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The existence of an infinite class of buoyant flows in a vertical porous channel with
adiabatic and impermeable boundary walls, called adiabatic eigenflows, is discussed.
A uniform heat source within the saturated medium is assumed, so that a stationary
state is possible with a net vertical through-flow convecting away the excess heat. The
simple isothermal flow with uniform velocity profile is a special adiabatic eigenflow
if the power supplied by the heat source is zero. The linear stability analysis of the
adiabatic eigenflows is carried out analytically. It is shown that these basic flows are
unstable. The only exception, when the power supplied by the heat source is zero, is
the uniform isothermal flow, which is stable. The existence of adiabatic eigenflows and
their stability analysis is extended to the case of spanwise lateral confinement, viz. in
the case of a vertical rectangular channel. A generalisation of this study to a vertical
channel with an arbitrary cross-sectional shape is also presented.

Key words: Bénard convection, buoyancy-driven instability, convection in porous media

1. Introduction
A well-established aspect of fluid mechanics is that stationary solutions of the

governing equations for fluid flow may exist that are unlikely to be observed in a
laboratory experiment. The reason is that such solutions can be unstable to external
perturbations, at least in a given parametric domain. A wealth of scientific papers and
textbooks discuss this point, with reference either to purely hydrodynamic instability
or to thermal instability (see e.g. Drazin & Reid 2004).

The issue of thermal instability in saturated porous media is widely discussed in
§§ 6 and 7 of Nield & Bejan (2013), as well as in Rees (2000), Tyvand (2002) and
Barletta (2011). In the special case of vertical plane channels, Gill (1969) proved
that the cellular stationary flow, arising when a temperature difference is maintained
between the impermeable and isothermal boundary walls, is always stable. Later on,
the same conclusion was retrieved by other authors (Rees 1988; Straughan 1988;
Lewis, Bassom & Rees 1995; Rees 2011; Scott & Straughan 2013), who extended
Gill’s analysis by including effects such as a finite value of the Prandtl–Darcy number,
or the lack of local thermal equilibrium between fluid and solid phases.

The stable nature of flow in a vertical plane porous channel changes dramatically
if the temperature boundary conditions are turned from isothermal to isoflux. With a
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Adiabatic eigenflows in a vertical porous channel 779

net heat supply, a non-vanishing vertical temperature gradient arises in the basic flow
state. This situation has been studied by Barletta (2013), and the results have been
extended to a vertical porous channel with a circular cross-section (Barletta 2014).
The basic solution, in these cases, entails necessarily a net flow rate in order to
ensure convection of the excess heat supplied through the boundaries under stationary
conditions. Two regimes exist for the basic flow: one termed buoyancy-assisted flow,
and one termed buoyancy-opposed flow. While the former regime yields a positive
temperature gradient in the upward direction, the latter yields a negative one and,
hence, a potentially unstable thermal stratification. In fact, the conclusion drawn by
Barletta (2013, 2014) is that buoyancy-assisted basic flows are linearly stable, while
buoyancy-opposed basic flows are unstable.

Another porous channel set-up that implies an unstable thermal stratification is one
where an internal heat source in the saturated medium exists and the boundary walls
of the vertical channel are thermally insulated. As in the case of isoflux boundaries,
the only chance for a stationary state is that the excess heat is convected away, in
the vertical streamwise direction, by a prescribed flow rate. This paper studies such a
set-up. The nature of the basic stationary regime is more complicated than in previous
studies, as there are infinitely many allowed stationary flows. Among them, when
the internal heat source is absent, the simplest case is the isothermal flow with a
uniform velocity profile. The governing equations and boundary conditions lead to a
differential problem for the basic state having the nature of an eigenvalue problem,
and this motivates the term used in the title of this paper: adiabatic eigenflows. A
linear stability analysis of adiabatic eigenflows is carried out, revealing that they are
unstable in any case. When the internal heat source is absent, the only exception is
the uniform and isothermal flow, which is stable. Then, this result is extended to the
case where a lateral confinement exists in the spanwise direction, so that the plane
channel is in fact a rectangular channel. Finally, the existence and the instability of
adiabatic eigenflows are investigated for a vertical porous channel having an arbitrary
cross-sectional shape. We mention that Hewitt, Neufeld & Lister (2013) recently
carried out a two-dimensional stability analysis where the basic solution has strong
mathematical analogies with the adiabatic eigenflows studied here. These authors were
in fact interested in the buoyancy-driven convection in an unbounded porous medium
with no internal heat sources. Hewitt et al. (2013) denoted their basic solution as
‘heat-exchanger flow’.

The basic physical argument behind the forthcoming study is the following. We
know that a net (uniform) heat supply from the boundary walls in a vertical porous
channel can be steadily convected away by a parallel flow, and that this flow may be
stable if the flow direction is buoyancy-assisted. This problem has been investigated
by Barletta (2013, 2014). If the heat supply is provided by a uniform internal heat
source, and the heat transfer through the boundary walls is blocked, is it then possible
to convect away the excess heat by a stationary (and stable) parallel flow? The answer
to this basic, but non-trivial, question is the main physical motivation of our work.
Several possible applicative contexts where seepage flows with an internal heat source
emerge can be mentioned. An example is the design of packed bed reactors where the
heat source is a result of exothermic chemical reactions. The influence of radioactive
heat sources on convection processes in the Earth’s mantle and lithosphere is another
example.

2. Problem formulation
Our aim is the analysis of buoyant flow in a vertical porous channel with plane,

impermeable and adiabatic walls separated by a distance `. As shown in figure 1, the
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FIGURE 1. Sketch of the porous channel.

x∗-axis is horizontal, while the y∗-axis is vertical. We consider the porous medium
as homogeneous and isotropic, assuming that the saturating fluid is in local thermal
equilibrium with the solid. Internal heating takes place within the saturated porous
medium, caused by a uniformly distributed source that supplies a power Q per unit
volume.

The physical scheme adopted here to model the buoyant flow is based on Darcy’s
law and on the Oberbeck–Boussinesq approximation.

2.1. Governing equations
The governing equations are expressed as

∇ · u = 0, (2.1a)
∇× u = ∇× (T êy), (2.1b)

∂T
∂t
+ u · ∇T = ∇2T + R, (2.1c)

where u is the dimensionless velocity, T is the dimensionless temperature, t is the
dimensionless time, and R is the Rayleigh number associated with the internal heat
source. The dimensionless velocity components along the dimensionless coordinate
axes (x, y, z) are denoted by (u, v, w), respectively. Equation (2.1b) is the vorticity
formulation of Darcy’s law including the buoyancy body force, obtained by taking
the curl of both sides of the local momentum balance equation.

Here, the dimensionless quantities have been defined from the corresponding
dimensional (starred) quantities as

(x∗, y∗, z∗)
1
`
= (x, y, z), t∗

~

σ`2
= t,

(u∗, v∗,w∗)
`

~
= (u, v,w), (T∗ − T0)

gβK`
ν~
= T,

 (2.2)
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Adiabatic eigenflows in a vertical porous channel 781

where ~ is the average thermal diffusivity, σ is the ratio between the average heat
capacity of the saturated porous medium and the heat capacity of the fluid, K is the
permeability, g is the modulus of the gravitational acceleration g, β is the thermal
expansion coefficient of the fluid, and ν is its kinematic viscosity. The Rayleigh
number is defined as

R= gβQK`3

ν~λ
, (2.3)

where λ is the average thermal conductivity of the porous medium.
The boundary conditions are given by

x= 0, 1: u= 0,
∂T
∂x
= 0. (2.4a,b)

2.2. Adiabatic eigenflows
A time-independent basic solution of (2.1) and (2.4) can be expressed as

∇Tb = F(x)êx − α2êy, ub =G(x)êy, (2.5a,b)

where ‘b’ stands for ‘basic solution’.
Equation (2.5) describes a stationary parallel flow along the vertical y-axis, endowed

with a uniform temperature gradient in the streamwise direction. One may conceive
this vertical temperature change as partly induced by the internal heat source, and
partly caused by a temperature difference imposed between the far-away upstream and
downstream regions. The latter cause is that giving rise to a non-vanishing α2 in the
special limiting case where the heat source is switched off, R→ 0. Further details on
this point are given in appendix A.

We obtain from the governing equations (2.1),

G′(x)= F(x), −α2G(x)= F′(x)+ R, (2.6a,b)

where primes denote derivatives with respect to the argument of the function. On
combining the two equations, we get

F′′(x)+ α2F(x)= 0. (2.7)

Thus, the solution satisfying the boundary conditions (2.4), namely

F(0)= F(1)= 0, (2.8)

is given by

F(x)= Aα sin(αx), G(x)=−A cos(αx)− R
α2
,

α = nπ, n= 1, 2, . . . .

}
(2.9)

The nature of (2.7) and (2.8) discloses the reason why, in (2.5), we assumed
∂Tb/∂y 6 0. A positive value of ∂Tb/∂y would have in fact precluded the possibility
of satisfying (2.1) and (2.4).

It must be mentioned that, if we set R= 0, there exists an extra solution. It is the
solution with n= 0. It yields, on account of (2.9), F(x)= 0 and G(x)=−A. As can
be inferred from (2.5), it is the stationary uniform velocity profile with a uniform
temperature field, in short, the uniform isothermal flow. For every non-vanishing and,
nonetheless, arbitrarily small R, the uniform isothermal flow is not allowed. Hereafter,
this very special solution will be tacitly ignored except in § 3.2, where we will show
that the uniform isothermal flow is linearly stable, as expected.
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The average velocity through the channel cross-section, on account of (2.9), is given
by ∫ 1

0
vb dx=

∫ 1

0
G(x) dx=− R

α2
. (2.10)

Therefore, for any prescribed R> 0, we have an infinite class of parallel flows with
a downward-oriented average velocity. Each flow is labelled by the integer n, and by
the real parameter A.

Hereafter, the dependence on n is explicitly indicated, with the notation
{Fn(x),Gn(x)}.

The physical meaning of A is related to the average kinetic energy En within the
channel,

En = 1
2

∫ 1

0
Gn(x)2 dx= A2

4
+ R2

2π4n4
. (2.11)

Since these basic parallel flows are actually obtained by the solution of an eigenvalue
problem, (2.7) and (2.8), they can be called adiabatic eigenflows. Adiabatic eigenflows
exist for every choice of the governing parameters (n, A, R). They can exist even in
the special case R→ 0 when the internal heat source is switched off. Another special
case is A = 0 with R > 0, where the basic velocity profiles Gn(x) are uniform, for
every n, but the vertical temperature gradient is non-zero.

The existence of adiabatic eigenflows entails the vertical temperature gradient
assuming discrete special values, and likewise for the average flow velocity as well
as for the average kinetic energy. The mathematical analogy with what happens
in a quantum mechanical system, say an electron in an infinite potential well (see
e.g. Gasiorowicz 2003), is striking. We also mention that the possible existence of
adiabatic eigenflows was previously predicted by Barletta et al. (2008).

A physical discussion of the adiabatic eigenflows, for the special case R = 0,
is provided in appendix A, where these flows are regarded as the mid-region of
Rayleigh–Bénard cells in a tall rectangular cavity.

The peculiar nature of adiabatic eigenflows, being endowed with a negative
temperature gradient in the upward direction, suggests that these flows could be
hardly observable in a real laboratory experiment, owing to their possible instability.
An important information to this end comes from the stability analysis versus
small-amplitude perturbations.

As explicitly declared from the beginning, our concern is to check the existence
of stationary parallel flows. However, a very simple unsteady solution of (2.1) and
(2.4) is worth mentioning. This solution is with T = Rt + const. and any uniform,
constant and parallel velocity field u arbitrarily oriented in the (y, z)-plane. Hereafter,
this solution is not further considered in this paper.

The basic solution given by (2.5) and (2.9) is quite similar to the basic flow state
considered by Hewitt et al. (2013) and termed ‘heat-exchanger flow’. The system
studied by Hewitt et al. (2013) is in fact an unbounded two-dimensional porous
medium, where no heat source is present. Thus, their basic solution mathematically
coincides with (2.5) and (2.9), provided that R = 0 and that the eigenvalue α has a
continuous spectrum.

3. Linear stability analysis
We now perturb the adiabatic eigenflows, (2.5) and (2.9), by arbitrary disturbances

modulated by a small parameter, ε� 1. Thus, we write

T = Tb + εT̃, u= ub + εũ. (3.1a,b)
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Adiabatic eigenflows in a vertical porous channel 783

Here, T̃ is the temperature perturbation, and ũ= (ũ, ṽ, w̃) is the velocity perturbation.
Substitution of (3.1) into (2.1) and (2.4) yields

∇ · ũ= 0, (3.2a)
∇× ũ=∇× (T̃ êy), (3.2b)

∂T̃
∂t
+ Fn(x)ũ− n2π2ṽ +Gn(x)

∂T̃
∂y
=∇2T̃, (3.2c)

x= 0, 1: ũ= 0,
∂T̃
∂x
= 0. (3.2d)

In (3.2), terms O(ε2) have been neglected and use has been made of (2.5) and
(2.9). Equation (3.2b) is identically satisfied by assuming the existence of a pressure
perturbation field, P̃, such that

ũ= T̃ êy −∇P̃. (3.3)

By employing (3.3), one may reformulate (3.2a), (3.2c) and (3.2d) as

∇2P̃= ∂T̃
∂y
, (3.4a)

∇2T̃ = ∂T̃
∂t
− Fn(x)

∂P̃
∂x
− n2π2

(
T̃ − ∂P̃

∂y

)
+Gn(x)

∂T̃
∂y
, (3.4b)

x= 0, 1: ∂P̃
∂x
= 0,

∂T̃
∂x
= 0. (3.4c)

3.1. Normal modes
The analysis of the linearised perturbation equations (3.4) is carried out by a normal
mode expansion of the perturbations, where the normal modes are independent of each
other and given by {

P̃(x, y, z, t)
T̃(x, y, z, t)

}
=
{

f (x)
h(x)

}
eηt ei(kyy+kzz), (3.5)

where ky and kz are real parameters expressing the y-component and the z-component
of the dimensionless wavevector, respectively. The complex parameter η is such that
its real part, Re(η), is the growth rate and marks the unstable nature of the normal
mode when it is positive, while Re(η) < 0 means stability and Re(η) = 0 neutral
stability. On the other hand, the imaginary part, Im(η), defines the dimensionless
angular frequency as ω=−Im(η).

Each normal mode must satisfy (3.4), so that we obtain the system of ordinary
differential equations

f ′′ − k2f − iγ kh= 0, (3.6a)
h′′ − [k2 + η− n2π2 + iγ kGn(x)]h+ Fn(x)f ′ − iγ kn2π2f = 0, (3.6b)

with the boundary conditions

f ′(0)= f ′(1)= 0, h′(0)= h′(1)= 0. (3.7a,b)
Here, the wavenumber k and the parameter γ are defined as

k= (k2
y + k2

z )
1/2, γ = ky

k
. (3.8a,b)
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784 A. Barletta and L. Storesletten

Longitudinal modes are the normal modes with ky = 0 (or, equivalently, γ = 0);
transverse modes are the normal modes with kz=0; and oblique modes are the general
normal modes defined by (3.5).

3.2. Uniform isothermal flow
In § 2.2, we mentioned the very special basic solution with R = 0, such that
n = 0, G0(x) = −A and F0(x) = 0. In this case, (3.6) and (3.7) run into a dramatic
simplification, namely

f ′′ − k2f − iγ kh= 0, (3.9a)
h′′ − (k2 + η− iγ kA)h= 0, (3.9b)

f ′(0)= f ′(1)= 0, h′(0)= h′(1)= 0. (3.9c)

These equations can be solved analytically. The solution is given by

f (x)=− iγ k
k2 +m2π2

cos(mπx), h(x)= cos(mπx) m= 0, 1, 2, . . . , (3.10a,b)

subject to the dispersion relation

η=−k2 −m2π2 + iγ kA. (3.11)

Equation (3.11) allows one to obtain

Re(η)=−k2 −m2π2, ω=−Im(η)=−γ kA. (3.12a,b)

The conclusion that may be immediately drawn from (3.12) is that Re(η) cannot be
positive, so that the uniform isothermal flow is linearly stable.

3.3. Longitudinal modes
If we set γ = 0, (3.6) and (3.7) are drastically simplified, namely

f ′′ − k2f = 0, (3.13a)
h′′ − (k2 + η− n2π2)h+ Fn(x)f ′ = 0, (3.13b)
f ′(0)= f ′(1)= 0, h′(0)= h′(1)= 0. (3.13c)

Equations (3.13) can be solved analytically, thus obtaining

f (x)= 0, h(x)= cos(mπx), with m= 0, 1, 2, . . . , (3.14a,b)

subject to the dispersion relation

η= (n2 −m2)π2 − k2. (3.15)

It is evident from (3.15) that, for the establishment of instability (η > 0), the most
effective among the longitudinal m modes defined by (3.5) and (3.14) are those
corresponding to the lowest m, namely m=0. This reasoning leads us to the instability
condition

k2 < n2π2. (3.16)
We recall that n = 1, 2, 3, . . ., so that (3.16) can be satisfied for all adiabatic
eigenflows, provided that the wavenumber k is small enough.

The conclusion is that all adiabatic eigenflows are unstable to the longitudinal
modes with m= 0. In fact, every real positive wavenumber k lies within the spectrum
of a random small-amplitude perturbation produced in a laboratory experiment and,
hence, also those wavenumbers k satisfying inequality (3.16).
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3.3.1. Lateral confinement
The above stated conclusion is based on the assumption that the spanwise width (viz.

the width along the z-axis) is infinite. If this assumption is perfectly reasonable on
theoretical grounds, it may not be perfectly reliable when comparing the mathematical
predictions about stability with experimental observations. In a practical case, the
vertical channel is not infinitely wide in the spanwise direction, even if its spanwise
width may be large enough if compared to the distance between the parallel bounding
walls. Thus, a more realistic assumption may be a finite aspect ratio, s, between
the spanwise width and the distance between the bounding walls. Following this
assumption, the transverse cross-section of the channel becomes a two-dimensional
rectangular domain,

x ∈ [0, 1], z ∈ [0, s], (3.17)

with the lateral walls at z = 0, and z = s assumed to be adiabatic and impermeable
inasmuch as the walls at x = 0 and x = 1. In other words, one must satisfy the
additional conditions

z= 0, s: ∂P̃
∂z
= 0,

∂T̃
∂z
= 0. (3.18a,b)

The consequence is that the whole procedure described in §§ 3.1 and 3.3 is still valid
provided that the factor exp(ikzz) in (3.5) is replaced by cos(kzz), where kz = pπ/s
with p= 0, 1, 2, . . . .

Now, the consequences of inequality (3.16) have to be reassessed. In fact, this
inequality has to be rewritten as

p2

s2
< n2, (3.19)

which is satisfied for every adiabatic eigenflow with n= 1, 2, 3, . . . , if we set p= 0
or, equivalently, kz = 0.

Even in the presence of a lateral confinement in the spanwise direction, we conclude
again that all adiabatic eigenflows are unstable to longitudinal modes. This conclusion
is independent of the aspect ratio s, as (3.15) can always be satisfied with p= 0. The
preferred mode of instability is one with m = 0 and p = 0, meaning, on account of
(3.5) and (3.14), a perturbation given by{

P̃(x, y, z, t)
T̃(x, y, z, t)

}
=
{

0
1

}
eηt, (3.20)

or equivalently, on account of (3.3),
ũ(x, y, z, t)
ṽ(x, y, z, t)
w̃(x, y, z, t)
T̃(x, y, z, t)

=


0
1
0
1

 eηt. (3.21)

Equation (3.21) implies a uniform time growth of the vertical velocity component,
vb + εṽ, and of the temperature, Tb + εT̃ . It is worth mentioning that, in (3.20), one
could equally well write P̃(x, y, z, t) = const. × eηt, where the constant is arbitrary.
The reason is that (3.13a) and (3.13c) can be satisfied with any constant value of f ,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

26
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.260


786 A. Barletta and L. Storesletten

FIGURE 2. Arbitrary cross-sectional shape of the channel.

when kz = k= 0. This evidence has no effect whatsoever on the validity of (3.21), as
(ũ, ṽ, w̃) are defined, by (3.3), only through the spatial derivatives of P̃.

We have established that, with or without lateral confinement, there exist normal
modes leading to the instability of all adiabatic eigenflows, for every assignment of
(n, R, A). These normal modes are of the longitudinal type. However, other oblique
modes may actually be preferred when instability develops. An analysis of this issue
is beyond the scope of the present study, even if it is an interesting opportunity
for future research. As pointed out by Hewitt et al. (2013), transverse modes may
display the highest growth rate at sufficiently large values of parameter A. This
feature, relative to an unbounded porous domain, could possibly emerge also in a
channel with adiabatic walls. A definitive pronouncement on this matter may be
obtained only by a numerical solution of the governing equations for the disturbances.
The response from this analysis does not alter in any case the conclusion we have
reached from the analysis of longitudinal rolls: all adiabatic eigenflows are unstable.
Thus, in the following, we will not carry out the analysis of the reaction to oblique
modes. On the other hand, we will generalise our investigation by considering a
vertical porous channel with an arbitrary cross-section.

4. Channel with an arbitrary cross-sectional shape
If we now release the assumption of plane channel walls, the channel cross-section

may be considered as a bounded region Ω in the (x, z)-plane. The boundary of Ω
may be considered as any sufficiently smooth, or piecewise smooth, closed curve ∂Ω .
Let n̂ be the two-dimensional vector in the (x, z)-plane that indicates the unit outward
normal to ∂Ω (see figure 2). The vertical y-axis is still regarded as the streamwise
channel direction.

The governing equations (2.1) are now endowed with the boundary conditions

(x, z) ∈ ∂Ω: n̂ · u= 0, n̂ · ∇T = 0. (4.1a,b)

The basic stationary solution satisfies a generalised formulation of (2.5), namely

Tb = ϕ(x, z)− α2y+ const., ub =
[
ϕ(x, z)− R

α2

]
êy, (4.2a,b)
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where the constant in the expression of Tb is left undetermined by the governing
equations and boundary conditions. Equations (2.1a) and (2.1b) are satisfied for every
choice of function ϕ(x, z), and of the constant α2. Eventually, (2.1c) can be rewritten
as

∂2ϕ

∂x2
+ ∂

2ϕ

∂z2
+ α2ϕ = 0, (4.3)

with the boundary conditions, (4.1), given by

(x, z) ∈ ∂Ω: n̂ · ∇ϕ = 0. (4.4)

Equations (4.3) and (4.4) define an eigenvalue problem that generalises that given by
(2.7) and (2.8), for the plane channel. Equation (4.3) is the two-dimensional Helmholtz
equation, so that the eigenvalues α2 can be identified with the eigenfrequencies of a
membrane with a free boundary ∂Ω . The eigenvalues α2 are non-negative and form a
discrete increasing sequence, where the lowest eigenvalue is zero (see e.g. Pólya 1961;
Benguria 2014),

0= α2
0 <α

2
1 <α

2
2 < · · ·<α2

n < · · · . (4.5)

A well-known fact about the eigenvalue problem (4.3) and (4.4) is that α2
n→∞ when

n→∞, and that the eigenfunction ϕ0 corresponding to α2
0 = 0 is an arbitrary constant

(Benguria 2014). Thus, only for the special case R = 0 is the eigenflow with n =
0 allowed as a generalisation of the uniform isothermal flow discussed in § 2.2, as
can be inferred from (4.2). The case n = 0 does not arise as an acceptable solution
whenever R> 0.

For the adiabatic eigenflows with n> 1, (4.3) and (4.4) imply an explicit constraint
on ϕn(x, z), namely ∫

Ω

ϕn(x, z) dx dz= 0. (4.6)

This result can be proved through an integration by parts of (4.3), taking into account
the boundary condition (4.4).

The constraint (4.6), on account of (4.2), implies that (with n > 1) the average
velocity in a cross-section is still given by −R/α2

n as predicted by (2.10) relative to a
plane-parallel channel. The eigenfunctions ϕn(x) and the eigenvalues α2

n depend on the
geometry of the domain Ω and can be determined analytically only for a few special
cases, while in general their evaluation can be obtained only by a numerical solution
of (4.3) and (4.4).

Numerical values of αn/π, for 1 6 n 6 10, are reported in table 1. Four sample
cross-sectional shapes are considered: square, circle, ellipse and equilateral triangle.
The reference length ` is the side (square, triangle), the diameter (circle) and the
major axis (ellipse). For the ellipse, the ratio between the minor and major axes is
1/2. As can be reckoned from the discussion carried out in § 3.3.1, the values of
αn/π reported in table 1 for the square are obtained as the lowest 10 values of the
expression

√
p2 + q2 with p and q non-negative integers. For the special case of the

circle, discussed in the forthcoming § 4.1, we evaluated αn/π by searching the first
10 positive roots of (4.8). The solution of the Neumann eigenvalue problem based
on the Helmholtz equation for the ellipse and for the triangle is found numerically by
employing a finite-element solver. The numerical solution has been actually developed
within the software environment Comsol c© Multiphysics 3.5. An unstructured mesh for
the domain Ω with triangular elements and increasing refinements is adopted, so that
convergence of the first 10 eigenvalues within five significant figures is achieved.
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n Square Circle Ellipse Triangle

1 1 1.1721 1.1928 1.3333
2

√
2≈ 1.4142 1.9444 2.1766 2.3094

3 2 2.4393 2.2507 2.6667
4

√
5≈ 2.2361 2.6746 2.9547 3.5277

5 2
√

2≈ 2.8284 3.3853 3.1379 4.0000
6 3 3.3941 3.7148 4.6188
7

√
10≈ 3.1623 4.0843 4.0858 4.8074

8
√

13≈ 3.6056 4.2693 4.3037 5.3333
9 4 4.4663 4.5130 5.8119

10
√

17≈ 4.1231 4.7755 5.0111 6.1101

TABLE 1. Values of αn/π, with n > 1, for channels where the cross-section is: a square
with side `; a circle with diameter `; an ellipse with major axis ` and minor axis `/2;
and an equilateral triangle with side `.

4.1. An example: the circular duct
If we consider a vertical circular duct, the domain Ω can be chosen as a circle with
unit diameter and centred at the origin. In this case, the solution of (4.3) and (4.4) is
given by

ϕ(r, θ)=−AJp(αp,qr) cos(pθ), with 0 6 r 6 1/2, 0 6 θ < 2π, (4.7)

where (p, q) is any pair of non-negative integers, A is an arbitrary constant, while
(r, θ) are the polar coordinates in the (x, z)-plane, and Jp is the Bessel function of
the first kind and order p. On account of (4.4), each eigenvalue α2

p,q is obtained by
determining the qth non-negative root of

J′p(α/2)= 0. (4.8)

We note that these roots are labelled by the pairs (p, q). When they are put in
increasing order, the correspondence between each pair (p, q) and the index n of the
eigenvalue, employed in the general equation (4.5), comes out naturally. A discussion
on this ordering can be found, for instance, in Beattie (1958), Barletta & Storesletten
(2013) and Barletta (2014).

4.2. Linear stability
By defining a perturbation of the basic state, defined again by (3.1), and by employing
the definition of P̃, (3.3), the linearised equations (3.4) are now written for the general
case as

∇2P̃= ∂T̃
∂y
, (4.9a)

∇2T̃ = ∂T̃
∂t
− ∂ϕn(x, z)

∂x
∂P̃
∂x
− α2

n

(
T̃ − ∂P̃

∂y

)
− ∂ϕn(x, z)

∂z
∂P̃
∂z

+
[
ϕn(x, z)− R

α2
n

]
∂T̃
∂y
, (4.9b)

(x, z) ∈ ∂Ω: n̂ · ∇P̃= 0, n̂ · ∇T̃ = 0. (4.9c)
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The normal modes are expressed as{
P̃(x, y, z, t)
T̃(x, y, z, t)

}
=
{

f (x, z)
h(x, z)

}
eηt eiky, (4.10)

so that, by substituting (4.10) into (4.9), we obtain

∂2f
∂x2
+ ∂

2f
∂z2
− k2f − ikh= 0, (4.11a)

∂2h
∂x2
+ ∂

2h
∂z2
−
{

k2 + η− α2
n + ik

[
ϕn(x, z)− R

α2
n

]}
h

+ ∂ϕn(x, z)
∂x

∂f
∂x
+ ∂ϕn(x, z)

∂z
∂f
∂z
− ikα2

n f = 0, (4.11b)

(x, z) ∈ ∂Ω: n̂ · ∇f = 0, n̂ · ∇h= 0. (4.11c)

4.2.1. Uniform isothermal flow
In the absence of any internal heat source (R = 0), we can allow for the special

case n= 0. In this case, the eigenfunction is a constant, ϕ0(x, z)= const.=−A, and
α2

0 = 0. Hence, (4.11) yield

∂2f
∂x2
+ ∂

2f
∂z2
− k2f − ikh= 0, (4.12a)

∂2h
∂x2
+ ∂

2h
∂z2
− (k2 + η− ikA)h= 0, (4.12b)

(x, z) ∈ ∂Ω: n̂ · ∇f = 0, n̂ · ∇h= 0. (4.12c)

The solution of the eigenvalue problem (4.12) is thus given by

f (x, z)=− ik
k2 + α2

m

ϕm(x, z), h(x, z)= ϕm(x, z) m= 0, 1, 2, . . . , (4.13a,b)

with the dispersion relation

η=−k2 − α2
m + ikA. (4.14)

Equation (4.14) can be rewritten as

Re(η)=−k2 − α2
m, ω=−Im(η)=−kA, (4.15a,b)

which implies that Re(η) is always non-positive, on account of (4.5). This fact
enables a generalisation of the conclusion drawn in § 3.2: the uniform isothermal flow
is linearly stable.

4.2.2. Longitudinal modes
Longitudinal modes are such that k = 0. By considering the adiabatic eigenflows

with n > 1, (4.11) can be simplified to

∂2f
∂x2
+ ∂

2f
∂z2
= 0, (4.16a)

∂2h
∂x2
+ ∂

2h
∂z2
− (η− α2

n)h+
∂ϕn(x, z)
∂x

∂f
∂x
+ ∂ϕn(x, z)

∂z
∂f
∂z
= 0, (4.16b)

(x, z) ∈ ∂Ω: n̂ · ∇f = 0, n̂ · ∇h= 0. (4.16c)
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Equation (4.16a) subject to the Neumann boundary condition (4.16c) can be satisfied
only by a uniform field f (x, z), so that the solution of (4.16c) can be expressed as

f (x, z)= const., h(x, z)= ϕm(x, z), with m= 0, 1, 2, . . . . (4.17a,b)

The dispersion relation, in this case, is written as

η= α2
n − α2

m, with m= 0, 1, 2, . . . and n= 1, 2, 3, . . . . (4.18)

As a consequence of (4.5), one infers from (4.18) that ω = −Im(η) = 0. Instability,
Re(η) > 0, arises for the adiabatic eigenflows with n > 1 according to the following
scheme:

– the eigenflow with n= 1 is unstable to longitudinal rolls with m= 0;
– the eigenflow with n= 2 is unstable to longitudinal rolls with m= 0 and m= 1;
. . .

– the eigenflow with n= N is unstable to longitudinal rolls with m= 0,m= 1, . . .
and m=N − 1;
. . . .

Therefore, all adiabatic eigenflows with n> 1 are unstable to the longitudinal mode
of perturbation with m = 0. This mode of perturbation evolves in time according to
(3.21), which predicts a spatially uniform growth in time of the basic temperature field,
as well as of the y-component of the basic velocity.

The result of the analysis carried out for a channel with an arbitrary cross-sectional
shape extends the same conclusion stated at the end of § 3.3.1: all adiabatic eigenflows
are linearly unstable, with the only exception being the uniform isothermal flow (n=
0), which is linearly stable. Hence, this conclusion turns out to be independent of the
shape of the channel cross-section.

5. Conclusions

The emergence of non-trivial stationary buoyant flows within a vertical plane porous
channel with adiabatic walls and a uniform internal heat source has been investigated.
These flows may be allowed only if the vertical temperature gradient takes on special
discrete values forming an infinite increasing sequence. The eigenvalue character of
the governing equations for such flows motivated the name of adiabatic eigenflows.
A Darcy–Rayleigh number, R > 0, proportional to thermal power per unit volume
supplied by the internal heat source, is defined. Adiabatic eigenflows exist with every
value of R; they give rise to a net downward flow except for the case R= 0 where
the net flow rate is zero. In the case R= 0, the adiabatic eigenflows can be physically
interpreted as the mid-region of Rayleigh–Bénard cells in a very tall vertical porous
cavity.

The linear stability of adiabatic eigenflows has been studied by the classical
normal mode expansion of the disturbances. The main result of this analysis is that
all adiabatic eigenflows are unstable. Among the longitudinal modes, independent of
the vertical coordinate, the most unstable is the horizontally uniform mode, or mode
m= 0. There is just an exception, with R= 0, corresponding to the special case where
the vertical temperature gradient is also zero. For this special case, the basic state is
one with uniform velocity and uniform temperature and is termed uniform isothermal
flow. The uniform isothermal flow, as expected, is stable.
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The stability analysis for the vertical plane channel has been extended to include
the effects of lateral confinement through adiabatic walls. In this case, the infinite
horizontal length in the spanwise direction becomes finite, so that the wavenumber
spectrum of longitudinal modes becomes discrete instead of continuous. Lateral
confinement actually means that the plane channel becomes a rectangular channel
with an arbitrary aspect ratio s. It has been proved that the instability of adiabatic
eigenflows is unaffected by lateral confinement.

Finally, the analysis of adiabatic eigenflows and their instability has been
generalised to the case of a vertical channel having an arbitrary cross-sectional
shape. It has been shown that the discrete values allowed for the vertical temperature
gradient can be computed through the solution of the Neumann problem for the
two-dimensional Helmholtz equation. In other words, the eigenvalues characteristic of
the adiabatic eigenflows are the eigenfrequencies of a membrane with a free boundary.
It has been proved that, for every possible shape of the channel cross-section, adiabatic
eigenflows are allowed, but they are all unstable to longitudinal modes of perturbation.
As for the case of the plane channel, the only exception is the uniform isothermal
flow, which is stable.
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Appendix A. Rayleigh–Bénard cell in a vertical porous slot
In the special case R = 0, let us consider the vertical channel studied in § 2.2 as

the mid-region of an extremely tall two-dimensional porous cavity with adiabatic
vertical boundaries (see figure 3). The far-away upper and lower horizontal walls are
isothermal and kept at different temperatures so that a heating-from-below condition
is set up.

We adopt a stationary two-dimensional formulation based on the stream function,
ψ , so that the Cartesian components of the velocity are written as

u= ∂ψ
∂y
, v =−∂ψ

∂x
. (A 1a,b)

Then, (2.1b) and (2.1c) with R= 0 are rewritten as

∂2ψ

∂x2
+ ∂

2ψ

∂y2
+ ∂T
∂x
= 0, (A 2a)

∂2T
∂x2
+ ∂

2T
∂y2
− ∂ψ
∂y
∂T
∂x
+ ∂ψ
∂x
∂T
∂y
= 0. (A 2b)

As sketched in figure 3, in the mid-region, the streamlines are approximately
straight and vertical, so that one may assume u= ∂ψ/∂y≈ 0. Moreover, the vertical
component of the temperature gradient, set up through the heating from below, is
approximately a constant, namely ∂T/∂y ≈ −α2. With this ansatz, (A 2) undergo a
drastic simplification, namely

∂2ψ

∂x2
+ ∂T
∂x
= 0, (A 3a)

∂2T
∂x2
− α2 ∂ψ

∂x
= 0. (A 3b)
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x Mid-region

y

FIGURE 3. Rayleigh–Bénard cell in a vertical porous slot: qualitative sketch of the
streamlines.

Combination of (A 3a) and (A 3b) and an explicit statement of the adiabatic boundary
conditions at x= 0, 1 leads to

∂3T
∂x3
+ α2 ∂T

∂x
= 0, (A 4a)

x= 0, 1: ∂T
∂x
= 0. (A 4b)

Setting ∂T/∂x = F(x) implies that (A 4) are perfectly coincident with the eigenvalue
problem, (2.7) and (2.8), discussed in § 2.2. Solution of this eigenvalue problem
implies that α2 can assume only special discrete values, and this is here interpreted
as a consequence of the stretching undergone by the Rayleigh–Bénard cell (or cells)
in order to fit the space between the vertical adiabatic walls. Incidentally, figure 3
sketches just the simplest case where a single tall cell is allotted within the cavity,
and this corresponds to the lowest non-vanishing eigenvalue, α = α1 =π.
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