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Abstract  We study the fundamental groups of the complements to curves on simply connected surfaces,
admitting non-abelian free groups as their quotients. We show that given a subset of the Néron—Severi
group of such a surface, there are only finitely many classes of equisingular isotopy of curves with
irreducible components belonging to this subset for which the fundamental groups of the complement
admit surjections onto a free group of a given sufficiently large rank. Examples of subsets of the Néron—
Severi group are given with infinitely many isotopy classes of curves with irreducible components from
such a subset and fundamental groups of the complements admitting surjections on a free group only of
a small rank.
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1. Preface

This note describes a result on the fundamental groups of the complements to curves
D C V on a smooth simply connected projective surface V' such that 71 (V' \ D) admits a
surjection on a free non-abelian group when the rank of free groups varies. To this end, we
consider curves D, with reduced components”, as elements of classes C (A), parametrized
by subsets A of the effective cone of V' in the sense that the classes of irreducible compo-
nents of D are required to be in A. An example of such a class is given by arrangements of

* The topological space underlying the complement V \ D depends only on the support of D i.e. for
classification of the classes of fundamental groups of smooth quasi-projective varieties, without loss of
generality one can assume that D is reduced. However, geometric detection of the fundamental groups,
e.g. via study of the pencils (cf. proof of the Theorem 1.2 in § 3), sometimes requires the consideration
of non-reduced curves with the same support as D. Below, it should be clear from the context when the
consideration of non-reduced curves is necessary.
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lines in a projective plane: here A is the positive generator of NS(P?) and an arrangement
of n lines is viewed as a curve D of degree n. Grouping the curves by restricting the classes
of irreducible components has a certain resemblance to the study of the distribution of
the number fields with a fixed discriminant (cf. for example [5, 11]).

In these circumstances, we show that for a fixed saturated (see Definition 1.1) set
A, there is a constant My(A) such that the existence of a surjection m1(V \ D) — F,
with 7 > Ms(A) implies that all components of D belong to a pencil of curves with the
class of generic member being one of the classes in A. In other words, the existence of a
surjection of the fundamental group of a quasi-projective surface with compactification V'
onto F,. with a sufficiently large r implies that the divisor at infinity D has a very special
geometry (i.e., is a union of reducible curves which are members of a pencil or in other
words D is composed of curves of a pencil). This leads to the finiteness results for such
classes of curves described below. We make a technical assumption on the singularities
of D at intersections of different components but not on the singularities of irreducible
components outside of these intersections. This paper studies surjections 71 (V \ D) — F.
which are essential in the sense that the images in F, of the elements of 71 (V \ D)
associated with each irreducible component of D (the meridians) are conjugates to the
standard generators of F,. (cf. condition (**) below for exact statement). We expect that a
more careful analysis can show that the technical assumptions we made can be eliminated
or substantially weakened?

Note that for arbitrary r > 1 and any pencil L on V| if one can consider a curve
D= U:Ll D; which is a union of » + 1 members D; of L, then the rational dominant map
onto P! corresponding to L induces the surjection 71 (V \ D) — F,.. Our result shows that
given a set A of allowed classes in NS(V') of reduced components of D, this is the only way
to obtain curves admitting surjections of their fundamental groups of the complements
onto F,. satisfying (**) with r > My(A). Hence, the study of fundamental groups with
large free quotients depends on the study of the distribution of constants Ma(A). At this
point, we have explicit calculations of the constants My(A) for V = P? and several other
surfaces, provided in § 4.

The main step in our argument is a statement about the pencils of curves on V' admit-
ting sufficiently many fibres having as irreducible components only the curves with classes
in Néron—Severi group in a chosen subset A of the effective cone. More precisely, we
consider pencils L C P(H°(V, Oy (D))) (i.e. dim L = 1) admitting r + 1 distinct divisors
Dy, ..., Dyy1, D; € L whose classes of irreducible components of D; form a subset of A
having cardinality ¢ > 1. We show that the existence of such a pencil with r > Ms(A)
implies that all elements of the pencil L are already in a fixed class from A. The
claim about the free quotients of the fundamental groups follows immediately using [1]
(cf. also [2]).

The above results admit a refinement. We also show that if 71 (V \ D) admits a sur-
jection onto F,. then already for r > 10, such a curve D (having irreducible components
in A) must be a union of curves belonging to a pencil, with the generic member having
Néron—Severi class in A, with only finitely many exceptions depending on A. The number
of exceptions, in general, grows together with the set A. For some V and A € NS(V), the

T maximal rank of a free quotient of a group sometimes is called corank. Here we consider essential
surjections of groups which may have a corank greater than r.
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absence of surjections onto F,. with only finitely many exceptions occurs already for some
r <9 (see § 5). However, for general V', r < 9 and certain A one expects infinitely many
curves D with components in A admitting surjections onto F;. and not being a union of
members of a pencil with the class of a generic member in A. It is an interesting problem
to find the threshold M;(V, A) < min{9, Ms(V, A)} such that for » < M;(V, A) there
are infinitely many fundamental groups of the complement to curves having F,. as a quo-
tient and irreducible components in A, explicitly for a specific (V, A) with initial steps
made in § 4.

A precursor of such results is the following statement about arrangements of lines in
P2 which was first shown in [10] and later improved in [6, 13]. If an arrangement A of
lines in P2, i.e an algebraic curve with all its components being in C([1]) where [1] is
the positive generator of NS(IP?), is such that there exist a pencil of curves of degree
d > 1 admitting 5 or more members which are unions of lines and such that A is the
arrangement of lines belonging to these members of the pencil, then d = 1 and therefore,
A is a central arrangement, i.e., is the union of lines all containing a fixed point. (cf.
§ 4 for a discussion of this and other special cases). This implies that 71 (P2 \ .A) has no
essential surjections onto Fj., r > 4 except for the central arrangements. On the other
hand, there are infinitely many non-central arrangements of lines with m; (P? \ A) having
essential surjections onto F». In the language introduced in this paper My (P2, [1]) =3
and where A = [1] and [d] € NS(PP?) is the class of a curve of degree d.

The sets A, used below, must satisfy certain consistency conditions.

Definition 1.1. Let Eff(V)) € NS(V') denote the effective cone of V' (cf. [9]). We call a
subset A C Eff (V') saturated if the following condition is satisfied: if a class d € A admits
a split d = dy + da, di, do € Eff (V') then both classes d; and ds are in A.

This condition assures that if an ‘allowed’ (i.e. from A) class in NS(V') is represented
by a reducible or non-reduced curve, then its irreducible and reduced components are
allowed as well. Other conditions of being saturated may lead to different implications
on the ranks of free quotients. We work with finite saturated sets. Note that a minimal
saturated subset containing a finite set is finite (cf. Lemma 3.1).

Since we are interested in 71 (V \ D), we consider curves D on smooth surfaces up to the
following equivalence relation: two curves D', D" are equivalent if there is a topologically
equisingular deformation of D’ into D”. Such deformations do not alter the fundamental
groups of the complements and all the finiteness statements are made for such equivalence
classes.

We also say that a curve D is composed of curves of a pencil® in a linear system
HO(V, O(D)) if there is a partition of irreducible components of D into groups such that
the union, possibly with multiplicities, of irreducible components in each group is one of
the curves in the pencil.

The results in this paper use the following assumptions:

(*) All singular points of D belonging to more than one component are ordinary mul-
tiple points of the multiplicity equal to the number of components containing this singular
point i.e. locally are transversal intersection of smooth germs.

¥ In footnote [20], p.214, Zariski describes such a curve as ‘a curve made up of curves belonging to one
and the same pencil”.
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(**) The surjections w1 (V \ D) — F, we consider are essential i.e. take each meridian®
of a component of D to an element in a conjugacy class of either one of r + 1 generators
of Fr={x1, ..., Tpy1 : @1 ...  Tpy1 = 1).

With these conventions, we have the following:

Theorem 1.2. Let V be a smooth simply connected projective surface. Let A C
NS(V) be a saturated subset of the effective cone and let D be a reduced curve hav-
ing classes of its irreducible components in A and satistying condition (*). Then there
is a constant M(V, A) such that if m1(V \ D) admits an essential free quotient (i.e. for
which the condition (**) is satisfied) with r > M(V, A) then D is composed of curves in
a pencil with the property that the class of its generic element in NS(V') is a class 6 € A.

Moreover, there is a constant M, (V, A) < 10 such that for r > M;(V, A) there is only
finite number N(V, r, A) of isotopy classes of curves D with components from A and
admitting a surjection 71 (V \ D) — F, but not composed of a pencil in H°(V, O(D))
where D is a divisor in a class § € A.

The implication of this result on the structure of quasi-projective groups which are the
fundamental groups of the complements to curves on a given surface with given classes
of components is as follows:

Corollary 1.3. Given a saturated set A of classes in NS(V') consider the following
trichotomy for the curves as in Theorem 1.2 i.e. with classes of irreducible components
in A, satisfying conditions (*) and having a free essential quotient (i.e. satisfying (**))
of a fixed rank r > 1.

(A) There exist infinitely many isotopy classes of curves admitting an essential
surjections 71 (V \ D) — F,..

(B) There are finitely many isotopy classes of curves D admitting essential surjections
m(V\D)— F.,r>1

(C) D admitting an essential surjection w1 (V \ D) — F), is composed of curves of a
pencil having generic member in A. There are finitely many isotopy classes of such
D for given A.

All three cases are realizable at least for some (V, A). Case (B) takes place for r > 10
for any A. There exists a constant My(V, A) such that for r > My(V, A), one has case
(C). In the latter case, w1 (V \ D) splits as an amalgamated product H . (sy G where ¥
is a Riemann surface which is a smooth member of the pencil, H is coming from a finite
set of groups associated with the linear system H°(V, O(D)), D is a divisor having class
0 € A and G is an extension:

0—-m((E)—G—F. —0 (1)

Note that the actual values of r for which one has each of the cases (A),(B) or (C),
varies for specific surfaces, see § 4.

§ j.e. aloop homotopic to the boundary of a small positively oriented disk transversal to this component
at a smooth point.
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The fundamental groups as in Theorem 1.2 admit a geometric surjection onto a free
group i.e. which are induced by holomorphic maps onto punctured P! (cf. proof of
Theorem 1.2). In fact, Theorem 1.2 is deduced from the following result on the reducible
fibres of primitive pencils of curves¥

Theorem 1.4. Let V, A be as in Theorem 1.2. Then there is a constant Ms(V, A)
such that for r > M (V, A), any primitive pencil of curves on V such that:

(i) it has r + 1 members whose classes of its irreducible components are in A,
(ii) all components of each of these r + 1 members are reduced,

(iii) the generic members of the pencil intersecting transversally at any base point have
an element in A as a class.

Moreover, there exists a constant My (V, A) such that 2 < M7 (V, A) <min{9, M(V, A)}
and such that for r > M;(V, A) there are only finitely many types of primitive pencils
satisfying (i), (ii) and (iii).

Theorems 1.2 and 1.4 are proven in § 3 where we also give the definitions of the classes
of curves we consider and where we define the thresholds M;(V, A), i =1, 2, N(V, r, A)
and K (V, A) controlling the fundamental groups of the complements to curves for various
ranks of their free quotients. One of the steps in the proof of Theorem 1.4 (cf.(13)) is the
following inequality, which may have an independent interest:

Corollary 1.5. Let r + 1 be the number of reducible and reduced members in a pen-
cil in a linear system P(H®(V, Oy (D))), having classes of irreducible components in a
saturated set A and for which the union of components of these r + 1 members satisfies
condition (*). Then

e(V)+3D? +2KD
D? + KD + min (Y e(F}))

r+1<2

where the sum is taken over all irreducible components F; of a member of the pencil and
the minimum is taken over these r + 1 members of the pencil.

The rest of the paper deals with examples and the values of the thresholds
M;(V, A), N(V, r, A) and K(V, A). In § 4, we discuss the free quotients for the curves on
P2 in the classes C(A) where A = {[1], ..., [k]} i.e. with irreducible components having
degrees not exceeding k, and § 5 deals with examples on more general surfaces. More
detailed estimates for the thresholds introduced here will be given elsewhere. The proofs
are based on the estimates of the topological Euler characteristic of fibres of pencils in
terms of Euler characteristics of components of degenerate fibres but depends also on
asymptotic of ranks of cohomology of line bundles corresponding to nef divisors (cf. [9]).

T we call a pencil primitive if its generic member is irreducible cf. [20]
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2. Summary of some notation

A is a saturated subset of NS(V) where V is a smooth projective simply connected
surface.

Ms(V, A) € Zy (or simply M (A); the same with similar notation below) is the thresh-
old for the ranks of free groups F,. such that beyond it (i.e. for r > Ms(V, A)) existence
of surjection onto free group of m1(V \ D), where D is a curve with classes of irreducible
components in A, implies that D is a union of curves belonging to a pencil in complete
linear system of a curve with class in A (cf. end of the proof of the theorem 1.4).

M;(V, A) € Z is the threshold for the ranks of free groups F,. above which (i.e. for
r > M;(V, A)) there are only finitely many isotopy classes of curves with fundamental
groups of the complements admitting surjection onto F. (cf. Theorems 1.2 and 1.4).

N(V, r, A) € Z is the number of curves D with irreducible components having classes
in a saturated set A, which admit a surjection onto a free group F,, r > M;(V, A)
(cf. theorem 1.2).

K(V, A) is a positive integer such that for pencils in H°(V, O(D)) where D is such
that for any d € A one has D — K(V, A)é € Eff(V), there are at most 12 reducible fibres
with all irreducible components on A (cf. Corollary 3.3).

My, = Ms(P?, Ay) where Ay, is the collection of classes of Opz(1), ..., Opz2 (k) (cf. § 4).

3. Proof of the main theorem

In this paper, only finite saturated subsets of the effective cone are considered. The
following result verifies that the finiteness condition is preserved when considering the
saturated subset spanned by a finite family of divisor classes.

Lemma 3.1. The saturated subset spanned by a finite subset of Eff (V') is finite.

Proof. Let H be an ample divisor. For dy, ..., ds, d; € Ef(V), let A(dy, ..., ds) be
the intersection of all saturated subsets containing di, ..., ds. For any 6 € A(d), d €
Eff (V) one has (6, H) < (d, H). Therefore, A(d) is a discrete subset of a compact set {S €
Eff(V) @ R|(S, H) < (d, H)} (since, as follows from the Hodge index theorem, Eff (V) ®
R is a cone over a compact set). Hence it is finite. Alternatively, the claim can be derived
from [3] Theorem 4.10b. Finally, if d;, ..., ds is a finite subset of Eff(V') then since for
their span one has A(dy, ..., ds) = JA(d;) and hence it is finite as well. O

The following will be used to obtain estimates of the number of members of pencils on
a surface V' having classes of irreducible components in a fixed saturated subset A.

Proposition 3.2. Let A be a saturated subset of Eff (V') and s = Card A. Let F be a
curve with irreducible components F;, j =1, ..., J, J > 1 which moves in a pencil such
that multiplicity of each component of F in this pencil is 1I. Let [F] = D = Y";_, m;d;
be the class of F in the free abelian group generated by d; € A C NS(V). For all « > %

I i.e. all components F}; of this particular element of the pencil are reduced; there are no restrictions
on multiplicities of components of other members of the pencil.
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and all but finitely many (ms, ..., ms) € Z%, one has

W) 4 D24 2KD
D2+Z ()+KD

(2)

(e(F};) denotes the topological Euler characteristic of the component F;).

Proof. Firstly, observe that the assumptions of Proposition imply that the denomina-
tor in (2) is non-zero. Otherwise, the equality given by adjunction formula for F holds
with no corrections and hence F must be a smooth curve. Since we assume that J > 1,
the curve F is disconnected, and by Zariski connectedness theorem, the generic fibre in
the pencil in which F moves must be disconnected. In this case, the element of the pencil
corresponding to the branch point of the covering of P! given by Stein factorization must
be non-reduced which contradicts our assumption.

Next note that one has

e(Fj))=—KF;—F}+ > (20(F;, P) = b(F;,P)+1) (3)
PeSing(F;)

where P runs through the set Sing(F;) of singular points of the curve F; and
0(Fj, P), b(F};, P) are respectively the ¢ invariant and the number of branches of F; at
P (cf. [16]). Each summand in summation in (3) is non-negative. Hence the denominator
in (2) satisfies:

D2—|—Z )+ KD > D? — Zled midf+KD:D2—Zmid?. (4)

Since we assume that the pencil consists of only reduced members, in the decomposition
D =3 250 midi + 32, 4o o mid;, for coefficients of d; for which d7 < 0, one has m; = 1.
Indeed, two numerically eéuivalent irreducible curves with negative self-intersection which
appears in a reducible member F of the pencil more than once and must coincide, since
they cannot be deformations of each other. Therefore, D? — >~ m;d? = > (m? — mz)d2
2> m;m;d;d; > 0. and hence the inequality (2) would follow from

(a —1)D? — ozz:mZd2 - %KD (;/) (5)

Indeed, from (4) and (5) one has

e(V)'
3

D2+Z )+ KD) > o(D* =Y myd}) > D
To show (5), let D =3 m;d;, d; € A be a divisor which is a reducible member of a
pencil (i.e. dim H°(V, O(D)) > 2). By Riemann-Roch
—DK = 2(dim H°(O(D)) — dim H*(O(D)) + dim H*(O(D)) — 2x(V) — D*.

The asymptotic behaviour of the cohomology of nef divisors (cf. the proof of Theorem
1.4.40 [9] p.69 or [8]) implies that for all but finitely many (my, ..., ms), i.e. those in the
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compact subset of Eff(V) € NS(V) ® R where dim H'(O(D)) exceeds the dimension of
H°(O(D)), one has x(O(D)) > 0. For those (my, ..., my),

— DK > —2x(V) — D2 (6)

Hence for all but finitely many (m, ..., ms) € Z% we have the following inequality for
the left-hand side of (5): -

5 4

2 2 2

(a —1)D? — « g m;d; —fKD> (a—3>D -« E midi—gx(V). (7)
It only remains to show that if a > % then for all but finitely many m,; one has

(ag) D?—a¥ md? > @+§X(V). (8)

To see (8) note that, as was already mentioned, in the decomposition D = ", ..~ md; +
Zi, <0 m;d;, since we assume that the pencil consists of only reduced members, for d;
with d? < 0 one has m; = 1. Hence for left-hand side of (8), one has

(a—g)Dz—aZmid?
=« Z m —m;) d2 Zm2d2+2<a—g>2mimjdidj

i,d?>0 i<j
5 2 72 2 5
> a—z Z m;d; —« Z m;d; + 2 a-z Zmimjdidj
i,d2>0 i,d?>0 i<j
5
Z 2(a— g Zmimjdidj
i<j

since for o > g in the left-hand side of the last inequality the first two terms are either
zero (if d? = 0 for all i) or give a quadratic function in m; > 0 with the terms of degree 2
representing a positive definite diagonal quadratic form (in variables m;). Hence one has
the last inequality for all (mq, ..., ms) € ZS but a finite set since exceptions are given by
solutions of the opposite inequality which belong to a compact subset of (R>)®. Finally

2 (o= §) S momstty > 55+ 50

1<J

for a > % since, as was shown earlier, F contains intersecting irreducible components.
This shows (8 for all but finitely many (m;, ..., ms) and hence the result follows. a

Proof of Theorem 1.4. Let B C V be the base locus of a pencil satisfying conditions

(i),(ii),(iii). Assumption (iii) implies that the pencil is free of fixed components, the ratio-
nal map corresponding to the pencil extends to a regular map ® : V — P! on the blow up
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V of V at B and that Card B = (®~1(b) - ®~1(b)), b € P'. Let B’ C P! the set of critical
values of ® and let R C B’ be the subset corresponding to the r + 1 members satisfying
the conditions (i)—(iii) of the statement of the Theorem. For b’ € B’ and any p € P!\ B,
let e, (b') = e(®~L(V')) — e(®P~1(p)) be the relative Euler characteristic of the fibre at o’
(this is independent of p). It follows from the additivity of the Euler characteristic (cf.
also [7]) that

e(V) + Card B = 2¢(®*(p)) + Z erel(b) (9)

b eB’

where p € P*\ B’. It follows by the adjunction applied on V, that for p € P!\ B’, one
has e(®~!(p)) = —(KD + D?) where D C V is the class of any fibre of ®. Note that
for any ' € B’ one has e, (b') > 0 (cf. [7] or [17], Ch.4, Theorem 6 and 7) and, as was
mentioned, Card B = D?. Therefore,

e(V)+D*==2KD+D*)+ Y ealV)+ > eralt)
bER b EeB/\R
> —2(KD+D*)+ > era(t)
b'eER
For any b’ € R, such that the class of fibre ®~1(b') is D =" m;d;, using as a lower
bound for the Euler characteristic of a reducible curve on a surface, the expression for the

Euler characteristic in the case when all irreducible components are smooth and intersect
transversally at distinct points, one has

(10)

craV) =Y —midi (K +di) = > %df - ;mimjdidj +D(K+D). (11)
Here the first term represents the sum of Euler characteristics of smooth irreducible
components, the second is the count of intersection points among the m; curves in each
class d;, the third term is the number of intersection points among curves in classes
di, d;, i # j and last term is negative of the Euler characteristic of the smooth fibre of ®.
Replacing D by > m;d; we obtain by (11) that e,.;(b'), b’ € R is greater than or equal
to:

2
+ Z didj(2mimj — mimj) + Z m; Kd;
i<j
mi(mi — 1)

_ D? — 3 my(d?) _ D?+ KD + ZFjeéfl(b/) e(Fy)
N 2 B 2 '

Selecting ' € R for which M is the smallest A, one obtains

D? + KD+ 3 p co-1() (F})

e(V)+ D? > —2(KD + D?) + (r + 1) 5
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Hence, the last inequality implies that for a as the Proposition 3.2, one has:

e(V)+3D? +2KD
1<2 6. 13
rels D2+KD+Ze(Fj)< “ (13)

From Proposition 3.2, for o > % we obtain that, with only finitely many exceptions = =
{D| D=5 m;D;, D¢ A},** a pencil in the linear system H°(V, O(D)) will have no
more than 10 reducible fibres with all components in A. Hence if r is such that there are
infinitely many pencils having r 4+ 1 reducible fibres with components in A then r +1 <
10. Denoting by M;(V, A) the largest  such that there are infinitely many pencils with
r 4+ 1 > 3 members having irreducible components in A, we see that 2 < M;(V, A) <9.

Since each linear system may have only finitely many isotopy classes of pencils (it is
bounded by the number of strata in a stratification of the set of pair (I, Disc) where [ is
a line and Disc is the discriminant in the complete linear system P(H°(O(D))), this may
create only a finite set of pencils in H°(O(D)) with D € = whose classes of irreducible
components are in A for r+ 1> 10 of its members. If My(V, A) + 1 is the maximal
number of reducible members in this finite set of pencils, then for r > My (V, A) the class
of members of the pencil will be in A. This shows the theorem. O

Proof of theorem 1.2. Note that existence of a surjection 7 (V \ D) — F,., r > 2,
by work [1], implies that there is a surjective holomorphic map with connected fibres
V\D — C\ R, where C is a smooth curve and R C C'is a finite set such that tkH'(C'\
R) > 7+ 1.1 Indeed, for any y € CharF,. the lower degree terms sequence corresponding
to the Hochschild—Serre spectral sequence

HP(F,,HY(K,C)) = H"" (7 (V\ D, Y)

of the extension 0 — K — m(V \ D) — F,. — 0, where ¥ is the pullback of the character
x to the character of (V' \ D), implies that 0 — H(F,, x) — H(m(V \ D, ¥). Since
dim CharF, = r and rkH(F,, x) # 0 (x # 1, 7 > 1), it follows that a surjection onto F
belongs to an irreducible component ¥, dim > > r of the characteristic variety containing
the torus of the characters x of w1 (V' \ D) with non-vanishing cohomology. The component
3 is the pullback of the torus Char H;(C \ R) via an admissible map V' \ D — C\ R of
the Theorem 1.6 of [1].

This map extends to a map having indeterminacy points at a subset of V' of codimension
two. More specifically, the map is well defined outside of a finite subset B C V which is a
subset of the set of intersections of components of D, i.e. subset of the union of D' N D"
where D', D" run through the set of pairs of irreducible components of D. Moreover,
since we assume (cf. (*)) that the intersections of the components of D are transversal,
this map extends to a holomorphic map ® : V — C of the single blow-up of V at each of
the indeterminacy points on V. The generic fibre of this map is irreducible since the map
V\D — C\ R is admissible. One has 71 (V) — m(C) and since we assume (V) =0
this shows that C' = P! and Card R > r + 1. Moreover, ®~'(R) C V can be identified
with D since due to our assumption on the intersection of the components on V' no

** j.e. the set of linear systems in the semigroup generated by classes in A which are outside of A.

' condition (**), i.e. that surjection is essential, is used later in the proof.
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new components introduced as a result of elimination of base points of the pencil and
since component of D satisfy condition (*). In particular, this pencil satisfies conditions
(i),(iii) of Theorem 1.4 for Card R of its fibres. The condition (ii) for this pencil, i.e.
that the fibres over R are reduced* follows from (**). Indeed, restriction of the map
®:V — P! on a small disk transversal to component D; of the fibre Y m;D; of the
pencil is given by z — z™¢. Hence, the corresponding map of the fundamental groups
71 (V \ D) — m (P! \ R) takes meridian of the component to a conjugate of 27 where x4
is the generator of the fundamental group of the complement in P! running around the
point corresponding to the fibre Y m;D;. Since the sequence of inclusions Char F,. C ¥ =
®*(CharHy (P \ R)) C Charm(V \ D) is dual to composition Hy(V \ D, Z) — H; (P! \
R, Z) — F,./F! and composition of these map by assumption (**) of the Theorem 1.2
takes a meridian of a component of D to an indivisible element in F,./F), so is the
case for the map Hy(V \ D) — H;(P!\ R) and hence all components of D, considered as
components of members of the pencil ® are reduced and (ii) is satisfied. Now, Theorem
1.2 is an immediate consequence of Theorem 1.4. O

The inequalities considered in the proof of the Theorem 1.4 have the following conse-
quence, giving under special assumptions, a replacement of the part of the conclusion of
Theorem 1.4 stipulating the possibility of ‘finitely many exception”.

Corollary 3.3. Let A C NS(V) denote a saturated subset. Assume that either A
contains a class d such that d*> > 0 or that one has d* < 0, Kd < 0 for all classes in A.
Then there exists a smallest constant K(V, A) € Z, such that for a pencil of curves
having class D € NS(V) satisfying the inequality D > d% for all d € K(V, A)A where

K(V,A)A={deNS(V) |d=>_ myd;,d; € A,m; > K(V,A)}
the number (V') + 1 of reducible fibres with components in A is 11 or less.

Remark 3.4. Recall that we are considering only the pencils subject to condition on
meridians stated in Theorem 1.2. It excludes the pencils with all components of reduced
fibres being in A having only classes d with d> < 0 in D = > m;d;, m; > 1. Proposition
5.12 shows that there are pencils having arbitrary large number of reducible components
with negative self-intersections and positive intersection with canonical class (albeit on
different surfaces).

Remark 3.5. In the case (V, A) = (P2, [1], ..., [k]) the constant K (V, A) represents
the threshold for the degrees of pencils having ‘large number’ of members with degrees
of components at most k. The ‘large’ means more than 12 but it is smaller for small k

(cf. § 4).

# outside of a finite subset B’ C P! the smooth fibres of the holomorphic map ® are diffeomorphic
and one has the inclusion R C B’. This pencil, of course, may have reducible fibres over points in C'\ R
and its components do not need to have classes in A.

8 ie. D —dcEff(V).
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Proof of Corollary 3.3. Consider the inequality (5) for o = 2 i.e.

2 e(V)
D? -2 A2 — =KD > .
> mid} - 3 3
We want to show that there is K(V, A) such it holds for D = > m,d; satisfying m; >
K(V, A) for all 4.
Let di € A be class such that d7 > 0. Let K(V, A) be the maximum of the real roots
of following polynomials f;(m) or 1 where

(14)

e(V)

2
fi(m) = m2d? — 2md3 — ngdl -

and

2
fi(m) = m?d? — 2md? — ngdZ-

for each i > 1 such that d? > 0.
Then for D =" m;d;, m; > K(V, A) for each i with d? > 0 one has f;(m;) > 0 and

using
D2 = Z m?df + Z mfdf + QZmimjdidj

i,d?>0 i,d7<0 i<j

one obtains:
e(V)
—2) mid; 3
= Z m?df +2 Zmimjdidj -2 Z mldf + Z (mZQ — 2m1)d12

i,d2>0 %,J i,d2>0 i,d?<0
e(V
- = E mde E mini— ( ) Z
3
i,d?>0 i,d?<0

(since there are no classes d? < 0, Kd; > 0 by assumption)

Z m2d2 -2 Z mzdf — ; Z ledz — % Z m; i 6(;/)

1,d?>0 i,d?>0 i,d?>0 J,d?<0,Kd; <0

> Zfi(mi) > 0.

The first inequality uses that m; = 1 for curves with d? < 0 as was pointed right after the
inequality (4) and the positivity of other dropped terms. Therefore, the inequalities (5)
and (13) are satisfied for a = 2. The latter implies that a pencil of curves in H(V, O(D))
has at most 11 reduced fibres with components having classes only in A. O

Finally, we will show Corollary 1.3.

Proof of Corollary 1.3. Parts (A) and (B) are an immediate consequence of
Theorem 1.2. We will show that the fundamental groups of the complements to a
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union of r + 1 members of a pencil have the form described in (C). Consider the map
7:V\D— P\ R, Card R = r + 1 corresponding to the pencil and let R = R|J S where
R (respectively S) are the images of singular (respectively smooth) fibres of . Let
D, C P! be a disk containing all critical values of 7 outside of R and let Dy C P! be
a disk intersecting D; at one point and containing R. Let H = (7~ 1(Dy)). The funda-
mental group of 7|,-1(p,) is isomorphic to the extension (1) since over Dy the map 7 is a
locally trivial fibration and 7o(D2 \ R) = 0. Finally, V' \ D can be retracted onto a union
of the preimages of Dy and D> and van Kampen theorem gives a presentation as the
amalgamated product with ¥ = 7=1(D; N Dy) i.e. the complement in a generic fibre, i.e.
a closed Riemann surface, to the set of base points of the pencil which is the extension of
7 to V. Since the set of isotopy classes of pencils in one of linear system HO(V, O(6)) is
finite and for a fixed pencil, each subgroup H is determined by the subset R of the total
set of critical points of S with reducible preimages, the finiteness claim follows. O

4. Pencils on P?

In remaining two sections, we will consider concrete examples of estimates of type of fibres
of pencils on surfaces for various choices of the types A of components of reducible curves
D C V. In many cases the thresholds M;(V, A), Ma(V, A) can be made more explicit.
In this section, we consider the case V = P2.

4.1. General estimates

In the case A = [1] C Z = NS(P?) one has M>(P?, A) = 3 (cf. [6, 10, 13, 19]). Indeed,
as was shown in these references, a pencil of curves can have at most four fibres which are
unions of lines unless this is a pencil of lines. If A is an arrangement of lines such that one
has an essential surjection (P2 \ A) — F}, in the sense described in assumption (**)
made in Preface, then the holomorphic map ® described in the proof of the Theorem
1.2 has r + 1 reducible fibres which union coincides with A (i.e. any line of A belongs
to one of these r 4 1 fibres of ®). If > 3 then the pencil must be a pencil of lines and
P2\ A is fibred over P! with r + 1 points removed and fibre isomorphic to C. Hence
T (P?\ A) = F,.

There are pencils of curves of arbitrary large degrees d containing arrangements of
lines with three fibres which are union of lines (for example the curves C, given by
equation A(z? — y?) + p(y? — 2¢) = 0 and hence finiteness of the number of pencils of
curves for which a union of reducible fibres is a union of lines and admits surjection
71 (P?\ Cy) — F, may take place only for r > 2 i.e. M;(P?, A) > 2. There is only one
known pencil of curves with four fibres which are unions of lines (pencil of cubics with
union of reducible fibres being 12 lines containing 9 inflection points of a smooth cubic).
Finiteness of the number of pencils with four fibres being a unions of lines is equivalent
to Ml(A) = 2.

Now consider the case Ay = {[1], ..., [k]} € NS(P?). Theorem 1.2 yields the following:

Corollary 4.1. There exists a function k — My, = My(P?, Ay,) € Z, such that a curve

C, having the degrees of each of its irreducible components at most k and such that there
is surjection i (P%2\ C) — F, where r > My, is a union C=C1U...UC,, s >r+1 of
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possibly reducible curves C;, 1 < i < s which are members of a pencil of curves of degree
at most k (i.e. C is composed of curves of a pencil of degree at most k).

Corollary 3.3 shows that the pencils of curves of degree d in P? have independent of
d or k bound on the number of fibres which are unions of irreducible curves of degree
at most k provided d > k. Proposition below makes it more explicit. It shows that the
maximal number p, (P?) of reducible fibres with degrees of components at most k (we
call such pencils k-reducible) in a pencils of curves of degree d > 2k is at most 11. Hence
the maximal rank of a free quotient of the fundamental group of the complements to a
union of members of a pencil of curves of degree greater than or equal to 2k, having the
degrees of irreducible components not exceeding k, is pgx(P') — 1. Since this does not
provide information about pencils of the curves of degree between k£ and 2k we have:

M +1> par(P?), par(P?) <11 (d> 2k).

Moreover, as follows from Corollary 4.3, the constant 9 in the theorem 1.4 can be
decreased: My (P2, Ay) < 6.

Proposition 4.2. Assuming d = nk + dy > 2k, 0 < dy < k (or equivalently n > 2),
one has the following universal bounds

6 ifk=2,
8 ifk=3,
par(P?) <9 ifk=4,5, (15)

10 if6 <k <11,
11 otherwise.

In particular K (P2, Ay) = 2.

Proof. In a pencil of curves of degree d = nk + djy, a reducible member with degrees of
irreducible components being at most k£ must have at least n components of degree k and
one component of degree dy and hence in notation used in inequality (13) taking as F; a
smooth curve of degree dy for one of these components and smooth curves of degree k for
the n remaining ones, one has d* —3d + >_ e(F};) > d* — 3d + n(3k — k?) + 3dy — d% =
(d —do)(d + dy — k). Therefore, we obtain from (13):

e(V)+3D? +2KD 6(d —1)2
par(P) < 250 < od -l

T~ D2+ KD+ e(F;) ~ (d—do)(d+do— k) 18)

The condition that a constant « is an upper bound of the right-hand term in (16) is
equivalent to positivity of the function

h(k,n, ) = nk((n — 1)k + 2do) o — 6(nk + do — 1)*
= (o — 6)k’n® + (12 + a(2dy — k) ) kn — 6.

(17)

For a = 12 (and n > 2) one has:
h(k,n,a) > 6 x 4k* 4+ (12 — 12k)k x 2 — 6 > 0

for k > 1. The rest of inequalities (15) follows by direct verification.
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The second part of the Proposition follows from inequality (17) as well. (]
Corollary 4.3. For the saturated set A, C NS(PP?) one has
2 < M;(P?,A) <3
2 < My (P? Ap) < M (P?,A) < 6,if k< K.

In other words, there is only a finite number of different pencils of curves with more than
six k-reducible fibres. Alternatively, for r > 5 there are only finitely many curves, with
components of degree at most k and not composed of a pencil, admitting a surjections
7 (P?\ D) — F,.

Proof. Indeed for o > 6 and fixed k, the function h(k, n, «) in (17) takes only finitely
many negative values. (|

Corollary 4.4. The maximal number of reducible curves pgqq—1(P?) in a primitive
base-component-free pencil of degree d is at most 3(d — 1) and there exist pencil of curves
of degree d with 3(d — 1) reducible fibres. In particular My (Ay) > 3k — 1.

Proof. It is an immediate consequence of the bound (16):

3(d — 1)2} . [ 6(nk + do — 1)2

pai(P?) < [ nk((n — 1)k +2do) |’

Erel,k

applied to the particular case k = d — 1, that is, n =1 and dy = 1. The existence is a
consequence of the example of a pencil due to Ruppert. (]

4.1.1. Ruppert’s example

For the sake of completeness, we will briefly discuss the sharpness of the linear bound
given in Corollary 4.4. Ruppert described in [14] a pencil of curves of any degree d with
exactly 3(d — 1) reducible fibres. Consider the net A/ in P? given by the following curves
C) of degree d defined by the equation:

Fx(wo, w1, 22) = Aozo(x{ " — 257 + Man (2§ " — 2§ ") 4+ Aowa(a) ' — a7

for any A = [Ag : A1 : A2] € P2. One has the following properties:

(1) The curves Cji.0:0), Cjo:1:0), and Co:g:1) are products of d lines xi(x?_l —xi_l),

{i, 3, k} = {0, 1, 2}.

(2) The generic member of A is smooth. In order to check this note that

C1:0:0) N Cpo:1:0) N Clo:0:1]
={Py=[1:0:0,P,=1[0:1:0,P,=[0:0:1],Q;; =[1:¢":¢]},

where (971 = 1 are the (d — 1)2 + 3 < d? base points of this net. By direct calcula-
tion of the Jacobian of F), one can check that the base points are the only singular
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points of Cy for a finite number of values of A and hence by Bertini’s Theorem, the
generic member is smooth.

(3) The curve C, is reducible if X satisfies S(\) = 0 where S()) is the degree 3(d — 1)
polynomial
SO =g = ATHAT =T8T = A8,

In other words, the net A intersects the discriminant variety D in its locus of
reducible curves and the intersection splits as a product of 3(d — 1) lines.

(4) A pencil in NV is given as P = {C\ € N | L(\) = 0}, where L is a linear form. If
L(\) is in general position with respect to S(A), then L(\) defines a pencil with
exactly 3(d — 1) reducible fibres.

(5) Moreover, if Cy is a generic point of N'ND, then C, is the union of a line and a
smooth curve of degree (d — 1).

4.2. Examples of pencils with a maximal number of members composed of
quadrics

Let
pr(P?) := max{par(P?) | d > 2k}. (18)

It follows from [10, 13] that p;(P?) =4 and the arrangement of 12 lines containing 9
inflection points of a smooth cubic provides an example of a pencil with four fibres which
are unions of lines. Our purpose in this section will be to study po(P?).

4.2.1. The bound pg

By Corollary 4.4, we know that ps2(P?) =6 and (15), which is applicable for the
remaining d, shows that pg2(P?) <6 for all d > 4. It is the purpose of this section to
make this into an equality by constructing a pencil of quartics with six quartics composed
of quadrics.

Consider a pencil of conics A in general position and three lines L, Lo, L3 such that
there exist three conics C4, Cy, C5 € A such that L; is tangent to C; and C} with
{i, j, k} = {1, 2, 3}. This can be achieved for instance with the pencil A = {a(2? — 2?2) +
B(y? — 2%)}, the lines

L1:\/§x+i\/§y+\/§z, L2=2$—|—iy—|—\/§z, L3=\/§x+\/§y—3z
and the conics
Cr=a2+ 22— 322, Cp=20%+12— 322, C3 =227 — 92 — 22,

Let s denote the Kummer cover of order two associated with the abelian Zy X Zs-cover
ramified along L, Lo, and L3 (i.e. associated with surjection (P2 \ U? L) — Z3)Zs
sending the meridian of L; to the i-th component of Z3; in appropriate coordinates it is
P2 — P? given by [xg, 21, 22] — [22, 2%, 23]). Note that A’ = x*(A) becomes a pencil of
quartics intersecting transversally at the 16 points in the preimage of the base points of
A and also that *(C;), i = 1, 2, 3 is a union of two conics. Finally, note that A contains
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3 singular fibres C/, i = 1, 2, 3 which are products of two lines. Hence, x*(C/) is also a
product of two conics intersecting transversally.

Additivity of Euler characteristic or the main result of [7] allows to relate the Euler
characteristic of the surface V', the Euler characteristic of the generic fibre e (to) (a
Riemann surface of genus (4;1) = 3), and the relative Euler characteristic of the singular
fibres e, as follows:

e(X)=3+|B|=3+16=e(P")es(to) + 6erer +n =2 (—4) +6-4+n,

where n is the relative Euler characteristic of the remaining singular fibres. Hence n = 3,
which is the number of additional nodal quartics in the pencil A’.

Proposition 4.5. The pencil A’ above is a primitive base-component-free pencil of
quartics with six members being unions of quadrics. Therefore, Mo + 1 = py(P?) = 6.

5. Completely reducible fibres of pencils on surfaces in P3

The purpose of the remaining section is to exhibit examples of pencils on surfaces with
a large number of completely reducible divisors as well as bounds which follow from the
calculations in §3.

We shall start with the case V =P! x P!, A = {(1, 0), (0, 1), (1, 1)}. Consider as a
lower bound for )" e(F;) in (13) the case when a completely reducible fibre consists of n
smooth curves in the class (1, 1) and m — n smooth curves in the class (1, 0). Then the
sum of the Euler characteristic of its irreducible components F; satisfies 2m <) e(F}).

Therefore,
e(V)+3D?+2KD _y 44 6mn —4m — 4n <22+3mn—2m—2n<6
D2+ KD+ e(F;)  “2mn—2m—2n+> e(F};) mn—n

i.e. the number of completely reducible fibres does not exceed 6.

We will show that My (P! x P, A) >3, My(V, A;) = 4 for smooth cubic surfaces and
that My(V, A) can be arbitrarily large for general surfaces in P? for appropriate saturated
sets A on respective surfaces (A; is the set of classes of lines on a cubic surface).

5.1. Generalized Hesse arrangements on P! x P!

The purpose of this section is to exhibit an example of a pencil of curves on P' x P!
with four completely reducible fibres, showing that Hesse pencil on P? is not the only
such pencil on a rational surface. We shall use geometric interpretation of the group law
on cubic curve i.e. that selecting an inflection point as the zero, a triple of points adds
up to zero if and only if the triple is collinear (cf. [18]).

5.1.1. A special configuration of points

Consider 9 points on a smooth cubic C C P? satisfying Pascal’s Theorem as in Figure 1:
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Figure 1. Pascal Point Configuration.

Note that such a configuration of points would have to satisfy the following relations
in the Picard group of the cubic:

P+P+Q1 =0, P+P+Q =0,
P+ P3+Q2=0, Ps+F+Q2=0, (19)
Py+P+Q3=0, P+F+Q3=0.

In other words P+ Py1 +Q; =0, i € Zg, j € Z3 and (i) = j, where w: Zg — Z3 is
reduction modulo 3. By Pascal’s Theorem

Y Pi=0, > Q=0 (20)

We also ask for three additional relations involving the diagonals:

P+ P+ Q2 =0,
Py +Ps+ Q3 =0, (21)
P3+Ps+ Q1 =0.

Definition 5.1. Any configuration of 9 points on a smooth cubic satisfying (19), (20),
and (21) will be called a special Pascal configuration of points.

Lemma 5.2. If a six-tuple of points Py, ..., Ps forming complete intersection of conic
and a smooth cubic C satisfies (19), (20) and (21), then @); are collinear inflection points
of C. Vice versa, if Q;, j =1, 2, 3 is triple of collinear inflection points and P; # (); is
a point which order as a point of elliptic curve is non-equal to 2, then there exist 5
additional distinct points Py, i’ # 4, 1 <4’ < 6 such that relations (19), (20) and (21) are
satisfied.
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Proof. Let P;, Q; be a collection of points satisfying (19), (21), (21). By symmetry,
it is enough to show 3Q; = 0. Adding the relations in the first row of (19) and the last
relation in (21), we obtain:

Po+ P+ P+ P+ P+ P +3Q1=0

and hence, the first relation in (20) yields the claim.

Vice versa, again by symmetry, it is enough to show that a choice of P; always deter-
mines remaining 5 points P; satisfying above relations. Since P; is not a point or order
2, it follows that the solution to the first relation in (19) satisfies P» # P; and the order
of P, is not equal to 2. Hence, the first five relations (19) allow to determine the points
Py, ..., Ps. Since Q; are collinear, we have the second relation (20) adding three relations
not containing common P;; among the 5 used to determine points P this gives the first
relation (20) and hence the last relation (19). Finally, adding two relations in the first row
of (19) and using (20), we obtain the last relation (21) and the remaining relations (21)
follow. O

Proposition 5.3. For any smooth cubic C, there is a family of special Pascal
configurations of points parametrized by a Zariski open subset of C.

Proof. It follows from the proof of previous Lemma since any choice of inflection
points Q;, i =1, 2, 3, Q1 + Q2 + @3 = 0 and P, ordP # 2 determines uniquely a special
Pascal configuration. O

Generically, the three lines defined by (21) intersect in three double points, the conic
defined in (20) is smooth, and intersects the line also defined in (20) transversally.

Consider the pencil of cubics generated by Cy := L12 U L34 U L56 and Cy := Lo3 U Ly5 U
L6, where L;; is the line passing through P; and P;. Note that the original smooth
cubic C belongs to such a pencil and so do C3 := L£14 U Lo5 U L35 and the union of the
conic Q passing through Py, ..., Ps and the line £ passing through @1, Q2, Q3. In other
words, one can find equations C;, @, L of respective curves C;, Q, i = 1, 2, 3, £ such that
C3=C; —Cyand QL = Cy + (5.

Proposition 5.4. After blowing up the base points, the pencil of cubics described
above induces an elliptic surface which is generically of type Iy + I + 313.

Proof. The existence of I and 313 is given by hypothesis, then by a standard Euler
characteristic computation, there should be an additional fibre of type I;. O

Example 5.5. Equations for Figure 2 can be given as:
C1 = 2y + (—2V3+2)2)(V3z +y + V32)(—V3z + y + V32)
Co = (2y+22)(V3z +y — V32)(—V3z +y — V32)
O3 = (V3 —y—(2-V3)2)(V3z +y+ (2—V3)2)y
Q=322 +3y> - 322 +2(2 - V3)yz
L=z
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Figure 2. Special Pascal Point Configuration of type I1 + I2 + 313.

Proposition 5.6. The types of the singular fibres of rational elliptic surfaces corre-
sponding to the pencils given by the special Pascal configurations in Zariski open set in
Proposition 5.3 which are not of generic type I + Iy + 315 are as follows:

(1) I+ 203+ 1V
(2) 4I.

Proof. By hypothesis, we know that three singular fibres of a pencil of cubic curves
forming a special Pascal configuration are unions of lines. Hence, the types of the singular
fibers of the corresponding rational elliptic surface are I3 or IV and since a fourth singular
fibre of the pencil of cubics contains a line, the singular fibre of elliptic surface is of type
Iy, I3, II1, or I'V. Since the sum of Euler characteristics of the fibres is equal to 12, there
can only be three possibilities: 413, Is + 215+ IV, and 313 + I[11. A surface of type 413
corresponds with the Hessian pencil, which comes from the choice of P; as an inflection
point. A surface with configuration Iy + 2[3 4+ I'V appears when the three lines in Cs are
concurrent. Finally, the surface with configuration 313 + I'11 does not exist according to
Miranda’s list of rational elliptic surfaces (cf.[12, p.197, item 92.]). |

Example 5.7. The special Pascal configuration of type Is + 213 + IV can be realized
as the set of zeroes of:

C1 = (2y — V32)(V3z + y + V32)(—V3z + y + V32)
Cy = (2y + V32)(V3z +y — V32)(—V3z +y — V32)
Cs = (3 — V3y)(3z + V3y)y
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Q=a+y?— 22
L=z

5.1.2. Generalized Hesse arrangements on P! x P!

Consider a double cover § of P? ramified along a smooth conic which is tangent to
quadric Q defined before Proposition 5.4 at 2 distinct points. The rational surface which
realizes this covering is a ruled surface P! x P!. Any irreducible component in the preim-
age of a line in P? by § has bidegree (1, 1), (1, 0), or (0, 1) according to the relative
position of the ramification locus and the line.

Definition 5.8. We say a curve in P' x P! is completely reducible if it is a union of
irreducible components all being in the set A consisting of 3 classes: (1, 1), (1, 0), or
(0, 1).

Theorem 5.1. There exist pencils on P' x P! with four completely reducible fibres.

Proof. Consider a special Pascal configuration of type Iy 4+ Is + 313 or Iy + 215 + IV
and a double cover § of P? ramified along a smooth conic, which is bitangent to Q. Then
the pencil of cubics described above induces a pencil of curves of genus four on P! x P!,
The preimage of the Iy-fibre becomes two (1, 1)-curves as preimage of the conic Q and
one more (1, 1)-curve as a preimage of £. The preimage of the I5-fibres is a union of three
(1, 1)-curves. O

Example 5.9. Consider the special Pascal configuration of type Is + 213 + IV pro-
vided in Example 5.7 and the covering & : P* x P! — P? given by: §([u, v], [s, t]) =
[2(ut + vs), us — vt, us + vt], which ramifies along {x? + 4y? = 422} (a conic which is
bitangent to Q = {z% + y? = 22}). Note that:

0" (C) = (6ut+6’u57(3+\[)u57 (3-— \f’ut)
(6ut+6vs+(3+\f)us+ (3—3) t) (vt— (7- 4\[)us)

5 ( :(Gut+6vs—(3 V3)us — ( 3+\fvt)
(6ut +6vs + (3 — V3)us + (3 + \/§)ut) (vt —(7T+ 4\/§)us>
- (6ut +6vs — V3us + V3 ut) (6ut + 6vs + V/3us — \/§vt) (us — vt)
“(Q) = (2ut — (1 — V=3)vs) (2ut — (1 + V—=3)vs)
5 (L) = us + vt

Corollary 5.10. In notation of the Corollary 3.3, one has the bound K(D =
(d, 1), A, (P x PY) > K(D = (3, 3), A, P! x P') > 4.

Moreover, primitive pencil with zero-dimensional base locus ¢ : P! x P! --s P! of
bidegree (3, 3) and pencils confirming the equality K((3, 3), A, P! x P') =4 are not
unique.
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5.2. Completely reducible fibres on a cubic surface

Let V be a smooth cubic surface in P2. The subsets A; C NS(V) consisting of the
classes of 27 lines (generating the closure of the effective cone (cf. [4], p.485, section 9.1)
is saturated.

Proposition 5.11. Let V C P? be a smooth cubic as above, then My(V, A;) = 4.

Proof. The pencil of planes in P? containing a fixed line induces a base point free
pencil of residual for this line plane quadrics with five reducible fibres each consisting of
two lines (cf. [4], section 9.1). On the other hand, inequality (13) or Corollary 1.5, applied
to divisor D = H — L (here H is the class of a hyperplane section and L is the class of
the fixed line) and using D? =0, KD = =2, e(F}) =2, j =1, 2, e(V) = 9, gives

e(V)+3D? +2KD

1<2 =5 22
TSt D KD 1S () (22)
(summation over the irreducible components of a single member of the pencil). Therefore,
Ms(V, A1) = 4. For such Ay, there are no pencils with members in a class 6 € Ay. O

5.3. Completely reducible fibres of pencils on surfaces of higher degree

Proposition 5.12. For any positive integer d, there is a surface Sq C P? of degree d
and a pencil on it containing at least d completely reducible curves i.e. the curves with
all irreducible components being lines.

Proof. The following is a well-known fact about the construction of surfaces con-
taining a large number of lines (cf. [15]). Consider f(z, y) and ¢(z, t) two homogeneous
polynomials of degree d with no multiple roots, then the surface

Spg={lz:y:2:t] P’ | f(a,y) =g(z 1)}

contains at least d? lines, namely all the lines L;j,1,7=1,...,d joining a point P; =
[; :y; : 0:0] and a point Q; = [0:0: z; : t;] where f(z; : y;) = g(z;, t;) = 0.

The pencil of hyperplanes containing the line L = {& =y = 0} induces a pencil of
curves on Syq. Given any point P;, the hyperplane H; = {y;x = z;y} containing P; has
to contain the lines L; 1, ..., L; 4. Therefore, this pencil contains at least d completely
reducible fibres. O
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