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When a liquid fills the semi-infinite space between two concentric cylinders which
rotate at different steady speeds, how about the shape of the free surface on top of
the fluid? The different fluids will lead to a different shape. For the Newtonian fluid,
the meniscus descends due to the centrifugal forces. However, for the certain
non-Newtonian fluid, the meniscus climbs the internal cylinder. We want to explain
the above phenomenon by a rigorous mathematical analysis theory. In the present
paper, as the first step, we focus on the Newtonian fluid. This is a steady free
boundary problem. We aim to establish the well-posedness of this problem.
Furthermore, we prove the convergence of the formal perturbation series obtained by
Joseph and Fosdick in Arch. Ration. Mech. Anal. 49 (1973), 321–380.

Keywords: Free boundary problem; Newtonian fluid; Well-posedness; Asymptotic
expansion
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1. Introduction

We start from Joseph and Fosdick’s paper [11, 12], which studied a very interesting
physical phenomenon for the non-Newtonian fluid, climbing effect or Weissenberg
effect. When one considers a fluid in a vessel rotates as a rigid body, as mentioned
in [11, 12], § 1, it is well known that the free surface of the fluid is shaped by a
balance of forces arising from centripetal accelerations, gravity and surface tension.
In the absence of relative internal motion, the configuration of such a surface is
independent of how the fluid responds to stresses, in particular the free surface of a
fluid without surface tension has a paraboloidal shape. However, when the fluid is
in internal motion, the situation is different, there will be a stress field which also
affects the shape of the free surface. Thus, the shape which a surface assumes in
the presence of relative internal motion is sensitive to the manner in which different
liquids respond. In [11, 12], the authors considered a most simple situation, that is
the shape of the free surface of a liquid filling the semi-infinite space between two
concentric cylinders which rotate at different steady speeds. Specifically, we consider
a cylindrical container is filled with liquid, and a cylindrical rod is immersed in a
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Figure 1. Newtonian.

container with its axis parallel to that of liquid. Next, the rod is rotated and kept at
a constant angular velocity. Now the response of the free surface of a liquid to the
rotation of the rod is dramatically different depending on the physical characteristic
of a liquid. It will reach an equilibrium configuration which for a Newtonian liquid,
like water, will move to the edges of the container, away from the rod, see figure 1,
which comes from figure 4(a) on page 194 of [5], while for certain non-Newtonian
liquids, like a concentrated polymer melt or solution, the equilibrium surface will
climb the rod, see figure 2, which comes from figure 4(b) on page 194 of [5]. This
effect is due to the normal stresses that the shear induces in the polymeric fluid: the
shear stretches and orients the polymers. The difference in the normal components
of the stress tensor that this anisotropy induces is such that the fluid is pulled
inwards and climbs the rod, see [4].

In [11, 12], Joseph and Fosdick developed a systematic construction in series
for the shape of the free surface for the Newtonian fluid and non-Newtonian fluid.
By analysing the main term of the perturbation series, one can explain the above
climbing effect. However, Joseph and Fosdick’s analysis is formal, we don’t know
if the formal perturbation series is convergent. This fact prompts us to seek a
rigorous mathematical theory to explain the climbing effect. It is noticing that
the non-Newtonian fluid model is relatively complicated, at the first stage, in the
present paper we focus on the Newtonian fluid, which was considered by Joseph and
Fosdick in [12], chapter I. By the domain perturbation method, they determined
the shape of the free surface and give a formal series expansion of the solution. We
aim to give a rigorous mathematical proof of convergence of the perturbation series
in [12], § 4 (the difference is that we consider the case with the surface tension). To
this end, we first give a mathematical description of the problem.
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Figure 2. Non-Newtonian.

1.1. Formulation

We are concerned with a problem given by Joseph and Fosdick [12], § 4. It is
stated as follows, see figure 3, which comes from figure 1 on page 326 of [12]:
an incompressible Newtonian fluid initially occupies the space between two fixed
concentric cylinders (a � r � b) and below the free surface. The inner and outer
cylinders are then made to rotate about their common axis with angular velocities
Ω and λΩ. The free surface of the rotating fluid cannot retain its static shape and
its final steady shape z = h(r, θ; Ω) is determined by a complex balance of central
forces, normal stresses, surface tension and gravity, where (r, θ, z) stands for polar
cylindrical coordinates. The problem is to seek a mathematical description of the
shape of the free surface and of the fluid mechanics which determine this shape.

From the above statement on the problem, we have that the problem should
satisfy the following system.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇P + div S(v) = v · ∇v, in VΩ,

div v = 0, in VΩ,

v · N = N · S(v) · eθ = N · S(v) · T = 0, at Σ = {(r, θ, z) : z = h(r, θ; Ω)},
N · (−(P − pa)I + S(u)) · N

= −gh +
σ

r

(
rh′

√
1 + h′2

)′
, on Σ = {(r, θ, z) : z = h(r, θ; Ω)},

h′(a; Ω) = γa, h′(b; Ω) = γb,

v = aΩ eθ on Σa = {(a, θ, z) : z < h(a, θ; Ω)},
v = λb Ω eθ on Σb = {(b, θ, z) : z < h(b, θ; Ω)},

(1.1)

https://doi.org/10.1017/prm.2021.55 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.55


1254 J. Yang

Figure 3. The free surface between rotating cylinders.

where v is the velocity field of the fluid, P is the pressure, pa stands for the atmo-
spheric pressure, S(v) = ∇v + (∇v)� is the symmetric gradient of v, σ > 0 is the
coefficient of surface tension, N is the outward-pointing unit normal of Σ, and
T is the associated unit tangent. γa and γb are two constants, which determine
the wetting angles. Throughout the whole paper, for convenience, we assume that
γa = γb = 0.

It will be assumed throughout that the problem is axisymmetric so that v and h
are independent of θ.

If we set

v(r, z) = vr(r, z)er + vθ(r, z)eθ + vz(r, z)ez, (1.2)

where

er = (cos θ, sin θ, 0)�, eθ = (− sin θ, cos θ, 0)�, ez = (0, 0, 1)�, (1.3)

then, we can write the above system as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂rP +

(
∂rr +

∂r

r
+ ∂zz − 1

r2

)
vr = (vr∂r + vz∂z)vr −

v2
θ

r
in V0

Ω,(
∂rr +

∂r

r
+ ∂zz − 1

r2

)
vθ = (vr∂r + vz∂z)vθ +

vrvθ

r
in V0

Ω,

−∂zP +

(
∂rr +

∂r

r
+ ∂zz

)
vz = (vr∂r + vz∂z)vz in V0

Ω,

∂rvr +
vr

r
+ ∂zvz = 0 in V0

Ω,

vz − h′vr = ∂zvθ − h′∂rvθ = 2h′(∂zvz − ∂rvr)

+ (1 − h′2)(∂rvz + ∂zvr) = 0 on Σ0,

−(P − pa) + 2∂zvz − h′(∂rvz + ∂zvr) = −gh +
σ

r

(
rh′

√
1 + h′2

)′
on Σ0,

h′(a; Ω) = h′(b; Ω) = 0,

v = a Ω eθ on Σ0
a,

v = λb Ω eθ on Σ0
b ,

(1.4)
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where
V0

Ω = {(r, z) : a < r < b, z < h(r; Ω)},

Σ0 = {(r, z) : z = h(r; Ω)},

Σ0
a = {(a, z) : z < h(a)},

Σ0
b = {(b, z) : z < h(b)}.

(1.5)

Furthermore, we set

∇̄ = (∂r, ∂z), Δ̄ = ∂2
r + ∂2

z , div = (∂r, ∂z)(·),

and

v̄ = (vr, vz)�, S̄(v) =
(

2∂rvr ∂zvr + ∂zvr

∂zvr + ∂zvr 2∂zvz

)
,

then the system (1.4) can be rewritten as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̄ · ∇̄v̄ − ∇̄P + Δ̄v̄ +
1
r
∂rv̄ −

(vr

r2
, 0
)�

= −
(

v2
θ

r
, 0
)�

in V0
Ω,

Δ̄vθ +
1
r
∂rvθ −

vθ

r2
= v̄ · ∇̄vθ +

vrvθ

r
in V0

Ω,

div v̄ +
vr

r
= 0 in V0

Ω,

v̄ · N̄ = N̄ · ∇̄vθ = N̄ · S̄(v) · T̄ = 0 on Σ0,

N̄ · (−(P − pa)Ī + S̄(v)) · N̄ = −gh +
σ

r

(
rh′

√
1 + h′2

)′
on Σ0,

h′(a; Ω) = h′(b; Ω) = 0,
v = aΩ eθ on Σ0

a,

v = λb Ω eθ on Σ0
b .

(1.6)

where N̄ is the outward-pointing unit normal of Σ0, T̄ is the associated unit tangent.
We will solve the above equations as perturbations of a known static configuration

(Ω = 0).
When Ω = 0, we know that (v = 0, P = pa, h = 0) solve the system (1.4). Now,

we define

V0
0 = {(r, z) : a < r < b, z < 0}, (1.7)

Σ0
0 = {(r, z) : a < r < b, z = 0}. (1.8)

and the mapping

V0
0 ∈ (r, z) �→ (r, z + h̃(r, z; Ω)) := Φ(r, z) ∈ V0

Ω, (1.9)

where h̃(r, z; Ω) is an extension of h such that h̃(r, 0;Ω) = h(r), and set

A := (∇r,zΦ−1)� =
(

1 −∂rh̃(1 + ∂zh̃)−1

0 (1 + ∂zh̃)−1

)
, (1.10)
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and

w = v ◦ Φ, p = P ◦ Φ. (1.11)

Then the above problem can be transformed to one on the fixed domain V0
0 . In the

new coordinates, the system (1.6) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄Ap + Δ̄Aw̄ +
1
r
(∇̄Aw̄)r −

(wr

r2
, 0
)�

= w̄ · ∇̄Aw̄ −
(

w2
θ

r
, 0
)�

in V0
0 ,

Δ̄Awθ +
1
r
(∇̄Awθ)r −

wθ

r2
= w̄ · ∇̄Awθ +

wrwθ

r
in V0

0 ,

divAw̄ +
wr

r
= 0 in V0

0 ,

w̄ · N̄ = N̄ · ∇̄Awθ = N̄ · S̄A(w) · T̄ = 0 on Σ0
0,

N̄ · (pĪ + S̄A(w)) · N̄ = −gh +
σ

r

(
rh′

√
1 + h′2

)′
on Σ0

0,

h′(a; Ω) = h′(b; Ω) = 0,

w = eθ Ω a on Σ0
a,0,

w = eθ λΩ b on Σ0
b,0.

(1.12)
Here, for appropriate f and X, we write

(∇̄Af)i := Aij ∂̄jf, divAX = Aij ∂̄jX, ΔAf = divA∇̄Af, (1.13)

where

∂̄1 := ∂r, ∂̄2 := ∂z, (1.14)

and

(u · ∇̄Au)i := ujAjk∂̄kui, (1.15)

and

N̄ :=
(

−h′
√

1 + h′2 ,
1√

1 + h′2

)�
. (1.16)

1.2. Formal asymptotic expansion

In [12], based on the domain perturbation method, Joseph and Fosdick obtained
the formal perturbation series of problem (1.1).

Define

(·)[n] =
dn(·)
dΩn

∣∣∣
Ω=0

, (1.17)

where

d(·)
dΩ

=
∂(·)
∂Ω

+
dΦ
dΩ

· ∇(·), (1.18)
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and

(·){n} =
∂n(·)
∂Ωn

|Ω=0 . (1.19)

Formally, we have ⎛⎝v ◦ Φ
P ◦ Φ

h

⎞⎠ =
∞∑

n=0

1
n!

⎛⎝v[n]

P [n]

h[n]

⎞⎠Ωn. (1.20)

At zeroth order, i.e., Ω = 0, note that γa = γb = 0, it is easy to get

v[0] = h[0] = 0, P [0] = pa. (1.21)

At first order problem, which is obtained by differentiating (1.1) with respect to Ω,
i.e., ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(v · ∇v){1} = −∇P {1} + Δv{1} in V0
0 ,

div v{1} = 0 in V0
0 ,

v{1} = a eθ on Σ0
0,

v{1} = λ b eθ on Σ0
0.

(1.22)

Noticing that

0 = (v · ∇v){1} = 0, (1.23)

we have that

v{1} =
(

Ar +
B

r

)
eθ, P {1} = constant (1.24)

is the solution of (1.22), where

A =
b2λ − a2

b2 − a2
, B =

a2b2(1 − λ)
b2 − a2

. (1.25)

Now, we have

v[1] = v{1} =
(

Ar +
B

r

)
eθ, P [1] = P {1} = constant. (1.26)

Next, it follows from the condition

− P {1} + S[1]
zz − (h′Srz)[1] + gh[1] = −P [1] + gh[1] =

σ

r

[(
rh′

√
1 + h′2

)′][1]

=
σ

r

[(
r(h[1])′

)′]
, (1.27)

that

h[1] = 0, P [1] = 0. (1.28)
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At second order, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(v · ∇v){2} = −2
(
Ar + B

r

)2
er/r = −∇P {2} + Δv{2} in V0

0 ,

div v{2} = 0 in V0
0 ,

v{2} = 0 on Σ0
0,

v{2} = 0 on Σ0
0.

(1.29)

and

v{2}
z = S

{2}
zθ = S

{2}
rz = 0 at z = 0, (1.30)

and

− P {2} + S{2}
zz + gh[2] =

σ

r

[(
r(h[2])′

)′]
at z = 0 (1.31)

The solution of the above problem is

v[2] = v{2} = 0, P [2] = P {2} = A2r2 + 4AB log
r

b
− B2

r2
+ C1, (1.32)

and h[2] is determined by

− P [2] + gh[2] =
σ

r

[(
r(h[2])′

)′]
(1.33)

with

(h[2])′(a) = (h[2])′(b) = 0, (1.34)

where C1 is fixed by ∫ b

a

rh[2] = 0. (1.35)

Hence, formally, we have

v ◦ (Φ(r, z)) = v[1] Ω + O(Ω3),

P ◦ (Φ(r, z)) = pa +
1
2
P [2] Ω2 + O(Ω3),

h(r) =
1
2
h[2] Ω2 + O(Ω3).

(1.36)

We want to give a rigorous proof of the above formal asymptotic expansion. To
this end, we set

u = w − v[1]Ω.

Note that

Δ̄A−Īv
[1]
θ = −1

r
(∇̄A−Īv

[1]
θ )r = 0, and N̄ · ∇A−Īv

[1]
θ = 0, (1.37)
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and

∇̄AP [2] = ∇̄P [2]. (1.38)

By

∇̄P [2] = −2(v[1]
θ )2er/r, (1.39)

and

− P [2] + gh[2] =
σ

r

[(
r(h[2])′

)′]
, (1.40)

we can get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄A(p − pa − Ω2

2
P [2]) + Δ̄Aū +

1
r
(∇̄Aū)r − (

ur

r2
, 0)�

= ū · ∇̄Aū − (uθ + v
[1]
θ Ω)2 − (v[1]

θ Ω)2

r
in V0

0 ,

Δ̄Auθ +
1
r
(∇̄Auθ)r −

uθ

r2
= ū · ∇̄A(uθ + v

[1]
θ Ω) +

ur(uθ + v
[1]
θ Ω)

r
in V0

0 ,

divAū +
ur

r
= 0, in V0

0 ,

N̄ · ∇̄Auθ = Ω(N̄ − N̄ ) · ∇v
[1]
θ on Σ0

0,

ū · N̄ = N̄ · S̄A(u) · T̄ = 0 on Σ0
0,

N̄ ·
((

p − pa − Ω2

2
P [2]

)
Ī + S̄A(u)

)
· N̄

= −g

(
h − Ω2

2
h[2]

)
+

σ

r

(
r

(
h − Ω2

2
h[2]

)′
+ R(0, h′)

)′
on Σ0

0,

u = 0 on Σ0
a,0,

u = 0 on Σ0
b,0.

(1.41)

Finally, set M = J−1∇Φ = (JA�)−1 with J = detA, and

Ur = M11ūr + M12ūz, Uz = M21ūr + M22ūz, Uθ = uθ,

Q = q − pa − Ω2

2
P [2], H = h − Ω2

2
h[2],

(1.42)
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then the above system can be rewritten as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄AQ + Δ̄A(M−1Ū) +
1
r
(∇̄A(M−1Ū))r −

(
(M−1U)r

r2
, 0
)�

= M−1Ū · ∇̄A(M−1Ū) − Uθ(Uθ + 2v
[1]
θ Ω)

r
in V0

0 ,

Δ̄AUθ +
1
r
(∇̄A)rUθ −

Uθ

r2
= Ū · ∇̄A(Uθ + v[1]Ω) +

Ur(Uθ + v[1]Ω)
r

in V0
0 ,

div Ū +
Ur

r
= 0, in V0

0 ,

Ū · N̄ = 0 on Σ0
0,

N̄ · ∇̄AUθ = 0, on Σ0
0,

N̄ · S̄A(M−1U) · T̄ = 0 on Σ0
0,

N̄ · (QĪ + S̄A(M−1U)) · N̄ = −gH

+
σ

r

(
rH ′ + R

(
0,

(
H +

Ω2

2
h[2]

)′))′
on Σ0

0,

U = 0 on Σ0
a,0,

U = 0 on Σ0
b,0,

(1.43)

1.3. Main results

We will prove the following theorem.

Theorem 1.1. Let δk ∈ (k + δω, k + 1) with ω = π
2 , where δω = max{0, 2 − π/ω} ∈

[0, 1). There exists a universal smallness parameter ε > 0 such that if

Ω � ε, (1.44)

then there exists a unique solution (U,Q,H) ∈ W k+2
δk

(V0
0 ) × W k+1

δk
(V0

0 ) × W
k+ 5

2
δk

to
(1.43), and

‖U‖2
W k+2

δk

+ ‖Q‖2
W̊ k+1

δk

+ ‖H‖2

W
k+ 5

2
δk

� C(k, a, b, λ, σ)Ω2, (1.45)

where the spaces W k
δ are defined by (2.3), and C(k, a, b, λ, σ) is a constant depending

on k, a, b, λ, σ. Hence, we have

‖U‖W k+2
δk

� C(k, a, b, λ, σ)Ω3,

‖Q‖W̊ k+1
δk

� C(k, a, b, λ, σ)Ω3,

‖H‖
W

k+ 5
2

δk

� C(k, a, b, λ, σ)Ω3.

(1.46)
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which implies that

‖v ◦ (Φ(r, z)) − v[1] Ω‖W k+2
δk

� C(k, a, b, λ, σ)Ω3,

‖p − pa − P [2] Ω2/2‖W̊ k+1
δk

� C(k, a, b, λ, σ)Ω3,

‖h(r) − h[2] Ω2/2‖
W

k+ 5
2

δk

� C(k, a, b, λ, σ)Ω3.

(1.47)

Remark 1.2. Throughout the whole paper, for convenience, we assume that γa =
γb = 0, so the contact angle is π

2 . However, our method is still valid when the contact
angle is not π

2 .

Remark 1.3. For our case, that is the contact angle is π
2 , by remark 2.1, following

the proof of § 3, it is possible to obtain the following result. There exists a universal
smallness parameter ε > 0 such that if

Ω � ε, (1.48)

then there exists a unique solution (U,Q,H) ∈ W 2,q × W 1,q × W 3−1/q,q to (1.43),
and

‖U‖2
W 2,q + ‖Q‖2

W 1,q + ‖H‖2
W 3−1/q � C Ω2, (1.49)

where W k,q is the usual Sobolev spaces, C is a generic constant. Hence, we have

‖U‖W 2,q � CΩ3,

‖Q‖W 1,q � CΩ3,

‖H‖W 3−1/q,q � CΩ3,

(1.50)

which implies that

‖v ◦ (Φ(r, z)) − v[1] Ω‖W 2,q � CΩ3,

‖p − pa − P [2] Ω2/2‖W 1,q � CΩ3,

‖h(r) − h[2] Ω2/2‖W 3−1/q,q � CΩ3.

(1.51)

1.4. Some results on the free boundary problem

The free boundary problem is a very important problem in fluid mechanics.
For the free boundary problem of the incompressible Navier-Stokes equations,
i.e., the viscous surface wave problem, the reader can refer to [1–3] or [6–8]
for the local/global well-posedness and large time behaviour of this problem.
When one neglects the viscosity, the problem is the famous water wave prob-
lem, the reader can refer to [17, 18] for local well-posedness, [19, 20] for global
well-posedness.

Our problem is a steady free boundary problem with contact points, i.e., we
consider the stationary Navier-Stokes system with free, but unmoving boundary
with contact points. Concerning this respect, Solonnikov [15] (see also [16]) proved
the unique solvability of several 2D free surface problems describing a viscous flow
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with contact angle fixed at π. Jin [10] considered the stationary free boundary flow
of a bounded 3D domain with angle π/2 of viscous incompressible fluid. Socolowsky

[14] dealt with 2D coating problems with fixed contact angles.

1.5. Strategy of the proof

Compared with the original free boundary problem (1.1), we have reduced it
to the fixed domain problem (1.43). However, since H needs to be determined,
A, N and T are unknown, at the first step, we should fix these quantities. This
fact motivates us to apply successive approximations to solve the problem. We first
assume H is fixed, and study the following A-Stokes system on the triple (U,Q,H)�:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄AQ + Δ̄A(M−1Ū) +
1
r
(∇̄A(M−1Ū))r

−
(

(M−1U)r

r2
, 0
)�

= (G1
r, G

1
z) in V0

0 ,

Δ̄AUθ +
1
r
(∇̄A)rUθ −

Uθ

r2
= G1

θ in V0
0 ,

div Ū +
Ur

r
= 0 in V0

0 ,

Ū · N̄ = 0 on Σ0
0,

N̄ · ∇̄AUθ = G2 on Σ0
0,

N̄ · S̄A(M−1Ū) · T̄ = G3 on Σ0
0,

N̄ · SA(M−1Ū) · N̄ = −gH +
σ

r

(
H ′ + G4

)′ + G5 on Σ0
0,

U = 0 on Σ0
a,0,

U = 0 on Σ0
b,0,

where M = J−1∇Φ = (JA�)−1 with J = detA.
Next, we start to a triple (U (0), Q(0),H(0)) to fix A, N , T and nonlinear terms

in (1.43), and get a triple (U (1), Q(1),H(1)) by solving the above linear system.
Repeating this procedure, we can construct a sequence (U (k), Q(k),H(k)). Finally,
by taking an appropriate limit procedure, we can obtain a triple (U,Q,H) to solve
the system (1.43). To obtain a limit, we must obtain higher-order elliptic estimates.
However, we know the domain is piecewise C2 but only Lipschitz because of the
corners formed at the contact point. Hence, we can not use the usual elliptic regu-
larity theory. To overcome this difficulty, we will use the weighted elliptic regularity
theory to replace the standard elliptic regularity theory, which can avoid singularity
at the point of the contact points and have used by [9] to study the stability of
contact lines in fluids.

From the above analysis, we organize our paper as follows. In § 2, we focus on
the A-Stokes system, and establish the weighted elliptic estimates. In § 3, we will
prove theorem 1.1.
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2. Estimates for the stokes problem

We first consider the following Stokes system in V0
0 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄Q + Δ̄Ū +
1
r
∂rŪ −

(
Ur

r2
, 0
)�

= (G1
r, G

1
z)

� in V0
0 ,

Δ̄Uθ +
1
r
∂rUθ −

Uθ

r2
= G1

θ in V̄Ω,

div Ū +
Ur

r
= 0 in V0

0 ,

Ū · N̄ = 0 on Σ0
0

N̄ · ∇̄Uθ = G2 on Σ0
0

N̄ · S̄(U) · T̄ = G3 on Σ0
0,

U = 0 on Σ0
a,0,

U = 0 on Σ0
b,0.

(2.1)

To this end, we introduce the spaces W k
δ (V0

0 ), W
k− 1

2
δ (∂V0

0 ), W̊ k
δ (V0

0 ), which have
been defined by [9]. Let

M = {(a, 0), (b, 0)} (2.2)

for the pair of the corner points of V0
0 . For 0 < δ < 1 and k ∈ N, let W k

δ denote the
space of functions such that ‖f‖2

W k
δ

< ∞, where

‖f‖2
W k

δ
=
∑
|α|�k

∫
V0

0

dist(x,M)2δ|∂αf(x)|2 dx. (2.3)

The spaces W
k− 1

2
δ (∂V0

0 ) are defined as the trace spaces. We also define

W̊ k
δ = {U ∈ W k

δ (V0
0 ) :

∫
V0

0

U = 0}, (2.4)

for k � 1. We will establish the estimates of the system in the space Xk
δ for 0 <

δ < 1. It is defined as follows:

(G1, G2, G3) ∈ W k
δ (V0

0 ) × W
k+ 1

2
δ (Σ0

0) × W
k+ 1

2
δ (Σ0

0). (2.5)

The weak solutions of (2.1) are defined as follows.

Definition 2.1. Assume that (G1, G2, G3) ∈ X0
δ0

for some 0 < δ0 < 1. We say that
a pair (U, q) ∈ H1(V0

0 ) × H0(V0
0 ) such that div(Ur, Uz)� + Ur

r = 0, U · N̄ = 0 on Σ0
0,
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and ∫
V0

0

r

[
∇̄Ur · ∇̄wr + ∇̄Uθ · ∇̄wθ + ∇̄Uz · ∇̄wz +

Urwr

r
+

Uθwθ

r

]
− q
(
div(wr, wz)� +

wr

r

)
=
∫
V0

0

rG1 · w +
∫

Σ0
0

rG2wθ +
∫

Σ0
0

rG3(w · T̄ ) (2.6)

for all w ∈ {w ∈ H1(V0
0 ) : w · N̄ = 0 on Σ0

0, and w = 0, on Σa,0 and Σb,0} is a weak
solution to (2.1). Here, H1(V0

0 ) stands for the usual Sobolev space, and we denote
H0(V0

0 ) = L2(V0
0 ), and H̊0(V0

0 ) = {U ∈ H0(V0
0 ) :

∫
V0

0
U = 0}.

Using the Riesz representation theorem, by a similar argument to theorem 5.4 of
[9], we can obtain the following existence theorem of weak solutions.

Theorem 2.2. Let (G1, G2, G3) ∈ X0
δ0

for some 0 < δ0 < 1. Then there exists a
unique pair (U,Q) ∈ H1(V0

0 ) × H̊0(V0
0 ) that is a weak solution to (2.1). Moreover,

‖U‖2
H1 + ‖Q‖2

H̊0 � C(a, b)

(
‖G1‖2

W 0
δ0

+ ‖G2‖2

W
1
2

δ0

+ ‖G3‖2

W
1
2

δ0

)
. (2.7)

Now, we focus on the k-order regularity of the system (2.1). We have the following
result.

Theorem 2.3. Let ω ∈ (0, π) be the angle formed by Σ0
0 at the corners of V0

0 ,
δω = max{0, 2 − π/ω} ∈ [0, 1), and δk ∈ (k + δω, k + 1). Let (G1, G2, G3) ∈ Xk

δk
,

and (U, q) be the weak solution to (2.1). Then U ∈ W k+2
δk

(V0
0 ), Q ∈ W̊ k+1

δk
(V0

0 ), and

‖U‖2
W k+2

δk

+ ‖Q‖2
W̊ k+1

δk

� C(k, a, b)

(
‖G1‖2

W k
δk

+ ‖G2‖2

W
k+ 1

2
δk

+ ‖G3‖2

W
k+ 1

2
δk

)
. (2.8)

Proof. First, we set

Kω =
{
x ∈ R

2 : R > 0, Θ ∈ (−π/2,−π/2 + ω)
}

, (2.9)

and

Γ− = {x ∈ R
2 : R > 0, Θ = −π/2}, (2.10)

and

Γ+ = {x ∈ R
2 : R > 0, Θ = −π/2 + ω}, (2.11)
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where (R,Θ) are standard coordinates in R
2. Now, we consider the following two

problems: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄Q + Δ̄Ū +
1
r
∂rŪ −

(ur

r2
, 0
)�

= (G1
r, G

1
z)

�, in Kω,

div Ū +
Ur

r
= 0, in Kω,

Ū · N̄ = 0, on Γ+

N̄ · S̄(U) · T̄ = G2, on Γ+,

U = 0, on Γ−,

(2.12)

and ⎧⎪⎪⎨⎪⎪⎩
Δ̄uθ +

1
r
∂rUθ −

Uθ

r2
= G1

θ, in Kω,

N̄ · ∇̄Uθ = G3, on Σ+,

U = 0, on Σ−.

(2.13)

From theorem 5.2 of [9] or theorem 9.4.9 in [13] for the problem (2.12), and theorem
6.5.4 in [13] for the problem (2.13), we have

‖U‖2
W k+2

δk
(Kω)

+ ‖Q‖2
W̊ k+1

δk
(Kω)

� C(k, a, b)

(
‖G1‖2

W k
δk

+ ‖G2‖2

W
k+ 1

2
δk

+ ‖G3‖2

W
k+ 1

2
δk

)
.

(2.14)

Now, by means of the above estimates, we follow the arguments in [9] to obtain
the estimates near the corners by constructing a diffeomorphism to transform the
problem in V0

0 to Kω, and get the estimates away from the corners by using the
standard elliptic estimates. Finally, we can get the conclusion by collecting the
estimates near the corners and away from the corners. �

Next, we let H̄ ∈ W
k+ 5

2
δk

be given function with δk ∈ (0, 1), which in turn
determines A, N and T , and start to study the following A-Stokes system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄AQ + Δ̄A(M−1Ū) +
1
r
(∇̄A(M−1Ū))r

−
(

(M−1U)r

r2
, 0
)�

= (G1
r, G

1
z)

� in V0
0 ,

Δ̄AUθ +
1
r
(∇̄A)rUθ −

Uθ

r2
= G1

θ in V0
0 ,

div Ū +
Ur

r
= 0 in V0

0 ,

Ū · N̄ = 0 on Σ0
0,

N̄ · ∇̄AUθ = G2 on Σ0
0,

N̄ · S̄A(M−1Ū) · T̄ = G3 on Σ0
0,

N̄ · SA(M−1Ū) · N̄ = −gH +
σ

r

(
H ′ + G4

)′ + G5, on Σ0
0,

U = 0 on Σ0
a,0,

U = 0 on Σ0
b,0.

(2.15)
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The system (2.15) can be rewritten as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄Q + Δ̄Ū +
1
r
(∇̄Ū)r −

(
Ur

r2
, 0
)�

= (G̃1
r, G̃

1
z)

� in V0
0 ,

Δ̄Uθ +
1
r
∂rUθ −

Uθ

r2
= G̃1

θ in V0
0 ,

div Ū +
Ur

r
= 0 in V0

0 ,

Ū · N̄ = 0 on Σ0
0,

N̄ · ∇̄Uθ = G̃2 on Σ0
0,

N̄ · S̄(U) · T̄ = G̃3 on Σ0
0,

U = 0 on Σ0
a,0,

U = 0 on Σ0
b,0,

(2.16)

with

N̄ · SA(M−1Ū) · N̄ = −gH +
σ

r

(
H ′ + G4

)′
+ G5 on Σ0

0, (2.17)

where

(G̃1
r, G̃

1
z)

�(U, q)

= (G1
r, G

1
z)

� + ∇̄A−Īq − Δ̄((M−1 − I)Ū) − Δ̄A−Ī(M
−1Ū)

+
1
r
(∇̄A−Ī(M

−1Ū))r +
1
r
(∇̄((M−1 − I)Ū))r, (2.18)

and

G̃1
θ(U, q) = G1

θ − Δ̄A−ĪUθ +
1
r
(∇̄A−ĪUθ)r, (2.19)

and

G̃2(U, q) = G2 + −(N̄ − N̄) · ∇̄AUθ − N̄ · ∇̄A−ĪUθ, (2.20)

and

G̃3(U, q) = G3 + −(N̄ − N̄) · S̄A(M−1U) · T̄ − N̄ · S̄A−Ī(M
−1U) · T̄

+ N̄ · S̄(M−1U) · (T̄ − T̄ ) − N̄ · S̄((M−1 − I)U) · T̄ . (2.21)

Set

G̃(U,Q) = (G̃1(U, q), G̃2(U,Q), G̃3(U, q)), (2.22)

we can get that

‖G̃(U,Q)‖Xk
δk

� ‖(G1, G2, G3)‖Xk
δk

+ P

(
‖H̄‖

W
k+ 5

2
δk

)
(‖U‖W k+2

δk

+ ‖Q‖W̊ k+1
δk

),

(2.23)
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and

‖G̃(U1, Q1) − G̃(U2, Q2)‖Xk
δk

� P

(
‖H̄‖

W
k+ 5

2
δk

)
(‖U1 − U2‖W k+2

δk

+ ‖Q1 − Q2‖W̊ k+1
δk

), (2.24)

where P (·) is a polynomial with non-negative coefficients such that P (0) = 0.
According to these two estimates, if ‖H̄‖2

W
k+ 5

2
δk

is small enough, then by contraction

mapping principle and theorem 2.3, we can get that the system (2.16) is solvable,
and

‖U‖2
W k+2

δk

+ ‖Q‖2
W̊ k+1

δk

� C(k, a, b)

(
‖G1‖2

W k
δk

+ ‖G2‖2

W
k+ 1

2
δk

+ ‖G3‖2

W
k+ 1

2
δk

)
. (2.25)

Having obtained (U,H), by (2.17), we have

‖H‖2

W
k+ 5

2
δk

� C(k, a, b)

(
‖U‖2

W k+2
δk

+ ‖(G4)′‖2

W
k+ 1

2
δk

+ ‖G5‖2

W
k+ 1

2
δk

)
. (2.26)

Collecting (2.25) and (2.26), we have

Theorem 2.4. Set δω = max{0, 2 − π/ω} ∈ [0, 1), and δk ∈ (k + δω, k + 1). Let
(G1, G2, G3, G4, G5) ∈ Xk

δk
. If ‖H̄‖2

W
k+ 5

2
δk

is small enough, then problem (2.15) is

solvable. Moreover, we have

‖U‖2
W k+2

δk

+ ‖Q‖2
W̊ k+1

δk

+ ‖H‖2

W
k+ 5

2
δk

� C(k, a, b)
(
‖G1‖2

W k
δk

+ ‖G2‖2

W
k+ 1

2
δk

+ ‖G3‖2

W
k+ 1

2
δk

+ ‖(G4)′‖2

W
k+ 1

2
δk

+ ‖G5‖2

W
k+ 1

2
δk

)
. (2.27)

Remark 2.5. It follows from the argument of theorem 3.1 in [10], it is possible to
obtain the following result:

Set ω = π/2. Let q > 3 and (G1, G2, G3, G4, G5) ∈ Lq × W
1−1/q
q × W 1−1/q,q ×

W 1−1/q,q × W 1−1/q,q, where W k,q is the usual Sobolev spaces. If ‖H̄‖2
W 3−1/q,q is

small enough, then problem (2.15) is solvable. Moreover, we have

‖U‖2
W 2,q + ‖Q‖2

W 1,q + ‖H‖2
W 3−1/q,q

� C
(
‖G1‖2

Lq + ‖G2‖2
W 1−1/q,q + ‖G3‖2

W 1−1/q,q

+ ‖(G4)′‖2
W 1−1/q,q + ‖G5‖2

W 1−1/q,q

)
, (2.28)

where C is a generic constant.
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3. Proof of theorem 1.1

In this section, we focus on the proof of theorem 1.1. We solve the system (1.43)
by successive approximations.

Let (U (0), Q(0),H(0))� = (0, pa, 0)� and define (U (l+1), Q(l+1),H(l+1))� as the
solution to the following system.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄A(l)Q(l+1) + Δ̄Al((M (l))−1Ū (l+1)) +
1
r
(∇̄A(l)((M (l))−1Ū (l+1)))r

−
(

((M (l))−1U (l+1))r

r2
, 0
)�

= (M (l))−1Ū (l) · ∇̄A(l)((M (l))−1Ū l)

−U
(l)
θ (U (l)

θ + 2v
[1]
θ Ω)

r
in V0

0 ,

Δ̄A(l)U
(l+1)
θ +

1
r
(∇̄A(l))rU

(l+1)
θ − U

(l+1)
θ

r2

= Ū (l) · ∇̄A(l)(U (l)
θ + v

[1]
θ Ω) +

U
(l)
r (U (l)

θ + v
[1]
θ Ω)

r
in V0

0 ,

div Ū (l+1) +
U

(l+1)
r

r
= 0, in V0

0 ,

Ū (l+1) · N̄ (l) = 0, on Σ0
0,

N̄ (l) · ∇̄A(l)U
(l+1)
θ = Ω(N̄ − N̄ l) · ∇v

[1]
θ on Σ0

0,

N̄ (l) · S̄A(l)((M (l))−1U (l+1)) · T̄ (l+1) = 0 on Σ0
0,

N̄ (l) · (Q(l+1)Ī + S̄A(l)((M (l))−1U (l+1)) · N̄ (l)

= −gH(l+1) +
σ

r

(
r(H(l+1))′ + R(0, (H(l) +

Ω2

2
(h[2]))′)

)′
on Σ0

0,

U (l+1) = 0 on Σ0
a,0,

U (l+1) = 0 on Σ0
b,0.

(3.1)

Here

N̄ (l) =

(
−(h(l))′√
1 + (h(l))′2

,
1√

1 + (h(l))′2

)�
, (3.2)

and

A(l) :=

⎛⎜⎝ 1 −∂rh̃(l)(1 + ∂zh̃(l))−1

0 (1 + ∂zh̃l)−1

⎞⎟⎠ , (3.3)
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and M (l) = (J (l)(A(l))�)−1 with J (l) = detA(l), where

h(l) = H(l) +
Ω2

2
h[2]. (3.4)

By theorem 2.4 and the following embedding theorem (see [9]),

W 2
δ (V0

0 ) ↪→ W 2,q(V0
0 ) with 1 � q <

2
1 + δ

, (3.5)

we have

‖U (1)‖W k+2
δk

+ ‖Q(1)‖W̊ k+1
δk

+ ‖H(1)‖
W

k+ 5
2

δk

� C1(k, a, b, σ, λ)Ω3 (3.6)

Choose 0 < Ω < 1 be sufficiently small C1(k, a, b, σ, λ)Ω � 1. Then

‖U (1)‖W k+2
δk

+ ‖Q(1)‖W̊ k+1
δk

+ ‖H(1)‖
W

k+ 5
2

δk

� Ω2. (3.7)

Let Ω be sufficiently small such that ‖(M (1))−1‖L∞ � 1
4 , and ‖H(1)‖

W
k+ 5

2
δk

is small

enough, then by theorem 2.4 and (3.5) again, we can get that

‖U (2)‖W k+2
δk

+ ‖Q(2)‖W̊ k+1
δk

+ ‖H(2)‖
W

k+ 5
2

δk

� C0(k, a, b, σ)
(
‖(M (1))−1Ū (1) · ∇̄A(1)((M (1))−1Ū (1))

− r−1
[
U

(1)
θ (U (1)

θ + 2v
[1]
θ Ω)

]
‖W k

δk

+ ‖Ū (1) · ∇̄A(U (1)
θ + v

[1]
θ Ω) + r−1(U (1)

r (U (1)
θ + v

[1]
θ Ω))‖W k

δk

+‖Ω(N̄ − N̄ 1) · ∇v
[1]
θ ‖W k

δk

+ ‖(R(0, (h(1))′))′‖
W

k+ 1
2

δk

)

� C2(k, a, b, σ)

(
‖U (1)‖2

W k+2
δk

+ Ω‖U (1)‖W k+2
δk

+ ‖H(1)‖3

W
k+ 5

2
δk

+ Ω3

)
� 4C2(k, a, b, σ)Ω3. (3.8)

Choose Ω be sufficiently small such that

4C2(k, a, b, σ)Ω � 1, (3.9)

then

‖U (2)‖W k+2
δk

+ ‖Q(2)‖W̊ k+1
δk

+ ‖H(2)‖
W

k+ 5
2

δk

� Ω2. (3.10)
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Hence we have

‖U (3)‖W k+2
δk

+ ‖Q(3)‖W̊ k+1
δk

+ ‖H(3)‖
W

k+ 5
2

δk

� C2(k, a, b, σ)

(
‖U (2)‖2

W k+2
δk

+ Ω‖U (2)‖W k+2
δk

+ ‖H(2)‖3

W
k+ 5

2
δk

+ Ω3

)
� 4C2(k, a, b, σ)Ω3. (3.11)

Repeating the above procedure, we can obtain for any k ∈ N,

‖U (l)‖W k+2
δk

+ ‖Q(l)‖W̊ 1
δk

+ ‖H(l)‖
W

k+ 5
2

δk

� C2(k, a, b, σ)

(
‖U (l−1)‖2

W k+2
δk

+ Ω‖U (l−1)‖W k+2
δk

+ ‖H(l−1)‖3

W
k+ 5

2
δk

+ Ω3

)
� 4C2(k, a, b, σ)Ω3. (3.12)

Next, we consider the system (3.1)(l+1)–(3.1)(l), i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄A(l)(Q(l+1) − Q(l)) + Δ̄A(l)((M (l))−1(Ū (l+1) − Ū (l)))

+
1
r
(∇̄A(l)((M (l))−1(Ū (l+1) − Ū (l)))r

−
(

U
(l+1)
r − U

(l)
r

r2
, 0

)�
= (G(l)

r , G
(l)
z )� in V0

0 ,

Δ̄Al(U (l+1)
θ − U

(l)
θ ) +

1
r
(∇̄A(l)(U (l+1)

θ − U
(l)
θ ))r −

U
(l+1)
θ − U

(l)
θ

r2
= G

(l)
θ in V0

0 ,

div(Ū l+1 − Ū (l)) +
U

(l+1)
r − U

(l)
r

r
= 0 in V0

0 ,

(Ū (l+1) − Ū (l)) · N̄ (l) = 0, on Σ0
0,

N̄ (l) · ∇̄A(l)(U (l+1)
θ − U

(l)
θ ) = G2 on Σ0

0,

N̄ (l) · S̄A(l)((M (l))−1(U l+1 − U (l))) · T̄ (l) = G3 on Σ0
0,

N̄ (l) · ((Q(l+1) − Q(l))Ī + S̄A(l)((M (l))−1(U (l+1) − U (l))) · N̄ (l)

= −g(H(l+1) − H(l)) +
σ

r

(
r(H(l+1) − H(l))′ + G4

)′
+ G5 on Σ0

0,

(H(l+1) − H(l))′(a; Ω) = 0, (H(l+1) − H(l))′(b; Ω) = 0,

U (l+1) − U (l) = 0 on Σ0
a,0,

U (l+1) − U (l) = 0 on Σ0
b,0,

(3.13)
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where

(G(l)
r , G(l)

z ) = (M (l))−1Ū (l) · ∇̄A(l)((M (l))−1Ū l) − U
(l)
θ (U (l)

θ + 2v
[1]
θ Ω)2)

r

− (M (l−1))−1Ū (l−1) · ∇̄A(l−1)((M (l−1))−1Ū l−1)

+
U

(l−1)
θ (U (l−1)

θ + 2v
[1]
θ Ω)

r

+ ∇̄A(l)−A(l−1)(Q(l)) − Δ̄A(l)−A(l−1)((M (l−1))−1(Ū (l)))

− Δ̄A(l−1)((M (l) − M (l−1))−1(Ū (l)))

− 1
r
(∇̄A(l)−A(l−1)((M (l−1))−1(Ū (l))))

− 1
r
(∇̄A(l−1)((M (l) − M (l−1))−1(Ū (l)))), (3.14)

and

G1
θ = Ū (l) · ∇̄A(U (l)

θ + v
[1]
θ Ω) +

U
(l)
r (U (l)

θ + v
[1]
θ Ω)

r

− Ū (l−1) · ∇̄A(U (l−1)
θ + v

[1]
θ Ω) − U

(l−1)
r (U (l−1)

θ + v
[1]
θ Ω)

r

− Δ̄A(l)−A(l−1)U
(l)
θ +

1
r
(∇̄A(l)−A(l−1))rU

(l)
θ , (3.15)

and

G2 = N̄ (l−1) · ∇̄A(l−1)U
(l)
θ − N̄ (l) · ∇̄A(l)U

(l)
θ , (3.16)

and

G3 = N̄ (l−1) · S̄A(l−1)((M (l−1))−1U (l)) · T̄ (l) − N̄ (l) · S̄A(l)((M l)−1U (l)) · T̄ (l),
(3.17)

and

G4 = R(0, (h(l))′) −R(0, (h(l−1))′), (3.18)

and

G5 = N̄ (l−l) · (Q(l)Ī + S̄A(l−1)(M (l−1))−1U (l)) · N̄ (l−1)

− N̄ (l) · (Q(l)Ī + S̄A(l)((M (l))−1U (l)) · N̄ (l). (3.19)

By theorem 2.4 and the embedding result (3.5), it follows from (3.12) that

‖U (l+1) − U (l)‖W k+2
δk

+ ‖Q(l+1) − Q(l)‖W̊ k+1
δk

+ ‖H(l+1) − H(l)‖
W

k+ 5
2

δk

� C0(a, b, λ, σ)
(
‖U (l+1)‖W k+2

δk

+ ‖U (l)‖W 2
δk

+ ‖U (l−1)‖W k+2
δk

+ ‖H(l+1)‖
W k+ 5

2
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+ ‖H(l)‖
W k+ 5

2
+ ‖H(l−1)‖

W k+ 5
2

+ ‖Q(l)‖W̊ k+1
δk

+ Ω
)

×
(
‖U (l) − U (l−1)‖W k+2

δk

+ ‖Q(l) − Q(l−1)‖W̊ k+1
δk

+ ‖H(l) − H(l−1)‖
W

k+ 5
2

δk

)

� 3C0(a, b, λ, σ)Ω
(
‖U (l) − U (l−1)‖W k+2

δk

+ ‖Q(l) − Q(l−1)‖W̊ k+1
δk

+ ‖H(l) − H(l−1)‖
W

k+ 5
2

δk

)
. (3.20)

Let 3C0(a, b, λ, γa, γb, σ)Ω � 1
2 , then

‖U (l+1) − U (l)‖W k+2
δk

+ ‖Q(l+1) − Q(l)‖W̊ k+1
δk

+ ‖H(l+1) − H(l)‖
W

k+ 5
2

δk

� 1
2

(
‖U (l) − U (l−1)‖W k+2

δk

+ ‖Q(l) − Q(l−1)‖W̊ k+1
δk

+ ‖H(l) − H(l−1)‖
W

k+ 5
2

δk

)
.

(3.21)

Now, it follows from (3.12) and (3.21) that (U (l), Q(l),H(l)) is a cauchy sequence

in W k+2
δ × W k+1

δk
× W

k+ 5
2

δk
. Hence, there exists a subsequence (U (lm), Q(lm),H(lm)),

and (U,Q,H) ∈ W k+2
δk

× W k+1
δk

× W
k+ 5

2
δk

such that as m → ∞,

(U (lm), Q(lm),H(lm)) → (U,Q,H), in W k+2
δk

× W k+1
δk

× W
k+ 5

2
δk

. (3.22)

Now, let m → ∞ for equations (3.1)lm , we have (U,Q,H) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄AQ + Δ̄A(M−1Ū) +
1
r
(∇̄A(M−1Ū))r −

(
(M−1U)r

r2
, 0
)�

= M−1Ū · ∇̄A(M−1Ū) − (Uθ + v
[1]
θ Ω)2 − (v[1]

θ Ω)2

r
in V0

0 ,

Δ̄AUθ +
1
r
(∇̄A)rUθ −

Uθ

r2
= Ū · ∇̄A(Uθ + w0

θ) +
Ur(Uθ + v

[1]
θ Ω)

r
in V0

0 ,

div Ū +
Ur

r
= 0 in V0

0 ,

Ū · N̄ = 0 on Σ0
0,

N̄ · ∇̄AUθ = 0 on Σ0
0,

N̄ · S̄A(M−1U) · T̄ = 0 on Σ0
0,

N̄ · (QĪ + S̄A(M−1U)) · N̄ = −gH +
σ

r
(rH ′ + R(0, h′))′ on Σ0

0,

U = 0 on Σ0
a,0,

U = 0 on Σ0
b,0,

(3.23)
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and

‖U‖W k+2
δk

+ ‖Q‖W̊ k+1
δk

+ ‖H‖
W

k+ 5
2

δk

� 4C2(k, a, b, σ)Ω3. (3.24)

Thus, we have completed the proof of theorem 1.1.
Finally, we turn to the uniqueness. Assume that (U1, Q1,H1) and (U2, Q2,H2)

are the solution of the system (1.43), that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄A1Q1 + Δ̄A1 ((M1)−1Ū1) +
1

r
(∇̄A1 ((M1)−1Ū1))r −

(
((M1)−1U1)r

r2
, 0

)�

= (M1)−1Ū1 · ∇̄A1 ((M1)−1Ū1) −
((U1)θ + v

[1]
θ Ω)2 − (v

[1]
θ Ω)2

r
in V0

0 ,

Δ̄A1U1
θ +

1

r
(∇̄(A1)rU1

θ −
U1

θ

r2
= Ū1 · ∇̄A1 (U1

θ + w0
θ) +

U1
r (U1

θ + v
[1]
θ Ω)

r
in V0

0 ,

div Ū1 +
U1

r

r
= 0 in V0

0 ,

Ū1 · N̄1 = 0 on Σ0
0,

N̄1 · ∇̄A1U1
θ = 0 on Σ0

0,

N̄ 1 · S̄A1 ((M1)−1U1) · T̄ 1 = 0 on Σ0
0,

N̄ 1 · (Q1Ī + S̄A1 ((M1)−1U1)) · N̄ 1 = −gH1 +
σ

r

(
r(H1)′ + R(0, (h1)′)

)′
on Σ0

0,

U1 = 0 on Σ0
a,0,

U1 = 0 on Σ0
b,0,

(3.25)
and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄A2Q2 + Δ̄A2 ((M2)−1Ū2) +
1

r
(∇̄A2 ((M2)−1Ū2))r −

(
((M2)−1U2)r

r2
, 0

)�

= (M2)−1Ū2 · ∇̄A2 ((M2)−1Ū2) −
((U2)θ + v

[1]
θ Ω)2 − (v

[1]
θ Ω)2

r
in V0

0 ,

Δ̄A2U2
θ +

1

r
(∇̄(A2)rU2

θ −
U1

θ

r2
= Ū2 · ∇̄A2 (U2

θ + w0
θ) +

U2
r (U1

θ + v
[1]
θ Ω)

r
in V0

0 ,

div Ū2 +
U2

r

r
= 0 in V0

0 ,

Ū2 · N̄2 = 0 on Σ0
0,

N̄2 · ∇̄A2U2
θ = 0 on Σ0

0,

N̄ 2 · S̄A2 ((M2)−1U2) · T̄ 2 = 0 on Σ0
0,

N̄ 2 · (Q2Ī + S̄A2 ((M2)−1U2)) · N̄ 2 = −gH2 +
σ

r

(
r(H2)′ + R(0, (h2)′)

)′
on Σ0

0,

U2 = 0 on Σ0
a,0,

U2 = 0 on Σ0
b,0,

(3.26)
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Consider the system (3.26)–(3.25), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇̄A2(Q2 − Q1) + Δ̄A2((M2)−1(Ū2 − Ū1))

+
1
r
(∇̄A2((M2)−1(Ū2 − Ū1))r −

(
U2

r − U1
r

r2
, 0
)�

= (G1
r, G

1
z)

� in V0
0 ,

Δ̄A2(U2
θ − U1

θ ) +
1
r
(∇̄A2(U2

θ − U1
θ ))r −

U2
θ − U1

θ

r2
= G1

θ in V0
0 ,

div(Ū2 − Ū1) +
U2

r − U1
r

r
= 0 in V0

0 ,

(Ū2 − Ū1) · N̄2 = 0, on Σ0
0,

N̄ 2 · ∇̄A2(U2
θ − U1

θ ) = G2 on Σ0
0,

N̄ 2 · S̄A2((M2)−1(U2 − U1)) · T̄ 2 = G3 on Σ0
0,

N̄ 2 · ((Q2 − Q1)Ī + S̄A2((M2)−1(U2 − U1)) · N̄ 2

= −g(H2 − H1) +
σ

r

(
r(H2 − H1)′ + G4

)′ + G5 on Σ0
0,

(H2 − H1)′(a; Ω) = 0, (H2 − H1)′(b; Ω) = 0,

U2 − U1 = 0 on Σ0
a,0,

U2 − U1 = 0 on Σ0
b,0,

(3.27)
where

(G1
r, G

1
z) = (M2)−1Ū2 · ∇̄A2((M2)−1Ū2) − U2

θ (U2
θ + 2v

[1]
θ Ω)2)

r

− (M1)−1Ū1 · ∇̄A1((M1)−1Ū1) +
U1

θ (U1
θ + 2v

[1]
θ Ω)

r

+ ∇̄A2−A1(Q1) − Δ̄A2((M2 − M1)−1(Ū2))

− Δ̄A2−A2((M1)−1(Ū1)) − 1
r
(∇̄A2((M2 − M1)−1(Ū2))r

− 1
r
(∇̄A2−A1((M1)−1(Ū1))r, (3.28)

and

G1
θ = Ū2 · ∇̄A(U2

θ + v
[1]
θ Ω) +

U2
r (U2

θ + v
[1]
θ Ω)

r

− Ū1 · ∇̄A(U1
θ + v

[1]
θ Ω) − U1

r (U1
θ + v

[1]
θ Ω)

r

− Δ̄A2−A1(U1
θ ) +

1
r
(∇̄A2−A1(U1

θ ))r, (3.29)
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and

G2 = N̄ 1 · ∇̄A1U1
θ − N̄ 2 · ∇̄A2U1

θ , (3.30)

and

G3 = N̄ 1 · S̄A1((M1)−1U1) · T̄ 1 − N̄ 2 · S̄A2((M2)−1U1) · T̄ 2, (3.31)

and

G4 = R(0, (h2)′) −R(0, (h1)′), (3.32)

and

G5 = N̄ 2 · (Q1Ī + S̄A2(M2)−1U1) · N̄ 2

− N̄ 1 · (Q1Ī + S̄A1((M1)−1U1) · N̄ 1. (3.33)

Similar to the arguments of (3.20) and (3.21), by theorem 2.4 and the embedding
result (3.5), assume that Ω is sufficiently small, then we can obtain that

‖U2 − U1‖W k+2
δk

+ ‖Q2 − Q1‖W̊ k+1
δk

+ ‖H2 − H1‖
W

k+ 5
2

δk

� 1
2

(
‖U2 − U1‖W k+2

δk

+ ‖Q2 − Q1‖W̊ k+1
δk

+ ‖H2 − H1‖
W

k+ 5
2

δk

)
, (3.34)

which implies ‖U2 − U1‖W k+2
δk

+ ‖Q2 − Q1‖W̊ k+1
δk

+ ‖H2 − H1‖
W

k+ 5
2

δk

= 0, that is,

(U1, Q1,H1) = (U2, Q2,H2).
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