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We investigate the tail distribution of the virtual waiting times in aLRD0GI01 queue
where the arrival process is long-range dependent~LRD! and the service times are
independent and identically distributed~i+i+d+! random variables+ We present two
lower bounds on the stationary waiting time tail asymptotics, which illustrate the
different dominating components that influence server performance under various
conditions+ In particular, we show that the tail distribution of the stationary waiting
time is bounded below by that of the associatedLRD0D01 queues resulting from
replacing all random service times by the mean+This shows the performance impact
purely due to the long-range dependency of the arrival process+ On the other hand,
when the service times are subexponential, we show that the tail distribution of the
stationary waiting time is bounded below by that of the correspondingD0GI01
queue by replacing the dependent arrival process with its associated independent
version+This shows the minimum performance impact due to the tail distribution of
the service times+ The above two lower bounds indicate that the performance of
LRD0GI01 queues will be dominated by the heavier tail of the correspondingLRD0
D01 andD0GI01 queues+These features are further illustrated and quantified through
examples and via numerous simulation experiments+

1. INTRODUCTION

With the rapid advances in Internet technology, electronic commerce is becoming a
mature business strategy+ The concept of Quality of Service~QoS! is working its
way to the front lines of electronic business commitments and requirements, as it
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plays an important role in Internet applications, services, and pricing negotiations+
One needs to have a fundamental understanding of the key characteristics of the
traffic patterns in commercial websites and a fundamental understanding of the im-
pact of such traffic patterns on Web server performance, as well as the server ca-
pacity required to guarantee a certain level of QoS~e+g+, request response time!+Our
primary focus in this article is to investigate these important research issues related
to such performance metrics when the arrival traffic is long-range dependent and the
service times are subexponential+

In the past decades, long-range dependence~LRD! has been detected in a wide
range of applications and over multiple networking infrastructures@5,10,19# +Roughly
speaking, the LRD process has a slowly decaying correlation structure that is non-
integrable+ This dependence structure is expected to affect performance in a drasti-
cally negative way that is much different from that under the Poisson process+Previous
work @7,13,18# in this area has been mostly focused on the dependent input process
while assuming the service times of all arrivals are deterministic~i+e+, LRD0D01
queues or equivalently fluid queues with LRD input process!+Although the assump-
tion of deterministic service times is valid in the case of network routers serving
fixed-size packets or is a reasonable approximation when the packet sizes have small
variance, such an assumption is hardly justified in the case of Web servers where, in
addition to the long-range dependency of the arrival process, requests vary largely in
their sizes and service demands, often having nontraditional~subexponential! tail
distributions@1,5,6,8,11,21# + Therefore, how the performance would be influenced
by the LRD input process and the nontraditional service time distributions remains
an open question, important both in theory and real practice, such as Web server
performance and QoS concerns+

Performance impact due to subexponential service times~while assuming inde-
pendent and identically distributed~i+i+d+! interarrival times! has been explored ex-
tensively over the past decades+A fundamental result~due to Pakes@14# ! shows that
for GI0GI01 queues with i+i+d+ interarrival times and i+i+d+ service times, where it is
assumed that the service times have distribution function~d+f+! F with finite mean
µ21 and traffic intensityr , 1, if the integrated~service time! tail distribution OFe is
subexponential, then the stationary waiting timeẀ is also subexponential and its
tail distribution is asymptotically equivalent toOFe~x! asx goes to infinity+Therefore,
for GI0GI01 queues, when the residual service times are subexponential, the tail
distribution of the service times will dominate the tail behavior of the stationary
waiting times+ The above result has later been generalized to Markov-modulated
G0GI01 queues@9# and short-range-dependent arrival processes@3# +

Our goal in this article is to examine the performance asymptotics under both
LRD arrival processes and i+i+d+ subexponential service times+ In particular, consider
LRD0GI01 queues, let A~t ! be the total number of arrivals in interval@0, t !, and
denote bySi the service demand by thei th arrival and byTi thei th interarrival time+
Throughout this article, we assume that theSi ’s are i+i+d+, and the sequence ofTi is
stationary and ergodic+
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We are interested in thestationary waiting time, expressed in Loynes’schema as
~cf+ @12# !

Ẁ 5
d Ssup

n$1
(
k51

n

~S2k 2 T2k!D1

,

where5
d

is the equality in distribution and the sequence$Sk,Tk%k52`
` is the stationary

extension of the original sequence$Sk,Tk%k51
` +

We present two lower bounds on the stationary waiting time tail asymptotics,
which illustrate the different dominating components that influence server perfor-
mance under various conditions+ Specifically, we show that forLRD0GI01 queues,
where the arrival process is long-range dependent and the service times are subex-
ponential, the tail distribution of the waiting timeẀ is asymptotically bounded
below by@ r0~12r!# OFe~x!,where OFe is the tail distribution of the stationaryresidual
service times+ Although this lower bound is known to be asymptotically exact for
GI0GI01 queues, this bound is the first, to the best of our knowledge, that extends to
long-range dependent arrival processes+ It indicates that the performance of any
G0GI01 queues with subexponential times is always bounded below by that of the
associatedD0GI01 queue by replacing the~dependent! arrival process with its as-
sociated independent version+ This shows the minimum performance impact due to
the tail distribution of the service times+

In addition, we show that the tail distribution of the stationary waiting time of a
LRD0GI01 queue is always bounded below by that of the correspondingLRD0D01
queue when replacing the random service times with its mean+ This shows the min-
imum performance impact due to the long-range dependency of the input process+

The above two lower bounds further illuminate that the performance ofLRD0
GI01 queues should be dominated by the heavier distribution betweenOFe and the tail
distribution ofẀ for the associatedLRD0D01 queues+ When modeling the LRD
process using the fractional Gaussian noise~FGN! with Hurst parameterH, the
correspondingFGN0D01 queue is well studied in@7,13# , where it is known that the
stationary waiting time is asymptotically equivalent to a Weibull distribution with
shape parameter 222H, denoted by Weibull~222H!+ In this case,when the residual
service time is heavier than Weibull~222H!, then the steady-state performance will
be dominated by the residual service times+ However, if the residual service time is
lighter, then the steady-state performance is dominated by the dependence structure
of the arrival process+ The same results also hold for the stationary virtual waiting
times+ These characterizations are further illustrated and quantified via numerous
simulation experiments+

The rest of the article is organized as follows+ Definitions and some prelimi-
naries are presented in Section 2+ In Section 3,we show our main results,which give
two important asymptotic lower bounds for the tail distribution of the stationary
waiting time under general~dependent! arrival process and i+i+d+ subexponential
service times+ These features are further illustrated and quantified via numerous
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simulation experiments in Section 4+ Finally, concluding remarks are given in
Section 5+

2. PRELIMINARIES

In this article,we will use the notationa~x!;b~x! for limxr`~a~x!0b~x!!51,a~x! f
b~x! for lim inf xr`~a~x!0b~x!! $ 1, and a~x! d b~x! for lim supxr`~a~x!0
b~x!! # 1+

For a given distribution functionF on @0,`% , designateFe to be the integrated
tail distribution ofF so that

OFe~x! 5 µE
x

`

OF~ y! dy+

whereµ5 10*0
` OF~ y! dy+

Definition 1: A distribution function F on@0,`! is said to be subexponential,
denoted as F[ S, if for any n$ 2,

F *n~x! ; n OF~x!,

where F*n denotes the n-fold convolution of F.

The class of subexponential distributions was first introduced by Chistakov@4# +
Intuitively, it says that the sum becomes large mainly due to one of the summands
being large+ Distribution functions in the subexponential family include Pareto dis-
tributions, log-normal distributions, and part of the Weibull distribution family+ A
Pareto distribution with shape parametera and scale parameterb has d+f+

F~x! 5 12 ~x0b!2a, x $ b . 0,a . 0+ (1)

A Weibull distribution with scale parametera and shape parameterb has d+f+

F~x! 5 12 e2axb
, x . 0+ (2)

It is subexponential when the shape parameterb [ ~0,1!+
Note thatS is a subset ofL, the class oflong-tailed distributions such that

OF~x 1 y! ; OF~x! asx r ` for all y+ It can be shown that any random variable
~r+v+! X with d+f+ F [ L would have an infinite moment generating function@17#:
E~euX! 5`, u . 0+We will therefore refer to a r+v+ X as light tailed if E~euX! , `
for someu . 0+

Here, we quote some well-known properties that will be used later+

Lemma 2: Let F and G be d.f.’s on@0,`! such that OF~x! ; c OG~x!, with constant
c [ ~0,`!. Then, F[ S if and only if G[ S.

Lemma 3: If G [ S and F is any d.f. such thatlimxr`~ OF~x!0 OG~x!! 5 c, with
constant c[ @0,`!, then

F * G~x! ; ~11 c! OG~x!+
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3. ASYMPTOTIC LOWER BOUNDS

Consider a single queuing system where jobs arrive at random times 0# G1 # G2 #
{{{, and the service times$Sn%n$1 are i+i+d+ random variables with d+f+ F and finite
meanµ21+ Throughout this article, we assume that the service discipline is first-
come first-serve~FCFS!+ Let Tn 5 Gn 2 Gn21, n 5 1,2, + + + , be the interarrival times+
We assume the arrival process is independent of the service times+ Denote byA~t !
the cumulative number of arrivals in time@0, t !+ We assume that processA~t ! is
stationary and ergodic s+t+ lim tr`~A~t !0t ! 5 l+ Note that the arrival processA~t !
could be dependent or even long-range dependent+We assumer 5 l0µ , 1 so that
the system is stable+ In addition, let $Sk,Tk%k52`

` be the stationary extension of the
original sequence$Sk,Tk%k51

` +
We now present two important asymptotic lower bounds for the tail distribution

of the stationary waiting timeẀ +These bounds illuminate the different dominating
components that influence server performance under different conditions, which
shed light on the joint performance impact under both the long-range dependent
arrival process and subexponential service times+

3.1. Lower Bound Based on Service Time Tail Distribution

In this subsection, we assume that the service timesSn, n 5 1,2, + + + are i+i+d+ sub-
exponential+We consider a generalLRD0GI01 queuing system and show the mini-
mum performance impact due to subexponential service times+

We will first present Lemma 4,which can be considered as an extended version
of Lemma 3+1 in @2# +

Lemma 4: Let Dn, n 5 1,2, + + + , be a sequence of random variables such that as
n r `, Dn0n r d with probability (w.p.)1. For arbitrary e, e ' . 0, there exists a
constant c. 0 such that

PFù
n$1

$Dn # n~d 1 e! 1 c%G . 12 e ', (3)

and

PFù
n$1

$Dn $ n~d 2 e! 2 c%G . 12 e '+ (4)

Proof: Inequality ~3! is basically the result of Lemma 3+1+ in @2# + Noting that
2Dn0n r 2d w+p+ 1, inequality ~4! simply follows from applying~3! on the se-
quence2Dn+ n

Theorem 5: Consider a LRD0GI01 queue with FCFS, where the input process is
stationary and ergodic s.t.lim tr`~A~t !0t ! 5 l. The service times are subexponen-
tial i.i.d. r.v.’s with mean µ21 and d.f. F. Setr 5 l0µ and assumer , 1. If Fe [ S,
then
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P@Ẁ . x# f
r

12 r
OFe~x!+ (5)

Proof: Because the input process is stationary and ergodic, it follows immediately
that~(i51

n Ti !0nr l21 w+p+ 1+Applying Lemma 4 yields that for arbitrarye, e '. 0,
there exists a constantc . 0 such thatP@B# . 12 e ' , whereB denotes the event set
B :5 ùn$1$(k51

n T2k # n~l21 1 e! 1 c% +We then have

P@Ẁ . x# $ P@B#PFsup
n$1

H(
k51

n

S2k 2 (
k51

n

T2kJ . x6BG
$ ~12 e ' !PFsup

n$1
H(

k51

n

@S2k 2 ~l21 1 e!#J . x 1 c6BG
5 ~12 e ' !PFsup

n$1
H(

k51

n

@S2k 2 ~l21 1 e!#J . x 1 cG
; ~12 e ' !

µ21

l21 1 e 2 µ21 OFe~x 1 c!,

where the last equality comes from the fact that the arrival process~thus, eventB!
is independent of the service times+ The last; equivalence is due to@14# for
D0GI01 queues with deterministic interarrival timesl21 1 e+ SinceFe [ S , L,
OFe~x 1 c! ; OFe~x!, ~5! follows by lettinge ande ' go to zero+ n

Note that the above argument applies for any~whether dependent or indepen-
dent! stationary ergodic arrival process+ Thus, from Theorem 5, we conclude that
under any stationary ergodic arrival process, whenever the service times are subex-
ponential, the tail distribution of the stationary waiting time will be at least as heavy
as that of the residual service times+

Remark: Although it is well known that forGI0GI01 queues where the arrival pro-
cess is of renewal type and the service times are subexponential, ~5! is asymptoti-
cally exact@14#; the above lower bound is the first, to the best of our knowledge, that
extends to long-range-dependent arrival processes+

3.2. Lower Bound Based on Dependence Structure

We next derive a lower bound for the tail distribution of the stationary waiting time
which shows the performance impact purely due to the long-range-dependent struc-
ture of the arrival process+

Theorem 6: Consider a LRD0GI01 queue with FCFS, where the input process is
stationary and ergodic s.t.lim tr`~A~t !0t ! 5 l. The service times are subexponen-
tial i.i.d. random variables with mean µ21 and d.f. F. Setr 5 l0µ and assume
r , 1. Let ẀLRD0D01 be the stationary waiting time of the associated LRD0D01
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queues where the arrival process is the same but service times are deterministic and
equal to µ21. If for all sufficiently smalle . 0,

ẀLRD0D2e 01 [ L, (6)

where D2e denotes deterministic service times equal to µ21 2 e, then

P@Ẁ . x# f P@ẀLRD0D01 . x# + (7)

Proof: BecauseSk’s are i+i+d+ random variables, by the strong law of large numbers,
~(k51

n S2k!0nr µ21 w+p+ 1+Applying Lemma 4 entails for arbitrarye, e ' . 0, there
exists a constantc . 0 such thatP@B'# . 1 2 e ' , whereB' denotes the event set

B' :5 ùn$1$(k51
n S2k $ n~µ21 2 e! 2 c% + Therefore,

P@Ẁ . x# $ P@B' # PFsup
n$1

H(
k51

n

S2k 2 (
k51

n

T2kJ . x6B'G
$ ~12 e ' !PFsup

n$1
H(

k51

n

@~µ21 2 e! 2 T2k#J . x 1 c6B'G
5 ~12 e ' !PFsup

n$1
H(

k51

n

@~µ21 2 e! 2 T2k#J . x 1 cG
5 ~12 e ' !P@ẀLRD0D2e 01 . x 1 c# ,

where the last equality follows from the fact that the service times~thus, eventB'! is
independent of the arrival process+SinceẀLRD0D2e 01 [ L,P@ẀLRD0D2e 01 . x1c#;
P@ẀLRD0D2e 01 . x# + We then have that~7! follows by lettinge ande ' go to zero+

n

Theorem 6 shows that under both long-range-dependent arrival process and
subexponential service times, the tail distribution of the stationary waiting time will
be at least as heavy as that resulting from the dependence structure of the arrival
process alone~i+e+, as if with deterministic service times!+

3.3. Example: Fractional Gaussian Noise Input Traffic

In this subsection, we concentrate on the case when the arrival traffic is FGN+ The
FGN model is frequently used to capture the long-range dependency of traffic mostly
due to its mathematical simplicity+ The use of FGN for traffic modeling is discussed
in @15# and references therein+

Suppose requests arrive at discrete timest 5 0,1,2, + + + , where the number of
arrivals at time slott is denoted by integerat +Assume that$at % is a stationary FGN
sequence with meanl, variances2, and Hurst parameterH [ @ 1

2
_ ,1!+ In other words,

at 5 l 1 sNt
H , where$Nt

H% is a zero-mean standard~fraction! Gaussian sequence
with ~auto!covariance function
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GH ~k! 5
1

2
~6k 1 162H 2 26k62H 1 6k 2 162H !+

Consider aFGN0GI01 queue with arrival process$at % ; the service times for the
requestsSi ’s are i+i+d+ random variables with finite meanµ21 and general distribution
G+ Since jobs arrive in batches~at the beginning of each slot!, here we are interested
in the stationary waiting time of the first job in a batch, which can be expressed in
Loynes’ schema as follows:

Ẁ1 5
d S sup

t50,1,2, + + +
~U r ~t ! 2 t !D1

,

where U r ~t ! 5 (i51
Ar ~s! S2i , Ar ~t ! 5 (s50

t a2s and the sequences$at %t52`
` and

$Si % i52`
` are respectively stationary extensions of the sequences$at %t50

` and$Si % i50
` +

Let µe
21 5 µ21 2 e+ As in the proof of Theorem 6, one can show that

P@Ẁ1 . x# 5 PFsup
t[N

H (
j51

Ar ~t !

S2j 2 tJ . xG
$ ~12 e ' !PFsup

t[N
$Ar ~t !µe

21 2 t% . x 1 cG+
Note that the last component corresponds to a fluid queue fed by LRD inputs,

which has been studied in@13# assumingµe 5 1, and it is known that for largex,

PFsup
t$0

$Ar ~t ! 2 t % . xG f expS2F 1

2s2~12 H !2 S ~12 l!~12 H !

H
D2HGx222HD+

(8)

This lower bound has been shown in@7# to be asymptotically exact in log scale+
Therefore, supt$0~Ar ~t !µe

21 2 t ! has its tail distribution asymptotically equiv-
alent to a Weibull distribution with shape parameter 22 2H, which is clearly long
tailed, thus satisfying condition 6+

As the waiting times of other customers in a batch are larger than that of the first
customer,we obtain the lower bound of the tail distribution of the stationary waiting
time+

Corollary 7: Consider a FGN/GI/1 queue, where the arrival process is FGN and
the service times are i.i.d. r.v.s with mean µ21. Then, for large x,

P@Ẁ . x# f e2dx b
, (9)

where

b 5 2 2 2H, d 5
1

2r2g2~12 H !2 S ~12 r!~12 H !

H
D2H

, (10)

with r 5 l0cµ andg2 5 s20l2. Note thatg2 is simply the coefficient of variance of
the arrival process.
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Clearly, lower bound~9! only shows the impact on performance by the long-
range-dependence arrival process+

3.4. Further Insights

The results from previous subsections show that the joint impact on performance by
a long-range dependent arrival process and subexponential would be bounded below
by that of the associated queues when replacing the~dependent! arrival process with
its independent version, and by the tail distribution of the residual service times+
Thus, the heavier tail of~9! and~5! dominates+We then have the following corollary+

Corollary 8: For a LRD0GI01 queue, where the input process is LRD and the
service times are i.i.d. subexponential with finite mean µ21, then for large x, the tail
distribution of the stationary waiting time is bounded below by the heavier tail of (5)
and (7).

Corollary 9: Consider FGN/GI/1 queues as introduced in Section 3.3, The ser-
vice times are i.i.d. subexponential with finite mean µ21. Then, the lower bound of
the stationary waiting time will be dominated by the heavier tail of the residual
service time and Weibull distribution with shape parameter 222H and scale param-
eterd, which is given by (10).

In fact, similar results hold for thestationary virtual waiting time

V` 5
d S sup

t[R1
S(

i51

Ar ~t !

S2i 2 tDD1

+

This is because of the following stochastic comparisons between stationary virtual
waiting time and stationary waiting time:

Ẁ #st V` #st Ẁ 1 Se, (11)

whereSe;Feand is independent ofẀ +The stochastic inequalityX#stYmeans that
P@X . x# # P@Y . x# for all x [ R+

In order to show~11!, let tn 5 (k51
n T2k for n $ 1+ Note that

V` 5
d Ssup

t$0
@U r ~t ! 2 t #D1

$ Ssup
n$1

@U r ~tn! 2 tn#D1

5Ssup
n$1

(
k51

n

@S2k 2 T2k#D1

5
d

Ẁ +

Thus, the left-hand side of~11! follows immediately+
The right-hand side of~11! follows from the known fact@2# that for general

G0GI01 queues with FCFS andr , 1,

P@V` . x# 5 rP@Ẁ 1 Se . x# , (12)

for all x, whereSe is distributed asFe and is independent ofẀ +
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We immediately have the following corollary+

Corollary 10: The two lower bounds given by (5) and (9) hold asymptotically for
the stationary virtual waiting time V̀. In addition, the heavier one of both the sta-
tionary waiting times Ẁ dominates.

Therefore, when~5! is heavier than~9!, the tail distributions of the stationary
waiting time and virtual waiting time are dominated by the subexponential service
times; that is, the impact by the dependence structure of the input process becomes
relatively small+ If instead, the lower bound~9! is heavier than~5!, then the tail
distributions of the stationary waiting time and virtual waiting time are dominated
by the dependence structure+ These features are further illustrated by the simulation
studies in the next section+

We conjecture that the lower bound of Corollary 8 actually provides an asymp-
totically exact solution+

4. COMPARISON WITH SIMULATIONS

To compare with the theoretical bounds developed in the last section, we simulate
the system under generated self-similar input sequence and explore the perfor-
mance under different service time distributions+ The self-similar input process is
generated using the drill-down techniques introduced in@21# using the FGN model,
which is based on the fast Fourier transform algorithm proposed in@16# + Specif-
ically, we set the parameters of the FGN model to beH 5 0+7505, l 5 30+1471
ands2 5 86+6037, which are obtained from a real set of commercial website data
dated August 9, 2001, hour 16–21+2+ The service times are generated~based on
the inversion formula! under different distributions+ In all cases, we assume the
traffic intensity equalsr 5 0+8+ The resulting empirical stationary waiting time
tail distributionsP@Ẁ . x# are then calculated and plotted+ Note thatẀ $st V`;
we further compareP@Ẁ . x# with the lower bounds developed in Section 3+
We denote the lower bound~5! simply as Poisson since it corresponds to the per-
formance under the same service times but with Poisson input process+ Therefore,
it shows the performance impact due to the subexponential service times+ Simi-
larly, we denote as LB-H the lower bound given by~9! since it shows the perfor-
mance impact under the long-range-dependent structure+ Specifically, LB-H is set
to re2dx222H

for x . 0 sinceP~W . 0! 5 r+
Simulation results for exponential service times are plotted in Figure 1,where in

~a! the tail probability of the waiting timesP@W. x# is plotted as a function ofx, and
in ~b! the logP@W. x# versusx plot is displayed+Note that when the arrival process
is Poisson, the resulting queue is aM0M01 queue,where its steady-state waiting time
has a known exponential tail distribution@20# such thatP@W. x# 5 re2µ~12r!x for
x . 0+ Clearly, empirical tail probabilities obtained from simulation stay very close
to the lower bound LB-H and far from the tail distribution under Poisson inputs+This
suggests that when the service times have exponential tails, the performance is es-
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sentially dominated by the long-range dependence and the steady-state waiting time
is asymptotically equivalent to a Weibull distribution+

Figures 2 and 3 show the simulation results when the service times are of the
Weibull distributions given by~2!, where two cases were considered, with b 5 0+8
andb 5 0+2, respectively; the corresponding parametera is chosen so that the mean
service time1 is equal tor0mwith r 5 0+8+ Note that in both cases the service times
are subexponential, however, Weibull~0+8! is lighter than LB-H which is
Weibull~222H! with H 5 0+7505, while Weibull~0+2! is heavier+

Observe that under Weibull~0+8! service times, the tail distribution under self-
similar ~SS! inputs is very close to the lower bound LB-H, suggesting that the de-
pendence structure dominates the performance+ However, when the service times

1The mean of a Weibull r+v+ with parameter~a,b! is a210bG~11 10b!, whereG~ y! 5 *0
` e2xx y21 dx+

~a!

~b!

Figure 1. ~a! Waiting time tail probabilities under exponential service times with
self-similar arrival process+ ~b! The corresponding plot in log scale+
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are Weibull~0+2!, the performance deviates greatly from LB-H and stays closer to that
under the Poisson inputs, suggesting that the service times dominated the perfor-
mance instead when the service time tail distribution is heavier than Weibull~222H!+

Figure 4 corresponds to service times of the Pareto distribution given by~1!,
wherea 5 1+5 andb is chosen so that the mean service time2 is equal tor0m with
traffic intensityr 5 0+8+ In this case, the Pareto variable is heavy tailed with infinite
variance+ In Figure 4, the tail probabilities of the waiting times under SS inputs is
compared with that under Poisson arrival process~refer to, e+g+, @9,14# ! and the two
lower bounds developed in Section 3+ Observe that the tail asymptotics under SS
inputs significantly deviates from LB-H while staying very close to that under Pois-
son inputs+ This suggests that under heavy-tailed service times, the impact on per-
formance by the dependence structure of the input process becomes minor and the

2The mean of a Pareto r+v+ with parameter~a,b! is ba0~a 2 1!+

~a!

~b!

Figure 2. ~a! Waiting time tail probabilities under Weibull~b50+8! service times+
~b! The corresponding log plot+
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tail behavior is essentially dominated by the tail behavior of the service time
distribution+

Informally, we can summarize the performance issues as follows+ Under FGN
arrival process and exponential tailed service times, the waiting time tail distribution
is dominated by the dependence structure of the arrival process+When the service
times are subexponential, if the residual service time~viz+ lower bound~5!! is heavier
than Weibull~222H!, then the waiting time distribution is dominated largely by the
service time tail properties; otherwise, the dependence structure dominates the
performance+

5. CONCLUSIONS

Based on both analytical results and simulations, we investigated various issues
concerning the joint impact on the asymptotic behavior of the stationary waiting

x

H = 0.7505, Weib(0.2), Rho = 0.8

~a!

x

~b!

Figure 3. ~a! Waiting time tail probabilities under Weibull~b50+2! service times+
~b! The corresponding log plot+
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time and virtual waiting time by the long-range-dependent arrival process and sub-
exponential service times+We presented two important lower bounds on the station-
ary virtual waiting time tail asymptotics,which illuminates the different dominating
components that influence server performance under various conditions+ In partic-
ular, we showed that the tail distributions of the stationary waiting time and virtual
waiting time of anLRD0GI01 queue with subexponential service times are bounded
below by that of the associatedD0GI01 queue by replacing the dependent arrival
process with its associated independent version+This shows the performance impact
purely due to the tail distribution of the service times+ In addition, tail distributions
of the stationary waiting time and virtual waiting time are also bounded below by
that of the correspondingLRD0D01 queues, which shows the performance impact
@13# purely due to the long-range dependency of the arrival process when replacing
the random service times with its mean+ These features are further illustrated and
quantified via numerous simulation experiments+

H = 0.7505, Pareto(1.5), Rho = 0.8

x

~a!

x

~b!

Figure 4. ~a! Waiting time tail probabilities under Pareto service times witha 5
1+5+ ~b! The corresponding plot in log scale+

100 C. H. Xia et al.

https://doi.org/10.1017/S0269964804181060 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964804181060


Although the analytical solutions provide only asymptotic lower bounds for the
tail distribution of the response times, we believe that these bounds are asymptoti-
cally exact+ This is the subject of our ongoing investigation+
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