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Mean-field dynamo equations are addressed with the aid of the path integral method.
The evolution of magnetic field is treated as a three-dimensional Wiener random
process, and the mean magnetic-field equations are obtained with the Wiener integrals
taken over all the trajectories of the fluid particles. The form of the equations is just
the same as the conventional mean-field equations, but here the equations are derived
with the velocity field realisation affected by the force exerted by the magnetic field.
In this sense, we derive nonlinear dynamo equations.

Key words: astrophysical plasmas, space plasma physics

1. Introduction
Mean-field equations were introduced in dynamo theory at quite an early stage

of its development (see e.g. Krause & Rädler (1980)). At that time it was the main
tool to produce dynamo models for magnetic-field evolution in various celestial
bodies including the Sun. Contemporary science has for this aim other tools primarily
including direct numerical simulations; however the mean-field equations remain an
important approach. In particular, the mean-field description is useful to understand
the physical mechanism of dynamo action based on mirror asymmetry of turbulence
or convection, in the form of the famous α effect, which explains the solar dynamo
mechanism suggested in Parker (1955).

Several methods to perform statistical averaging of the induction equation in order
to obtain mean-field dynamo equations have been suggested. The main issue here is
how to split correlations into terms which contain both the velocity field v as well as
the magnetic field H which are obviously statistically dependent. One such method
is the path integral method, initially suggested in Molchanov, Ruzmaikin & Sokoloff
(1983).

The idea of the method can be presented as follows. Performing statistical averaging
looks attractive to deal with the solution of the induction equation rather with the
induction equation itself, because the solution by definition contains only the velocity
field and initial magnetic field. The problem is how to obtain such a solution. It is
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achievable if we neglect ohmic losses and use a Lagrangian reference frame, so
the induction equation reduces to a system of linear ordinary differential equations.
Then the desired solution can be obtained following magnetic-field evolution over the
Lagrangian trajectories.

Including ohmic losses, we have to consider a bundle of random paths surrounding
the Lagrangian trajectory. These paths arise from the joint action of advection
and random walks which mimic magnetic-field diffusion. Magnetic-field evolution
is considered here as a superposition of contributions associated with a particular
random trajectory. In this sense the path integral approach can be considered as an
extension of the Green’s function approach (Kraichnan 1965).

The path integral technique was initially invented by Feynman for quantum
mechanics and then generalised by Kac to various transport problems, while initial
ideas came even from Wiener (see Zeldovich, Ruzmaikin & Sokoloff (1990) for
a historical review). Because the technique exploits substantially the superposition
concept, the equations when averaged have to be linear. This is natural in quantum
mechanics which is a basically linear science, however it is severely restrictive for
dynamo theory because magnetic force begins to play a role at quite an early stage
in the evolution of a dynamo driven magnetic configuration.

Of course, people have exploited path integral techniques for nonlinear dynamo
studies (e.g. Kleeorin & Rogachevskii (1994)) however the results are considered
as not mathematically justified because, strictly speaking, the Kac–Feynman formula
is valid for linear equations only. The point however is that the induction equation
taken alone is a linear equation and nonlinearity enters the problem only because
the magnetic field affects motions and this effect is addressed by the hydrodynamical
equations. Such equations are known in mathematical studies as quasilinear. The path
integral method can be applied to quasilinear equations by using a specific ‘trick’
(e.g. Peng (1991)) which is exploited in some areas of science (initially in financial
mathematics (Shiryaev 1999)); however the technique still deserves introduction into
dynamo theory. This is the aim of this paper.

We restrict our presentation to the case similar to the kinematical problem
considered by Molchanov et al. (1983) and try to present the simplest version
of the generalisation under discussion. Correspondingly, our algebra below is as close
to that of Molchanov et al. (1983) as possible. However, the message of the paper
is quite different. The form of kinematic mean-field dynamo equations is very robust.
It is quite easy to obtain a link between expressions for parametrisations of turbulent
diffusivity and α-effect obtained in various approaches, say in second-order smoothing
and path integral approaches. We discuss in § 5 how the situation for nonlinear
dynamos becomes more complicated and the form of dynamo equations obtained
in the approach discussed is quite different from that considered in contemporary
dynamical quenching models.

2. The Kac–Feynman formula

For the sake of consistency we consider briefly how magnetic field evolution in
a given velocity field can be addressed by the path integral method. We start from
the standard induction equation for the magnetic field H in the flow v with magnetic
diffusivity νm

∂H
∂t
+ (v · ∇)H= (H · ∇)v − νmcurl curl H . (2.1)
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For the inviscid case in a Lagrangian frame of reference this equation reads

dH
dt
=HÂ, (2.2)

where the vector H is considered to be a row (not column) and the matrix Â consists
of derivatives ∂vi/∂xj. The variable x in (2.2), position of the ‘fluid element’ at
instant t, is governed by the equation

dx
dt
= v. (2.3)

Equation (2.2) can be solved in an explicit form in terms of what are known as
T-exponents or, more mathematically, Volterra multiplicative integrals (e.g. Gantmacher
(1959))

H(x(t), t)=HΠ t
s=0[Ê + Â(s)ds], (2.4)

where Ê is a unit matrix and s is a past time (s 6 t).
Equation (2.4) can be extended to include the dissipative term if we add diffusive

random walks
√

2νmwt to the advection velocity v in (2.3). Here wt means the
standard three-dimensional Wiener random process, i.e. a process with independent
increments, zero mean and correlation matrix δijt. We have to consider a bundle of
diffusion paths, summarise corresponding contributions and perform averaging taken
over all paths (still not over all realisations of the velocity field). This is the step
that requires linearity of (2.1). From the mathematical viewpoint the last operation
can be described as a Wiener integral taken over all trajectories of fluid particles.

We have to take into account that the random walk wt has no finite velocity (no
finite limit (wt+1t − wt)/1t has no finite limit for 1t→ 0) because wt+1t − wt ∝

√
t

(Einstein relation), and we have to rewrite equations (2.3) and (2.4) in integral form.
This yields in

H(x, t)=MxH(ξx,s)Π
t
s=0[Ê + Â(ξx,s′) ds′], (2.5)

where
ξx,s = x+

√
2ν1/2

m wt −

∫ s

t
v ds′ (2.6)

(the so-called Ito equation; see Ito (1946)). Equation (2.5) belongs to the type of
expressions referred as the Kac–Feynman formulae. Mx mean averaging taken over
trajectories obtained from (2.6).

The fact that (2.5) gives the solution of (2.1) can be verified directly by taking
derivatives with respect to t of this function.

Equations (2.5) and (2.6) do require linearity; however, we use them in particular
circumstances only and this gives freedom to use the technique to be presented here.

3. Short-correlated model for the nonlinear dynamo
To be specific, we present the ‘trick’ for the short-correlated model, i.e. we consider

the correlation time of turbulence or convection to be short enough to ignore details
of the random path ξ evolution during this time. Formally it means the following.
We consider a family of random velocity fields v∆ which are statistically independent
and identically distributed at time intervals [n∆, (n + 1)∆). (Note that the left-hand
boundary is included in the interval while the right-hand is excluded; this solves the
problem concerning the memory of what happens just at the instant t= n∆.) In order
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to avoid lengthy algebra we assume that the random velocity field is statistically
homogeneous and isotropic in space and the mean velocity vanishes (see Tomin &
Sokoloff (2010) concerning implementation of a non-zero and inhomogeneous mean
velocity in the procedure, and Yokoi (2013) in connection with the cross-helicity
problem; it is however difficult to use the method for steady flows).

We are going to consider the case ∆→ 0. To avoid vanishing of induction effects
in this limiting case we have to assume that

v∆ ∝∆−1/2. (3.1)

The scaling (3.1) looks similar to the Einstein relation wt+1t − wt ∝
√

t. This means
that the hydrodynamical flow in the framework of short-correlated model is assumed
to be similar to Brownian motion.

Then we apply (2.5), considering the instant t= n∆ as the initial state and calculate
integrals participating in (2.5) and (2.6) using Taylor expansions taken with respect to
the parameter ∆. This means that we need to apply (2.5) for the short time interval
from n∆ until (n+ 1)∆ only, rather than to the whole time from 0 until t.

Let us take the random field v∆ to depend on magnetic field on the times before the
instant n∆ only, and not to depend on magnetic field in the interval n∆6 t6 (n+ 1)∆.
Then we can still can apply (2.5) to the interval of interest in spite of the fact that
the problem remains nonlinear.

This is the technique reported here. The consequences of this are hard to foresee.
We discuss them at the end of the paper.

As a comment on the short-correlated model we note the following. In magneto-
hydrodynamics (MHD), in general, we can introduce four Green’s functions: Guu, Gub,
Gbu, Gbb, where Gfg means the response of the field f to an infinitesimal change of
the g field. The short correlated model in the present formulation may correspond to
assuming that the correlation times associated with Gbu and Gbb are much shorter than
the counterpart of Gub.

4. Obtaining the mean-field equations
We are now going to finalise the derivation of mean field in the framework of our

model. We perform a Taylor expansion of equations (2.5) and (2.6) for ∆→ 0 taking
into account that

dF(wt)= F′wdt +
1
2 F′′ dt, (4.1)

where F is a smooth function (known as the Ito formula). Equation (4.1) allows
restoration of the second derivative term in (2.1) from (2.5).

Equation (2.6) yields

ξi,∆ − xi =−vi(n∆, x)∆+
√

2ν1/2
m wi,∆ −

∂vi

∂xj

∫ ∆

0
wt,j dt+

1
2
vj
∂vi

∂xj
. . . , (4.2)

where the ellipsis represents the terms smaller than ∆ (remember that the second term
on the right-hand side is of order ∆ because of (3.1), while the multiplicative integral
in (2.5) can be presented as

Π t
s=0[Ê + Â(ξx, s′)d s′] = δij −

∫ ∆

0

∂vi(t− s, ξs)

∂xj

+

∫ ∆

o

∂vi(t− σ , ξσ )
∂xl

∫ ∆

0

∂vl(t− s, ξs)

∂xj
ds dσ + · · · . (4.3)
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Taking into account that

∂vi(t− s, ξs)

∂xj
=
∂vi(t− s, x)

∂xj
+

∂2vi

∂xj∂xk
(ξs,k − xk)+ · · · , (4.4)

collecting terms in (2.5) and performing averaging following Molchanov et al. (1983)
we obtain the mean-field equation for B= 〈H〉 as follows

∂B
∂t
= curlαB− β curl curl B , (4.5)

where
α =− lim

∆→0
∆
〈v curl v〉

3
(4.6)

and

β = lim
∆→0

∆
〈v2
〉

3
. (4.7)

The physical meaning of the limiting procedure ∆→ 0 is that we are not interested
in what happens on time scales shorter than ∆, which plays the role of the memory
time τ . Standard expressions of mixing length theory for α and β follow from (4.5)
and (4.7) using l= v∆ as a spatial scale of the flow.

5. Conclusions and discussion
Using the path integral method in the framework of the model described above we

obtained the mean-field dynamo equation (4.5) for the nonlinear dynamo. The form
of this equation is just the same as the conventional mean-field equation obtained by
Steenbeck, Krause and Rädler (see Krause & Rädler (1980)). The important difference
from the classical mean-field equation is that the averaging in (4.6) and (4.7) is taken
over the ensemble of velocity field realisations affected by the magnetic force while
the classical mean-field equation assumes that this ensemble as well as the quantities
(4.6), (4.7) are given in advance. This departure from the kinematic approach is the
most important point in the present formulation of the nonlinear dynamo.

In this sense (4.5) is not a closed linear equation, but however should be combined
with equations to calculate the quantities of (4.6), (4.7). Of course, these equations
have to be obtained from some arguments external to those considered here. As a
possible source for a procedure for calculation of quantities from (4.6) and (4.7)
we might suggest the technique of shell models (Plunian, Stepanov & Frick 2013).
At the moment this looks to be the most promising technique for quantification
of locally homogeneous and isotropic turbulence at very high hydrodynamic and
magnetic Reynolds numbers. A generalisation to the anisotropic case looks feasible
as well.

Our approach can be compared with that of Brandenburg et al. (2008), where the
velocity fluctuations are affected by the magnetic field. This is called quasi-kinematic
by Rheinhardt & Brandenburg (2010) and is obviously not the fully nonlinear
formulation of the problem. A formal manifestation of this fact is that we deal
with quasilinear rather fully nonlinear equations. Courvoisier, Hughes & Proctor
(2010) insist that a mean-field description of the nonlinear regime based solely on
a quenched α-coefficient is incorrect. We agree that nonlinear modification of other
transport coefficients has also to be taken into account. However we do not focus our
presentation on this point.
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The evaluation of the mean-field equation demonstrated above becomes possible
because we assume that the action of the nonlinear magnetic force occurs before
the renewal instant t = n∆, while the corresponding induction effect acts from the
instant t = n∆ until t = (n + 1)∆. As for the other assumptions which allow the
derivation of the closed mean-field equations, this assumption is also a simplification
and its applicability is limited. If the velocity variation through the magnetic force
action occurs simultaneously with that of the magnetic-field induction, the mean-field
evolution has to be treated in fully nonlinear manner.

An important feature of (4.5) is that it yields a mean-field equation which does not
explicitly include the idea that current (or magnetic) helicity is a quantity important
for nonlinear mean-field dynamo suppression. Indeed, current (or magnetic) helicity
does not participate in this equation directly but can participate via (4.6) (or even (4.7),
cf. Brandenburg, Schober & Rogachevskii (2017) where contribution of kinetic
helicity in turbulent diffusivity is considered) only. Maybe this is a shortcoming
of the model of the flow studied here. If this is true, it means that the key issue
for the role of current helicity term in the nonlinear dynamo model is the absence
of any time lag between the induction effect and the action of the magnetic force.
If the response of the velocity fluctuation to the fluctuating Lorentz force j′ × B
[B = 〈H〉, j′ = curl(H − 〈H〉)] is much slower than the counterpart of the magnetic
fluctuation to the velocity variation, the former or current helicity effect is negligible
as compared with the latter or kinetic helicity effect. As for the physical origins of
the kinetic and current helicity effects, see § 3.3.2 of Yokoi (2013). Such a lag is
postulated in our model. If there is no time lag between the magnetic induction and
the velocity response to the magnetic force action, the current helicity contributes
to the turbulent electromotive force through the fluctuating Lorentz force in a sense
opposed to the contribution of the kinetic helicity effect. Maybe this means that only
a fully nonlinear approach to the dynamo saturation problem is adequate. Of course,
the relative importance of the current helicity to the kinetic helicity effects depends
on the domain of the magnetohydrodynamic flows. If the magnetic Reynolds number
v`/η (v: characteristic velocity, `: characteristic length, η: magnetic diffusivity) is
much smaller than the kinetic Reynolds number v`/ν (ν: kinematic viscosity), the
magnitude of induced magnetic-field fluctuation itself and consequently that of the
turbulent current helicity density are relatively so small that the current helicity
effect is negligible. Another option is that memory effects are important for the
current helicity terms in the nonlinear dynamo equations. On the other hand however,
in the usual homogeneous turbulence theory, it is often considered that the helicity
introduces a time scale other than the eddy turnover time. For instance, the bottleneck
effect (energy pile up at small scales) in helical turbulence is often attributed to the
time scale change due to turbulence at small scales.

In any case, the final decision as to which parametrisation for nonlinear mean-field
dynamo action is more realistic has to come from experience with modelling of
particular natural (or, in perspective, laboratory) dynamos, together with numerical
experiments.
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