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The hidden-variables model constructed by Karl Hess and Walter Philipp is claimed by its

authors to exploit a ‘‘loophole’’ in Bell’s theorem; according to Hess and Philipp, the

parameters employed in their model extend beyond those considered by Bell. Furthermore,

they claim that their model satisfies Einstein locality and is free of any ‘‘suspicion of spooky

action at a distance.’’ Both of these claims are false; the Hess-Philipp model achieves

agreement with the quantum-mechanical predictions, not by circumventing Bell’s theorem,

but via Parameter Dependence.

1. Introduction. In recent papers, Karl Hess and Walter Philipp (2001a, b,
c) exhibit a hidden-variables model that reproduces the quantum-
mechanical statistics for the EPR-Bohm experiment.1 Of this model, they
make the following claims:

1. The parameters used in the model go beyond those considered in the
proofs of Bell’s theorem, rendering the theorem inapplicable to their
model;

yTo contact the author, please write: Department of Philosophy, University of Western

Ontario, London, ON, Canada N6A 3K7; e-mail: wmyrvold@uwo.ca.

zI am grateful to Jim Brown for encouraging me to look at Hess and Philipp’s paper, and to

Richard Gill for helpful discussions. Since the completion of the draft of the version of this

paper originally submitted for presentation at PSA, two other criticisms of Hess and Philipp

have been put forward, that of Gill et al. (2002), and that of Mermin (2002). There is

agreement among these criticisms—that Hess and Philipp have not shown—that there is a

flaw in the standard proofs of Bell’s theorem, and that their model achieves its result via

nonlocality. It is hoped that the present paper is a useful supplement to the other criticisms

and that, in particular, the simplified model of Section 4 helps to make it clearer what Hess

and Philipp have done.

1. This statement requires a qualification. As Marcus Appleby has pointed out, although the

version of their model in Hess and Philipp 2002a reproduces the quantum-mechanical

predictions, the published version (2002c) contains an oversight and fails to reproduce the

quantum-mechanical predictions.
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2. The model satisfies the condition of Einstein locality and is free of
‘‘spooky action at a distance.’’

Both of these claims are false, as will be shown below.

2. Factorization, Outcome Independence, Parameter Independence.
This section will introduce terminology and notation that will be used in
subsequent sections. Much, if not all, of the material in this section will be
familiar to many readers.

The EPR-Bohm experiment involves a pair of spin particles prepared in
the singlet state. Measurements are performed on each of the pair, at
stations S1 and S2, respectively, of spin in directions a and b, respectively,
where a and b are unit vectors. Denote by Aa, Bb the outcomes, repre-
sented by values F1, of the measurements on particle 1 and 2, respec-
tively. The quantum-mechanical prediction for the expectation value of
their product AaBb is

E a; bð Þ ¼ �a�b:

Assume that the outcome of the experiment depends on a set of parameters
denoted by l. Without further assumptions about the nature of this depen-
dence little can be said. The crucial assumption underlying the derivation of
Bell’s theorem is an assumption of factorizability of the underlying
probability measures. Let pab(xa, ybjl) be the probability that, in a state
described by l, the measurement of spin-a and spin-b on particles 1 and 2,
respectively, have outcomes xa, yb (the variables xa, yb take on values in
{�1, 1}). The Bell factorizability condition is the condition that there exist
probability functions pa(xajl), independent of b, and pb(ybjl), indepen-
dent of a, such that

pab xa; ybAlð Þ ¼ pa xaAlð Þpb ybAlð Þ:

By constructing an inequality that must be satisfied by any factorizable
theory but which is violated by the quantum-mechanical predictions, Bell
was able to prove that no theory satisfying the Bell factorizability
condition can reproduce the statistical predictions of quantum mechanics
for the EPR-Bohm experiment. Bell’s theorem is sometimes glossed as a
proof of the impossibility of a hidden-variables theory, and this is how
Hess and Philipp present it: ‘‘The work of Bell [1964] attempts to show
that a mathematical description of EPR-type experiments by a statistical
(hidden) parameter theory is not possible’’ (2001c, 14228). If this is what
Bell had attempted to do, then his efforts would have been in vain—as Bell
himself pointed out. In the very paper cited, Bell exhibits a simple hidden-
variables model for the EPR-Bohm experiment, a model which is, of
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course, nonlocal. In his work, Bell frequently emphasized that it is not
possible to show tout court that no hidden-variables theory is possible, as
we actually have such a theory in Bohm’s theory (Bohm 1952a, 1952b).
The paper (1966) that preceded (in order of composition, but not pub-
lication) the ‘‘Bell’s Theorem’’ paper (1964) is devoted to criticizing pur-
ported no-go theorems; this includes the theorem that has come to be
known as the Kochen-Specker theorem (Kochen and Specker 1967), and
which was proved, independently of Kochen and Specker, by Bell in his
paper. Bohm’s theory served Bell well as a counterexample to purported
no-go theorems; a theorem purporting to show the impossibility of a
hidden-variables theory must make some assumption not satisfied by the
Bohm theory. In particular, the contextuality exhibited by the Bohm theory
highlights the assumption of noncontextuality necessary for the Bell-
Kochen-Specker theorem, and the nonlocality exhibited by the Bohm
theory suggested the locality condition used to derive the Bell inequalities.

Jarrett (1984) showed that the Bell factorizability condition can be
expressed as a conjunction of two conditions, the condition called ‘‘Local-
ity’’ by Jarrett (1984, 1989) and ‘‘Parameter Independence’’ by Shimony
(1986), on the one hand, and ‘‘Completeness’’ (Jarrett) or ‘‘Outcome
Independence’’ (Shimony), on the other. Given the probability functions
pab(xa, ybjl), we define marginal probability functions:

pab xaAlð Þ ¼
X

ybaf�1;1g
pab xa; ybAlð Þ

pab ybAlð Þ ¼
X

xaaf�1;1g
pab xa; ybAlð Þ

Parameter Independence is the condition that pab(xajl) not depend on b and
pab(ybjl) not depend on a. Outcome Independence is the condition that, for
given a, b, l, the distribution of xa is independent of yb, and vice versa.
That is,

pab xa; ybAlð Þ ¼ pab xaAlð Þpab ybAlð Þ:

A violation of Parameter Independence entails that, for a given value of l,
the statistical distribution of xa can be changed by changing the setting b of
the distant analyzer. If the parameters l are observable, and if one can use
them to adjust the settings of an analyzer, Parameter Dependence can be
exploited to send a superluminal signal from one station to the other by
manipulating the settings. If, for some reason, the parameters l cannot be
used to adjust the settings of the analyzers, no superluminal signals can be
sent but the nonlocality of the model remains, and, since the probability
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distribution of xa depends on the instantaneous value of the setting at the
other station, a model exhibiting Parameter Dependence requires a dis-
tinguished relation of distant simultaneity and cannot, at a fundamental
level, be a relativistic model.

If we take, as the parameter l, the quantum-mechanical state without
any supplementary variables, the quantum-mechanical probabilities satisfy
Parameter Independence but violate Outcome Independence. The peculiar
sort of violation of Outcome Independence exhibited by quantum mechan-
ics is, at the very least, not obviously at odds with relativity, as a violation
of Parameter Independence would be (for discussion of this issue, see, e.g.,
Shimony 1978, 1984, 1986; Jarrett 1984, 1989; Ballentine and Jarrett
1987; Butterfield 1989; Teller 1989; Redhead 1986, 1989; Myrvold 2002,
2003).

3. An Extended Parameter Space? According to Hess and Philipp, the
basis for constructing a hidden-variables model that reproduces the quan-
tum-mechanical statistical predictions lies in introducing time-dependent
correlated parameters associated with the measurement instruments. Their
construction proceeds via the introduction of setting-dependent subspace
product measures (SDSPMs). Let our parameter space X be partitioned
into disjoint subspaces Xm. An SDSPM is a measure, defined on some
subspace Xm, whose dependence on the settings a, b is such that it can be
written as a product of a measure dependent only on a and one dependent
only on b. The probability measure constructed by Hess and Philipp is a
sum of setting-dependent subspace product measures,

lab ¼
1

N

XN

m¼1

la � lbð Þm:

Which of the product measures (la�lb)m is in effect on a given run of the
experiment will be determined by the time-dependent correlated param-
eters.

Hess and Philipp assert that such measures go beyond those in the scope
of Bell’s theorem.

We would like to emphasize that Bell has introduced a number of as-
sumptions on time dependencies. . . . He also introduced a significant
asymmetry in describing the spin properties of the particles and the
properties of the measuring equipment. The spins are described by
arbitrarily large sets � of parameters. On the other hand the mea-
surement apparatus is described by a vector of Euclidean space (the
settings), true to Bohr’s postulate that the measurement must be
classical. Yet, the measurement apparatus must itself in some form
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contain particles with spins that then, if one wants to be self consistent,
also need to be described by large sets of parameters that are related to
the settings a, b, c. . . . (2001c, 14229)

Now, the original proof of Bell’s Theorem (Bell 1964) did not ex-
plicitly take into account hidden variables in the instruments. In his
restatement of the proof (Bell 1971), Bell did explicitly include such a
consideration.2

The instruments themselves could contain hidden variables which
could influence the results. If we average first over these instrument
variables, we obtain the representation

P â; b̂
� �

¼ mdlq lð ÞA â; lð ÞB b̂; l
� �

where the averages A and B will be independent of b̂ and â, re-
spectively, if the corresponding distributions of instrument variables
are independent of b and a, respectively, although of course they may
depend on â and b̂, respectively. (1971, 178–179; 1987, 36–37)

The proof goes through under the assumption that the distribution of the
instrument variables pertaining to one station is independent of the setting
of the other (if this assumption is not made, it is of course possible to
reproduce the statistical predictions of quantum mechanics and thereby
violate the Bell Inequalities). The second of Hess and Philipp’s claims,
quoted above, is false; the derivation of the Bell inequalities in no way
depends on an assumption that the states of the measurement instruments
are completely described by their settings. This consideration also applies
to the first above-quoted claim, that Bell introduces an assumption that the
distributions of the hidden variables are time-independent; to generate
time-dependent distributions, all one need do is include among the var-
iables a parameter that changes with time in such a way that it can be used
as a clock parameter. The key point is that, if correlations between events
at the two wings of the experiment are due solely to clock parameters in
the two instruments, then the probability of a result at one wing, con-
ditional on a full specification of parameters, including clock parameters, at

#03170 UCP: PHOS article # 700541

2. In a subsequent paper, Hess and Philipp remark that ‘‘Bell has included into his later

proofs (after publication of [Ballentine and Jarrett 1987]) setting-dependent parameters’’

(Hess and Philipp 2002, 780). This remark, while true, is doubly misleading. First, it sug-

gests that Bell did not include such considerations prior to 1987. Second, it suggests that the

cited paper is particularly relevant to the consideration of such parameters. Although Ballen-

tine and Jarrett do explicitly take into account hidden parameters pertaining to the measure-

ment apparatus, this is not the chief import of their paper, which is about the distinction

between ‘‘completeness’’ and ‘‘locality’’ mentioned in section 2.

1361a loophole in bell’s theorem?

https://doi.org/10.1086/377413 Published online by Cambridge University Press

https://doi.org/10.1086/377413


that wing, will be independent of the parameters at the other wing, even if
the parameters pertaining to the two stations are correlated with each other.

Although Bell does not exclude the possibility of the measurement re-
sults depending on instrument parameters, he introduces a restriction on
such parameters, namely, that the statistical distributions of parameters of
one instrument be independent of the setting of the other instrument. It
should be stressed that the locality condition assumed by Bell will be sat-
isfied by clock parameters that are synchronized via some interaction in the
common past of the instruments and subsequently evolve determinis-
tically. If Hess and Philipp’s construction is to exploit instrument param-
eters to yield the quantum-mechanical statistical predictions, and thereby
violate the Bell inequality, it must have the probability distribution of the
parameters for one instrument depend on the setting of the other—and it
does. This feature of the Hess-Philipp model has been pointed out by Gill
et al. (2002, 5).3 In the next section a simplified version of Hess and
Philipp’s model will be exhibited, which will make the nature of the Param-
eter Dependence of such models clear.

4. Parameter Dependence and Signaling. Hess and Philipp claim that
their model ‘‘is free of the suspicion of spooky action at a distance.’’

This is accomplished by letting the probability measure be a super-
position of setting-dependent subspace product measures with two
important properties: (i) the factors of the product measure depend
only on parameters of the station that they describe, and (ii) the joint
density of the pairs of setting-dependent parameters in the two stations
is uniform. (2001c, 14232)

That is: The joint distribution of u and v is the uniform measure over a
square in R2, and takes the form,

lab ¼
XN

m¼1

cmab la � lbð Þm:

The index m that determines, for a given run of the experiment, which sub-
space measure will be in play, is a function of the source parameter l and the
time parameters pertaining to the two stations. For each m, there are
functions Am(a, u), Bm(b, v) that determine the outcome of the experiments
at 1 and 2, respectively.

Since lab is the same distribution for every a, b, changing the setting b
will not affect the distribution, on lab, of u, and changing the setting a will
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not affect the distribution of v. This does not, however, guarantee the
absence of Parameter Dependence in the model.

Hess and Philipp’s model is rather intricate, and there is not space to give
the full details of the model here. Much of the intricacy, however, stems
from the fact that they are concerned with reproducing the quantum-
mechanical statistics for arbitrary settings a, b of the two analyzers. If we
restrict the experimental setup under consideration to one in which a choice
is made between only two settings for each analyzer—a setup that, of
course, suffices for the violation of Bell inequalities—it is possible to
construct a simpler model that nevertheless shares the salient features of
Hess and Philipp’s model, and, in particular, shares the features that are
touted by Hess and Philipp as being responsible for the spooklessness of
their model.

Let a a {0, 1} be a parameter indicating which of the two possible
settings has been chosen for analyzer 1, and let b a {0, 1} indicate the
setting of analyzer 2. Let u and v be hidden variables associated with
analyzers 1 and 2, respectively, taking values in [0, 4). Define the functions
ra
i(u), tbi(v), with values as given in Table 1.
Let Ej, j = 1, . . . 4, be the unshaded regions of the square X = [0, 4) �

[0, 4) depicted in Figure 1, and let jj(u, v) be the function equal to 1 if hu,
vi a Ej, and zero otherwise. Define

qijab u; vð Þ ¼ ria uð Þtib vð Þjj u; vð Þ:

It is a simple matter to check that, for every value of a, b, and for each i, j,

m
4

0

dum
4

0

dv qijab u; mð Þ ¼ 1:

qab
ij (u, v) is, therefore, a probability density on X. Let lab

ij be the corre-
sponding probability measures. Each qab

ij is nonzero only on the subspace
Ej, and, on that subspace, takes the form

#03170 UCP: PHOS article # 700541

TABLE 1

ua[0,1) ua[1,2) ua[2,3) ua[3,4) va[0,1) va[1,2) va[2,3) va[3,4)

ra
1(u) a 1 � a a 1 � a tb1(r) b b 1 � b 1 � b

ra
2(u) 1 � a a 1 � a a tb2(r) b 1 � b 1 � b b

ra
3(u) a 1 � a a 1 � a tb3(r) 1 � b 1 � b b b

ra
4(u) 1 � a a 1 � a a tb4(r) 1 � b b b 1 � b

must be station specific and can only be correlated by time-like correlations, i.e., by some

relation to local periodic processes’’ (Hess and Philipp 2002, 780). This is a clear statement

of what their model fails to do.
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qijab u; vð Þ ¼ ria uð Þtib vð Þ:

For each pair i, j, lab
ij is therefore, a sum of setting-dependent subspace

product measures. In what follows, we denote the pair hi, ji by the single
index m, which takes on sixteen values.

That fact that each qab
m is, on the subspace picked out by m, a product of

a function of u and a and a function of v and b, might suggest that any
correlations between u and v are due solely to the shared time parameter m
and that, in particular, the distribution of u is independent of the distant
setting b. This is not the case, because the subspace Ej picked out by m =
hi, ji is not a product space and has correlations between u and v built into
it. In fact, each of the measures lab

m exhibits a rather extreme form of
Parameter Dependence. Note that, for each combination of m, a, b, the
measure lab

m assigns a nonzero probability to exactly one 1�1 square in X,
determined by the value of a and b. Furthermore, for given m, if one knows
which 1�1 square has nonzero probability, one can ascertain the values of
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a and b. Thus, the dependence of the marginal distribution of u on the
value of b is such that knowing the values, on a given run of the exper-
iment, of u (which must be a value assigned nonzero probability) and m
permits one to ascertain both a and b. The same holds true of v. We
therefore have Parameter Dependence—for given m, changing the value of
b affects the probability distributions for u, and changing the value of a
affects the probability distribution for v.

On the Hess-Philipp models, the corresponding Parameter Dependence
is not quite as extreme as that exhibited by our simple model. The values
of m and u on a particular run of the experiment, though they yield
information about the setting of the distant apparatus, does not, on their
model, permit one to ascertain precisely the value of the distant apparatus.
The Parameter Dependence is, however, present (this can be ascertained by
inspection of equation [44] of Hess and Philipp 2001a, or equation [27] of
2001c; see Appleby 2002 for an explicit calculation of the marginal
probabilities), and suffices for their model to reproduce the statistical
predictions of quantum mechanics.

Given the fact that, on our model, knowledge of m, u permits one to
ascertain b, and knowledge of m, v permits one to ascertain a, it would not
be difficult, therefore, to cook up functions Am(a, u), Bm(b, v) such that, for
each m, the expectation value

mdumdvqmab u; vð ÞAm a; uð ÞBm b; vð Þ

matches, for each of the four allowed combinations of the polarizers, the
quantum mechanical expectation value �a�b.

We will assume that associated with each measuring apparatus are syn-
chronized time-dependent parameters, and that m is a function of these, in
such a way that, for any given run of the experiment, the same value of m
will be found at each station. We will also assume that, in any period of
time long enough to include many runs of the experiment, m ranges over
all sixteen of its permitted values, in such a way that, for each run of the
experiment, each value of m is equally probable. We will therefore con-
sider the probability measure,

lab ¼
1

16

X

m

lmab

which has density function

qab u; vð Þ ¼ 1

16

X

m

qmab u; vð Þ:
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It is easy to check that the measure lab is uniform over the square X. The
fact that this is a uniform measure, however, has no bearing on the locality
of the model; it is a sum of measures, each of which exhibits Parameter
Dependence.

The Hess-Philipp model shares this feature with our simplified model. If
the parameters u, v, and m are observable, and if it is possible to use the
value of m to adjust the setting of the a measurement apparatus (and this is
not excluded by anything they say), then signals can be sent from one
station to the other by adjusting the settings of the other, because, if one
knows the value of m for each run of the experiment (a value that is
determined by correlated parameters at each station), observation of the
statistical distribution of u at station 1 yields information about the setting
b at station 2. If the parameters u, v, and m are not observable, this ob-
scures the nonlocality in the model but does not remove it; The depen-
dence of the distribution of parameters associated with one station on the
setting of the other remains an inherent feature of the model. The Hess-
Philipp model achieves agreement with the quantum-mechanical predic-
tions, not by introducing parameters of a sort left out of consideration by
Bell, but by using parameters of a sort considered by Bell and violating the
locality conditions assumed by Bell.
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