fact that GGC ⊂ BO ⊂ ID. Note that the
classes BF and CBF are both convex cones stable by composition, whereas TBF is only a convex
cone. Nevertheless, the subclass TBF enjoys the following property (see [25, Theorem 8.4,
p. 112]): for a function φ ∈ TBF, we have

ψ ◦ φ ∈ TBF for every ψ ∈ TBF ⇐⇒ φ′

φ
is a Stieltjes function; (2.8)

see [25] for the definition of Stieltjes functions. Recall the function ϕ introduced in (2.2). Then

x �→ ϕ(x) = arg sinh2(
√
x) = log2(

√
x + √

1 + x) ∈ TBF. (2.9)

Remark 2.2. Equation (2.9) was not observed in [25], but it could be obtained through the
trivial equality

√
ϕ(x) = log(

√
x + √

x + 1) = 1
2 arg cosh(2x + 1) and [25, entry 78, p. 338].

Further, some computations stemming from [25, entry 80, p. 338] mean that the logarithmic
derivative of ϕ can be represented, for every x > 0, by

ϕ′(x)
ϕ(x)

=
∫ ∞

0
e−xuf (x) dx, f (x) = e−x/2

(
cosh

(
x

2

)
+

∫ ∞

0
Iν

(
x

2

)
dν

)
, (2.10)

where Iν is the modified Bessel function of the first kind. Showing that the logarithmic derivative
of ϕ is a Stieltjes function amounts to showing that the function f in (2.10) is completely
monotone; however, this is not achieved here. Note that if the latter holds then we will have
the following property which can be exploited in (2.17) and (2.18):

log(1 + t ϕ) ∈ TBF for all t > 0. (2.11)

For a positive random variable X, we denote by X[u] a version of the induced length-biased
law of order u, i.e.

X[u] is a realization of the distribution
xu

E[Xu]P(X ∈ dx), (2.12)

whenever E[Xu] < ∞. From [6, Theorem 6.2.4], we have

if X ∼ GGC and E[Xu] < ∞ for u < 0 then X[u] ∼ GGC. (2.13)

For the rest of the paper, we adopt the following notation: G1/2 has the gamma distribution
with shape parameter 1

2 and scale parameter 1, and ek, 1 ≤ k ≤ n, denotes n independent
exponentially distributed random variables with parameter 1, independent of G1/2 and the
length-biased random variables

X1,c :=
(

1

2AZ
T
γ
c

)
[1/2]

and X2,c :=
(

1

2AZ
T

|γ |
c

)
[1/2]

. (2.14)
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Equations (2.3) and (2.4) become

Ex[e−X1,c ] = 1√
1 + x

c2

c2 + ϕ(x)
, Ex[e−X2,c ] = 1√

1 + x
fm(x), (2.15)

where ϕ and fm are given by (2.9) and (2.5), respectively. The next proposition essentially
comes from [30] and its proof requires the use of Chebyshev’s polynomials. The second
statement follows from (2.7) and (2.13).

Proposition 2.3. For every integer m, we consider two situations.
(i) The function x �→ fm(x) is the Laplace transform of a positive random variable K ∼

GGC which has the representation:

• for m = 2n+ 1,

K = G1/2 +
n∑
k=1

1

ak
ek, ak = sin2

(
π

2

2k − 1

2n+ 1

)
, k = 1, 2, . . . , n;

• for m = 2n,

K =
n∑
k=1

1

bk
ek, bk = sin2

(
π

2

2k − 1

2n

)
, k = 1, 2, . . . , n.

The associated Lévy measures are:

• for m = 2n+ 1,

ν(dz) = dz

z

n∑
k=1

e−akz;

• for m = 2n,

ν(dz) = dz

z

n∑
k=1

e−bkz.

(ii) The random variables X2,c given in (2.14) satisfy the identity in law X2,c
d= G′

1/2 +
K ∼ GGC, where G′

1/2 is a copy of G1/2, independent of K . We also have 1/(AZ
T
γ
c
) and

1/(AZ
T

|γ |
c

) ∼ GGC.

For other results and variants concerning properties ofAZ
T
γ
c

andAZ
T

|γ |
c

, we refer the interested
reader to [30] and [31], and the references therein.

2.2.1. The case whenm is not an integer. Vakeroudis andYor [30, Remark 3.2] conjectured that
(2.4) yields infinite divisibility properties for every m > 0 (not necessarily an integer). In the
next proposition we prove this conjecture.

Proposition 2.4. For every m > 0 and i = 1, 2, the random variable Xi,c given in (2.14)
belongs to the class BO and, hence, is infinitely divisible. Moreover, as c → ∞,Xi,c converges
in distribution to a gamma distribution with scale parameter 1 and shape parameter 1

2 .

Proof. Observe that (2.15) can be also restated, for i = 1, 2, as

E[exp(−xXi,c)] = 1√
1 + x

e−ψi(x) = exp
(−( 1

2 log(1 + x)+ ψi(x)
))
, x ≥ 0, (2.16)
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where, with elementary computations, and using the infinite product form of the function

cosh(x) =
∞∏
k=1

(
1 + x2

dk

)
, dk =

(
π

2
(2k − 1)

)2

,

the functions ψi, i = 1, 2, become

ψ1(x) = log

(
1 + ϕ(x)

c2

)
, (2.17)

ψ2(x) = log cosh
(√
m2 ϕ(x)

) =
∞∑
k=1

log

(
1 + m2 ϕ(x)

dk

)
, (2.18)

where ϕ ∈ TBF is given by (2.9). At this stage, we trivially extract the second assertion in the
proposition by letting c → ∞ in (2.17) and (2.18). It remains to show that ψi belongs to the
class CBF. Using the fact that x �→ log(1 + x) ∈ TBF, (2.9), (2.16)–(2.18), and the stability
by composition property in CBF, we conclude that

x �→ 1
2 log(1 + x)+ ψi(x) ∈ CBF,

and, hence, Xi,c ∼ BO. �
2.2.2. Open problem in the case when m is not an integer. Recalling the second assertion of
Proposition 2.3, which holds for any integer m, we surmise that Xi,c ∼ GGC for i = 1, 2 and
for every positive number m. This result is not proved here because we have not obtained a
closed form of the Lévy measures ofXi,c. To this end, we need to check whether the functions
ψi, i = 1, 2, given by (2.17) and (2.18) belong to the class TBF. Then it is tempting to check
whether the function ϕ given by (2.9) satisfies (2.8) or (2.11) and this does not seem to be a
straightforward problem to deal with; see the comments in Remark 2.2. To summarize, if the
assertion holds then (2.13) yields

1

AZ
T
γ
c

= 2(X1,c)[−1/2] ∼ GGC and
1

AZ
T

|γ |
c

= 2 (X2,c)[−1/2] ∼ GGC.

If, furthermore, the distribution ofXi,c belongs to the subclass HCM of GGC (i.e. if the density
function of Xi,c is hyperbolically completely monotone, see [6, p. 55] for the definition) then
(see the comments in [6, p. 69]) the random variables AZ

T
γ
c

and AZ
T

|γ |
c

will also have a HCM
density and, hence, they will be infinitely divisible.

2.3. DeBlassie’s result: a new proof

In this section we present a new simple proof of DeBlassie’s result in [10] and [11] concerning
the Bessel clock HZ

t := ∫ t
0 ds/|Zs |2.

Proposition 2.5. For every u > 0 and for every λ > 0, we have

P

(∫ t

0

ds

|Zs |2 ≤ u

)
= O(t−λ) as t → ∞.

In order to prove Proposition 2.5, we make use of Williams’ pinching method (see, e.g. [21]
and [33]). Roughly speaking, when Williams studied windings of BM, instead of calculating
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directly the asymptotics of the winding process θ , he studied the asymptotic behavior of this
process taken at a random time depending on θ (for similar results but with the use of a random
time independent of θ , see, e.g. [29]). Next, we simply remark that the difference between the
initial winding process and the subordinated process is finite, and renormalizing appropriately,
this difference converges to 0. Hence, the asymptotic study of the renormalized subordinated
process yields similar results for the renormalized initial one.

Proof of Proposition 2.5. Recall that the first passage time T βt , defined by (1.2), inherits the
scaling property of BM as follows:

T
β√
t

t

d= T
β

1 .

Williams’ pinching method allows us to replace t by T β√
t

when t → ∞. Indeed, HZ
t −HZ

T
β√
tconverges to a finite variable as t → ∞ (see also [27] and [29]).

First, we choose A,B > 0 such that

P

(
A <

T
β√
t

t
< B

)
= 1

2
.

We also remark that T β and HZ are independent; thus,

P(HZ
t ≤ u) = 2P

(
A <

T
β√
t

t
< B; HZ

t ≤ u

)
= 2P

(
A t < T

β√
t
< B t; HZ

t ≤ u
)
. (2.19)

Moreover, since H is increasing, we obtain

At < T
β√
t
< B t ⇐⇒

T
β√
t

B
< t <

T
β√
t

A
;

hence, the first part of this inequality yields

HZ
t ≤ u �⇒ HZ

(T
β√
t
/B)

≤ u. (2.20)

Now, (2.19) and (2.20) yield

P(HZ
t ≤ u) ≤ 2P

(
HZ

T
β√
t
/B

≤ u
)
. (2.21)

With a(y) := √
ϕ(y2) = sinh−1(y) = arg sinh(y) = log(y + √

y2 + 1), y ∈ R, it follows
that asymptotically

a(
√
t) ≈ 1

2 log t as t → ∞.

If T̂ β is an independent copy of T β , we have

P(HZ
t ≤ u) � P

(
HZ

T̂
β√
t

≤ u
)

as t → ∞. (2.22)

Following [27] and [29], the skew-product representation of planar BM (1.3) and Bougerol’s
identity in law (2.1) yield that if (δt , t ≥ 0) denotes another independent real BM, then, with
obvious notation, we have (see also [29, Proposition 2.3])

HZ

T δb

d= T
β

a(b) for every b ≥ 0. (2.23)
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Indeed, using the symmetry principle (see [2] for the original note and [14] for a detailed
discussion), Bougerol’s identity in law (2.1) is equivalently stated as

sinh(β̄u)
d= δ̄AZu (β)

for any fixed u > 0.

Hence, identifying the densities of the two parts and recalling that HZ is given by (1.1), we
easily obtain (2.23).

Now, using (2.23) with b = √
t and adapting appropriately the notation, (2.22) becomes

P(HZ
t ≤ u) = P

(
T
β

a(
√
t)

≤ u
)
P
(
T
β

(1/2) log t ≤ u
)

as t → ∞.

Below, we denote ‘≈’ to mean ‘is of order’. We have

P(T
β
h ≤ u) ≈

√
u

h
exp

(
−h

2

2u

)
≈ 2

√
u

log t
exp

(
− (log t)2

8u

)

when h = 1
2 log t . Thus, with h = 1

2 log t , which corresponds to the asymptotic behavior for
t → ∞, we obtain

P(T
β
h ≤ u) ≤ 2

√
u

log t
exp

(
− (log t)2

8u

)
. (2.24)

Observe that for large values of d , we have exp(−d2) ≤ exp(−λd) for all λ > 0, hence, with
d = log t , we have

exp(−(log t)2) ≤ exp(−λ(log t)) = 1

tλ
for all λ > 0.

Using (2.21), (2.24), and the last elementary remark, we obtain

P(HZ
t ≤ u) ≤ Cu,B,λ

tλ
for all λ > 0,

where Cu,B,λ denotes a positive constant depending on u,B, and λ. �

3. Planar stable processes

3.1. The winding process

In this section we focus on isotropic planar stable processes. Bertoin and Werner [15]
obtained the following results for α ∈ (0, 2) (see [3] for the proofs). We now denote by dz the
Lebesgue measure on C and for every complex number z 	= 0, ω(z) is the determination of its
argument valued in (−π, π ].
Lemma 3.1. The time-changed process (θU

AU (u)
, u ≥ 0) is a real-valued symmetric Lévy

process, say ρ. It has no Gaussian component and its Lévy measure has support in [−π, π ].
Moreover, the Lévy measure of θAU (·) is the image of the Lévy measure of U by the mapping
z → ω(1 + z). Consequently, E[(θAU (u))2] = u k(α), where

k(α) = α2−1+α/2�(1 + α/2)

π�(1 − α/2)

∫
C

|z|−2−α|ω(1 + z)|2 dz.
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For the process U , we use the analogue of the skew-product representation for planar BM
which is the Lamperti correspondence for stable processes. Hence, there exist two real-valued
Lévy processes (ξu, u ≥ 0) and (ρu, u ≥ 0), the first one is nonsymmetric whereas the second
one is symmetric, both starting from 0, such that

log |Ut | + iθUt = (ξu + iρu)|u=HU
t
.

Remark 3.1. The processes |Z| and ZAU(·)/|ZAU(·)| are not independent. This is easily seen
since |ZAU(·)| and ZAU(·)/|ZAU(·)| jump at the same time, hence, they cannot be independent.
Moreover, AU(·) depends only upon |Z|; hence, |Z| and ZAU(·)/|ZAU(·)| are not independent.
For further discussion on the independence, see, e.g. [18], where it was shown that an isotropic
α-self-similar Markov process has a skew-product structure if and only if its radial and its
angular part do not jump at the same time.

3.2. The asymptotic behavior of windings

Bertoin and Werner [3] obtained an asymptotic result, which is, in some sense, a version of
Spitzer’s asymptotic Theorem 2.1 for isotropic stable Lévy processes of index α ∈ (0, 2).

Theorem 3.1. As c → ∞, the family of processes (c−1/2θUexp(ct), t ≥ 0) converges in distribu-
tion, on the space D([0,∞),R) endowed with the Skorokhod topology, to (

√
r(α)βt , t ≥ 0),

where (βs, s ≥ 0) is a real-valued BM and

r(α) = α2−1−α/2

π

∫
C

|z|−2−α|ω(1 + z)|2 dz. (3.1)

Proof. We refer the reader to two different proofs. First, Bertoin and Werner [3], where the
authors used an Ornstein–Uhlenbeck-type process and ergodicity arguments.

Second, Doney andVakeroudis [12], where the continuity of the composition function ρHU(·)
(see [32]) was employed. �

4. Applications to the pricing of Asian options

4.1. Asian options and exponential functionals of BM

In this subsection we return to the initial financial mathematics problem, i.e. the characteri-
zation of the distribution of

AZt =
∫ t

0
exp(2βu) du,

in order to compute E[((1/t)AZt −K)+]. To that end, one may use the previously stated results
to access the distribution ofAt via Williams’ so-called pinching method (see [21] and [33]) that
we also used in Subsection 2.3. We propose here to mimic again this method for our benefit,
by invoking the time changes discussed in the previous sections.

Proposition 4.1. The following convergence in law holds:

1

t
logAZ

t2
d−→ 2|β|T γ1

d= 2|C|1, t → ∞,

where C1 is a standard Cauchy random variable.
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Proof. First, observe that

log

(AZ
T
γ
t

AZ
t2

)
= log

(∫ T γt
0 exp(2βu) du∫ t2
0 exp(2βu) du

)
,

which is a random variable that exists (and which seems to be of no other interest here).
Renormalizing by t , we obtain

1

t
(logAZ

T
γ
t

− logAZ
t2
) = 1

t
log

(AZ
T
γ
t

AZ
t2

)
d−→ 0, t → ∞.

Hence, studying asymptotically

t−1 logAZ
T
γ
t

as t → ∞

would yield similar results for t−1 logAZ
t2

. Following [31], applying the scaling property of
BM and making a change of variables, we have

AZ
T
γ
t

=
∫ T

γ
t

0
e2βv dv

d= t2
∫ T

γ
1

0
e2tβu du

(recall that T γt
d= t2T

γ
1 ), so that, for all t > 0, we have

1

t
logAZ

T
γ
t

d= 1

t
log

(
t2

∫ T
γ
1

0
e2tβu du

)
= 2 log t

t
+ log

(∫ T
γ
1

0
e2tβu du

)1/t

.

Using the fact that the p-norm converges to the ∞-norm when p → ∞, the latter converges
for t → ∞ towards 2 sup0≤u≤T γ1 βu. By the reflexion principle (see, e.g. [24]), we have

sup
0≤u≤T γ1

βu
d= |β|T γ1

d= |C1|

and we deduce that
1

t
logAZ

T
γ
t

d−→ 2|C1|, t → ∞.

The result for AZt follows immediately. �

The distribution of AZt may also be characterized by a result due to Dufresne [13] that we
state now. For the sake of completeness, we also sketch the proof.

Proposition 4.2. For every t > 0, x ≥ 0, and with ϕ given in (2.9), we have

E

[
1√

2πAZt

exp

(
− x

2AZt

)]
= 1√

2πt

1√
1 + x

exp

(
−ϕ(x)

2t

)
.

Proof. We appeal again to Bougerol’s identity in law. For every t > 0 fixed,

sinh(βt )
d= β̂AZt (β)

,
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and we identify the densities of the two parts, i.e.

1√
2πt

1√
1 + y2

exp

(
−ϕ(y

2)

2t

)

for the left-hand side and

E

[
1√

2πAZt

exp

(
− y2

2AZt

)]

for the right-hand side. The proof is complete by the change of variable x = y2. �
Corollary 4.1. For every t > 0, it follows that 1/AZt ∼GGC.

Proof. With the notation of (2.12), observe that

E

[
exp

(
−x

2

(
1

AZt

)
[1/2]

)]
= e−χ(x),

where x �→ χ(x) = 1
2 log(1 + x) + ϕ(x)/2t ∈ TBF, and conclude as in the proof of

Proposition 2.4. �
Remark 4.1. These results may easily be generalized for the functional

A
(ν)
t =

∫ t

0
exp(βs + νs) ds.

Indeed, we have access to its distribution by the following relation (see, e.g. [1] or [28]): with
ν, μ two real numbers, for every t > 0 fixed (β, B, and δ are three independent BMs),

sinh(Y (ν,μ)t )
d=

∫ t

0
exp(βs + νs) d(Bs + μs) = δ∫ t

0 exp(2(βs+νs)) ds ,

where (Y (ν,μ)t , t ≥ 0) is a diffusion with infinitesimal generator

1

2

d2

dy2 +
(
ν tanh(y)+ μ

cosh(y)

)
d

dy
,

starting from y = arg sinh(x). Here, without loss of generality, we may consider μ = 0 and
mimic the approach with ν = 0, which was presented above.

4.2. Asian options and exponential functionals of Lévy processes

In this subsection we discuss the case of Asian options in conjunction with Lévy processes,
i.e. the case where the exponential functional of interest is

AUt :=
∫ t

0
exp(αξs) ds.

Recall from Subsection 3.1 that U is an isotropic planar stable process, and ξ and ρ are two
real-valued Lévy processes, the first one is nonsymmetric and the second one is symmetric.
Following [4, Section 6.3] and [37], this case may be considered as a natural generalization
of the case of Asian options where the exponential functional is associated to a BM. More
precisely, from the above references, the computation of the price of Asian options corresponds
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to the study of the law of the exponential functional associated to a Lévy process ξ at a fixed
time t . In particular, the problem may be reduced by substituting t by an exponential (random)
time. Hence, we have

T θ
U

c = inf{t : θUt = c} = (HU)−1
u |u=T ρc =

∫ T
ρ
c

0
ds exp(αξs) =: AU

T
ρ
c

(4.1)

and, similarly,

T |θU |
c = AU

T
|ρ|
c

.

We state the following proposition only forAU
T
ρ
c

, a similar result may also be obtained forAU
T

|ρ|
c

.

Proposition 4.3. The following convergence in law holds:

1

t
logAU

tα/2
d−→ T

β√
1/r(α)

, t → ∞, (4.2)

where r(α) is given by (3.1), β denotes a real BM, and (T βu )u>0, given by (1.2), is a 1
2 -stable

subordinator.

Proof. Mimicking the approach of the previous subsection, we can extend this result toAUt .
Indeed, we easily show that AU

T
ρ√
t

− AU
tα/2

is a variable that exists; hence,

1

t
(logAU

T
ρ√
t

− logAU
tα/2
) = 1

t

(
log

AU
T
ρ√
t

AU
tα/2

)
d−→ 0, t → ∞.

Now, following [12], we use (4.1) and Theorem 3.1 in order to obtain

1

t
logAU

T
ρ√
t

= 1

t
log(T θ

U√
t
)

= 1

t
log(inf{u : θUu >

√
t})

= 1

t
log

(
inf

{
ets : 1√

t
θUexp(ts) > 1

})
(u = exp(ts))

= inf

{
s : 1√

t
θUexp(ts) > 1

}
d−→ inf{s : βr(α)s > 1} (t → ∞)

= inf{s : √
r(α)βs > 1}

=: T β√
1/r(α)

,

which completes the proof. �
Corollary 4.2. Let N ∼ N (0, 1), The following convergence in law holds:

(AU
tα/2
)1/t

d−→ exp

(
1

r(α)

1

N2

)
∼ GGC, t → ∞.

Proof. The proof follows using (4.2), the scaling property of stable processes, the fact that
1/N2 d= T

β
1 ∼GGC, and [7, Theorem 3]. �

https://doi.org/10.1017/apr.2018.33 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.33


Windings and Asian options 741

Remark 4.2. The result of Corollary 4.2 could be useful in order to obtain asymptotic closed
formulae about ‘jump type’Asian option prices by following the spirit of Geman and Yor [38].
This problem will be further discussed in a forthcoming paper.
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