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We investigate the tail distribution of the virtual waiting times inRD/GI/1 queue
where the arrival process is long-range dependeRD) and the service times are
independent and identically distributéidi.d.) random variableswe present two
lower bounds on the stationary waiting time tail asymptotigsich illustrate the
different dominating components that influence server performance under various
conditions In particulay we show that the tail distribution of the stationary waiting
time is bounded below by that of the associaltétD/D/1 queues resulting from
replacing all random service times by the meEims shows the performance impact
purely due to the long-range dependency of the arrival pro@sshe other hand
when the service times are subexponentia show that the tail distribution of the
stationary waiting time is bounded below by that of the corresponBif@l/1
queue by replacing the dependent arrival process with its associated independent
version This shows the minimum performance impact due to the tail distribution of
the service timesThe above two lower bounds indicate that the performance of
LRD/GI/1 queues will be dominated by the heavier tail of the corresporidriyy
D/1andD/Gl/1 queuesThese features are further illustrated and quantified through
examples and via numerous simulation experiments

1. INTRODUCTION

With the rapid advances in Internet technolpejgctronic commerce is becoming a
mature business strateghhe concept of Quality of Servicg®oS) is working its
way to the front lines of electronic business commitments and requirepaniis
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plays an important role in Internet applicatigssrvicesand pricing negotiations
One needs to have a fundamental understanding of the key characteristics of the
traffic patterns in commercial websites and a fundamental understanding of the im-
pact of such traffic patterns on Web server performaasewell as the server ca-
pacity required to guarantee a certain level of Qa§., request response timéur
primary focus in this article is to investigate these important research issues related
to such performance metrics when the arrival traffic is long-range dependent and the
service times are subexponential

In the past decadeng-range dependen¢eRD) has been detected in a wide
range of applications and over multiple networking infrastructlBg®,19]. Roughly
speakingthe LRD process has a slowly decaying correlation structure that is non-
integrable This dependence structure is expected to affect performance in a drasti-
cally negative way thatis much different from that under the Poisson prétresgous
work[7,13,18] in this area has been mostly focused on the dependent input process
while assuming the service times of all arrivals are determini{ség LRD/D/1
queues or equivalently fluid queues with LRD input progeAskhough the assump-
tion of deterministic service times is valid in the case of network routers serving
fixed-size packets oris areasonable approximation when the packet sizes have small
variancgsuch an assumption is hardly justified in the case of Web servers ywhere
addition to the long-range dependency of the arrival prqcegsiests vary largely in
their sizes and service demandéten having nontraditionalubexponentialtail
distributiong1,5,6,8,11,21]. Therefore how the performance would be influenced
by the LRD input process and the nontraditional service time distributions remains
an open questigrimportant both in theory and real practicich as Web server
performance and QoS concerns

Performance impact due to subexponential service t{mb#e assuming inde-
pendent and identically distributédi.d.) interarrival time$ has been explored ex-
tensively over the past decadAfundamental resulidue to Pakegl4]) shows that
for GI/GIl/1 queues with.i.d. interarrival times and.ii.d. service timeswhere it is
assumed that the service times have distribution fundtidn) F with finite mean
u~t and traffic intensityp < 1, if the integratedservice timg tail distributionF is
subexponentiakhen the stationary waiting tim\/, is also subexponential and its
tail distribution is asymptotically equivalent E(x) asx goes to infinity Therefore
for GI/Gl/1 queueswhen the residual service times are subexponerttial tail
distribution of the service times will dominate the tail behavior of the stationary
waiting times The above result has later been generalized to Markov-modulated
G/Gl/1 queue$9] and short-range-dependent arrival proce$3gs

Our goal in this article is to examine the performance asymptotics under both
LRD arrival processes andl.d. subexponential service timda particularconsider
LRD/GI/1 queueslet A(t) be the total number of arrivals in intervgd, t), and
denote by§ the service demand by thth arrival and byT, theith interarrival time
Throughout this articlewe assume that th&’s are ii.d., and the sequence 0f is
stationary and ergodic
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We are interested in ttetationary waiting timgexpressed in Loynes’schema as
(cf.[12])

W, < <SUpi (Sk— Tk))t

n=1 k=1

where2 is the equality in distribution and the sequefi8e T, }i~_ .. is the stationary
extension of the original sequent®, T, }i—1.

We present two lower bounds on the stationary waiting time tail asympgotics
which illustrate the different dominating components that influence server perfor-
mance under various conditiarSpecifically we show that fot. RD/GI/1 queues
where the arrival process is long-range dependent and the service times are subex-
ponentia) the tail distribution of the waiting tim&\,, is asymptotically bounded
below by[ p/(1— p)]F«(x), whereF,is the tail distribution of the stationargsidual
service timesAlthough this lower bound is known to be asymptotically exact for
Gl/Gl/1 queuesthis bound is the firsto the best of our knowledgthat extends to
long-range dependent arrival procesdesndicates that the performance of any
G/Gl/1 queues with subexponential times is always bounded below by that of the
associatedd/Gl/1 queue by replacing th@lependentarrival process with its as-
sociated independent versidrhis shows the minimum performance impact due to
the tail distribution of the service times

In addition we show that the tail distribution of the stationary waiting time of a
LRD/GI/1 queue is always bounded below by that of the corresporidrigyD/1
gueue when replacing the random service times with its miEais shows the min-
imum performance impact due to the long-range dependency of the input process

The above two lower bounds further illuminate that the performandtd:di/

Gl/1 queues should be dominated by the heavier distribution betissad the tail
distribution of W,, for the associatedRD/D/1 queuesWhen modeling the LRD
process using the fractional Gaussian ndiE&N) with Hurst parameteH, the
correspondingGN/D/1 queue is well studied ifv,13], where it is known that the
stationary waiting time is asymptotically equivalent to a Weibull distribution with
shape parameter22H, denoted by Weibu{2—2H). In this casewhen the residual
service time is heavier than Weib(2H2H), then the steady-state performance will

be dominated by the residual service timdswever if the residual service time is
lighter, then the steady-state performance is dominated by the dependence structure
of the arrival processThe same results also hold for the stationary virtual waiting
times These characterizations are further illustrated and quantified via numerous
simulation experiments

The rest of the article is organized as follovidefinitions and some prelimi-
naries are presented in Sectiahr2Section 3we show our main resulta/hich give
two important asymptotic lower bounds for the tail distribution of the stationary
waiting time under genergdependentarrival process andiid. subexponential
service timesThese features are further illustrated and quantified via numerous
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simulation experiments in Section &inally, concluding remarks are given in
Section 5

2. PRELIMINARIES

Inthis article we will use the notatioa(x) ~ b(x) forlim,_,.(a(x)/b(x)) =1, a(x) =
b(x) for liminf, . (a(x)/b(x)) = 1, and a(x) < b(x) for limsup_,..(a(x)/
b(x)) =1

For a given distribution functiof on[0,}, designate~. to be the integrated
tail distribution ofF so that

Fe(x) = uf F(y)dy.

wherep = 1/f5° F(y) dy.
DeriNITION 1: A distribution function F or{0,c0) is said to be subexponential,
denoted as k= S, if for any n= 2,
F™(x) ~ nF(x),
where F" denotes the n-fold convolution of F.

The class of subexponential distributions was firstintroduced by Chis{dfov
Intuitively, it says that the sum becomes large mainly due to one of the summands
being largeDistribution functions in the subexponential family include Pareto dis-
tributions log-normal distributionsand part of the Weibull distribution familA
Pareto distribution with shape parameiesind scale parametgrhas df.

F(x) =1-(x/B8)"¢, Xx=pB>0a>0. ()
A Weibull distribution with scale parametarand shape parametgrhas df.
F(x)=1-e 2’ x>0. 2)

It is subexponential when the shape paramgter (0,1).

Note thatS is a subset ofZ, the class oflong-tailed distributions such that
F(x +Yy) ~ F(x) asx — oo for all y. It can be shown that any random variable
(r.v.) X with d.f. F € £ would have an infinite moment generating functidr7]:
E(e? ) = o0, # > 0. We will therefore refer to av. X aslight tailedif E(e*) < co
for somed > 0.

Here we quote some well-known properties that will be used later

LeEMMA 2: Let F and G be d.f.'s 0ii0,c0) such thatF(x) ~ ¢cG(x), with constant
c € (0,00). Then, F€ Sifand only if GE S.

LemMa 3: If G € S and F is any d.f. such thatm,_,.(F(x)/G(x)) = ¢, with
constant o= [0,c0), then

F s G(x) ~ (1+ ¢)G(x).
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3. ASYMPTOTIC LOWER BOUNDS

Consider a single queuing system where jobs arrive at random timdg & I, =

---, and the service timegS, } -, are ii.d. random variables with.fél F and finite
meanp L. Throughout this articlewe assume that the service discipline is first-
come first-servé FCFS. Let T, =1, —I,_1, n=12,..., be the interarrival times
We assume the arrival process is independent of the service teaste byA(t)
the cumulative number of arrivals in tinj6, t). We assume that procesgt) is
stationary and ergodictslim_,.,(A(t)/t) = A. Note that the arrival procegs(t)
could be dependent or even long-range depenifémassume = /U < 1 so that
the system is stahlén addition let{S, T, }r=_.., be the stationary extension of the
original sequencéS,, Ty 1.

We now present two important asymptotic lower bounds for the tail distribution
of the stationary waiting timé/,. These bounds illuminate the different dominating
components that influence server performance under different conditidmsh
shed light on the joint performance impact under both the long-range dependent
arrival process and subexponential service times

3.1. Lower Bound Based on Service Time Tail Distribution

In this subsectionwe assume that the service timgsn = 1,2,... are ii.d. sub-
exponentialWe consider a gener&RD/GI/1 queuing system and show the mini-
mum performance impact due to subexponential service times

We will first present Lemma Avhich can be considered as an extended version
of Lemma 31 in[2].

Lemma 4: Let D, n=12,..., be a sequence of random variables such that as
n — oo, D,/n — d with probability (w.p.)1. For arbitrary €,e’ > 0, there exists a
constant ¢c> 0 such that

P[NiD,=nd+e) +c}|>1-¢, 3)

L n=1

and

PO D, =nd-e) —c}|>1-¢" 4)

L n=1

Proor: Inequality (3) is basically the result of Lemma.B in [2]. Noting that
—D,/n - —d w.p. 1, inequality (4) simply follows from applying(3) on the se-
quence—D,. u

TueoreM 5: Consider a LRIDGI/1 queue with FCFS, where the input process is
stationary and ergodic s.tim_,,(A(t)/t) = A. The service times are subexponen-
tial i.i.d. r.v.'s with mean it and d.f. F. Sep = A/pand assump < 1. f F, € S,
then
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PIW, > x] = 1'_';[) F.(%). (5)

Proor: Because the input process is stationary and ergdadatlows immediately
that(ZL; T;)/n— A"t w.p. 1. Applying Lemma 4 yields that for arbitragye’ > 0,
there exists a constaat> 0 such thaP[B] > 1 — €', whereB denotes the event set
B:= N {1 T =n(A"1+ €) + c}. We then have

n

P[Woo>x]2P[B]P[su S — En:T_k} >x|B}
1 k=1

n=1 | k=

=(1- e’)P[su i [S—(A1+ e)]} > X+ c|B}

n=1 (k=1

=(1- e’)P[su i [S—(A1+ e)]} > X+ c}

n=1 (k=1

et _

~1-¢€) PE— Fe(X+ ),

where the last equality comes from the fact that the arrival proikses eventB)
is independent of the service timeBhe last~ equivalence is due tp14] for
D/GI/1 queues with deterministic interarrival timas* + e. SinceFe € S C L,
Fo(x + ¢) ~ Fa(x), (5) follows by lettinge ande’ go to zero u

Note that the above argument applies for awhether dependent or indepen-
den) stationary ergodic arrival procesbhus from Theorem 5we conclude that
under any stationary ergodic arrival proceshenever the service times are subex-
ponentia) the tail distribution of the stationary waiting time will be at least as heavy
as that of the residual service times

Remark: Although it is well known that folGl/Gl/1 queues where the arrival pro-
cess is of renewal type and the service times are subexponéhtia asymptoti-
cally exac{14]; the above lower bound is the firsd the best of our knowledgthat
extends to long-range-dependent arrival processes

3.2. Lower Bound Based on Dependence Structure

We next derive a lower bound for the tail distribution of the stationary waiting time
which shows the performance impact purely due to the long-range-dependent struc-
ture of the arrival process

THEOREM 6: Consider a LRPGI/1 queue with FCFS, where the input process is
stationary and ergodic s.tim_,,(A(t)/t) = A. The service times are subexponen-
tial i.i.d. random variables with meanT and d.f. F. Sepp = A/u and assume
p < 1. Let WERPP/1 e the stationary waiting time of the associated L/RL
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queues where the arrival process is the same but service times are deterministic and
equal to (2. If for all sufficiently smallk > 0,

WLRD/D,E/l = E (6)
where D_, denotes deterministic service times equal 1 # €, then
P[W,, > x] = P[WLRPP/L > x], @)

Proor: Becaus&/s areii.d. random variablgdy the strong law of large numbers
(Zke1 So)/n— ptw.p. 1. Applying Lemma 4 entails for arbitrawry e’ > 0, there
exists a constart > 0 such thaP[B’'] > 1 — €', whereB’ denotes the event set

B = ﬂnzl{E’k‘zl S, = n(pfl —€) — c}. Therefore

n

P[Woo>x]2P[B’]P[su S — ZT_k} >x|B’}
1 k=1

n=1 | k=

n

2(1—6’)P[su [(Hl—e)—Tk]}>x+C|B’]

n=1 | k=

= (1—5’)P{su i [(Lt—¢) —Tk]} >x+c]

n=1 | k=1

= (1— € )P[WLRPP-/1 > x ¢ ¢],

where the last equality follows from the fact that the service titttass eventB’) is
independent of the arrival proceSnceW,:RPP-</1 € £, P[WLRPP-</1 > x + ¢] ~
P[WLRPD-/1 > x].We then have that7) follows by lettinge ande’ go to zero

[

Theorem 6 shows that under both long-range-dependent arrival process and
subexponential service timdke tail distribution of the stationary waiting time will
be at least as heavy as that resulting from the dependence structure of the arrival
process aloné.e., as if with deterministic service timgs

3.3. Example: Fractional Gaussian Noise Input Traffic

In this subsectiorwe concentrate on the case when the arrival traffic is FGN
FGN modelis frequently used to capture the long-range dependency of traffic mostly
due to its mathematical simplicityhe use of FGN for traffic modeling is discussed
in [15] and references therein

Suppose requests arrive at discrete times0,1,2,..., where the number of
arrivals at time slot is denoted by integes;. Assume thafa,} is a stationary FGN
sequence with meah variancer 2, and Hurst parametét € [ 3,1). In other words
a; = A + oN*, where{N}!'} is a zero-mean standa(ftaction) Gaussian sequence
with (autgcovariance function
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1
Th(k) = > (Jk+ 12" = 2]k|?H + |k —1]21).

Consider &GN/GI/1 queue with arrival procegs;}; the service times for the
request§’s are ii.d. random variables with finite mean * and general distribution
G. Since jobs arrive in batchéat the beginning of each shohere we are interested
in the stationary waiting time of the first job in a batebhich can be expressed in
Loynes’ schema as follows

wz < (_sup (W~ t))i
t=0,1,2,...
whereU'(t) = S8 s, A'(t) = 3L, a_ and the sequence®,}_., and
{S}2_.. are respectively stationary extensions of the sequeRgESs, and{S }2.
Letu.t=pu ! — e Asin the proof of Theorem,Gne can show that

A'(t)
P[W:>x]= P{su > S, —t} > x}

tEN | j=1
=(1- e’)P[sup{Ar(t)ugl— t} > x+ c].
teN

Note that the last component corresponds to a fluid queue fed by LRD jnputs
which has been studied A 3] assumingi, = 1, and it is known that for largg,

1 1-AM)A—-H)\H B
P[fgg){A“(t)—t}>x} >exp<—[202(1_H)2< H ) }xz 2“).
(8)

This lower bound has been shown[ifl to be asymptotically exact in log scale
Therefore sup_o (A" (t)p.* — t) has its tail distribution asymptotically equiv-
alent to a Weibull distribution with shape parameter 2H, which is clearly long
tailed thus satisfying condition.6
As the waiting times of other customers in a batch are larger than that of the first
customerwe obtain the lower bound of the tail distribution of the stationary waiting
time.

CoroLLARY 7: Consider a FGN/GI/1 queue, where the arrival process is FGN and
the service times are i.i.d. r.v.s with meantuThen, for large x,

P[W, > x] = e %, (9)

where

B=2-2H, &

1 ((1—/0)(1— H)>2H’ (10)

T 2p2y%(1—H)? H

with p = A/cp andy? = o?/A%. Note thaty? is simply the coefficient of variance of
the arrival process.
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Clearly, lower bound(9) only shows the impact on performance by the long-
range-dependence arrival process

3.4. Further Insights

The results from previous subsections show that the joint impact on performance by
along-range dependent arrival process and subexponential would be bounded below
by that of the associated queues when replacingdbpendentarrival process with

its independent versigrand by the tail distribution of the residual service times
Thus the heavier tail 0f9) and(5) dominatesWe then have the following corollary

CoroLLARY 8: For a LRD/GI/1 queue, where the input process is LRD and the
service times are i.i.d. subexponential with finite meah hen for large x, the tail
distribution of the stationary waiting time is bounded below by the heavier tail of (5)
and (7).

CoroLrrLARrY 9: Consider FGN/GI/1 queues as introduced in Section 3.3, The ser-
vice times are i.i.d. subexponential with finite meart.(Then, the lower bound of
the stationary waiting time will be dominated by the heavier tail of the residual
service time and Weibull distribution with shape paramete® and scale param-
eterd, which is given by (10).

In fact, similar results hold for thetationary virtual waiting time

g A(t) +
V,, = (sup( >'S, —t>> .
teR™ \ i=1

This is because of the following stochastic comparisons between stationary virtual
waiting time and stationary waiting time

W, =4V, =W, + S, (11)

whereS,~ Feand isindependent 8¥,,. The stochastic inequaliy <, Y means that
P[X > x]=P[Y> x]forall x € R.
In order to show(11), lett, = >¢_; T_, for n= 1. Note that

v, 2 (sup[u () — t])+ = (sup[u f(t,) — tn])+

t=0 n=1

= <sup§n‘, [S . — T_k]>+ LW,

n=1 k=1

Thus the left-hand side of11) follows immediately
The right-hand side of11) follows from the known fac{2] that for general
G/Gl/1 queues with FCFS ana < 1,

P[V,, > x] = pP[W,, + S > x], (12)

for all x, whereS, is distributed a$. and is independent ...
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We immediately have the following corollary

CoroLLARY 10: The two lower bounds given by (5) and (9) hold asymptotically for
the stationary virtual waiting time . In addition, the heavier one of both the sta-
tionary waiting times \}f dominates.

Therefore when(5) is heavier thar{9), the tail distributions of the stationary
waiting time and virtual waiting time are dominated by the subexponential service
times that is the impact by the dependence structure of the input process becomes
relatively small If instead the lower bound9) is heavier thar(5), then the tail
distributions of the stationary waiting time and virtual waiting time are dominated
by the dependence structulidnese features are further illustrated by the simulation
studies in the next section

We conjecture that the lower bound of Corollary 8 actually provides an asymp-
totically exact solution

4. COMPARISON WITH SIMULATIONS

To compare with the theoretical bounds developed in the last seet®rimulate
the system under generated self-similar input sequence and explore the perfor-
mance under different service time distributioie self-similar input process is
generated using the drill-down techniques introducd@1in using the FGN model
which is based on the fast Fourier transform algorithm proposéd6h Specif-
ically, we set the parameters of the FGN model totbes 0.7505 A = 30.1471
ando? = 86.6037 which are obtained from a real set of commercial website data
dated August 92001 hour 16—212. The service times are generatdshsed on
the inversion formulaunder different distributionsin all caseswe assume the
traffic intensity equals = 0.8. The resulting empirical stationary waiting time
tail distributionsP[W,, > x] are then calculated and plotteNdote thatW,, = V.,;
we further compard®[W,, > x] with the lower bounds developed in Section 3
We denote the lower boun@) simply as Poisson since it corresponds to the per-
formance under the same service times but with Poisson input prddesefore
it shows the performance impact due to the subexponential service. t8imes
larly, we denote as LB-H the lower bound given (9) since it shows the perfor-
mance impact under the long-range-dependent strucirecifically LB-H is set
to pe * ™ for x > 0 sinceP(W > 0) = p.

Simulation results for exponential service times are plotted in Figwbére in
(a) the tail probability of the waiting timeB[W > x] is plotted as a function of and
in (b) the logP[W > x] versusx plot is displayedNote that when the arrival process
is Poissonthe resulting queue isNd/M/1 queugwhere its steady-state waiting time
has a known exponential tail distributipp0] such thaP[W > x] = pe H3~»)* for
x> 0. Clearly empirical tail probabilities obtained from simulation stay very close
to the lower bound LB-H and far from the tail distribution under Poisson infitiis
suggests that when the service times have exponentiglttelperformance is es-
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Ficure 1. (a) Waiting time tail probabilities under exponential service times with
self-similar arrival procesgb) The corresponding plot in log scale

sentially dominated by the long-range dependence and the steady-state waiting time
is asymptotically equivalent to a Weibull distribution

Figures 2 and 3 show the simulation results when the service times are of the
Weibull distributions given by2), where two cases were consideradgth 8 = 0.8
andgB = 0.2, respectivelythe corresponding parameters chosen so that the mean
service timé is equal tgp/mwith p = 0.8. Note that in both cases the service times
are subexponentialhowevey Weibull(0.8) is lighter than LB-H which is
Weibull(2—2H) with H = 0.7505 while Weibull(0.2) is heavier

Observe that under Weibu0.8) service timesthe tail distribution under self-
similar (SS9 inputs is very close to the lower bound LB-kluggesting that the de-
pendence structure dominates the performahosvever when the service times

1The mean of a Weibullv. with parametefa, 8) is a ~YAT (1 + 1/8), wherel'(y) = [5° e *xY" 1 dx
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FiGURE 2. (a) Waiting time tail probabilities under Weiby|B = 0.8) service times
(b) The corresponding log plot

are Weibull0.2), the performance deviates greatly from LB-H and stays closer to that
under the Poisson inputsuggesting that the service times dominated the perfor-
mance instead when the service time tail distribution is heavier than WgdbiH).
Figure 4 corresponds to service times of the Pareto distribution give)by
wherea = 1.5 andg is chosen so that the mean service tiriseequal top/m with
traffic intensityp = 0.8. In this casethe Pareto variable is heavy tailed with infinite
variance In Figure 4 the tail probabilities of the waiting times under SS inputs is
compared with that under Poisson arrival prodesfer tq e.g., [9,14]) and the two
lower bounds developed in Section@bserve that the tail asymptotics under SS
inputs significantly deviates from LB-H while staying very close to that under Pois-
son inputs This suggests that under heavy-tailed service tjtfesimpact on per-
formance by the dependence structure of the input process becomes minor and the

°The mean of a Paretovr with parametefa, 8) is Ba/(a — 1).
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Ficure 3. (a) Waiting time tail probabilities under WeibulB = 0.2) service times
(b) The corresponding log plot

tail behavior is essentially dominated by the tail behavior of the service time
distribution

Informally, we can summarize the performance issues as follomder FGN
arrival process and exponential tailed service tijtfeswaiting time tail distribution
is dominated by the dependence structure of the arrival prodéssn the service
times are subexponentjélthe residual service timgviz. lower bound5)) is heavier
than Weibul[2—2H), then the waiting time distribution is dominated largely by the
service time tail propertieotherwise the dependence structure dominates the
performance

5. CONCLUSIONS

Based on both analytical results and simulatjoms investigated various issues
concerning the joint impact on the asymptotic behavior of the stationary waiting
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FiGURE 4. (a) Waiting time tail probabilities under Pareto service times with
1.5. (b) The corresponding plot in log scale

time and virtual waiting time by the long-range-dependent arrival process and sub-
exponential service time¥/e presented two important lower bounds on the station-
ary virtual waiting time tail asymptoticsvhich illuminates the different dominating
components that influence server performance under various conditiopertic-

ular, we showed that the tail distributions of the stationary waiting time and virtual
waiting time of anLRD/GI/1 queue with subexponential service times are bounded
below by that of the associatéd/Gl/1 queue by replacing the dependent arrival
process with its associated independent verdibis shows the performance impact
purely due to the tail distribution of the service timésaddition tail distributions

of the stationary waiting time and virtual waiting time are also bounded below by
that of the correspondingRD/D/1 queueswhich shows the performance impact
[13] purely due to the long-range dependency of the arrival process when replacing
the random service times with its medrhese features are further illustrated and
quantified via numerous simulation experiments
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Although the analytical solutions provide only asymptotic lower bounds for the
tail distribution of the response timese believe that these bounds are asymptoti-
cally exact This is the subject of our ongoing investigation

Acknowledgment

The authors would like to thank the reviewer for pointing out some omissions in the original proofs and
the helpful comments and suggestions

References

1. Arlitt, M.F. & Williamson, C.L. (1997). Internet Web serverdVorkload characterization and per-
formance implicationsd EEE/ACM Transactions on Networkirig5): 631-645
2. AsmussensS. (1998. Subexponential asymptotics for stochastic procedsgsemeal behaviour
stationary distributions and first passage probabilithemals of Applied Probability: 354—-374
3. AsmussenS., Schmidli H., & Schmidt V. (1999. Tail probabilities for non-standard risk and queue-
ing processes with subexponential jumpsdvances in Applied Probability1: 422—447
4. ChistakoyV.P. (1964). A theorem on sums of independent positive random variables and its appli-
cation to branching random proce3$ieory of Probability and Its Applicatiors 640—648
5. Corvella M.E. & BestavrosA. (1996. Self-similarity in World Wide Web traffic Evidence and
possible cause®erformance Evaluation Revied: 160-169
6. Downey A. (2001). The structural cause of file size distributiofsoceedings of the International
Symposium on Modeling Analysis and Simulation of Computer and Telecommunication Systems
7. Duffield, N.G. & O’Connell, N. (1995. Large deviation and overflow probabilities for the general
single-server queuevith applications Mathematical Proceedings of the Cambridge Philosophical
Societyl18 363-375
8. lyengar A.K., Squillante M.S,, & Zhang L. (1999. Analysis and characterization of large-scale
web server access patterns and performaveeld Wide Wel2: 85-100
9. Jelenkovi¢cP. & Lazar, A.A. (1998. Subexponential asymptotics of a Markov-modulated random
walk with queueing applicationsournal of Applied Probility35(2): 325-347
10. Leland W.E., Taqqu M.S., Willinger, W., & Wilson, D.V. (1994). On the self-similarity nature of
Ethernet trafficlextended version|[EEE/ACM Transactions on Networkirg1): 1-15
11 Liu, Z., NiclausseN., & Jalpa-VillanuevaC. (2001. Traffic model and performance evaluation of
Web serversPerformance Evaluatiod6(2—3): 77-100
12. Loynes R.M. (1968. The stability of a queue with non-independent inter-arrival and service times
Proceedings of Cambridge Philosophical Socie8y497-520
13. Norros I. (1994. A storage model with self-similar inpuQueueing Systeni$: 387-396
14. PakesA. (1975. On the tails of waiting time distributionslournal of Applied Probabilityl2:
555-564
15. Park K. & Willinger, W. (eds). (2002. Self-similar network traffic and performance evaluation
New York: Wiley.
16. Paxson V. (1995. Fast approximation of self-similar network trafficTechnical Report
LBL-36750/UC-405 Lawrence Berkeley Laboratary
17. SigmanK. (1999. Appendix A primer on heavy-tailed distributionQueueing Systen38: 261-275
18 VanichpunS. & Makowski, A.M. (2002. Positive correlations and buffer occupancgwer bounds
via supermodular ordering’roceedings of IEEE INFOCOM 200@p. 1298-1306
19. Willinger, W., Tagqu M.S., ShermanR., & Wilson, D.V. (1997. Self-similarity through high-
variability: Statistical analysis of ethernet LAN traffic at the source leM&EE/ACM Transactions
on Networkings(1): 71-86
20. Wolff, R.W. (1988. Stochastic modeling and the theory of quel@gylewood Cliffs NJ: Prentice-
Hall.
21 Xia, C.H., Liu, Z., Squillante M.S., Zhang L., & Malouch, N. (2003. Analysis of performance
impact of drill-down techniques for Web traffic modeRroceedings of the 18th International Tele-
traffic CongresqITC-18), pp. 1-1Q

https://doi.org/10.1017/50269964804181060 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804181060

