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Abstract In this paper, we use the Riemann zeta function ζ(x) and the Bessel zeta function ζμ(x)
to study the log behaviour of combinatorial sequences. We prove that ζ(x) is log-convex for x > 1.
As a consequence, we deduce that the sequence {|B2n|/(2n)!}n�1 is log-convex, where Bn is the nth
Bernoulli number. We introduce the function θ(x) = (2ζ(x)Γ (x + 1))1/x, where Γ (x) is the gamma
function, and we show that log θ(x) is strictly increasing for x � 6. This confirms a conjecture of Sun
stating that the sequence {n

√
|B2n|}n�1 is strictly increasing. Amdeberhan et al . defined the numbers

an(μ) = 22n+1(n + 1)!(μ + 1)nζμ(2n) and conjectured that the sequence {an(μ)}n�1 is log-convex for
μ = 0 and μ = 1. By proving that ζμ(x) is log-convex for x > 1 and μ > −1, we show that the sequence
{an(μ)}n�1 is log-convex for any μ > −1. We introduce another function θμ(x) involving ζμ(x) and the
gamma function Γ (x) and we show that log θμ(x) is strictly increasing for x > 8e(μ + 2)2. This implies
that

n
√

an(μ) < n+1
√

an+1(μ) for n > 4e(μ + 2)2.

Based on Dobinski’s formula, we prove that
n
√

Bn < n+1
√

Bn+1 for n � 1,

where Bn is the nth Bell number. This confirms another conjecture of Sun. We also establish a connection
between the increasing property of {n

√
Bn}n�1 and Hölder’s inequality in probability theory.

Keywords: log-convexity; Riemann zeta function; Bernoulli number; Bell number; Bessel zeta function;
Narayana number
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1. Introduction

The objective of this paper is to present an analytic approach to the log behaviour of
combinatorial sequences.

Let Bn denote the nth Bernoulli number (see [11, 14]). Recall that B2n+1 = 0 for
n � 1 and that the B2n alternate in sign for n � 1. We consider the log behaviour of the
sequence {|B2n|}n�1. A sequence {an}n�1 of real numbers is said to be log-convex if, for
n � 2,

a2
n � an−1an+1.
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It is well known that

ζ(2n) =
22n−1π2n

(2n)!
|B2n|, (1.1)

where

ζ(x) =
∞∑

n=1

1
nx

is the Riemann zeta function. By proving that ζ(x) is log-convex for x > 1, we estab-
lish the log-convexity of the sequence {|B2n|/(2n)!}n�1. Consequently, the sequence
{|B2n|}n�1 is log-convex. Moreover, we introduce the function

θ(x) = (2ζ(x)Γ (x + 1))1/x, (1.2)

where Γ (x) is the gamma function. We show that log θ(x) is strictly increasing for x � 6.
From (1.1) it can be seen that

n
√

|B2n| =
1

4π2 θ2(2n).

So we reach the assertion that the sequence {n
√

|B2n|}n�1 is strictly increasing. This
confirms a conjecture of Sun [15], which has been independently proved by Luca and
Stănică [9]. We conjecture that (log θ(x))′′ < 0 for x � 6.

Our approach also applies to the sequence of generalized Lasalle numbers. Let Cn

denote the nth Catalan number, that is,

Cn =
1

n + 1

(
2n

n

)
,

and let Nr(z) denote the rth Narayana polynomial as given by

Nr(z) =
r∑

k=1

1
r

(
r

k − 1

)(
r

k

)
zk.

Lasalle [8] derived the recurrence relation

(z + 1)Nr(z) − Nr+1(z) =
∑
n�1

(−z)n

(
r − 1
2n − 1

)
AnNr−2n+1(z),

where the numbers An satisfy the recurrence relation

(−1)n−1An = Cn +
n−1∑
j=1

(−1)j

(
2n − 1
2j − 1

)
AjCn−j . (1.3)

Let
an =

2An

Cn
.

Lasalle [8] showed that {an}n�1 is an increasing sequence of positive integers. Amdeber-
han et al . [2] established a connection between an and the Bessel zeta functions ζμ(x).
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Recall that for a real number μ, the Bessel function Jμ(z) of the first kind of order μ is
defined by

Jμ(z) =
(

z

2

)μ ∞∑
k=0

(−1)k

Γ (μ + k + 1)k!

(
z

2

)2k

.

For μ � −1, Jμ(z) has infinitely many positive real zeros jμ,n, where we assume that

0 < jμ,1 < jμ,2 < jμ,3 < · · ·

(see [3, § 4.14]). The Bessel zeta functions ζμ(x) are defined by

ζμ(x) =
∞∑

n=1

1
jx
μ,n

. (1.4)

Amdeberhan et al . [2] found the relation

an = 22n+1(n + 1)!(n − 1)!ζ1(2n). (1.5)

They also gave the following generalization of an for μ � −1:

an(μ) = 22n+1(n − 1)!(μ + 1)nζμ(2n), (1.6)

where (μ + 1)n = (μ + 1)(μ + 2) · · · (μ + n).
It is easily seen that an = an(1). Setting μ = 0 in (1.6), Amdeberhan et al . defined

the sequence {bn}n�1 as given by

bn = 1
2an(0) = 22nn!(n − 1)!ζ0(2n). (1.7)

Note that this sequence has been studied by Carlitz [6]. It is listed as Sequence A002190
in [10].

Amdeberhan et al . conjectured that the sequences {an}n�1 and {bn}n�1 are log-
convex. We show that ζμ(x) is log-convex for x > 1. This implies that the sequence
{an(μ)}n�1 is log-convex for any μ > −1. This confirms the above conjectures, which
have been independently proved by Wang and Zhu [16].

Moreover, we define the function

θμ(x) =
(

2
μ!

Γ

(
x

2

)
Γ

(
x

2
+ μ + 1

)
ζμ(x)

)1/x

. (1.8)

It can be easily checked that
4θ2

μ(2n) = n
√

an(μ). (1.9)

We show that log θμ(x) is strictly increasing for x > 8e(μ+2)2. This leads to the increasing
property that

n
√

an(μ) < n+1
√

an+1(μ) (1.10)

for n > 4e(μ + 2)2. We note that for μ = 0 and μ = 1, (1.10) has been independently
proved by Wang and Zhu [16].
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Owing to the formula of Dobinski, we may use our analytic approach to study the
log behaviour of Bell numbers. Let Bn be the nth Bell number, that is, the number
of partitions of {1, 2, . . . , n} (see [5] and [12]). Notice that we have adopted the same
notation Bn for both Bell numbers and Bernoulli numbers. Recall that Dobinski’s formula
for the Bell numbers states that

Bn =
1
e

∞∑
k=0

kn

k!
.

For x > 0, we define

B(x) =
1
e

∞∑
k=0

kx

k!
(1.11)

so that we have Bn = B(n) whenever n is a non-negative integer.
We show that log B(x)1/x is increasing for x � 1. This implies that the sequence

{n
√

Bn}n�1 is increasing, as conjectured by Sun [15]. We conjecture that (log B(x)1/x)′′ <

0 for x � 1. In the final section, we give a probabilistic proof of the increasing property
of the sequence {n

√
Bn}n�1 by using Hölder’s inequality.

2. The log-convexity of Bernoulli numbers

To prove the log-convexity of Bernoulli numbers, we consider the log behaviour of the
Riemann zeta function ζ(x) for x > 1. Recall that a positive function f is called log-
convex on a real interval I = [a, b] if, for all x, y ∈ [a, b] and λ ∈ [0, 1],

f(λx + (1 − λ)y) � f(x)λf(y)1−λ (2.1)

(see, for example, [4]). It is known that a positive function f is log-convex if and only if
(log f(x))′′ � 0. So, if

(log ζ(x))′′ > 0 (2.2)

for x > 1, then we can deduce that ζ(x) is log-convex for x > 1.

Lemma 2.1. The Riemann zeta function ζ(x) is log-convex for x > 1.

Proof. Clearly, condition (2.2) is equivalent to

ζ(x)ζ ′′(x) − (ζ ′(x))2 > 0. (2.3)

Since ζ(x) converges for x > 1, we find that, for x > 1,

ζ(x)ζ ′′(x) − (ζ ′(x))2 =
∞∑

m=1

1
mx

∞∑
n=1

(log n)2

nx
−

∞∑
m=1

log m

mx

∞∑
n=1

log n

nx

=
∑

n>m�1

(log n)2 + (log m)2 − 2 log m log n

(mn)x

=
∑

n>m�1

(log n − log m)2

(mn)x
,

which is positive. This completes the proof. �
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The log-convexity of ζ(x) enables us to deduce the following property of Bernoulli
numbers.

Theorem 2.2. The sequence {|B2n|/(2n)!}n�1 is log-convex.

Proof. Since ζ(x) is log-convex, setting x = 2n − 2, y = 2n + 2 and λ = 1/2 in the
defining relation (2.1), we find that

ζ(2n − 2)ζ(2n + 2) � ζ(2n)2. (2.4)

Invoking (1.1), we obtain that

(
|B2n|
(2n)!

)2

� |B2n−2|
(2n − 2)!

|B2n+2|
(2n + 2)!

.

This completes the proof. �

Since ((2n)!)2 < (2n − 2)!(2n + 2)! for n � 1, the above theorem implies the following
property.

Corollary 2.3. The sequence {|B2n|}n�1 is log-convex.

3. The log behaviour of θ(x)

In this section we consider the log behaviour of the function

θ(x) = (2ζ(x)Γ (x + 1))1/x.

We begin with the following monotone property of log θ(x).

Theorem 3.1. log θ(x) is strictly increasing for x � 6.

Proof. To prove that log θ(x) is increasing for x � 6, we aim to show that

(log θ(x))′ > 0 (3.1)

for x � 6. Let
g(x) = 2ζ(x)Γ (x + 1).

We then have
θ(x) = g(x)1/x

and

(log θ(x))′ =
1
x

(
g′(x)
g(x)

− log g(x)
x

)
.

Thus, (3.1) can be rewritten as

g′(x)
g(x)

>
log g(x)

x
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for x � 6. Since ζ(x) and Γ (x) are continuous and differentiable on (1,∞), so is g(x)
on (1,∞). Applying the mean value theorem to log g(x)/x, it can be shown that there
exists t in (2, x) such that

g(t)′

g(t)
>

log g(x)
x

. (3.2)

Since ζ(2) = π2/6 and Γ (3) = 2, we find that

log g(2) = log(2ζ(2)Γ (3)) = log
2π2

3
< 2. (3.3)

On the other hand, for x � 6, it is easily seen that ζ(x) > 1 and Γ (x+1) > ex. It follows
that

log g(x) = log 2 + log ζ(x) + log Γ (x + 1) > x. (3.4)

In view of (3.3) and (3.4), we deduce that for x � 6,

log g(x)
x

=
(1 − 2/x) log g(x)

(1 − 2/x)x
<

log g(x) − 2
x − 2

<
log g(x) − log g(2)

x − 2
. (3.5)

Applying the mean value theorem to log g(x), we see that there exists t ∈ (2, x) such
that

(log g(t))′ =
log g(x) − log g(2)

x − 2
, (3.6)

that is,
g′(t)
g(t)

=
log g(x) − log g(2)

x − 2
. (3.7)

Combining (3.5) and (3.7), we get (3.2).
We now proceed to show that

g(x)′

g(x)
>

g(t)′

g(t)
. (3.8)

Clearly, (3.8) is equivalent to (
g′(y)
g(y)

)′
> 0. (3.9)

By the definition of g(x), we have
(

g′(y)
g(y)

)′
= (log g(y))′′ = (log Γ (y + 1))′′ + (log ζ(y))′′.

It is known that (log Γ (y + 1))′′ > 0 for y > 1 (see [3, Theorem 1.2.5]). On the other
hand, in the proof of Lemma 2.1 we have shown that (log ζ(y))′′ > 0. This proves (3.9).
In other words, g′(y)/g(y) is strictly increasing for y > 1. Thus, for 2 < t < x, (3.8)
holds.

Combining (3.2) and (3.8), we deduce that for x � 6,

g′(x)
g(x)

− log g(x)
x

>
g′(x)
g(x)

− g′(t)
g(t)

> 0.

Hence, (log θ(x))′ > 0 for x � 6. This completes the proof. �
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From the log behaviour of θ(x), we are led to an affirmative answer to a conjecture of
Sun [15].

Corollary 3.2. The sequence {n
√

|B2n|}n�1 is strictly increasing.

Proof. From (1.1), we see that for n � 1,

n
√

|B2n| =
1

4π2
n
√

2ζ(2n)(2n)! =
1

4π2 θ2(2n). (3.10)

Since log θ(x) is strictly increasing for x � 6, we find that θ(x) is also strictly increasing
for x � 6. It follows from (3.10) that n

√
|B2n| is strictly increasing for n � 3. On the

other hand, it is easily checked that

|B2| <
√

|B4| < 3
√

|B6|.

This completes the proof. �

The conjecture of Sun was independently proved by Luca and Stănică [9]. In fact, they
proved that the sequence {n

√
|B2n|}n�1 is log-concave, which was also conjectured by

Sun [15].
We pose the following conjecture concerning the function θ(x). If it is true, then it

implies that the sequence {n
√

|B2n|}n�1 is log-concave.

Conjecture 3.3. The function θ(x) is log-concave for x � 6, that is, for x � 6,
(log f(x))′′ < 0.

4. The log behaviour of the sequence {an(μ)}n�1

In this section, we study the log behaviour of the sequence {an(μ)}n�1. We begin with
the log behaviour of the Bessel zeta functions ζμ(x).

Lemma 4.1. For μ > −1, the Bessel zeta function ζμ(x) is log-convex for x > 1.

Proof. We proceed to show that for x > 1,

(log ζμ(x))′′ > 0,

or, equivalently,
ζμ(x)ζ ′′

μ(x) − (ζ ′
μ(x))2 > 0. (4.1)

By the convergence of ζμ(x), it is easily seen that

ζ ′
μ(x) = −

∞∑
n=1

log jμ,n

jx
μ,n

and

ζ ′′
μ(x) =

∞∑
n=1

(log jμ,n)2

jx
μ,n

.
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Hence,

ζμ(x)ζ ′′
μ(x) − (ζ ′

μ(x))2 =
∞∑

m=1

1
jx
μ,m

∞∑
n=1

(log jμ,n)2

jx
μ,n

−
∞∑

m=1

log jμ,m

jx
μ,m

∞∑
n=1

log jμ,n

jx
μ,n

=
∑

n>m�1

(log jμ,m)2 + (log jμ,n)2 − 2(log jμ,m)(log jμ,n)
jx
μ,mjx

μ,n

=
∑

n>m�1

(log jμ,m − log jμ,n)2

jx
μ,mjx

μ,n

,

which is positive. This completes the proof. �

Setting f(x) = ζμ(x), x = 2n−2, y = 2n+2 and λ = 1/2 in the defining relation (2.1)
of a log-convex function, we obtain that for μ > −1,

ζμ(2n − 2)ζμ(2n + 2) > ζμ(2n)2. (4.2)

This yields that the sequence {ζμ(2n)}n�1 is log-convex for μ > −1. On the other hand, it
is easily checked that the sequence {22n+1(n + 1)!(μ + 1)n}n�1 is log-convex for μ > −1.
Notice that for two positive log-convex sequences {un}n�1 and {vn}n�1, the sequence
{unvn}n�1 is also log-convex. So we arrive at the following property.

Theorem 4.2. The sequence {an(μ)}n�1 is log-convex for μ > −1.

For μ = 0 and μ = 1, Theorem 4.2 gives affirmative answers to the two conjectures
of Amdeberhan et al . [2] on the log-convexity of the sequences {an}n�1 and {bn}n�1,
where an = an(1) and bn = 1

2an(0).
Next we consider the monotone property of the sequence {n

√
an(μ)}n�1 for μ > 0.

Theorem 4.3. For μ > 0, the sequence {n
√

an(μ)}n�1 is increasing for n > 4e(μ+2)2.

To prove this theorem, we introduce the function

θμ(x) =
(

2
μ!

Γ

(
x

2

)
Γ

(
x

2
+ μ + 1

)
ζμ(x)

)1/x

,

which has the following monotone property.

Theorem 4.4. For μ � 0, log θμ(x) is strictly increasing for x > 8e(μ + 2)2.

Proof. Assume that μ � 0. To prove the monotone property in the theorem, we aim
to show that for x > 8e(μ + 2)2,

(log θμ(x))′ > 0. (4.3)

Let
h(x) =

2
μ!

Γ (x/2)Γ (x/2 + μ + 1)ζμ(x). (4.4)

https://doi.org/10.1017/S0013091515000036 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091515000036


Zeta functions and the log behaviour of combinatorial sequences 645

Recalling the definition of θμ(x) as given by (1.8), we have

θμ(x) = h(x)1/x

and
log θμ(x) =

1
x

log h(x).

It follows that

(log θμ(x))′ =
1
x

(
h′(x)
h(x)

− log h(x)
x

)
. (4.5)

Since ζμ(x) and Γ (x) are continuous and differentiable on (1,∞), so is h(x). We shall
apply the mean value theorem to log h(x) on [2, x], where x > 8e(μ + 2)2 and μ > −1.
To this end, we need to show that h(2) < 1 and h(x) > 1 for μ > −1 and x > 8e(μ+2)2.

Recalling the definition of h(x) as given by (4.4), we get

h(2) =
2
μ!

Γ (1)Γ (μ + 2)ζμ(2),

where
ζμ(2) =

1
4(μ + 1)

,

Γ (1) = 1 and Γ (μ + 2) = (μ + 1)!. Hence,

h(2) =
2
μ!

(μ + 1)!
1

4(μ + 1)
, (4.6)

so h(2) < 1.
It remains to show that h(x) > 1 for μ > −1 and x > 8e(μ + 2)2. Recall that

jμ,1 < (μ + 1)1/2((μ + 2)1/2 + 1) (4.7)

for μ > −1 (see [7]). It follows that for μ > −1,

jμ,1 < 2(μ + 2). (4.8)

Therefore, we obtain that for μ > −1,

ζμ(x) =
∞∑

n=1

1
jx
μ,n

>
1

jx
μ,1

>
1

2x(μ + 2)x
. (4.9)

On the other hand, it is known that for x � 0,

Γ (x) >
√

2πx

(
x

e

)x

(4.10)

(see [1]). Combining (4.9) and (4.10), we deduce that for x > 2 and μ > −1,

2Γ

(
x

2

)
ζμ(x) > 2

√
πx

(
x

8e(μ + 2)2

)x/2

.
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Consequently, for μ > −1 and x > 8e(μ + 2)2, we obtain that

2Γ ( 1
2x)ζμ(x) > 2

√
πx > 1. (4.11)

Clearly, for x > 0 we have
Γ (x/2 + μ + 1)

μ!
> 1. (4.12)

In view of (4.11) and (4.12), we find that for μ > −1 and x > 8e(μ + 2)2,

h(x) =
2
μ!

Γ

(
x

2

)
Γ

(
x

2
+ μ + 1

)
ζμ(x) > 1, (4.13)

as claimed.
Next we proceed to prove that there exists t in (2, x) such that

h′(t)
h(t)

>
log h(x)

x
. (4.14)

By the mean value theorem applied to log h(x) on [2, x], there exists t ∈ (2, x) such that

h′(t)
h(t)

= (log h(t))′ =
log h(x) − log h(2)

x − 2
. (4.15)

On the other hand, we have shown that h(2) < 1 and h(x) > 1 for μ > −1 and x >

8e(μ + 2)2. Consequently, we have log h(2) < 0 and log h(x) > 0. Note that for μ > −1
and x > 8e(μ + 2)2, we have x > 2. Hence,

log h(x)
x

<
log h(x) − log h(2)

x − 2
. (4.16)

Combining (4.15) and (4.16), we obtain (4.14).
Moreover, it can be shown that

h′(x)
h(x)

>
h′(t)
h(t)

. (4.17)

We claim that for y > 2, (
h′(y)
h(y)

)′
> 0. (4.18)

By the definition of h(x) as given by (4.4), we have

(
h′(y)
h(y)

)′
= (log h(y))′′

= (log Γ (y/2))′′ + (log Γ (y/2 + μ + 1))′′ + (log ζμ(x))′′.

It is known that (log Γ (y))′′ > 0 for y > 1 (see [3, Theorem 1.2.5]). Thus,
(log Γ (y/2))′′ > 0 and (log Γ (y/2 + μ + 1))′′ > 0 for y > 2. Moreover, in the proof
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of Lemma 4.1, we have shown that (log ζμ(y))′′ > 0. This proves (4.18). In other words,
h′(y)/h(y) is strictly increasing for y > 2. Thus, for 2 < t < x, (4.17) holds.

Combining (4.14) and (4.17), for μ > −1 and x > 8e(μ + 2)2 we find that

h′(x)
h(x)

− log h(x)
x

>
h′(x)
h(x)

− h′(t)
h(t)

> 0.

Hence, (4.3) follows from (4.5). This completes the proof. �

In view of (1.6), it can be checked that

n
√

an(μ) = 4θμ(2n)2. (4.19)

Thus, Theorem 4.4 implies that for any μ � 0 and n > 4e(μ + 2)2, we have n
√

an(μ) <
n+1

√
an+1(μ).

For μ = 1, it can be verified that

n
√

an(1) < n+1
√

an+1(1) for 2 � n � 108.

In the meantime, for μ = 1, Theorem 4.4 states that

n
√

an(1) < n+1
√

an+1(1) for n > 101.

Thus, we reach the following assertion.

Theorem 4.5. The sequence {n
√

an}n�2 is strictly increasing.

For μ = 0, it can be verified that

n
√

an(0) < n+1
√

an+1(0) for 2 � n � 48.

Meanwhile, for μ = 0, Theorem 4.4 states that

n
√

an(0) < n+1
√

an+1(0) for n > 45.

So we have
n
√

an(0) < n+1
√

an+1(0) for n � 2.

Since bn = 1
2an(0), we have for n � 2,

n
√

bn =
n
√

an(0)
n
√

2
<

n+1
√

an+1(0)
n+1

√
2

= n+1
√

bn+1.

Thus, we have the following monotone property.

Theorem 4.6. The sequence {n
√

bn}n�2 is strictly increasing.

Note that Wang and Zhu [16] independently proved the log-convexity of {an}n�1 and
{bn}n�1 and the increasing properties of {n

√
an}n�1 and {n

√
bn}n�1.
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5. The log behaviour of Bell numbers

In this section, we consider the log behaviour of Bell numbers, which are also denoted
by Bn. Recall that the function B(x) is defined by

B(x) =
1
e

∞∑
k=0

kx

k!
.

Lemma 5.1. The function B(x) is log-convex for x > 1.

Proof. We proceed to show that

(log B(x))′′ > 0,

that is,
B(x)B′′(x) − (B′(x))2 > 0. (5.1)

For x � 1, we have

B′(x) =
1
e

∞∑
n=0

nx log n

n!

and

B′′(x) =
1
e

∞∑
n=0

nx(log n)2

n!
.

Thus, for x > 1, we have

B(x)B′′(x) − (B′(x))2 =
1
e2

∞∑
m=0

mx

m!

∞∑
n=0

nx(log n)2

n!
− 1

e2

∞∑
m=0

mx log m

m!

∞∑
n=0

nx log n

n!

=
1
e2

∑
n>m�0

mxnx

m!n!
((log m)2 + (log n)2 − 2 log m log n)

=
1
e2

∑
n>m�0

mxnx

m!n!
(log n − log m)2,

which is positive. This completes the proof. �

We now turn to the log behaviour of the function B(x)1/x.

Theorem 5.2. log B(x)1/x is strictly increasing for x � 1.

Proof. To prove that log B(x)1/x is strictly increasing, we wish to show that

(log B(x)1/x)′ > 0. (5.2)

Since

(log B(x)1/x)′ =
1
x

(
B′(x)
B(x)

− log B(x)
x

)
,
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(5.2) can be rewritten as

B′(x)
B(x)

>
log B(x)

x
. (5.3)

We claim that there exists t in (1, x) such that

B′(t)
B(t)

>
log B(x)

x
. (5.4)

Since B(1) = 1 and B(x) > 1 for x > 1, by the mean value theorem with respect to
log B(x) on [1, x], there exists t ∈ (1, x) such that

B′(t)
B(t)

=
log B(x) − log B(1)

x − 1
=

log B(x)
x − 1

. (5.5)

Since x > 1, we have
log B(x)
x − 1

>
log B(x)

x
. (5.6)

Combining (5.5) and (5.6), we obtain (5.4).
Next we show that for x > t > 1,

B′(x)
B(x)

>
B′(t)
B(t)

. (5.7)

In fact, by Lemma 5.1, we see that for y � 1,

(
B′(y)
B(y)

)′
= (log B(y))′′ > 0.

This implies that B′(y)/B(y) is strictly increasing for y > 1. This proves (5.7).
Combining (5.4) and (5.7), we obtain (5.3). This completes the proof. �

Since B(n) = Bn whenever n is a positive integer, Theorem 5.2 implies the following
monotone property conjectured by Sun [15].

Corollary 5.3. The sequence {n
√

Bn}n�1 is strictly increasing.

The above property was independently obtained by Wang and Zhu [16] via a different
approach. We pose the following conjecture that implies the conjecture of Sun [15] stating
that the sequence {n

√
Bn}n�1 is log-concave.

Conjecture 5.4. The function B(x)1/x is log-concave for x � 1, that is, for x > 1,
(log B(x)1/x)′′ < 0.
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6. A connection to Hölder’s inequality

In this section, we give a derivation of the monotone property of the function B(x)1/x

in Theorem 5.2 by applying Hölder’s inequality in probability theory. In fact, it can be
shown that the condition 1 < x < y in Theorem 5.2 can be relaxed to 0 < x < y.

Let Z be a discrete random variable with Poisson distribution as given by

P (Z = k) =
1
e

1
k!

.

From Dobinski’s formula, it is easily checked that B(x) = E[Zx]. Hölder’s inequality
states that for real-valued random variables U and V , and positive numbers p and q

satisfying 1/p + 1/q = 1, we have

E[|UV |] � E[|U |p]1/pE[|V |q]1/q

and the equality holds if and only if there exist constants α, β > 0 such that α|U |p = β|V |q
or E[|U |p] = 0 or E[|V |q] = 0 (see, for example, [13]). For 0 < x < y, we set p = y/x

and set U = Zx and V = 1. It is not hard to see that in this case Hölder’s inequality is
strict. Hence, we obtain that

E[Zx]1/x < E[Zy]1/y,

which can be restated as follows.

Theorem 6.1. For 0 < x < y, we have B(x)1/x < B(y)1/y.
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