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Abstract

As a tribute to A.C. Martin’s classic work on embryos in seeds, we have attempted to gain a
better understanding of the peripheral embryo, which puzzled Martin. The peripheral embryo
is strongly curved and in contact with the inner surface of the seed coat, and Martin placed it
at the base of his family tree of seed phylogeny and called it a ‘phylogenetic orphan’. We eval-
uated ovule/seed development, kind of embryo and occurrence of perisperm in families with
and without a peripheral embryo. All families with a peripheral embryo occur in the
Caryophyllales. Seeds with a peripheral embryo have a low cotyledon width:radicle width
ratio that coincides with Martin’s (full-sized) linear embryo. The peripheral embryo develops
in campylotropous and/or amphitropous ovules and is pushed to the side of the seed as the
perisperm develops. Linear-full embryos and perisperm are widely distributed across extant
angiosperms but are rarely found together, except in core Caryophyllales. The non-core
Caryophyllales with endosperm and various kinds of embryos, including the linear-full,
diverged before the core Caryophyllales. Thus, the ancestral linear-full embryo appears to
have been retained when the core lineage developed campylotropous and/or amphitropous
ovules and perisperm. Seeds with a peripheral embryo merit a position on Martin’s family
tree; however, the position should be a side branch (‘orphan’) slightly above (more advanced
than) his linear embryo and not at the base. We conclude that Martin had great insight into
the relationships between the kinds of embryos and rightly questioned the position of the
peripheral embryo.

Introduction

Alexander Campbell Martin was born in 1897, and he obtained a PhD from George
Washington University in Washington, DC (USA), presumably in 1944; his doctorate thesis
was submitted in December 1943. His PhD work was published in 1946 in The American
Midland Naturalist, and the title was ‘The comparative internal morphology of seeds’. This
paper contains drawings and information on embryos in 1287 genera of seed plants.
Interestingly, Martin was 49 years old when this paper was published. While Martin worked
on his PhD research, he was employed at the Patuxent Research Refuge of the USA Fish and
Wildlife Service near Laurel, Maryland. He worked at this Refuge from 1940 until his retire-
ment in about 1963. As we approach the 125 year anniversary of his birth and the 75th year
since the publication of his classic paper on the internal morphology of seeds, we think it is
appropriate to reflect on Martin’s contributions to seed science.

The major contributions of Martin’s 1946 paper, include (1) development of a comprehen-
sive database on embryo morphology of seeds, (2) a family tree of seed phylogeny based on
morphological traits and (3) discussion and questions about some of the kinds of embryos,
e.g. the peripheral embryo, that still provide challenges for seed biologists today. Martin was
not the first person to pay attention to seed anatomy (see Netolitzky, 1926). However, his com-
prehensive survey gave him the background information with which to contemplate relation-
ships between kinds of embryos and allowed him to construct the first family tree of seed
phylogeny.

The information in Martin’s 1946 paper has been widely used by seed biologists/ecologists
(e.g. Keeley, 1991; Finch-Savage and Leubner-Metzger, 2006; Vyshenskaya, 2006; Baskin and
Baskin, 2014). His work has played a role in studies of seed anatomy (Vaughan and
Whitehouse, 1971; Gunn, 1974; Boesewinkel and Bouman, 1995; Werker, 1997), development
(Floyd and Friedman, 2000), evolution (Grushvitskii, 1961; Forbis et al., 2002; Eriksson and
Kainulainen, 2011; Willis et al., 2014) and technology/physiology (Lang, 1965; Grabe, 1970;
Justice, 1972; Bass et al., 1988). In addition, Martin’s paper has been cited in studies on
plant taxonomy (Reeder, 1957; Takhtajan, 1980, 1997), embryology (Raghaven, 1986;
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Vyshenskaya, 2006), evolution (Carlquist, 1961; Dahlgren and
Rasmussen, 1983; Thorne, 2000), propagation (Hartman and
Kester, 1975) and floristics/taxonomic revisions (Palser, 1951;
Fryxell, 1978; Hodgson and Mackey, 1986; Harley et al., 2004).
According to Google Scholar (29 July 2019), Martin’s (1946)
paper has been cited 846 times.

Martin had a productive career. However, except for a book
co-authored with William D. Barkley (Martin and Barkley,
1961) entitled ‘Seed Identification Manual’ he did not publish
any more work on seed embryos. He published several papers
dealing with the food habits of waterfowl and a book (Martin
et al., 1951) entitled ‘American Wildlife and Plants’, which had
500 pages and 300 illustrations of the genera of plants used as
food by wildlife. Martin with co-authors Neil Hotchkiss, Francis
Uhler and William Bourn (Martin et al., 1953) published a
paper entitled ‘Classification of wetlands in the United States’,
which was the first attempt to classify wetlands in the USA. He
also authored or co-authored four books (Weeds, Trees, Flowers
and Wildflowers) in the ‘A Golden Guide’ series of books on nat-
ural history (published by St Martin’s Press).

One of the intriguing things about Martin’s 1946 paper is that
he was very frank about the aspects of his family tree of seed phyl-
ogeny that puzzled him. One of these puzzles is the peripheral
embryo. Martin described the peripheral embryo as a ‘phylogen-
etic orphan’ and wrote several comments about it, two of which
are provided here:

‘Peripheral division – Embryo ordinarily elongate and large, quarter to
dominant, continuous in part at least to the testa and often curved; endo-
sperm (actually perisperm) conspicuously starchy; central or in a few
instances lateral. Cotyledons narrow or expanded. Dicots – but in several
cases one of the cotyledons is abortive.’ [p. 519]

‘Peripheral division seems to resemble a blind alley leading nowhere
beyond itself; though expanded cotyledons in some Peripheral families
show at least superficial resemblance to the Foliate subdivision it appears
to be a case of “parallelism” in fundamentally distinct groups. Even if the
distinct kind of endosperm [perisperm] did not present an insuperable
barrier it still would seem almost inconceivable that a peripheral embryo,
with its characteristic position surrounding the endosperm [perisperm]
could ever have given rise to central-embryoed members of the Axile
group.’ [p. 526]

Not only did Martin consider the peripheral embryo to be a
‘phylogenetic orphan’, but he placed it at the base of his tree,
showing it as a branch that originates from the side of something
that looks like a tree stump (Fig. 1). Much research on seed
morphology and on the phylogeny of angiosperms has been con-
ducted since 1946, but the results of these studies have not been
evaluated in terms of Martin’s conclusion with regard to the per-
ipheral embryo. In attempting to understand the origins and evo-
lutionary relationships of the various kinds of embryos in seeds of
angiosperms, it is important to know if the peripheral embryo is
truly a phylogenetic orphan, or is it related to other kinds of
embryos? As a tribute to Martin’s pioneer work in seed phyl-
ogeny, we have revisited his peripheral embryo. We have carefully
studied the details about the peripheral embryo provided in
Martin’s 1946 paper and the results from relevant kinds of
research conducted since 1946. We can conclude that Martin
had great insight with regard to the peripheral embryo, but
more can be added to the story, which we think would have fas-
cinated him.

From studying the shape and location of the peripheral
embryo in the seed, as illustrated in Martin (1946), we hypothe-
sized that seeds with this kind of embryo have distinct morpho-
logical and developmental characteristics. Furthermore, based
on the variation within Martin’s families with peripheral embryos
with regard to cotyledon morphology, his comments about the
peripheral embryo and expansion of our knowledge of seed
morphology and plant taxonomy/phylogeny since 1946, we
hypothesize that the peripheral embryo does not belong at the
base of Martin’s family tree of seed phylogeny.

To address these hypotheses, the literature was reviewed to find
answers to various questions: (1) What families of angiosperms
have a peripheral embryo? (2) What traits do families with per-
ipheral embryos have in common, and are any of these traits
found in families that do not have a peripheral embryo? (3)
What kind of ovule/seed development and cotyledon morphology
occurs in taxa with peripheral embryos? (4) What is the phylogen-
etic position of families with peripheral embryos and of families
that share traits with those known to have peripheral embryos?

Plant families with peripheral embryos

Martin (1946) illustrated a peripheral embryo in seeds of
11 families and listed them in the approximate order ‘of extent
of expansion of their cotyledons’: Aizoaceae, Portulacaceae,
Cactaceae, Caryophyllaceae, Chenopodiaceae, Frankeniaceae,
Scleranthaceae, Amaranthaceae, Phytolaccaceae, Polygonaceae
and Nyctaginaceae. All these families belong to the Caryophyllales
(Takhtajan, 1997); thus, we need to investigate the characteristics
of this order.

Caryophyllales

Plant families with free-central or basal placentation, mostly
campylotropous ovules (i.e. curved embryos) and perisperm in
the mature seed have long been regarded as a natural unit of
classification (Bittrich, 1993). This group of families has been
called the Curvembryae, Centrospermae and Caryophyllales
(Harms, 1934; Takhtajan, 1997). Harms (1934) listed 12 families in
the Centrospermae: Achatocarpaceae, Aizoaceae, Amaranthaceae,
Basellaceae, Caryophyllaceae, Chenopodiaceae, Dysphaniaceae,
Gyrostemonaceae (now in Brassicales), Nyctaginaceae,
Phytolaccaceae, Portulacaceae and Theligonaceae (now in
Gentianales). As various kinds of research have been conducted,
the list of families in the Centrospermae (now Caryophyllales)
has been modified.

By the late 1980s, 12 families were included in the
Caryophyllales: Achatocarpaceae, Aizoaceae, Amaranthaceae,
Basellaceae, Cactaceae, Caryophyllaceae, Chenopodiaceae,
Didiereaceae, Molluginaceae, Nyctaginaceae, Phytolaccaceae and
Portulacaceae and about 10,000 species (Cronquist, 1988).
However, studies on the phylogenetic relationships of angios-
perms using gene sequence data have provided much new insight
on angiosperms in general (e.g. Downie et al., 1997; Soltis et al.,
1999, 2000; Hilu et al., 2003; Moore et al., 2010) and on
Caryophyllales in particular (Giannasi et al., 1992; Retting et al.,
1992; Morton et al., 1997; Cuénoud et al., 2002; Greenberg and
Donoghue, 2011; Yang et al., 2015; Smith et al., 2018). In some
cases, the molecular studies have yielded some surprising results,
e.g. Droseraceae belongs in a clade with Caryophyllidae and
Nepenthaceae (Williams et al., 1994). The number of families pres-
ently recognized in the Caryophyllales is 38 (APG IV, 2016).
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Hernández-Ledesma et al. (2015) recognized Amaranthaceae and
Chenopodiaceae as separate families and thus have 39 families
on their list, while APG IV (2016) combined these two families
into Amaranthaceae, resulting in 38 families. The number of

species in the Caryophyllales is about 12,500 (Hernández-
Ledesma et al., 2015).

According to placement of the Caryophyllales on the angio-
sperm phylogeny diagram (APG IV, 2016), the Caryophyllales

Figure 1. Martin’s (1946) family tree of seed phylogeny. *Proposed position on Martin’s tree for the peripheral embryo. Reproduced with permission.
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along with Berberidopsidales and Santalales make up the
Superasterid clade, which is sister to the Asterids. As such,
the Caryophyllales are placed between the Malvids and
Campanulids on the phylogenetic diagram.

Another result of the molecular phylogeny studies is that the
Caryophyllales have been divided into two major clades:
Caryophyllales I (core) and Caryophyllales II (non-core) (Cuénoud
et al., 2002; Hilu et al., 2003; Soltis et al., 2005; Brockington et al.,
2009; Endress, 2010; Lee et al., 2013; Walker et al., 2018). The
core Caryophyllales consist of the families traditionally included in
this order, along with the Agdestidaceae, Barbeuiaceae, Gisekiaceae,
Halophytaceae, Lophiocarpaceae, Petiveriaceae, Sarcobataceae and
Stegnospermataceae (Table 1). The noncore families include the
Ancistrocladaceae, Droseraceae, Drosophyllaceae, Dioncophyllaceae,
Frankeniace, Nepenthaceae, Plumbaginaceae, Polygonaceae and
Tamaricaceae (Table 1).

The Asteropeiaceae, Physenaceae, Rhabdodendraceae and
Simmondsiaceae are included in the core Caryophyllales; how-
ever, the seeds of these families do not have a peripheral embryo
and only scant endosperm and no perisperm, except for scant
perisperm in Rhabdodendraceae (Table 1). According to
Cuénoud et al. (2002), the Simmondsiaceae is sister to the core,
and Rhabdondendraceae is sister to the noncore Caryophyllales.
Carlquist (2010) followed Cuénoud et al., (2002), but Crawley
and Hilu (2012) considered these three families to be sister to
the core lineages. According to Brockington et al. (2009) and
Magallón et al. (2015), Rhabdodendraceae and Simmondsiaceae
are sister to the core, and Asteropeiaceae and Physenaceae form
a clade that is sister to the rest of the core Caryophyllales. In
studies of the one-seeded fruits of the core Caryophyllales,
Sukhorukov et al. (2015) found that the early-diverging lineages,
i.e. Asteropeiaceae, Physenaceae, Rhabdodendraceae and
Simmondsiaceae, have fruit and seed coats that were different
from those of other Caryophyllales. Fruits of these four families
have a thick pericarp that is divided into several distinct zones,
and the seed coat also is divided into several layers.

Chemotaxonomy research on the Caryophyllales has revealed
that members of the Aizoaceae, Amaranthaceae, Basellaceae,
Cactaceae, Chenopodiaceae, Didiereaceae, Halophytaceae,
Nyctaginaceae, Phytolaccaceae, Portulaceae and Stegnospermaceae
have the pigment betalain, while the Caryophyllaceae and
Molluginaceae have anthocyanin (Mabry et al., 1963; Mabry,
1976, 1977; Mabry and Dreiding, 1969) (Table 1). Subsequent
lineage-specific gene radiation studies have shown that betalain-
specific isoforms in the CYP76AD1 and DODA lineages were
lost or down-regulated in Caryophyllaceae and Molluginaceae
(Brockington et al., 2015), resulting in production of anthocyanin
instead of betalain. Betalains have been found only in the
Caryophyllales (Mabry and Dreiding, 1969; Stafford, 1994;
Brockington et al., 2011; Thulin et al., 2016).

Another chemical compound of interest in our consideration
of the Caryophyllales is ferulic acid, which is ester-linked to poly-
saccharides in the nonlignified (primary) cell wall. Ultraviolet
fluorescence microscopy is used to examine primary cell walls,
and if ferulic acid is present the cell walls autofluoresce blue at
low pH and green at high pH (Harris and Hartley, 1980).
Hartley and Harris (1981) examined the primary cell wall of
251 species in 150 families and 46 orders of basal angiosperms
and eudicots and found ferulic acid only in core Caryophyllales
(Table 1). In the Commelinid monocots and core
Caryophyllales, the concentration of ferulic acid is >3.5 mg
(g cell wall)–1, but in eudicots such as Arabidopsis thaliana,

Daucus carota, Medicago sativa and Populus trichocarpa the con-
centration is <3.5 mg (g cell wall)–1 (Harris and Trethewey, 2010).

Some families in the Caryophyllales have a unique kind of
sieve-element plastid in which there are ring-shaped bundles of
filaments that contain protein; these plastids are called P-type
plastids (Behnke, 1972). There is another basic kind of
sieve-element plastid in which starch is accumulated, and it is
called an S-type plastid (Behnke, 1972, 1976, 1991; Behnke
et al., 1974). The non-core families in the Caryophyllales have
S-type sieve-element plastids, and the core families have P-type,
except the Asteropediaceae, Physenaceae and Simmondsiaceae,
which have S-type (Table 1).

Peripheral embryo

Development

To understand the relatively long length of the peripheral embryo
and its position in the seed, information about the ovule in which
it develops is required. An ovule is a sac-like structure that con-
tains the megasporangium in which the egg and eventually the
embryo are produced. The oldest known ovules are those of
Elkinsia polymorpha (Late Devonian, 365 ma) (Gillespie et al.,
1981; Rothwell et al., 1989). The ovule of many orders of angios-
perms has two integuments (bitegmic) and a relatively large
amount of nucellus (crassinucellate) (Bouman, 1984; Endress
2011a). In some angiosperms, e.g. the asterids, the ovule has
one integument (unitegmic) and a thin nucellus (tenuinucellate),
but ovules can be bitegmic and tenuinucellate, e.g. various fam-
ilies in the Rosiidae and Dilleniidae (Philipson, 1974).
Furthermore, there is much diversity in crassinucellate and tenui-
nucellate ovules (Endress, 2011a). The Caryophyllales have ovules
that are bitegmic and crassinucellate (Eckardt, 1976).

The amount of curvature of the ovule that has occurred by the
time the embryo sac has formed varies greatly, and the most com-
mon kinds of ovules are orthotropous (atropous), anatropous,
campylotropous, hemianatropous and amphitropous (Fahn,
1974; Endress, 2011a); there are variations of these five common
kinds of ovules. An orthotropous ovule is straight with the micro-
pyle opposite the funiculus, while an anatropous ovule is bent so
that the micropyle is adjacent to the funiculus. The anatropous
ovule is the most common kind in extant angiosperms
(Endress, 2011a), and it is probably the most ancestral (Endress,
2011b). The hemianatropous ovule is bent so that the micropyle
is at a 90 degree angle in relation to the funiculus. In orthotro-
pous, anatropous and hemianatropous ovules, the nucellus and
embryo sac are straight (Endress, 2011b). Campylotropous and
amphitropous ovules are bent, and the micropyle is pointed
toward the base of the funiculus. The campylotropous ovule has
a bulge on the side, while the amphitropous ovule has a bulge
on top. Thus, in campylotropous and amphitropous ovules the
nucellus and embryo sac are curved, which results in a curved
embryo (Rau, 1940; Takaso and Bouman, 1984). Furthermore,
there is more space in campylotropous and amphitropous ovules
for the embryo to elongate than in the other kinds of ovules. In
campylotropous ovules, the embryo can be up to two times as
long as the seed.

Taxonomic occurrence

With the exception of the Asteropeiaceae, Physenaceae,
Rhabdodendraceae and Simmondsiaceae, the core families of
the Caryophyllales have seeds with a peripheral embryo, while
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Table 1. Families in the core and non-core Caryophyllales and information for each family for various seed and plant characters (P, protein; S, starch)

Family/taxon Embryo1–6 Ovule2,6
Endosperm or
perisperm5,7–13

Anthocyanin or
betalain7,14–18

Ferulic
acid19,20

Sieve-element
plastids21–25

Core

Rhabdodendraceae Investing Campylotropous Scant endosperm
and scant
perisperm

Betalain absent No data P

Simmondsiaceae Investing Anatropous Scant endosperm Anthocyanin No data S

Asteropeiaceae Spiralled or
linear-full

Epitropous
(hanging)

Scant endosperm Betalain absent No data S

Physenaceae Spatulate Campylotropous Scant endosperm Betalain absent No data S

Macarthuriaceae Peripheral Campylotropous Perisperm Anthocyanin No data P

Microteaceae Peripheral Campylotropous Perisperm No data No data P

Caryophyllaceae Peripheral,
straight or
spiralled

Hemitropous to
campylotropous

Perisperm Anthocyanin Yes P

Achatocarpaceae Peripheral Campylotropous Perisperm No data No data P

Amaranthaceae Peripheral,
annular or
spirally twisted

Campylotropous Perisperm Betalain Yes P

Stegnospermataceae Peripheral Amphitropous Perisperm Betalain No data P

Limeaceae Peripheral Campylotropous Perisperm Anthocyanin No data P

Lophiocarpaceae Peripheral Campylotropous Perisperm Betalain No data P

Hypertelis
(Molluginaceae)

Peripheral Campylotropous Perisperm Anthocyanin No data P

Kewaceae Peripheral Campylotropous Perisperm Anthocyanin No data No data

Barbeuiaceae Peripheral Campylotropous Perisperm Betalain No data P

Aizoaceae Peripheral Campylotropous to
almost anatropous

Perisperm, scant
endosperm

Betalain Yes P

Phytolaccaceae Peripheral Anacampylotropous Perisperm Betalain Yes P

Petiveriaceae Peripheral Campylotropous Perisperm Betalain No data P

Gisekiaceae Peripheral Campylotropous Perisperm Betalain No data P

Sarcobataceae Peripheral Campylotropous Perisperm Betalain No data P

Nyctaginaceae Peripheral or
straight

Anatropous or
campylotropous

Perisperm Betalain Yes P

Molluginaceae Peripheral Campylotropous to
almost anatropous

Perisperm Anthocyanin No data P

Halophytaceae Peripheral Campylotropous Perisperm Betalain No data P

Montiaceae Peripheral Campylotropous or
amphitropous

Perisperm Betalain Yes P

Didiereaceae Peripheral Campylotropous Scant perisperm Betalain Yes P

Basellaceae Peripheral or
annular to
cochleate

Anatropous to
campylotropous

Perisperm Betalain Yes P

Talinaceae Peripheral Campylotropous to
amphitropous

Perisperm Betalain Yes P

Anacampserotaceae Peripheral or
slightly curved

Campylotropous to
amphitropous

Scant perisperm Betalain No data P

Portulaceae Peripheral Anacampylotropous Perisperm Betalain Yes P

Cactaceae Peripheral Campylotropous to
rarely anatropous

Perisperm Betalain Yes P

Non-core

(Continued )
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non-core families mostly do not have a peripheral embryo
(Table 1). Seeds of Frankeniaceae and Polygonaceae (listed by
Martin as having a peripheral embryo) are non-core, but they
have endosperm (Takhtajan, 1997). The Frankeniaceae have a
long narrow embryo (Martin, 1946), and the Polygonaceae have
embryos that are long and narrow, spatulate or folded in appear-
ance (Stevens, 1912; Martin, 1946). With the exception of
Asteropeiaceae, Simmondsiaceae and Stegnospermataceae, the
core families of Caryophyllales have campylotropous ovules
(Table 1). All the non-core families have anatropous ovules except
the Polygonaceae, which has orthotropous ovules.

To gain a better understanding of the relevance of ovule
morphology in our consideration of the peripheral embryo, infor-
mation on family occurrence of campylotropous and amphitro-
pous ovules was obtained from Johansen (1950) and Takhtajan
(1997) and plotted on the APG IV (2016) phylogenetic diagram
(Fig. 2). We found campylotropous and/or amphitropous ovules
in 77 families, including 26 families in the Caryophyllales.
Campylotropous ovules are widely distributed phylogenetically,
and their occurrence ranges from the Austrobaileyales (an ANA
grade angiosperm) to the Boraginales (a Lamiid) (Fig. 2). The
occurrence of amphitropous ovules ranges from the Fabales (a
Fabid) to the Gentianales (a Lamiid). Thus, clearly ovules with
the capacity to produce seeds with elongated embryos occur
throughout the extant angiosperms.

Perisperm

Development

A young angiosperm ovule consists of integuments, nucellus and
female gametophyte. The cells of the nucellus represent the rem-
nants of the megasporangium, and they surround the female gam-
etophyte (embryo sac) and contain stored food that is used for
embryo growth. In many plant species, as the ovule grows the
amount of nucellus increases (Maheshwari and Chopra, 1955;
Kellman-Sopyła et al., 2017). After fertilization and formation

of the embryo and endosperm, embryo growth occurs at the
expense of the endosperm (Werker, 1997; Burrieza et al., 2014),
and the endosperm may transfer food from the nucellus to the
embryo (Mohana Rao et al., 1988). Depending on the species,
all the stored food in the nucellus may be consumed before or
after fertilization or during germination (Mohana Rao et al.,
1988; Werker, 1997). Following fertilization, developing seeds of
Chenopodium quinoa simultaneously accumulate (starch) and
use food in the nucellus (López-Fernández and Maldonado,
2013). If any nucellar tissue remains after seed development is
completed, it is called perisperm (Burrieza et al., 2014;
Jiménez-Durán et al., 2014). Development of perisperm takes
place in the ovule, and it helps to ensure a good supply of food
and water for the developing seed (Wilms, 1980; Mohana Rao
et al., 1988). As the perisperm in campylotropous ovules develops
on the lower side of the embryo sac (above the chalaza), the
embryo is pushed to the periphery of the ovule as the mass of
the perisperm increases (Gibbs, 1907; Buell, 1952; Wilms, 1980;
Mohana Rao et al., 1988; Zheng et al., 2010).

Taxonomic occurrence

Except for Asteropeiaceae, Physenaceae and Simmondsiaceae
with scant endosperm and Rhabdodendraceae with scant endo-
sperm and scant perisperm, seeds of families in the core
Caryophyllales have copious starchy perisperm (Table 1).
However, a small amount of endosperm may occur around the
radicle end of the embryo in seeds of some core Caryophyllales,
e.g. Amaranthaceae (Kajale, 1940, 1954; Pal et al., 1990),
Caryophyllaceae (Buell, 1952; Wagner and Tengg, 1993;
Kellman-Sopyła et al., 2017) and Lophiocarpaceae (Hakki,
2013). Seeds of the non-core Caryophyllales families have endo-
sperm, and those of Tamaricaceae have a thin layer of perisperm
in addition to scant endosperm.

To gain a better understanding of the family occurrence of
perisperm in seeds, we obtained information from Woodcock

Table 1. (Continued.)

Family/taxon Embryo1–6 Ovule2,6
Endosperm or
perisperm5,7–13

Anthocyanin or
betalain7,14–18

Ferulic
acid19,20

Sieve-element
plastids21–25

Droseraceae Spatulate Anatropous Endosperm Anthocyanin No data S

Nepenthaceae Linear-full
(minute)

Anatropous Endosperm Anthocyanin No data S

Drosophyllaceae Spatulate Anatropous Endosperm Anthocyanin No data S

Ancistrocladaceae Spatulate Hemitropous Endosperm Anthocyanin No data S

Dioncophyllaceae Spatulate
(discoid-obconic)

Anatropous Endosperm Anthocyanin No data S

Frankeniaceae Linear-full
(peripheral)

Anatropous Endosperm Anthocyanin No data S

Tamaricaceae Spatulate Anatropous Scant endosperm
and thin perisperm

Anthocyanin No data S

Plumbaginaceae Spatulate Anatropous Endosperm Anthocyanin No data S

Polygonaceae Linear-full, folded
or spatulate
(peripheral)

Orthotropous Endosperm Anthocyanin No data S

1. Martin, 1946; 2. Baskin and Baskin, unpublished embryo database; 3. Eckardt, 1976; 4. Mabberley, 2008; 5. Shepherd et al., 2005; 6. Johansen, 1950; 7. AP (Angiosperm Phylogeny) website; 8.
Woodcock, 1914; 9. Houk, 1938; 10. Liao and Wu, 2000; 11. Anderson, 1975; 12. Ayele et al., 2010; 13. Grayum, 1991; 14. Iwashina, 2013; 15. Brockington et al., 2011; 16. Brockington et al., 2009; 17.
Watson andDallwitz, 1992 onwards; 18. Thulin et al., 2016; 19. Hartley andHarris, 1981; 20. Hakki, 2013; 21. Behnke, 1972; 22. Behnke et al., 1974; 23. Behnke, 1976; 24. Behnke, 1991; 25. Fay et al., 1997
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(1914), West et al. (1995), Takhtajan (1997), Lu (1985), Goldberg
(1986, 1989) and Plakhine et al. (2012) and plotted it on the APG
IV (2016) phylogenetic diagram (Fig. 2). Perisperm is widely dis-
tributed in the angiosperms and ranges from the Nymphaeales to
Gentianales. However, the amount of perisperm varies from copi-
ous in seeds of Nymphaeales, Piperales, Zingeriberales and
Caryophyllales (Goldberg, 1986, 1989) to a single layer of cells
in Brassicales, Malvales and Lamiales (Werker, 1997; Plakhine
et al., 2012). The only families, in addition to those in the
Caryophyllales, with both campylotropous and/or amphitropous
ovules and perisperm are the Marantaceae, Papaveraceae,
Ranunculaceae, Rubiaceae and Simaroubaceae.

Embryo morphology/shape

Aside from the peripheral embryo being located adjacent to the
seed coat, how can we describe/characterize it? For various
other kinds of embryos in Martin’s (1946) paper such as the
bent, folded, investing, linear and spatulate, relative width of the
radicle and cotyledons is a useful identification character. For
all the drawings of members of the Caryophyllales in Martin’s

paper, we measured the width of the radicle and cotyledons and
calculated the cotyledon (C):radicle (R) ratio. A C:R ratio of 1
represents a long, narrow embryo with the radicle and cotyledons
having the same width, whereas a C:R ratio >1 means the cotyle-
dons are wider than the radicle. Furthermore, we determined the
C:R ratio for seeds with bent, folded, investing, full-sized linear
and spatulate embryos illustrated in Martin’s paper.

Mean C:R ratio for the Aizoaceae, Amaranthaceae, Cactaceae,
Caryophyllaceae, Chenopodiaceae, Frankeniaceae, Nyctaginaceae,
Phytolaccaceae and Portulaceae, which are in the core
Caryophyllales, ranged from 1.0 to 1.82, and the mean C:R ratio
for full-sized linear embryos was 1.06 (Table 2). As small linear
embryos grow inside the seed prior to germination and full-sized
linear embryos do not, we refer to them as linear-underdeveloped
and linear-fully developed (linear-full), respectively (Baskin
and Baskin, 2007). All families included by Martin that belong
to the core Caryophyllales have embryos that easily fit his
full-sized linear embryo. All families in the core Caryophyllales,
except Asteropeiaceae, Physenaceae, Rhabdodendraceae and
Simmondsiaceae, have long thin linear or peripheral embryos
(Table 1).

Figure 2. Angiosperm phylogenetic diagram showing
number of families with campylotropous (C) and
amphitropous (A) ovules, perisperm (P) and linear-full
embryos (LF) (modified from APG IV, 2016).
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However, the mean C:R ratio for the Polygonaceae (2.56)
most closely matches the mean C:R ratio (2.98) for spatulate
embryos. Families in the non-core Caryophyllales have a diversity
of embryo types, including peripheral [Polygonaceae and
Frankeniaceae (Martin, 1946)], linear-full, spatulate and investing,
with spatulate being the most common (Table 1).

As the majority of Martin’s families with a peripheral embryo
have linear-full embryos, we queried our embryo database (Baskin
and Baskin, unpublished) for other families with linear-full
embryos. Linear-full embryos occur in 153 families, including
29 in the Caryophyllales, throughout the extant angiosperms
from Laurales (Magnoliids) to Boraginales (Lamiids) (Fig. 2). In
addition to the Caryophyllales, ≥5 families in the Alismatales,
Asparagales, Brassicales, Ericales, Lamiales, Malpighiales,
Saxifragales and Zingiberales have linear-full embryos. Linear-full
embryos occur in one or more families in all orders with campylo-
tropous and/or amphitropous ovules, except the Austrobaileyales,
Dilleniales, Fabales, Saxifragales and Zygophyllales; however,
some families in the Saxifragales have linear-underdeveloped
embryos (Baskin and Baskin, unpublished embryo database).

On Martin’s family tree of seed phylogeny, spatulate, bent,
folded and investing embryos are placed above the linear-full
(and in this order) (Fig. 1). Thus, in families with campylotropous
and/or amphitropous ovules there is a strong association between
linear-full and spatulate embryos, but linear-full also may occur
with folded, investing and bent embryos. That is, the linear-full
embryo is found in various families with campylotropous and/
or amphitropous ovules along with the most advanced kinds of
embryos (sensu Martin, 1946).

Twelve kinds of embryos have been recorded in the 29 families
with perisperm, with some families having as many as four kinds
for a total of 46 embryo records. The importance of the kind
of embryo in families with perisperm is bent (2.2%), broad

(6.5%), capitate (8.7%), cupulate (4.3%), folded (4.3%), investing
(13.0%), linear-full (19.6%), linear-underdeveloped (13.0%), rudi-
mentary (4.3%), spatulate (17.4%), spatulate-underdeveloped
(2.2%) and undifferentiated (organless) (4.3%).

Evaluation of hypotheses

Hypothesis 1: Seeds with a peripheral embryo have distinct
morphological and developmental characteristics

With the exception of Asteropeiaceae, Physenaceae,
Rhabdodendraceae and Simmondsiaceae, families in the core
Caryophyllales have long narrow embryos that match the charac-
teristics of Martin’s linear-full embryos. These linear-full embryos
develop in campylotropous and/or amphitropous ovules, and they
encircle perisperm in the centre of the seed. This combination of
characters (i.e. linear-full embryo, campylotropous and/or
amphitropous ovules and perisperm) not only distinguishes the
peripheral embryo but helps to characterize most of the core
Caryophyllales. Individually, these three characters are widely
distributed throughout the extant angiosperms, but they occur
together in only seven orders (Alismatales, Gentianales, Lamiales,
Malpighiales, Ranunculales, Sapindales and Zingiberales) in add-
ition to the Caryophyllales (Fig. 2). However, in these orders
(except for Caryophyllales), the three characters do not usually
occur together in the same family. In addition to various families
in the core Caryophyllales, this combination of characters is
known to occur only in the Marantaceae and Rubiaceae. The
Marantaceae have a linear-full embryo that is curved but located
in the centre of the seed, and the Rubiaceae have folded, investing,
linear-full, spatulate and spatulate-underdeveloped embryos
(Martin, 1946).

The combination of linear-full embryos, campylotropous and/
or amphitropous ovules and perisperm supports our hypothesis
that seeds with peripheral embryos have distinct characters. In
addition, P-type sieve-elements, betalain pigment and ferulic
acid in the primary cell wall are strongly associated with the
core, but not the non-core, Caryophyllales (Table 1), further
supporting Martin’s (1946) contention that the peripheral embryo
is unique among the angiosperms.

Hypothesis 2: The peripheral embryo does not belong at the
base of Martin’s family tree of seed phylogeny

We now have to ask the difficult question: where does the periph-
eral embryo belong on Martin’s family tree of seed phylogeny?
The answer lies in the embryo itself. We queried our embryo
database (Baskin and Baskin, unpublished) and asked what
kinds of embryos occur in the non-Caryophyllales families with
campylotropous and/or amphitropous ovules. Among the 50
non-Caryophyllales families with campylotropous and/or amphi-
tropous ovules, there are 11 kinds of embryos, with some families
having as many as five kinds of embryos. In total, we have 116
embryo records for these 50 families: capitate (0.9%), bent
(9.5%), folded (12.9%), investing (14.7%), linear-full (20.7%),
lateral (0.9%), linear-underdeveloped (8.6%), rudimentary
(6.0%), spatulate (22.4%), spatulate-underdeveloped (2.6%) and
undifferentiated (0.9%). Fourteen of the families have linear-full
as well as other kinds of embryos (31 records). In these 14 fam-
ilies, linear-full occurs with bent (9.7%), investing (16.1%), linear-
underdeveloped (9.7%), spatulate (38.7%), spatulate-underdeveloped
(3.2%) and undifferentiated (3.2%) embryos. In three families
(Lecythidaceae, Ranunculaceae and Rutaceae), linear-full

Table 2. Mean (mm ± s.d.) and range of cotyledon (C) width:radicle (R) width
ratios calculated from measurements made on drawings of embryos in
Martin’s (1946) paper.

Mean Range

Martin’s Caryophyllales (peripheral)

Aizoaceae (n = 6) 1.30 ± 0.15 1.1 to 1.5

Amaranthaceae (n = 6) 1.37 ± 0.13 1.2 to 1.5

Cactaceae (n = 12) 1.02 ± 0.06 1.0 to 1.2

Caryophyllaceae (n = 19) 1.49 ± 0.33 1.0 to 2.0

Chenopodiaceae (n = 18) 1.34 ± 0.44 1.0 to 2.7

Frankeniaceae (n = 1) 1.0 0

Nyctaginaceae (n = 5) 1.82 ± 0.22 1.5 to 2.0

Phytolaccaceae (n = 4) 1.23 ± 0.31 1.0 to 1.75

Polygonaceae (n = 13) 2.56 ± 1.25 1.0 to 4.7

Portulacaceae (n = 8) 1.16 ± 0.13 1.0 to 1.4

Other embryo types from Martin’s work

Bent (n = 36) 3.69 ± 1.42 1.5 to 6.5

Folded (n = 32) 4.25 ± 2.31 1.0 to 7.75

Investing (n = 23) 6.11 ± 2.11 3.0 to 11.5

Linear-full (n = 35) 1.06 ± 0.13 1.0 to 1.5

Spatulate (n = 53) 2.98 ± 1.04 1.25 to 6.0
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occurred with folded, investing and spatulate, and in the
Myrtaceae it occurred with bent, folded, investing and spatulate.
In the Rubiaceae, the linear-full embryo occurred with folded,
investing, spatulate and spatulate-underdeveloped embryos.
Thus, in the 14 families with linear-full as well as other kinds of
embryos, there is clearly a strong association between the linear-full
and spatulate embryos. Also, we ask what families have seeds with
a linear-full embryo and perisperm? This combination of seed
characters occurs only in seven monocot families (Asparagaceae,
Araceae, Cannaceae, Marantaceae, Strelitziaceae, Tecophilaceae
and Zingiberaceae) and three eudicot orders: Proteales
(Proteaceae), Gentianales (Rubiaceae) and Caryophyllales (26
families; Table 1) for a total of 35 families. Thus, the combination
of a linear-full embryo and perisperm is most common in the core
families of the Caryophyllales.

Seeds of the core Caryophyllales with perisperm also
have a linear-full (peripheral) embryo, except those of
Rhabdodendraceae, which have scant perisperm, scant endosperm
and an investing embryo (Table 1). In the non-core families, spatu-
late embryos and endosperm are the most common kind, but
linear-full and endosperm are found in the Nepanthaceae,
Frankeniaceae and Polygonaceae. Seeds of Tamaricaceae have
seeds with spatulate embryos, scant perisperm and thin endosperm.
Thus, seeds of the Caryophyllales may have endosperm and/or
perisperm, and the embryo varies from linear-full to spatulate to
investing.

The order Caryophyllales is very old. According to Magallón
et al. (2015), the median time of divergence of Berberidopsidales
and Caryophyllales was 117.9 Ma, and the core and non-core
Caryophyllales diverged 107.1 Ma. Within the non-core
Caryophyllales, the clade that includes Frankeniaceae,
Plumbaginaceae, Polygonaceae and Tamaricaceae diverged from
the one that includes Ancistrocladaceae, Dioncophyllaceae,
Droseraceae, Drosophyllaceae and Nepenthaceae 99.3 Ma.
Within the core Caryophyllales, Rhabdodendraceae diverged
108.9 Ma and Asteropeiaceae/Physenaceae 96.2 Ma. Among the
core Caryophyllales, the clade consisting of Achatocarpaceae,
Amaranthaceae and Caryophyllaceae diverged 89.5 Ma; the
clade consisting of Aizoaceae, Barbeuiaceae, Gisekiaceae,
Lophiocarpaceae, Nyctaginaceae, Phytolaccaceae and Sarcobataceae
79.6 Ma; and the one consisting of Basellaceae, Cactaceae,
Didieraceae, Halophytaceae, Montiaceae, Portulacaceae and
Talinaceae 42.8 Ma (Magallón et al., 2015). Thus, the non-core
families with endosperm and various kinds of embryos, including
spatulate, investing and linear-full, and endosperm diverged
from the other Caryophyllales 107.1 Ma, while the core families
with peripheral embryos and perisperm did not diverge from
the Asteropeiaceae with spiralled linear embryos and endosperm
until 96.2 Ma. From 89.5 Ma, when Achatocarpaceae,
Amaranthaceae and Caryophyllaceae diverged from the other
Caryophyllales to 28.8 Ma, when Cactaceae and Portulacaceae
diverged, 20 families of core Caryophyllales become distinct,
and all have peripheral embryos and perisperm.

What we can surmise from this information about the age of
divergence of Caryophyllales families is that those with peripheral
embryos and perisperm are younger than those with endosperm
and linear-full, spatulate or investing embryos. As the peripheral
embryo is a linear-full embryo that is pushed to the side of the
seed by the developing perisperm (Mohana Rao et al., 1988),
we propose that the basal stock for the peripheral embryo had a
linear-full embryo and endosperm. In seeds with a peripheral
embryo, perisperm became the primary food-storage tissue, but

the linear-full embryo is still present. Concomitantly with produc-
tion of copious perisperm, it is conceivable that bending and bul-
ging of the ovule may have occurred, i.e. formation of
campylotropous and/or amphitropous ovules. According to
Bouman (1984), the long embryo in campylotropous ovules is a
derived character, and the resulting seedling is large and highly
developed when it emerges from the seed and thus has an
increased possibility of survival. Following this line of thinking,
it is worth noting that some species of Amaranthaceae (subfam-
ilies Chenopodioideae and Salicornioidea) with long coiled
embryos have very fast germination, i.e. seeds imbibe and ger-
minate in <24 hours (Parsons, 2012; Liu et al., 2013; Parsons
et al., 2014). Nineteen of the 28 angiosperms reported to
have very fast germination belong to the Caryophyllales, and
12 of them are in the Amaranthaceae. We suggest that the
advantage gained by having seeds with highly developed
embryos (some of which also had very fast germination) may
have played a role in the high diversification of the core
Caryophyllales and even in occupying extreme habitats such
as saline areas and deserts.

For (an) unknown reason(s), perisperm is scattered through-
out the extant angiosperms: Nymphalales, Magnoliids, monocots,
Fabids, Malvids, Superasterids and Lamiids (Fig. 2), which sug-
gests that it has become the main food-storage tissue in seeds at
different times in various lineages. If perisperm developed in
ancestral stock with linear-full embryos and endosperm, it
might help explain the presence of endosperm around the radicle
in various core families today. The presence of perisperm vs
endosperm in seeds is of interest to theoretical ecologists who
argue that 2n perisperm (2 maternal:0 paternal) gives the mater-
nal parent complete control over resource distribution to the
developing seeds. However, 3n endosperm (2 maternal:1 pater-
nal) gives the paternal parent some control over resource alloca-
tion to the developing seeds (Westoby and Rice, 1982; Queller,
1983; Haig and Westoby, 1989; Pires, 2014; Povilus et al.,
2018). We do not know what, if any, role a shift from endosperm
to perisperm played in the evolution of the Caryophyllales.
Nonetheless, after divergence of the lineage with perisperm
much diversification occurred, as evidenced by the 25 families
known today in the core Caryophyllales that have linear-full
embryos and perisperm.

The embryo in the core Caryophyllales with perisperm is long,
and both the cotyledons and radicle are narrow, resulting in a low
C:R ratio. Interestingly, this embryo is very similar to the curved
linear-full embryo in seeds of many species of Solanaceae that
have endosperm (Martin, 1946). The fact that the peripheral
embryo is pushed to the side of the seed by the developing peri-
sperm seems to have diverted attention away from the fact that it
is a linear-full embryo. According to Martin (1946), the foliate
embryo division (i.e. spatulate, bent, folded and investing) was
derived from ‘…erect or nearly straight-embryoed Linear
Dicots…’. Thus, we conclude that the peripheral embryo is unique
and that it deserves recognition, i.e. a position on Martin’s tree. The
evidence we have collected reveals that the peripheral embryo is a
curved linear-full embryo and as such should be placed on
Martin’s tree near his linear embryo. We propose that the periph-
eral embryo be depicted as a side branch (‘orphan’) from the right
branch of Martin’s tree and that it be located above the linear
embryo and below the spatulate embryo (Fig. 1). Martin’s periph-
eral embryo in the Frankeniaceae and Polygonaceae, both of which
have endosperm, are best represented by his linear and/or spatulate
embryos that are already on the tree.
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Tribute

Martin’s insight into the relationships between the kinds of
embryos in seeds came from his analysis of morphological traits
across many plant families and of many taxa in some of the fam-
ilies. To his great credit, Martin recognized that the families with
peripheral embryos had a unique combination of characters, and
thus he raised concerns about this kind of embryo. In light of all
the seed- and phylogeny-related research conducted since 1946,
the uniqueness of the families with peripheral embryos still
holds today, i.e. a ‘phylogenetic orphan’. What we can add to
Martin’s puzzle about the peripheral embryo is that it is related
to the linear-full embryo. However, without Martin’s original con-
cern about the peripheral embryo we might never have given this
unique kind of embryo/seed the attention it deserves.
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