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Abstract Let G be a reductive p-adic group which splits over an unramified extension of the ground field.
Hiraga, Ichino and Ikeda [24] conjectured that the formal degree of a square-integrable G-representation
7 can be expressed in terms of the adjoint v-factor of the enhanced L-parameter of 7. A similar conjecture
was posed for the Plancherel densities of tempered irreducible G-representations.

We prove these conjectures for unipotent G-representations. We also derive explicit formulas for the
involved adjoint vy-factors.
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1. Introduction

Let G be a connected reductive group defined over a non-Archimedean local field K,
and write G = G(K). We are interested in irreducible G-representations, always tacitly
assumed to be smooth and over the complex numbers. The most basic example of such
representations are the unramified or spherical representations [32, 45] of G, which play a
fundamental role in the Langlands correspondence by virtue of the Satake isomorphism.

By a famous result of Borel [4, 11], the smallest block of the category of smooth rep-
resentations of G which contains the spherical representations is the abelian subcategory
generated by the unramified minimal principal series representations. The objects in this
block are smooth representations generated by the vectors which are fixed by an Iwahori
subgroup I of G. The study of such Iwahori-spherical representations is a classical topic,
about which a lot is known.

The local Langlands correspondence for Iwahori-spherical representations was estab-
lished by Kazhdan and Lusztig [27], for G split simple of adjoint type. It parametrises
the irreducible Iwahori-spherical representations with enhanced unramified Deligne—
Langlands parameters for G, where a certain condition is imposed on the enhancements.
The category of representations of G which naturally completes this picture (by lifting the
restriction on the enhancements) is the category of so-called unipotent representations,
as envisaged by Lusztig. An irreducible smooth representation of G is called unipotent if
its restriction to some parahoric subgroup P; of G contains a unipotent representation of
P; (by which we mean a unipotent representation of the finite reductive quotient of F).
In the special case that F; is an Iwahori subgroup of G, we recover the Iwahori-spherical
representations.

Unipotent representations of simple adjoint groups over K were classified by Lusztig
[30, 31]. The classification has also been worked out in several papers when G splits over
an unramified extension of K. We have exhibited a local Langlands correspondence for
supercuspidal unipotent representations of reductive groups over K in [16, 17]. Then the
second author generalised this to a Langlands parametrisation of all tempered unipotent
representations in [39]. Finally, with different methods, the third author constructed a
local Langlands correspondence for all unipotent representations of reductive groups over
K [49]. In Theorem 3.1 we show that the approaches in [39] and [49] agree, and we derive
some extra properties of these instances of a local Langlands correspondence. (Meanwhile,
all this has been generalised to ramified groups [51].)
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Hiraga, Ichino and Ikeda [24] suggested that, for any irreducible tempered representa-
tion 7 of a reductive p-adic group, there is a relation between the Plancherel density of 7
and the adjoint y-factor of its L-parameter. In fact, they conjectured an explicit formula,
to be sketched later in terms of a (tentative) enhanced L-parameter of 7.

Let G be the Langlands dual group of G, with identity component GV. Let 7 € Irr(G)
be square-integrable modulo centre and suppose that (¢, pr) is its enhanced L-parameter
(so we need to assume that a local Langlands correspondence has been worked out for
7). To measure the size of the L-packet, we use the group

S, =m0(Zic/z(c).)v (6)), (1)

where Z(G)s denotes the maximal K-split central torus in G. Let W be the Weil group
of K and let Adgv denote the adjoint representation of “G on

Lie(GY) /Lle< GV)WK) = Lie ((G/Z(G)s)").

Let ¢ : K — C* be a character of order 0 — that is, trivial on the ring of integers o
but nontrivial on any larger fractional ideal. We endow K with the Haar measure that
gives ox volume 1. We refer to equation (72) for the definition of the adjoint ~-factor
v(s,Adgv 0 ,1).

We normalise the Haar measure on G as in [18, 24]. (For ramified groups, the
normalisations in [24, (1.1)] and [24, Correction]| are not entirely satisfactory; see [17,
(A.23)] for an improvement.) It was conjectured in [24, §1.4] that

fdeg(m) = dim(px)

SE.| 7 h(0.Ade 06, 0)] (2)

More generally, let P = MU be a parabolic K-subgroup of G, with Levi factor M and
unipotent radical Y. Let m € Irr(M) be square-integrable modulo centre and let X, (M)
be the group of unitary unramified characters of M. Let O = X,;,,;(M )7 C Irr(M) be the
orbit in Irr(M) of 7, under twists by Xun,(M). We define a Haar measure of dO on O as
in [57, p. 239 and 302]. This also provides a Haar measure on the family of (finite-length)
G-representations I§ (7') with 7/ € O.

Denote the adjoint representation of M on Lie(G") /Lie (Z (MV)WK) by Adgv, arv.

Conjecture 1 ([24, §1.5]). Suppose that the enhanced L-parameter of m € Irr(M) is
(¢rpx). Then the Plancherel density at IS (m) € Rep(G) is

ey dim(pr)

S3.| (0, AdGe ar 0 6,0 AO(R),
for some constant cpr € Rsq independent of K and O.

We point out that the validity of equation (2) and Conjecture 1 does not depend
on the choice of the additive character v : K — C*. For another choice of v, the adjoint
~-factors will be different [24, Lemma 1.3]. But also the normalisation of the Haar measure
on G has to be modified, which changes the formal degrees [24, Lemma 1.1]. These two
effects precisely compensate each other.
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We note that representations of the form I§ () are tempered [57, Lemme I11.2.3]
and that almost all of them are irreducible [57, Proposition I1V.2.2]. Every irreducible
tempered G-representation appears as a direct summand of Ig(wM), for suitable choices
of the involved objects [57, Proposition I11.4.1]. Moreover, if IS () is reducible, its
decomposition can be analysed quite explicitely in terms of R-groups [46]. In this sense,
Conjecture 1 provides an expression for the Plancherel densities of all tempered irreducible
G-representations.

In the remainder of the introduction, we assume that G splits over an unramified field
extension. The conjectures by Hiraga, Ichino and Tkeda (‘HII-conjectures’) were proven for
supercuspidal unipotent representations in [43, 16, 15, 17], for unipotent representations of
simple adjoint groups in [38] and for tempered unipotent representations in [39]. However,
in the last case the method only sufficed to establish the desired formulas up to a constant.
Of course, the formal degree of a square-integrable representation is just a number, so a
priori we gain nothing from knowing it up to a constant. Fortunately, the formal degree of
a unipotent square-integrable representation can be considered as a rational function of
the cardinality g of the residue field of K [38]. Then ‘up to a constant’ actually captures
a substantial part of the information. The main result of this paper is a complete proof
of the HII-conjectures for unipotent representations:

Theorem 2. Let G be a connected reductive K-group which splits over an unramified
extension, and write G = G(K). Use the local Langlands correspondence for unipotent
G-representations from Theorem 3.1.

(a) The HII-conjecture (equation (2)) holds for all unipotent, square-integrable modulo
centre G-representations.

(b) Conjecture 1 holds for tempered unipotent G-representations, in the following
slightly stronger form:

-1
dppr (I8 (7)) = % dim(p,,) sgﬂ‘ A(0,AdGv arv 0 1) dO ().

In the appendix we work out explicit formulas for the adjoint y-factors, in terms of a
maximal torus 7V C G¥ and the root system of (GV,TV) (Lemma A.2 and Theorem A.4).
These expressions can also be interpreted with u-functions for a suitable affine Hecke
algebra [36]. The calculations entail in particular that all involved adjoint ~y-factors are
real numbers (Lemma A.5).

Our proof of Theorem 2 proceeds stepwise, in increasing generality. The most
difficult case is unipotent square-integrable representations of semisimple groups. The
argument for that case again consists of several largely independent parts. First we
recall (in Section 6.1) that equation (2) has already been proven for square-integrable
representations of adjoint groups [38, 17].

Our main strategy is a pullback of representations along the adjoint quotient map
1 : G — Gaq. The homomorphism of K-rational points 7 : G — G4 need not be surjective,
so this pullback operation need not preserve irreducibility of representations. For m,q €
Irr(Gag), the computation of the length of n*(m.q) has two aspects. On the one hand,
we determine in Section 5 how many Bernstein components for G are involved. On the
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other hand, we study the decomposition within one Bernstein component in Section 4.
The latter is done in terms of affine Hecke algebras, via the types and Hecke algebras
from [33, 34, 30]. Considerations with affine Hecke algebras also allow us to find the exact
ratio between fdeg(m,q) and the formal degree of any irreducible constituent of n*(maq)
(see Theorem 4.4).

On the Galois side of the local Langlands correspondence, the comparison between G
and G,q is completely accounted for by results from [52]. In Lemma 3.4 we put those
in the form that we actually need. With all these partial results at hand, we finish
the computation of the formal degrees of unipotent square-integrable representations
of semisimple groups in Theorem 6.4.

After a first version of this paper appeared, we learned that Gan and Ichino [19] had
already devised a different method to reduce the proof of equation (2) from semisimple
groups to adjoint groups. Their argument is much shorter, but it applies only when
K is a p-adic field and G is an inner form of a K-split group. We work this out in
Appendix B.

The generalisation from semisimple groups to square-integrable modulo centre rep-
resentations of reductive groups (Section 6.3) is not difficult, because the unipotent
representations of a p-adic torus are just the characters trivial on the unique parahoric
subgroup. That proves Theorem 2(a).

To get Theorem 2(b) for square-integrable modulo centre representations (so with M =
G), we need to carefully normalise the involved Plancherel measures (Section 7.1). In
Section 7.2 we establish Theorem 2(b) for any Levi subgroup M C G. This involves a
translation to Plancherel densities for affine Hecke algebras, via the aforementioned types.
In the final stage we use the fact that Theorem 2 was already known up to constants [39].

2. Background on unipotent representations

Let K be a non-Archimedean local field with ring of integers ox and uniformiser wg.
Let k = 0 /wi ok be its residue field, of cardinality ¢ = gk.

Let K, be a separable closure of K. Let Wx C Gal(K,/K) be the Weil group of K
and let Frob be an arithmetic Frobenius element. Let Ix be the inertia subgroup of
Gal(K,/K), so that Wg /I = Z is generated by Frob.

Let G be a connected reductive K-group. Let T be a maximal torus of G, and let ®(G,T)
be the associated root system. We also fix a Borel subgroup B of G containing 7, which
determines a basis A of ®(G,T).

Let ®(G,7)Y be the dual root system of ®(G,7T ), contained in the cocharacter lattice
X«(T). The based root datum of G is

(X*(T).®(G.T), X (T),2(G,T)".A).

Let S be a maximal K-split torus in G. By [53, Theorem 13.3.6.(i)] applied to Zg(S), we
may assume that 7 is defined over K and contains S. Then Zg(S) is a minimal K-Levi
subgroup of G. Let

Ag:={a€eA:S Ckera}
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be the set of simple roots of (Zg(S),T). Recall from [53, Lemma 15.3.1] that the root
system ®(G,S) is the image of ®(G,T) in X*(S), without 0. The set of simple roots
of (G,S) can be identified with (A\ Ag)/ug(Wg), where pg denotes the action of
Gal(Ks/K) on A determined by (B,T).

We write G = G(K) and similarly for other K-groups. Let G¥ be the split reductive
group with based root datum

(X.(T),®(G,T)", X*(T),8(G,T),AY).

Then GY = GVY(C) is the complex dual group of G. Via the choice of a pinning, the
action ug of Wx on the root datum of G determines an action of Wy of GV. That
action stabilises the torus TV = X*(7) ®z C* and the Borel subgroup BY determined
by TV and AV. The Langlands dual group (in the version based on Wg) of G(K) is
LG = GV A WK.

Define the abelian group

Q=X (T [/ (Z®(G,T)" )y, -

Then Z (GY) can be identified with Irr(Q2) = Q*, and Q is naturally isomorphic to the
group X*(Z (GY)) of algebraic characters of Z(G"). In particular,

QWr 2 x*(Z(GV)VE = X* (Z(GY)w,.) - (3)

In [17] this group is called QY while in [49] the notation € is used for a group naturally
isomorphic to formula (3). To indicate the underlying p-adic group and reconcile the
notations from [17] and [49], we write

Qe =0Wk,

Kottwitz defined a natural, surjective group homomorphism x¢g : G — . (The definition
of © in [49] is equivalent to G/ker(kg).) The action of ker(kg) on the Bruhat-Tits
building preserves the types of facets — that is, preserves a colouring of the vertices.
Further, the kernel of k¢ contains the image (in G) of the simply connected cover of the
derived group of G (see [41, Appendix]). We say that a character of G is weakly unramified
if it is trivial on ker(k¢g). Thus, the group Xy, (G) of weakly unramified characters of G
can be identified with the Pontryagin dual of Q.

Let Z(G)s be the maximal K-split torus in Z(G). As H'(K,Z(G)s) = 1, there is a short
exact sequence

1 Z(0):(K) = G(K) = (G/2(G)) (K) — 1. @

In view of the naturality of the Kottwitz homomorphism k¢, this induces a short exact
sequence

1_>QZ(G)S _>QG_>QG/Z(G)S — 1. (5)

Recall from [29, Part 3] that an irreducible representation of a reductive group over a
finite field is called unipotent if it appears in the Deligne-Lusztig series associated to
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the trivial character of a maximal torus in that group. An irreducible representation of a
linear algebraic group over o is called unipotent if it arises, by inflation, from a unipotent
representation of the maximal finite reductive quotient of the group.

We call an irreducible smooth G-representation 7 unipotent if there exists a parahoric
subgroup P; C G such that 7|p, contains an irreducible unipotent representation of F.
Then the restriction of 7 to some smaller parahoric subgroup Py C G contains a cuspidal
unipotent representation of Py, as required in [30]. An arbitrary smooth G-representation
is unipotent if it lies in a product of Bernstein components, all of whose cuspidal supports
are unipotent.

The category of unipotent G-representations can be described in terms of types and
affine Hecke algebras. For a facet f of the Bruhat—Tits building B(G,K) of G, let G5 be the
smooth affine ox-group scheme from [6], such that G7 is an ox-model of G and G (o)
equals the parahoric subgroup P; of G. Then Pf :=Gj(0k) is the pointwise stabiliser of f
in G. Let 97 be the maximal reductive quotient of the k-group scheme obtained from Gy
by reduction modulo wg. Thus

Gi(k) = Py/U; and  G7(k) = P;/U,

where Uj; is the pro-unipotent radical of F5. We normalise the Haar measure on G as in
[18, 24]. When G splits over an unramified extension of K, the computation of the volume
of the Iwahori subgroup of G [22, (4.11)] says that

vol (Pf) _ ‘gi;)(k)‘qf(dimgi$+dimg)/2. (6)

By [13, §5.1], this actually holds for every facet f. We note that with the counting formulas

for reductive groups over finite fields [9, Theorem 9.4.10], g?(k)( can be considered as a

polynomial in ¢ = |k|.

Replacing the objects involved by a suitable G-conjugate, we can achieve that f lies in
the closure of a fixed ‘standard’ chamber C of the apartment of B(G,K) associated to
S. Since G splits over an unramified extension, the group Qg = QW« from formula (3)
equals QF°P It acts naturally on Cp, and we denote the setwise stabiliser of § by Qg5
and the pointwise stabiliser of § by Q¢ s tor. It was noted in [49, (32)] that

B/ P = Qa j vor- (7)

Suppose that (0,V,) is a cuspidal unipotent representation of gT?(k) (in particular, this
includes that it is irreducible). We inflate it to a representation of Fj, still denoted o. It
was shown in [35, §6] and [34, Theorem 4.8] that (P},0) is a type for G. Let Rep(G)(p;, o)
be the corresponding direct factor of Rep(G). By [30, 1.6.b],

Rep(G)(p;,0) = Rep(G)(Pf,’U,) if gf' =§,Ad(g)*o = ¢’, for some g € G,
Rep(G)(p;,0) ﬂRep(G)(Pf/’o,) ={0} otherwise.

By [30, §1.16] and [17, Lemma 15.7], o can be extended (not uniquely) to a representation
of G;(k), which we inflate to an irreducible representation of P; that we denote by (,V,).
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It is known from [34, Theorem 4.7] that (]%6) is a type for a single Bernstein block

Rep(G)®. Conversely, every Bernstein block consisting of unipotent G-representations is
of this form. We note that Rep(G)p,,) is the direct sum of the Rep(G)*® associated to

the different extensions of o to F;.
To (R,&) Bushnell and Kutzko associated the algebra

. . G .\ PP
H (G,Pf,or) =Endg (1ndpi (U)) , (9)
where the superscript means ‘opposite algebra’. In [8] it is shown that

Rep(G)* — Mod (H (G,]%,fr)) )
™ — Homp (6,m)
is an equivalence of categories. It turns out that H (G,Pf,c}) is an (extended) affine Hecke
algebra (see [30, §1] and [49, §3]). Moreover, a finite-length representation in Rep(G)* is
tempered (resp., essentially square integrable) if and only if the associated H (G,I:’f,&)—
module is tempered (resp., and essentially discrete series) [7, Theorem 3.3.(1)].
The (extended) affine Hecke algebra H (G,]%,&) comes with the following data:

a lattice Xj and a complex torus Tj = Irr (Xj);

a root system Rj in Xj, with a basis Ay

a Coxeter group Wag = W (Rs) x ZR; in W (R;) x Xj;

a set Sj g of affine reflections, which are Coxeter generators of Wg;
a parameter function qN :Wag — Ryp.

Furthermore, it has a distinguished basis {IV,, : w € W (R;) x X}, an involution * and a
trace 7. Thus H (G,If’f,&) has the structure of a Hilbert algebra, and we can define a
Plancherel measure and formal degrees for its representations. The unit element N, of
H (G,If’f,ﬁ) is the central idempotent es (in the group algebra of If’f) associated to 4.

The trace 7 is normalised so that

N\ -1
es(1) = dim (¢) vol <Pf) , w=e,
0, w #e.

r(N) = (11)

It follows from [7, Theorem 3.3.(2)] that with this normalisation, the equivalence of
categories in formula (10) preserves Plancherel measures and formal degrees. For affine
Hecke algebras, these were analysed in depth in [36, 40, 12].

Consider a discrete series representation ¢ of H G,Pf,[f), with central character
W (Rys)r € Tj/W (Ry). By [36], its formal degree can be expressed as

(r)

fdeg(d) = £dim (6) vol (Pf) - dy, sm (qN) (12)
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where dyy 5 € Qs is computed in [12] (often it is just 1). The factor m (qN) is a rational
function in 7 € T} and the parameters ¢V (54)'/? with s, € S§,af, While the superscript
(r) indicates that we take its residue at r. We refer to equations (71) and (94) for the
explicit definition of m (qN )

3. Langlands parameters

Recall that a Langlands parameter for G is a homomorphism
¢:Wg xSLy(C) = LG =GY x Wk,

with some extra requirements. In particular, ¢|s,(c) has to be algebraic, ¢(W ) must
consist of semisimple elements and ¢ must respect the projections to W k.
We say that an L-parameter ¢ for G is

e discrete if it does not factor through the L-group of any proper Levi subgroup of
G;
bounded if ¢(Frob) = (s,Frob) with s in a bounded subgroup of GV;
unramified if ¢(w) = (1,w) for all w € I.

Let GV.q be the adjoint group of GV, and let GV, be its simply connected cover. Let
G* be the unique K-quasi-split inner form of G. We consider G as an inner twist of G*,
so endowed with a K -isomorphism G — G*. Via the Kottwitz isomorphism, G is labelled
by a character (g of Z(GVs)"™V* (defined with respect to G*). We choose an extension ¢
of (g to Z(GV). As explained in [17, §1], this is related to the explicit realisation of G
as an inner twist of G*.

Both GV,q and GV act on GV by conjugation. As

Zev (im )N Z(GV) = Z (G,

we can regard Zgv(im ¢)/Z (GY)WX as a subgroup of GV.q. Let Z¢ (im @) be its
inverse image in GV (it contains Zgv__ (im ¢) with finite index). A subtle version of the
component group of ¢ is

Ay =m0 (Z&v_ (im ¢)).

It is related to the component group S’g) from equation (1) by natural maps

Ay — w0 (Zgv. (im ¢)) — 70 (Z()2(0).)v (8)) = Sg),

the first of which is injective and, when G/Z(G)s is semisimple, the second of which is
surjective. An enhancement of ¢ is an irreducible representation p of Aj.

Via the canonical map Z (GV ) = Ay, p determines a character ¢, of Z (G" ). We say
that an enhanced L-parameter (¢,p) is relevant for G if ¢, = (. This can be reformulated
with G-relevance of ¢ in terms of Levi subgroups [25, Lemma 9.1]. To be precise, in
view of [5, §3] there exists an enhancement p such that (¢,p) is G-relevant if and only if
every L-Levi subgroup of “G containing the image of ¢ is G-relevant. The group GV acts
naturally on the collection of G-relevant enhanced L-parameters, by

g-(.p) = (g9 ", poAd(g)™").
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We denote the set of GY-equivalence classes of G-relevant (resp., enhanced) L-parameters
by ®(G) (resp., ®.(G)). A local Langlands correspondence for G (in its modern
interpretation) should be a bijection between ®.(G) and the set Irr(G) of (isomorphism
classes of) irreducible smooth G-representations, with several nice properties.

We denote the set of irreducible unipotent (resp., cuspidal) G-representations by
Irtynip(G) (resp., Irteusp (G)). Let @4, (G) (resp., ®ure(G)) be the subset of ®(G) (resp.,
. (@)) formed by the unramified L-parameters. Recall from [2] that there is a notion of
cuspidality for enhanced L-parameters and that the cuspidal support map Sc associates
to each enhanced L-parameter for G a cuspidal L-parameter for a Levi subgroup of G
(unique up GV-conjugacy).

The next theorem is a combination of the main results of [17, 49, 39].

Theorem 3.1. Let G be a connected reductive K -group which splits over an
unramified extension. There exists a bijection
Irunip(G) — Pure(G)
Q = (¢ 0x)
77({257[)) < (d)?p)

We can construct such a bijection for every group G of this kind, in a compatible way.
The resulting family of bijections satisfies the following properties:
(a) They are compatible with direct products of reductive K-groups.

(b) They are equivariant with respect to the canonical actions of the group Xy, (G) of
weakly unramified characters of G.

¢) The central character of m equals the character of Z(G) determined by ¢ .

(

(d) 7 is tempered if and only if ¢ is bounded.
(
(

(g

)
)
e) m is essentially square-integrable if and only if ¢ is discrete.
f) 7 is supercuspidal if and only if (¢r,px) is cuspidal.

)

The analogous bijections for the Levi subgroups of G and the cuspidal support maps
Sc form a commutative diagram
Irrynip (G) — Dy e (G)
lSc lSc
L Irteusp,unip (M) /Nea(M) - — Ly @ar,cusp(M) /Nev (MY x W) .
Here M runs over a collection of representatives for the conjugacy classes of Levi
subgroups of G.

(h) Suppose that P = MU 1is a parabolic subgroup of G and that (qb,pM) € Py (M) is
bounded. Then the normalised parabolically induced representation Igﬂ‘ (¢,pM) s a

direct sum of representations w(¢,p), with multiplicities [pM :p} AM -
é

(i) They are compatible with the Langlands classification for representations of reduc-
tive groups and the Langlands classification for enhanced L-parameters.
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(j) They are compatible with restriction of scalars of reductive groups over non-

Archimedean local fields.
(k) Let G be a group of the same kind as G, and let n: G — G be a homomorphism of
K -groups such that the kernel of dn : Lie (_C';) — Lie(G) is central and the cokernel

of  is a commutative K-group. Let n : LG — LG be the dual homomorphism and
let d) S énr(G)

Then the L-packet 1L, (é) = {fr € Irr (é) L pF = gb} consists precisely of the
constituents of the completely reducible G-representations n*(m) with m € 4(G).

(1) Conjgecture 1 holds for tempered unipotent G-representations, up to some rational
constants that do not change if we replace IS () by IS, (xm) with X € Xune(M).

Moreover, these properties uniquely determine the surjection

Irrunip(G) — CI)nr(G)/pr(sz(G))
s — pr(G7Z(G))¢7T’

where X (G,Z(G)) denotes the group of weakly unramified characters of G that are
trivial on Z(G).

Remark 3.2. We regard this as a local Langlands correspondence for unipotent
representations. We point out that for simple adjoint groups, Theorem 3.1 differs
somewhat from the main results of [30, 31] — which do not satisfy (d) and (e). In [3,
§3.5] this is fixed by composing a parametrisation of irreducible representations with the
Iwahori-Matsumoto involution of a Hecke algebra, and that propagates to a difference
between Theorem 3.1 and Lusztig’s parametrisation.

Proof. A bijection satisfying properties (a)—(i) was exhibited in [49, §5]. The construction
involves some arbitrary choices; we will fix some of those here.

For property (j), see [17, Lemma A.3] and [49, Lemma 2.4]. For property (k) we refer
to [52, Corollary 5.8 and §7].

Denote by Irreemp(G) the set of (isomorphism classes of) tempered irreducible smooth
G-representations, and let ®pqq4(G) be the collection of bounded L-parameters for G. It
was shown in [39, Theorem 4.5.1] that there exists a ‘Langlands parametrisation’

(bHII : Irrunip,ter‘np(G) — q)nr,bdd(G) (13)

which satisfies property (1) and is unique up to twists by certain weakly unramified
characters. Notice that the image of ¢y consists of L-parameters, not enhanced as before.
For supercuspidal representations, both ¢y and [49] boil down to the same source,
namely [16, 17]. There it is shown that on the cuspidal level for a Levi subgroup M of G,
in the bijection

Irrunip,cusp(M) — (I)nr,cusp(M) T (¢ﬂ'7ﬂﬂ')7 (14)

the L-parameter ¢, is canonical up to twisting by Xy, (M/Z(M)). For use in [49] we may
pick any instance of formula (14) from [17, Theorem 2|. For use in [39, 4.5.1] there are
some extra conditions, related to the existence of suitable spectral transfer morphisms.
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We fix a set Lev(G) of representatives for the conjugacy classes of Levi subgroups of G.
For every M € Leu(G) we choose a bijection (14) which satisfies all the requirements from
[39]. In this way we obtain

O = dunn(m) € Puybaa(M)  for every tempered m € Irrypip, cusp (M). (15)
To prove property (1), we will show that
Or = Ou1(m) € Py baa(G)  for all 7 € Irrynip, temp (G)- (16)

The infinitesimal (central) character of an L-parameter ¢ is defined as
inf.ch.(¢) = G¥-conjugacy class of ¢ (Frob, (q_;/2 qlo/2>) € GVFrob.

By the definition of L-parameters this is a semisimple adjoint orbit, and by [5, Lemma
6.4] it corresponds to a unique W (GY,7V)""-orbit in T}, ,, (the coinvariants of TV with
respect to the action of (Frob)). That in turn can be interpreted as a central character of
the Iwahori-Hecke algebra H(G™*,I*) of the quasi-split inner form G* of G.

By [39, Theorems 3.8.1 and 4.5.1], the Langlands parametrisation ¢y is completely
characterised by the map

inf.ch. o ¢uir : Iunip, temp (G) — G Frob/GY-conjugacy. (17)
Hence equation (16) is equivalent to
inf.ch.(¢-) = inf.ch.(¢urr (7)) for all 7 € Irtynip, temp(G)- (18)

By construction, the cuspidal support map Sc for enhanced L-parameters preserves
infinitesimal characters (see [2, Definition 7.7 and (108)]). Then property (g) says that
inf.ch.(¢) does not change if we replace 7 by its supercuspidal support.

Map (17) is constructed in [39] in three steps:

e Let H; be the Hecke algebra associated to a Bushnell-Kutzko type for the
Bernstein block Rep(G)® that contains 7, as in equation (9). Consider the image
73 of 7 in Irr(Hs) under formula (10).

e Compute the central character of w4, an orbit for the finite Weyl group W, acting
on the complex torus Ts — both attached to Hs as described after formula (10)
(but there in terms of §).

e Apply a spectral transfer morphism Hs ~ H(G*,I*) and the associated map T, —
Tion/ KT (see the definitions in [37, §5.1]). This map sends the central character of
T3 to a unique W (G, 7)™ -orbit in T¥.op, Which we interpret as a semisimple
GVY-orbit in GV Frob.

For irreducible H;-modules, the central character map corresponds to restriction to the
maximal commutative subalgebra O(Ts) of Hs. There is a Levi subgroup M of G with a
type, covered by the type for Rep(G)*®, whose Hecke algebra is O(T5). The equivalence of
categories in formula (10) is compatible with normalised parabolic induction and Jacquet
restriction [50, Lemma 4.1], so the central character map for H, corresponds to the
supercuspidal support map for Rep(G)*.
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As in [38, §3.1.1], Hs ~ H(G*,I*) can be restricted to a spectral transfer morphism
O(Ts) ~ H(M™*,I*), where the Levi subgroup M* of G* is the quasi-split inner form
of M. Up to adjusting by an element of W(QV,TV)HOb, these two spectral transfer
morphisms are represented by the same map T — Ty, /K. Consequently, map (17) does
not change if the input 7 is replaced by its supercuspidal support. These considerations
reduce equations (18) and (16) to equation (15).

Now we have the bijection of the theorem and all its properties, except for the asserted
uniqueness. The L-parameters for Irrypip, temp (G) completely determine the L-parameters
for all (not necessarily tempered) irreducible unipotent G-representations, which follows
from the compatibility with the Langlands classification [49, Lemma 5.10]. Hence it
suffices to address the essential uniqueness for tempered representations and bounded
L-parameters. For adjoint groups, it was shown in [39, Theorems 4.4.1.c and 4.5.1.b].

The case where Z(G) is K-anisotropic is reduced to the adjoint case in the proof
of [39, Theorem 4.5.1]. This proceeds by imposing compatibility of the Langlands
parametrisation ¢pr with the isogeny G — Gaq X G/Gder, in the sense that

e every irreducible tempered unipotent representation of G should be ‘liftable’ in an

essentially unique way to one of Gaq X (G/Gger)(K),

e which should determine the L-parameters.
In this way we conclude essential uniqueness in [39, Theorem 4.5.1.b], but in a weaker
sense than we want. However, the compatibility of G — G.q X G/Gger with L-parameters
actually is a requirement: it is an instance of property (k). If we invoke that, the argument
for [39, Theorem 4.5.1] shows that the nonuniqueness (when Z(G) is K-anisotropic) is
essentially the same as in the adjoint case. That is, the parametrisation is unique up to
twists by the image of Xy, (Gaa) = Z (GadV)FrOb in “G, which is just X, (G).

Finally, we consider the case where G is reductive and the maximal K-split central torus
Z(G)s is nontrivial. Then G/Z(G)s = (G/Z(G)s)(K) does have K-anisotropic centre. The
Langlands correspondence for Irrynip (G) is deduced from that for Irrynip(G/Z(G)s) (see
[17, §15] and [39, p.35]). What happens for Z(G) is determined by property (c) and
the natural local Langlands correspondence for tori. This renders a local Langlands
correspondence for Irryni,(G) precisely as canonical as for Irrynip(Gad). In view of the
cases considered above, the only non-uniqueness comes from twisting by Xy (Gaq)-
This twisting goes via the image of Xy, (Gaq) in Xy (G), which consists of the weakly
unramified characters of G that are trivial on Z(G). O

Next we recall some results from [52] about the behaviour of unipotent representations
and enhanced L-parameters under isogenies of reductive groups. We will formulate them
for quotient maps, because we will only need them for such isogenies.

Let Z be a central K-subgroup of G and consider the quotient map

n:G—G :=G/Z.
The dual homomorphism ¥ : G’V — GV gives rise to maps
Ep: LG’ -G and ®(n): ®(G') — (G).

For ¢' € ®(G’) and ¢ = ®(n)¢’ € ®(G), Ay is a normal subgroup of Ay and Ay/ Ay is
abelian [52, Lemma 4.1].
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The map between groups of K-rational points 17 : G — G’ need not be surjective, but in
any case its cokernel is compact and commutative. This implies that the pullback functor

n* : Rep(G’) — Rep(G)

preserves finite length and complete reducibility [47]. It is easily seen, for instance from
[52, Proposition 7.2], that n* maps one Bernstein block Rep(G’)®" into a direct sum of
finitely many Bernstein blocks Rep(G)*®.

Theorem 3.3 ([52, Theorem 3 and Lemma 7.3]). Let G be a connected reductive K -group
which splits over an unramified extension. Set (¢',p') € Pyy (G') and let w(¢',p’) € Irr(G')
be associated to it in Theorem 3.1. Then, with ¢ = ®(n)¢’,

* . A
n'r(¢ )= @5 Homy, (md " p’,p) @n(p.p)= @ Homa, (o' p)@7(e,p).
pelrr(Ay) pelrr(Ag)

Let us work out a few more features of this result.

Lemma 3.4.

(a) All irreducible constituents of the G-representation n*m(¢’,p’) have the same
Plancherel density and appear with the same multiplicity. This multiplicity is 1
if m(¢',p") is supercuspidal.

(b) All p € Irr(Ay) with Homy,, (p',p) # 0 have the same dimension.

(¢) For any such p, the length of the G-representation n*n(¢',p') is

dim(p") [Ag : Ag] dim(p)~".

Proof. (a) We abbreviate ' = w(¢',p’). Since this G’-representation is irreducible, all
irreducible subrepresentations of n*(n’) are equivalent under the action of G’ on Irr(G).
Conjugation with ¢’ € G’ defines a unimodular automorphism of G, so Ad(g')* preserves
the Plancherel density on Irr(G).

Similarly, all isotypic components of n*(n’) are G’-associate. As already shown in [21,
Lemma 2.1], this implies that every irreducible constituent of n*(n’) appears with the
same multiplicity. By [52, Lemma 7.1], this multiplicity is 1 if 7’ is supercuspidal.

(b) We briefly recall how to construct irreducible representations of A, that contain
p'. Let (Ap),, be the stabiliser of p in Ay (with respect to the action of Ay on Irr (Ay)
coming from conjugation). The projective action of (A¢)p, on Vs gives rise to a 2-cocycle

ky and a twisted group algebra C {(A¢)p/,/€p/:|. Clifford theory (in the version of [2,
Proposition 1.1]) says that

e for every (7,V;) € Irr ((C [(A(b)p,mp/D, TXp:= indf‘A

<z>
®) pr

(V:®Vy) is an irre-

ducible Ay-representation containing p’; and
e every irreducible Ag4-representation containing p’ is of the form 7 x p'.

For p=7x p', we see that

Homy,, (p,p) = Homy,, (Vpl,indéfd)) (V:® Vp/)) = Homy,, (Vy, Ve @ V) = V..

o’
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We can compute the dimension of p =7 X p’ in these terms:

dim(p) = {Aqb : (A(z,)p,} dim(V;)dim (V) = |:A¢ : (.A¢)p,] dim(p") dimHom,, (o', p).
(19)
By Theorem 3.3,

Home(r(¢,p), 1" (")) = Hom 4, (0, ).

By part (a) this space is independent of p (as long as it is nonzero). With equation (19)
we conclude that dim(p) is the same for all such p.
(¢) By Frobenius reciprocity,

Hom 4, (indﬁj, p’,p) = Homy,, (¢,p)-

Hence indjz,p’ is a direct sum of irreducible subrepresentations of common dimension
dim(p). Then its length is

dim (indﬁi/p') dim(p) ™' = dim(p’) [Ag : Ag]dim(p) .

By Theorem 3.3 that is also the length of n* (7). O

4. Affine Hecke algebras

From now on, G denotes a connected reductive K-group which splits over the maximal
unramified extension K, of K. In this section we assume moreover that it has anisotropic
centre. Let Goq = G/Z(G) be its adjoint group. We intend to investigate the behaviour
of the formal degrees with respect to the quotient map 7n: G — G,q. As preparation, we
consider the analogous question for the affine Hecke algebras from Section 2.

This means that we focus on one Bernstein component Rep(G) (Br.6) for G and one
Pry6aa) for Gaq, such that the pullback of the latter has
nonzero components in the former. As already noted in [17, §13] and [49, §3.3], we may
assume that f,q = f and that the underlying cuspidal unipotent representations o and g,q
are essentially the same. That is, they are defined on the same vector space V,, and o is
the pullback of gaq via the natural map G3(k) — Gg, (k). More precisely, we may even

Bernstein component Rep(Gad)(

assume that & is the pullback of 6,4 along 7 : ]5,: — B aq.
In this setting, n induces an inclusion

Ny H (G,pf,&) —H (Gampad,f,&ad) ; (20)

which we need to analyse in more detail. Let X} .q denote the lattice X; for Gaq. From
[49, Proposition 3.1 and Theorem 3.3.b], we see that X; can be regarded as a sublattice
of Xjaq and that

Xf,ad/Xf = (QGadyf/QGad7f7tOI‘) / (QG,f/QG,f,tor) . (21)

To make sense of the right-hand side, we remark that the natural map Qg — Qa5 is
injective, because G is K,,,-split. Group (21) is finite because Z(G) is K-anisotropic. We
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recall from [30, §1.20] and [49, (42)] that Q. 1/Q¢ .., f,tor acts on H (G,]%&) by algebra

automorphisms, and that
H (G, pf,(}) ~2H.q (G, Pf,(f) X QG’f/QG’ f, tor- (22)

By [49, Lemma 3.5], Hag (G, Pj,0) and all the data for that algebra are the same for G
and for G.q. So the difference between formula (22) and its analogue for G,q lies only in
the finite group Qg ;/Qq, s tor- Inclusion (20) is the identity on Hag (G, FPf,0).

Let 7 and T,q denote the normalised traces of the affine Hecke algebras H (G,I%,&)

and H (Gad,Pad,f,&ad). Let Z(G)S be the unique parahoric subgroup of Z(G)°(K). By
equation (6) and [20, Proposition 1.4.12.c]

vol (Pj) = vol (Pj aqa) vol(Z (G)7) . (23)
By formulas (11), (7) and (23),

V) _ dim(@) N (Bret) 0600l
Rl ol () ) [0y w0l )

(24)

Both formulas (21) and (24) contribute to the difference between the Plancherel measures
for H (G,If’f,&) and H (Gad,]f’ad7f,&ad). For the latter, that is clear; for the former, we
compute the effect later.
We abbreviate A = Qgq,, 1/Qc.q.f,tors Had = Hagt (G, P},0) x A and
H= Haff (G,Pf,a) X QG,f/QG,f,top

Since the abelian group A acts on Hag (G, Pj,0) and (trivially) Q¢ /26, j,tor, formula (22)
shows that it acts on H by algebra automorphisms.

Lemma 4.1. Let V be any irreducible Haq-module. All the constituents of n;, (V') have
the same dimension and the same Plancherel density, and they appear with the same
multiplicity.

Proof. If V3 is any irreducible submodule of 73, (V'), formula (22) shows that

V= ZweA N, - Vi (25)

As N, normalises the subalgebra H of H.q, each N, -V is an irreducible H-submodule
of V. Consequently,

every constituent of 73,(V) is isomorphic to Ad(N,,)*Vy for some w € A. (26)

Taking into account that conjugation by N, is a trace-preserving automorphism of #,
fact (26) shows that all the constituents of 7;,(V') have the same dimension and Plancherel
density. Further, we see from equation (25) that any two H-isotypic submodules of V' are
in bijection, via multiplication with a suitable N,,. Hence all constituents of 7, (V') appear
with the same multiplicity in that H-module. O
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This rough analysis of 13, does not yet suffice; we need more precise results from Clifford
theory. Write

C = Trr (X.00/X).
By formula (21), C can also be regarded as the character group of
(Q6.0,1/Q6uasftor) / (Q6,1/ Q6 tor) -
Using formula (22), every ¢ € C' determines an automorphism of H,q, namely
¢ (h®@N,)=h®c(w)N,, h € Hag (G, P,0),w € A.

We note that HS, = H.

The restriction of modules from H,q to "Hg’; was investigated in [42, Appendix]. Let Cy
be the stabiliser (in C') of the isomorphism class of V' € Irr(Haq). For every c € C, there
exists an isomorphism of H-modules

ie: V= V.

By Schur’s lemma, i, is unique up to scalars, and thus the i, furnish a projective action
of C on V. Our particular situation is favourable because the action of C' on H.,q is free,
in the sense that it acts freely on a vector space basis. This can be exploited to analyse
the intertwining operators i..

Lemma 4.2. The group Cy acts linearly on V, by H-module automorphisms.

Proof. We normalise i, by requiring that it restrict to the identity on V3. For any
we€ A,ce Cy and v € V3, we have

ic(Ny - v) = ¢(Ny) ic(v) = c(w)N,, - v. (27)
In view of equation (25), this formula determines i. completely. In particular, i. 06 =i,

for all ¢,c’ € Cy. O

In the remainder of this section we assume that G is semisimple, so that formula (21)
and C are finite. By [42, Theorem A.13], the action from Lemma 4.2 gives rise to an
isomorphism of H x C[Cy]-modules

V @Eem(cv) VE®E. (28)

Lemma 4.3. For every E € Irr(Cy ), the H-module Vg = Home,, (E,V) is irreducible and
appears with multiplicity 1 in 03, (V).

Proof. By [42, Theorem A.13], the H-module V is either zero or irreducible. Let A’ C A
be a set of representatives of A/ N.ccoker(c|a), so that Irr(Cy ) is naturally in bijection
with A’. From equations (25) and (27), we see that there is a linear bijection

CA® Y NyVy—V:ia®v— Ny-v.

wENeec ker(cla)
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Hence every E € Irr(Cy) =2 A" appears nontrivially in decomposition (28). The multiplicity
of Vg in V is dim(E), which is 1 because Cy is abelian. O

For another irreducible H,q-module V', [42, Theorem A.13] shows how the restrictions
to H compare:

. > 5 (V if V' = c*V for some c € C,

has no constituents in common with 7;,(V') otherwise.
(29)
From here on we assume that V is a discrete series. Casselman’s criterion for discrete
series representations [36, Lemma 2.22] entails that 7,0’ is a direct sum of finitely many
irreducible discrete series representations of H.
Endow H.g and H,q with the trace 7/ so that /(N ) = 1. We indicate the formal degree
with respect to this renormalised trace by fdeg’.

Theorem 4.4. Let G be a semisimple K -group which splits over an unramified extension.
Let V' be an irreducible discrete series representation of Hag (G, P;,0) X Qa,,.1/QG 0,5 tors
and let 03,V be its pullback to Hag (G, P;,0) % Qq ;/Qc f,t0r via formulas (20) and (22).
Then

fdeg’(ﬂ%V):m: Qi . Qe
fdeg/(V) QG’ad,f,tc-r QG,f,tor

For any irreducible constituent Vg of n;,(V),
fdeg' (Vi) = [C : Cy]fdeg’ (V).
Here |Cv| equals the length of n;,(V).

Proof. Let C;(#H) be the C*-completion of H, as in [36, Definition 2.4]. As V is a discrete
series, we know from [36, §6.4] that C(Ha.q) contains a central idempotent ey such that

evCy(Haa) = Endc(V).
Then by definition,
7 (ey) = dim(V)fdeg’ (V). (30)

The C-orbit of V' in Irr(#Haq) has precisely [C : Cy] elements, and these are all discrete
series. The central idempotent

ec,v = ZceC/Cv cev
lies in O (Haa)¢ = C}(H), and
ec,vCy (Haa) = @CGC/CV Endc(c™V).

Since the action of C' preserves 7/, we obtain

(ecv) = Zcec/cv dim(c*V)fdeg' (¢*V) = [C' : Cy]dim(V)fdeg (V).
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With formula (28) and Lemma 4.3, this can be expanded as
/ 0. / . .
T'(ec,v) =[C: Cy]fdeg (V) ZEem(CV) dim(Vg)dim(F) (31)
=[C: Cy|fdeg’ (V)|Cy |dim(VE) = |C|fdeg’ (V) dim(Vz).
From formulas (28) and (29) we see that
covCi M) =D, o, Brde(Ve).
Considering 7" as the trace for H, using Lemma 4.1 and the commutativity of Cy we find
(€)= D 4 ctmion, Am(Vie)fdeg! (Vi) = |Cv | dim(Vis)fdeg (V). (32)

Now we compare equations (31) and (32), for any constituent Vg of n;,(V), and we find
the desired formula for fdeg’ (V).
From that and formula (28), we deduce

fdeg’ (n3,V) = Z dim(E)fdeg(Ve) = |Cv|[C : Cylfdeg(V) = [Clfdeg(V).
Eclrr(Cy)
For the interpretation of |Cy |, we refer to Lemma 4.3. O

We note two direct consequences of Theorem 4.4 and equation (24):

fdeg(nz,V) _ _ [C11 Q6.0 100rl  _ [Q6u5: Q0]
fdeg(V) vol(Z(G)3) 19¢, 5, tor | vol(Z(G)S) ’

length of n;, (V) -fdeg(Ve) = [Qa,..5 : Q. fdeg(V)vol (Z(G)$)". (34)

(33)

5. Pullback of representations

In this section, G still denotes a K,;-split connected reductive K-group with anisotropic
centre. We would like to apply Lemma 3.4 to equation (34), but to do so we first have
to find the relation between the length of 7;,(V) and the length of the pullback of the
associated Gq-representation. This involves the number of G-orbits of facets and the
number of Bernstein components obtained from (ﬁf’ad,ﬁad> under pullback along 7.

For a facet § of B(G, K), let Rep(G); be the sum of the subcategories Rep(G)(p;, ), where
o runs over the irreducible representations of P; inflated from cuspidal representations of
gT’(k) In Section 2 we saw that this is a direct sum of finitely many Bernstein blocks,
which by [34, Corollary 3.10] all come from supercuspidal Bernstein components of the
same Levi subgroup of G. By equation (8),

Rep(G)s = Rep(G)y if gf' = for some g € G,
Rep(G); NRep(G)y = {0} otherwise.

Let n* (Rep(Gaa)s) be the pullback of Rep(Gaq)s along 1: G — Gaq.

(35)

Lemma 5.1. The number of different subcategories Rep(G)y involved nontrivially in
X ‘ =1
" (Rep(Gaa)s) is (D 719§
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Proof. Since Cj contains a fundamental domain for the G-action on B(G,K), it suffices
by equation (35) to consider facets in Cp. Since the kernel of kg : G — Qg acts type-
preservingly on B(G,K), the G-association classes of facets in Cj are precisely the Qg-
orbits of facets in Cp.

Since 2¢ embeds in the abelian group Qg,,, all Qg-orbits in Qg,, - f have the same
length. The number of such Qg-orbits is |Qq,, - §||Qc - f| 1.

It is clear from the definitions that 7* (Rep(Gaq);) has nonzero parts in the Rep(G)y
with f € Qg,, - f, and maps to zero in all other subcategories Rep(G)yr. In view of
equation (35), the number of different Rep(G)j involved here equals the number of Qg-

orbits in Q¢ -f. O

There exists a Levi subgroup M = M(K) such that (PfﬁM,&) is a type for a

supercuspidal Bernstein block s5; of Rep(M), covered by (Pf,fr) [34, Corollary 3.10].
We will often denote objects associated to M with an additional subscript — for example,
Py = PyN M. We note that, by [34, Theorem 2.1], f is contained in a minimal facet f,
of B(Mag,K) and Py = Pj,, is a maximal parahoric subgroup of M.

Recall from [56, §1.2] that the apartment A of B(G, K') associated to S admits a canonical
decomposition

A=Ay, X Xo(Z(M),) @R, (36)

where Ay, is the apartment of B(M,q,K) = B(M/Z(M), K) associated to §/Z(M)s;.
With equation (36), we can express f as fas x M, where )/ is a vertex of B(M,q,K) and
M is an open subset of X,(Z(M),)®zR. Now

(
f= (far x Xu(Z(M)s) @2R) N Co, (37)
so that § and f; determine each other.

Lemma 5.2. Let ' € Ng,,(M)-f such that Rep(M);,, # Rep(M)y, . Then Rep(G); #
Rep(G)f/.

Proof. Suppose that Rep(G); = Rep(G)y. Then any inertial equivalence class s =
[M, 7] with Rep(G)s C Rep(G); equals an inertial equivalence class s with Rep(G)s C
Rep(G)y . By assumption, ' also admits a decomposition (equation (37)), with the same
M. Hence we may assume that s’ = [M,7)].

This means that there exist g € Ng(M) and x € Xy (M) such that 7, = Ad(g)* (mp ®
X). Since Ng(M)/M only depends on G up to isogenies, we may assume that g lies in
the image of Gs. — G. In particular, g lies in the kernel of k¢ and acts type-preservingly
on B(G.K).

By [30, §1] or [17, (1.18)], we can write w3 ® x = ind®/

NM(PfM
of o to Nas (P, ). Then

Ad(g)"(mar @X) Zind) )

) () for some extension &

Ad(g)*5) = ind]‘I\;fM(PmM) (Ad(g)*5).

With equation (35), this implies mg - far = ), for some m € M. Then equation (37)
shows that also mg-f=§. Since fUf C Cy and g € ker(kg), it follows that kg (m)f =f.
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From equation (37) and the naturality of the Kottwitz homomorphism, we deduce that
kar(m)far = fyy- By equation (35), this contradicts the assumption of the lemma. O

We write Map = M/Z(G) and we restrict 1 to nas : M — M ap. Let P be a parabolic
K-subgroup of G with Levi factor M and put Pap = P/Z(G). The normalised parabolic
induction functors form a commutative diagram

Rep(Gad) 5 Rep(Q).
g TIE (38)

Pap

Rep(Map) ﬂ) Rep(M)

Lemma 5.3. Let mq € Rep(Gad)( and let m,q 9 be the associated module of

pad, i76'ad)

H (Gad,laad,fﬁad). Then the length of n*(maq) € Rep(G) equals |Qq,, -f||Qc - §| =1 times
the length of 0}, (Taq,7) € Rep (H (GJ%&)).

Proof. In every subcategory Rep(G)g; with g € Gaa, 7*(7aq) has a nonzero component.
These components are associated by the automorphisms Ad(g) of G, so they all have the
same length. Lemma 5.1 tells us that the number of such components is |Qg,, - f| |Qc - f| L.

Hence, it suffices to consider the projection 7 of 7*(m.q) to Rep(G)s, and we have to
show that its length equals that of 7}, (7ad,%). From commutative diagram (38) we see
that

Rep(); N7 (Beb(Gaa) 0.0

= 1§ (Rep(M)5,) 1§ (3 (Rep(Man) (o, 50)))s (39)

where X indicates that we take the sum of all Bernstein components appearing in X.
It is known from [52, (7.8)] that 0}, (Rep(MAD)(p I d)> involves just one Bernstein
ad, fpr:0a

component of Rep(M )y, for every facet f,; € M4p -, and no others. By Lemma 5.2 these
different Bernstein components remain different upon parabolic induction to G. Hence
we can identify the right-hand side of equation (39) as

IS (projection of mi, (Rep(MAD)(pad,va&ad)) to Rep(M)fM)

18 (Rep(M) (5, ) =Rep(G)(p, 5. (40)

From equations (39) and (40) we see that the projection 7; of 7*(7aq) to Rep(G)s equals
its projection to Rep(G)( Pro): Via formula (10), the latter category is equivalent with

Rep (7—[ (G, ]5,:,6)). Hence m; maps to 7, (7aq,%) by formula (10), and in particular these

two representations have the same length. O
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6. Computation of formal degrees

Now G denotes a connected reductive K-group which splits over an unramified extension.
We will compute the formal degrees of square-integrable unipotent G-representations in
increasing generality.

By the choice of a Haar measure on G, we make C°(G) into a convolution algebra,
denoted H(G). The Plancherel theorem asserts that there exists a unique Borel measure
wpy on Irr(G) such that

f0)= [ un(f)dum() ¥ € HE)
Irr(G)

The support of pp; is precisely the collection Irriemp(G) of tempered irreducible G-
representations. For a self-adjoint idempotent e € H(G), we write

Irr(G)° = {(m,Vz) € Irr(G) : eV # 0}

If it is nonzero, eV, is an irreducible representation of the Hilbert algebra eH(G)e.
Suppose in addition that dim(eV;) =d € N for all = € Irr(G)®. Then [7, Theorem 2.3
and Proposition 2.1] tell us that

ppi(Trr(G)®) = e(1)d ™. (41)

For an important special case, suppose that (o,V,) is an irreducible representation of a
compact open subgroup J of G and that e, € H(J) is the associated central idempotent.
When ind§ (o) is irreducible, the centre Z(G) is compact, ind§ (o) is supercuspidal and
esH(G)es =2 Ende (V). Applying equation (41) to e,, we find

o) - 20—

Recall that a G-representation (m,V;) is square-integrable modulo centre if Z(G) acts
on V; by a unitary character and V; is square-integrable as a representation of the
derived group of G. Such a representation has a G-invariant inner product and is
completely reducible. The formal degree of an irreducible square-integrable modulo centre
G-representation is defined as the unique number fdeg(r) € Rsq such that

/ (r(g)v1,va) (m(g)vmon) fdeg(m)dg = (v1,00)(omun) for all v, € Ve, (43)
G/Z(G)s

When 7 is actually square-integrable (which can happen only if Z(G) is compact),
equation (43) entails that the formal degree of 7 is its mass with respect to the Plancherel
measure pp; on Irr(G) [14, Proposition 18.8.5]. The formal degree can be extended to
finite-length square-integrable modulo centre representations by additivity.

The foregoing depends on the choice of a Haar measure, which we need to make explicit.
Fix an additive character 1 : K — C* which is trivial on ox but nontrivial on wl_(lo K-
We endow G (and all other reductive p-adic groups) with the Haar measure as in [24]. As
¥ has order 0, this agrees with the Haar measure in [18]. Since G splits over K, it also
agrees with [22, §4], which we used to get equation (6).
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6.1. Adjoint groups

It is known from [29, Theorems 3.22 and 3.29] that the cuspidal unipotent representations
of gT"(k) depend functorially on the finite field k. This means that o is part of a family
of representations o/ of ??(k’ ), one for every finite field &’ containing k. Moreover, the
dimension of o is a particular polynomial in ¢’ = |k’|, a product of a rational number
without factors p, a power of ¢’ and terms (¢ —1)*! with n € N.

When K’ is an unramified extension of K, then gT’(k" ) is the finite reductive quotient
of Q]?(o k'), a parahoric subgroup of G(K'). As already remarked after equation (6), the
volume of G¢(K') is a rational function in ¢, with the same kind of (rational) factors as
dim(oy). This enables us to vary ¢ while keeping f,G; and o essentially constant.

A similar variation is possible for the affine Hecke algebra

H(G.By6) = H (Xp RyV) (44)
There it means that the parameter function ¢V can be replaced by ¢V = (qN ) [1:k]
obtaining a new Hecke algebra H (Xf,Rf,q’N ) Any discrete series representation § of
equation (44) naturally gives rise to a discrete series representation ¢’ of H (X;,Rf,q’N ),
and conversely (see [36, §5.2] and [48, Corollary 4.2.2]). In this way we can consider
fdeg() as a function of g.

Further, unramified L-parameters ¢ can be made into functions of gq. Replacing ¢ by a
GV-conjugate, we may assume that ¢(Frob) = tFrob with ¢t € (TV)V*°. For ¢’ = || we
take ¢ with ¢/(Frob) = t* *]Frob and ¢’ = ¢ on Ix x SLy(C). It is easily seen from the
explicit formulas in [23, §4] that this makes the L-functions, e-factors and y-factors of ¢
into meromorphic functions of q.

b

Theorem 6.1. Suppose that G is simple and splits over an unramified extension. Let
m € Irt(G) be square-integrable and unipotent.

(a) The HII-conjecture (2) holds in this setting, and more precisely,
dim(o)
vol (Pf) {Pf : Pf:|

idimi(pﬂ)'V(OaAde o ¢m1/)),

) _
i
3.

fdeg(r) = + dg,=m (V)

(r)

where m (qN) is as in equation (12).

(b) The expressions v(0,Adgv © ¢x,¢), dim(c), vol(FP;) and m (qN)(T) are nonzero
rational functions of q. Each of them is a product of a rational constant and factors
of the form ¢/ with m € Z and (¢" —1)*" with n € N.

Proof. By [17, Theorem A.l1 and Lemma A.3], the objects in Theorem 3.1 do not
change under Weil restriction for reductive groups, with respect to finite unramified
extensions. Hence we may assume that G is, in addition, absolutely simple. A first
expression for v(0,Adgv o ¢r,1) was given in [38, (38)]; we provide the proof in the
appendix (Theorem A.4). Then we can use the results from [38], which were obtained by
classification.
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For (a), see [38, Theorem 4.11]. For (b), see [38, Proposition 2.5 and (38)] and [23,
§4.2]. O

Exactly the same argument as for [17, Proposition 12.2] extends Theorem 6.1 to all
adjoint groups.

Corollary 6.2. Suppose that Gaq is adjoint and splits over an unramified extension of K.
Then equation (2) holds for all irreducible square-integrable unipotent G-representations.

The functions v(0,Adgv o ¢r,1), dim(o), vol(Ff) and m(qN)(T) for Gaq are the
products of the corresponding functions for the K-simple factors of Gaq.

6.2. Semisimple groups

In this subsection, G is a semisimple K-group which splits over an unramified extension,
and G = G(K) as usual.

Proposition 6.3. Let m € Irrynip (G).

(a) The central character of 7 is trivial.
(b) There exists a Taq € IrTyunip(Gad) such that 7 is a constituent of the pullback n* (Taq).

(¢c) m is unitarisable, tempered, square-integrable or cuspidal if and only if maq also is.

Proof. (a) By definition (see Section 2), there exists a parahoric subgroup P; C G and
an irreducible unipotent Pj-representation o, inflated from the finite reductive quotient
P;/U; = gTS(k), such that 7 is a constituent of ind}G;f (o). It is known from [29, Proposition
3.15] that the adjoint quotient map

??(k) — @ad(k) induces a bijection Irrypp (Qifad(k)) — Irrypip (gT’(k:)) . (45)

In particular, o is the pullback of a unique oaq € Irrynip (@Hd (k)), and the Z (QT’) (k)-
character of o is trivial.

We claim that Pj contains Z(G). The semisimplicity of G implies that Z(G) is finite and
fixes the entire Bruhat—Tits building B(G, K). Since G splits over an unramified extension
K'/K, there exists a K’-split maximal K-torus 7 of G. By maximality, Z(G) C T. Since
T splits over an unramified extension, the Kottwitz homomorphism

pr T X7 (T) " = x+(T)
is determined by the canonical homomorphism
v:T = X.(S)®R.

(with § € T maximal K-split). Then v(Z(G)) is a finite subgroup of X,.(S)®R, so
v(Z(G)) = 0. Consequently, x7(Z(G)) =0, which by the functoriality of the Kottwitz
homomorphism implies that kg(Z(G)) = 0. Thus Z(G) fixes the facet f and lies in the
kernel of the Kottwitz homomorphism x¢, which proves the claim.
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From the claim we see that Z(G)U;/Us is a central subgroup of QTO(k) Hence the Z(G)-

character of o is trivial. It follows that Z(G) acts trivially on ind,c’;f (0) and in particular
on .

(b) By part (a) we can regard 7 as a representation of the normal subgroup G; :=
G/Z(G) of Gaq. From the long exact sequence in Galois cohomology, we see that G.q/G1
is isomorphic to a closed subgroup of H!(F,Z(G)). In particular, G,q/G1 is compact and
abelian.

These properties suffice to apply [54, §2] to G C G and the G;-representation m. Then
[54, Proposition 2.2] shows that indgjd (m) has an irreducible subrepresentation m,q of
Gaq such that 7 is a constituent of the pullback of m,q to G.

In the proof of part (a) we saw that 7|p, contains a subrepresentation isomorphic to o.
Since Gy is an ox-model of G [6] and Z(G) is finite, the homomorphisms

G(F)— Gaa(F) and ?F(UK) —>Q7°ad(oK)
have the same kernel and the same cokernel. Hence G/P; — Gad/Fjad is bijective, and
the pullback of ind%“id (0aa) to G is isomorphic with ind (o). By Frobenius reciprocity,

Homg,, (indg:fid (aad),indg?d (7r)> >~ Homg, (indg:(;d (O’ad),’ﬂ')

= Homg (indgf (a),7r) = Homp, (0,7) # 0. (46)

Let w5 be the subrepresentation of indg;‘d (m) generated by the images of all possible
Gaq-homomorphisms from indg:(;d (0aa) — that is, the component of indgid (m) in
Rep(Gad) (P aa,00q)- The arguments in the proof of [54, Proposition 2.2] also work with
o instead of indg"l‘@1 (m), and show that we can find a m,q as before already in m3. Then
Tad 1S unipotent and irreducible and its pullback to G contains 7.

(c¢) This a small variation on [54, Proposition 2.7], applied to the inclusion G; — G.
Here we regard a representation of Gy = G/Z(G) as tempered or cuspidal if its inflation
to G is tempered or cuspidal. O

Proposition 6.3 guarantees that the next result applies to all square-integrable unipotent
G-representations.

Theorem 6.4. Let § € Irtypip (G) and 0aq € Irrynip(Gad) be square-integrable, such that
0 is a constituent of n*(0aq)-
(a) Their formal degrees, normalised as in [24], are related as

fdeg(n*(daa)) _ fdeg(0) - length of n(d,q) _ Q..
fdeg(daa) fdeg(daa) 1Qq|

(b) fdeg(8) = % dim(ps) \525 ‘_1

’Y(O,Adgv o (;55,’1/)).

Proof. (a) The first equality sign is a consequence of Lemma 3.4(a).
Write V = Hornpf " (6ad,0ad) and Vg = Hompf B (6aa,9). Recall from [7] that § and
Vi have the same formal degree, and similarly for d,q and V. With equation (34) and

https://doi.org/10.1017/51474748021000062 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000062

1972 Y. Feng et al.

Lemma 5.3, we compute

fdeg(0)  fdeg(Ve)  [Qc..5:Qcj 196,41 196, - f|

fdeg(daa)  fdeg(V) — length of n3, (V)  [Qq.i||Qc - f| length of n*(8aa) (47)
By the orbit-counting lemma and formula (3), this equals
O, |2E%™ "
|Q¢| length of 7* (aa) ’Z(GV)WK’ length of n* (5ad)'
Rearranging equations (47) and (48) yields the desired equality.
(b) By Theorem 3.3, ¢s is the composition of ¢s_, with the quotient map
LGaa =GV xWg - GV x Wk =LG.
From Lemma 3.4(c) we know that *(daq) is the direct sum of exactly
dim (ps,.) [Ag, : As,,, | dim(ps) ™! (49)
irreducible G-representations. We know from [17, proof of Lemma 13.2] that
T
(Ao : Ay, | = [Zav.c(06) : Zov, (95,0 = [85,: 85, ] Tz (50)
From formulas (47)—(50) we deduce
feg(@) |2 (G| [ Ao, | dimos) |2, |dim(ps) -
fdeg(daa) ’Z(GV)WK‘ | Ay, [dim (ps,,) ‘Sié dim (ps,,)
As Lie(GYs.) = Lie(GY),
v(s,Adgv o ¢s,10) = v (s,Adgv., o s, ) for all s € C.
Then equation (51) says
tdeg(s) _ (o) S5, | (0.Adg 00s)
fdeg(0ua) — dim (ps,,) |3, 7(0-AdGv.c 0080 ¥))
Combining that with Theorem 6.1(a), we obtain the desired formula for fdeg(). O

6.3. Reductive groups

To prove the HII-conjecture for unipotent representations of a reductive group G, we
want to compare its representations with those of G/Z(G)s and those of the derived
group Ger := Gaer(K). (Notice that Gge, may be larger than the derived group of G as
an abstract group.)
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We start with some preparations for the case where Z(G)° is K-anisotropic. Let Z(G)°
be the connected reductive k-group associated by Bruhat-Tits to the unique vertex of
B(Z(9)°,K).

For any Levi K-subgroup M of G, My := M NGye is a Levi K-subgroup of Gge;.
Furthermore, Z(M), C Mg — for example, because Lie(Z(M)s) C Lie(Gger). We note
also that My/Z (M), is the derived group of M/Z(M);.

Lemma 6.5. Suppose that Z(G)° is K -anisotropic. The inclusion My — M induces:

(a) a bijection Irtypip, cusp (M) = IrTunip, cusp (Ma);

(b) for every minimal facet f of B(Maq,K), a bijection between the types (Pf,&) for M
and for My.

Proof. (a) Let Xy, (M) be the group of weakly unramified characters — that is, those
characters M — C* that are trivial on the kernel of the Kottwitz homomorphism ;.
From the short exact sequence (4) (for M and for M ) we deduce that there are natural
isomorphisms

XWY(M)/XWr(M/Z(M)S) = pr(Z(M)s) = XWr(Md)/XWF(Md/Z(M)S)- (52)

By [17, (15.6)], every irreducible cuspidal unipotent M-representation is of the form
Tr/z(m), @ Xms With Tarzn), € Iunip,cusp(M/Z(M)s) and xn € Xoe(M). Using
weakly unramified characters, we can formulate this more precisely as a bijection

Irrunip, cusp (M /Z(M)) X Xr (M) = Irrynip, cusp (M). (53)
X (M/Z(M)s)
Similarly, there is a bijection

Irrunipmusp (Md/Z(M)s) X pr (Md) — h‘runipmusp (Md) . (54)
pr(Md/Z(M)a‘)

We note that Z(M/Z(M)s)° is isogenous to Z(G)°, and in particular it is K-anisotropic.

Hence we may apply [17, Lemma 15.3], which tells us that the inclusion My/Z(M)s —
M/Z(M)s induces a bijection

Irrunip, cusp (M/Z (M) s) = Irtunip, cusp (Ma/Z (M) ). (55)

Combining formulas (55) and (52) with (53) and (54), we obtain the required bijection.

(b) The (semisimple) Bruhat—Tits buildings of M,My,M/Z(M)s and My/Z(M)s can

be identified [56, §2]. In particular, these buildings have the same collections of facets
f. The group M7 is isogenous to the direct product of Mg, and the k-torus Z(G)°.

The only cuspidal unipotent representation of Z(G)°(k) is the trivial representation.

The collection of cuspidal unipotent representations of (M; ;X Z(g)0> (k) does not

change under isogenies of k-groups [29, §3], so it is the same as for W(k) As the
semisimple group M;/Z(M); is the derived group of M/Z(M)s, [17, Lemma 15.2] says
that Qur/zar), = Qar,/z(ar), - Combining that with sequence (5), we find that

Qar = Q. (56)
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With formula (7) we deduce that My — M induces a bijection between the indicated
collections of types. O

The behaviour of formal degrees of supercuspidal unipotent representations under
pullback from M to M, was analysed in [17, (16.13)]. That and Lemma 6.5 can be
generalised to all (square-integrable) unipotent representations.

Lemma 6.6. Suppose that Z(G)° is K-anisotropic. Let (PfMﬁ) and (Pf,Md,&) be as
in Lemma 6.5(b).
(a) The inclusion Gaer — G induces an algebra isomorphism

H (Gderapf7Gdcr7&) —H (G’Pf’a’&) '

(b) Suppose that 6 € IH(G)(pi .8) is square-integrable, and let dqer be its pullback to
Gaer- Then bger 18 trreducible and

fdeg(é) q(dimZ(g)oerimZ(g)o)/Z

fdeg(daer) ‘m(/@)‘

Proof. (a) By [49, Lemma 3.5 and (42)], these two affine Hecke algebras differ only in
the involved lattices Xj. From equation (56) and the proof of [49, Theorem 3.3.b] we see
that

X5, = Q0 ar /UM, far,tor = 20a, ar / QMg far, tor = X, Gaer -

Hence H (Gder,ﬁf’gdm,&> can be identified with #H (G,Pf’g,&), and the canonical map

between them is an isomorphism. We note that nevertheless, the traces of these algebras
may be normalised differently.

(b) Let 6% be the H (G,Pﬁc,w?) -module associated to ¢ via formula (10). By Lemma 6.5,

5der S Rep(Gder)(
identified with d3, and in particular it is irreducible. From [7] and equation (12), we
see that

) By part (a), the ”H,(Gder,l%,gder,&)—module Oder,74 can be

Pf* Gaer'?

fdeg(0)  fdeg(dy) vol (Pf7Gdcr>
fdeg(5der) fdeg(5der,H) vol (Pf,G) -

By formulas (7) and (56), this equals

VOL(P}, Gaer) [QGuen  tor| _ VOB Gaer) [Muer frtor| _ VOL(P}, G,
VOl(Pﬁ(;) |QG,f,tor‘ VOl(Pﬁ(;) |QM,f,tor‘ VOl(Pﬁ(;)
These volumes, with respect to our normalised Haar measures, are expressed in terms of
k-groups in equation (6). Since QTS is isogenous to G, ; x Z(G)°, we have [20, Proposition
1.4.12.c]

(57)

Gi(k)| =

Toery ()| [2(@° (k).
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With that and equation (6), equation (57) becomes
vol (Pf,Gder) B ’gservf(k) ‘ q_(dimggcr,f-i-dimgder)ﬂ q(dimiz(g)°+dimZ(g)°)/2

_ = . 58
vol (P;,c;) g—g(k)’q_(dimgﬁdimg)m ‘Z(g)o(k)’ (58)

O

With all preparations complete, we can prove our main result: HII-conjecture (2) for
unipotent representations.

Theorem 6.7. Let G be a connected reductive K-group which splits over an unramified
extension. Let 0 € Irrynip(G) be square-integrable modulo centre and let (¢s5,ps) be its
enhanced L-parameter via Theorem 3.1. Let v : K — C* have order 0 and normalise the
Haar measure on G as in [24] and [18]. Then

-1
fdeg() = £dim(ps) ’Sgé‘

’Y(O,Adgv o ¢5,’L/}).
Proof. For the moment we assume that Z(G)° is K-anisotropic. Then Lemma 6.6 tells us
that the pullback d4e; of § along Gger — G is irreducible, so that Theorem 6.4(b) applies

t0 dder € IrTunip(Gder)-
In the proof of [17, Lemma 16.3] it was shown that

dim(ps) ‘Sisdcr ‘ ~v(0,Adgv o ¢s,1) q(dimZ(g)°+dimZ(g)°)/2

7 (0.AdGy, 0 65,.,.) 2@y w)

By Lemma 6.6(b), the right-hand side equals fdeg(§)fdeg(Jger) 1. Combining that with
the formula for fdeg(dqer) from Theorem 6.4(b), we find the desired expression for fdeg(d).

Now we consider any G as in the statement of the theorem. The connected reductive
K-group G/Z(G)s has K-anisotropic connected centre. It was shown in [17, proof of
Theorem 3 on page 43] how the theorem for G can be derived from the theorem for
G/Z(Q)s. Although [17] is formulated only for supercuspidal representations, this proof
also works for square-integrable modulo centre representations when we use the local
Langlands correspondence from Theorem 3.1 (especially part (b) on compatibility with
weakly unramified characters). O

f
S¢5

dim (ptsder)

7. Extension to tempered representations

7.1. Normalisation of densities

In this subsection we study the Plancherel densities for essentially square-integrable
representations of a reductive group G with noncompact centre.

We fix an essentially square-integrable unipotent 7 € Irr(G), trivial on the maximal
central split torus Z(G)s. Recall that we have canonical Haar measures and hence
canonical Plancherel measures for G and for G/Z(G),. Further, Conjecture 1 and [57]
impose a measure on O = Xy, (G)7 C Irr(G). Our conventions force us to slightly modify
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the latter measure. We propose a new normalisation and we check that it results in a nice
formula for the Plancherel mass of O.
Let G' be the subgroup of G generated by all compact subgroups and let Z(G)} be

the unique maximal compact subgroup of Z(G);. We endow X,n,(Z(G)s) with the Haar

1
s

measure of total mass vol (Z(G) )71. Following [57, p. 302], we decree that the covering

maps

Xunr(Z(G)s) — XHHI‘<G) — o
Xlz (). i X =oX®m

are locally measure-preserving. We denote the associated density on O by dO. Notice
that the degree of Xun(G) = Xunr(Z(G)s) equals [G: G'Z(G),]. Write

ONIit(G/Z(G)s) ={r@x € O:Z(G)s C kerx}.
Tensoring 7 with x gives a covering map
ker (Xun: (@) = Xun(Z(G)s)) = ONIrr(G/Z(G)s),

whose degree equals the degree of Xy, (G) — O. Hence the number of elements of any
fibre of Xyn,(G) = O is

(GG 2(G).] |0NT(G/Z(G).)| ™"
It follows that
vol(Xune (@) = [G: G* Z(G) ] vol (Z(&)}) 7, (59)
vol(0) = [ONTrr(G/Z (@), ) vol (Z(G)}) ™. (60)
Lemma 7.1. The Plancherel density on O is fdeg(r)dO and
ppi(O) = fdeg(m)vol(O).

Proof. Choose a test function f € C;(G) such that f is supported on G, trw(f) =1 and
f acts as 0 on all irreducible G-representations outside O. Then f is Z(G)!-invariant and
tr(r®@x)(f) =1 for all x € Xyn:(G). By definition,

1) = [ (F)dru(m) = ri(©). (61)
Since f is Z(G)l-invariant, it defines a function f; on

G')Z(G); = G Z(G)s/Z(G)s,

which we extend by zero to the whole of G/Z(G),. Due to the difference in the Haar
measures, f and f; act differently on representations of G/Z(G)s. Instead, the function
f2 :=vol(Z(G)}) f1 has the same action as f on any smooth G/Z(G),-representation.
This can be seen by expressing f on a small subset of the form X = X/Z(G)! x Z(G)! as

Y _zen
x T 2lxsz@0n Sol(z(G)1)
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In view of the construction of f, the function f5 detects only the G-representations y @
with x € Xunr(G) and Z(G)s C ker x. All these representations have the same Plancherel
density (both for G and for G/Z(G)s). The Plancherel formula for G/Z(G)s gives

f(l)vol (Z(G);) = fg(l) = / trﬂ(fg)dﬂpl’g/z(c)s (7‘(‘)

ON(G/Z(G).)
= ppic/z@). (ONIh(G/Z(G)s)) = 0N (G/Z(G)s)lppra/z@). (7). (62)

Comparing with equations (60) and (61), we find

pri(0) = vol (Z(G)}) ™ {ONTH(G/Z(C) ) prc (. (1) = vol(O)ides().

As tensoring with unramified unitary characters preserves the Plancherel density, this
means that fdeg(m)dO is the Plancherel density on O. O

Let (Pf,&) be the unipotent type such that 7 € IH(G)(pr 5)- We abbreviate H =
H(G,Pf,c}). The representation & is trivial on Z(G)!L, so (]5;,5') descends to a type
(P;/Z(M)%,6) for the group G/Z(G)s. This type can detect more than one Bernstein
component, because Pg/z(q).,,; can properly contain P;/Z(M)!. Let o’ be the (unique)

extension of & to 15(; /2(G).,§ Which is contained in 7. Then

Hss =H (G/Z(G)SaPG/Z(G)S!f’U/>

is naturally a quotient of #, obtained by mapping the generators N,, € H with w €
Z(G)/Z(G)} to suitable scalars. The traces 7 and 7,5 of H and Hs,, normalised as in
equation (11), differ at the unit element:

Lomma 7., TN _ 19610Vl (ZG)) 960l (q—l)d“(w“.
7(Ne) 1)z, ftor| 1Q/2@).ftor| \ @
Proof. By formulas (11) and (7),
R —1
Tos(N,)  dim(a”)vol (Posz@..1) B Q6 f.10r | vOL (P 1)
) Gim(a)vol (Pcvf)il 9z, 1ol Vol (Peyzia).1)

Let Z(G)s = GL(liimZ(g)s be the connected reductive k-group associated to the unique
vertex of B(Z(G)s,K). Since G is isogenous to (G/Z(G)s); x Z(G)s, a calculation
analogous to equation (58) shows that

2@).0)|
vol (PG/Z(G)S,f) qdlnl(Z(g)S)
Finally, we note that ‘M(lz)’ = |GLy (k)| 4m2(9)s = (g —1)4imZ(9)s 0
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As only the trivial element of 27 (g), fixes any point of the standard apartment A of
B(G,K), sequence (5) entails that the natural map

Q6,5,t0r = Qa/z2(G).,f,tor

is injective. However, in general it need not be surjective.
We write T}, s, = Hom (X¢/7(c).,5:C*), a subtorus of T; = Hom (X;,C*). The image of
X0 (G) in T} is another algebraic subtorus 7§, 7, which is complementary in the sense that

T5,ssT5,z =T and  |Tj4sN7T} 7| < oo.
Let T} 4n = Hom (X;,S 1), the maximal compact real subtorus of 1. We define T§ 5 un
and Tj, z,un similarly. Write y = Homp, (6,7) € Mod(H). By formula (10), the map
Xum(G) =5 O:x—x®7
induces a surjection
Ty, 2,un = T5, 2,unT™H = {HomfDf (G,x®m):x € Xunr(G)} .

Furthermore, T5, z,un Ty is in bijection with O via formula (10).
Let dtz be the Haar measure on Tj z ,,my with total volume 1. Since formula (10)
preserves Plancherel measures [7], MPLG’ o and ,upm{‘ Ty unrine 2BIEC: With Lemma 7.1

we find that
dppia () = fdegy ()| ONT(G/Z(G)5) vol (Z(G)L) ™ di 5. (63)

S

This can also be formulated entirely in terms of affine Hecke algebras:
Lemma 7.3. d/jpl’H(WH) = fdeg?‘lss (Wg{)T(Ne)TSS(Ne)_l |(Tf’55 ﬁTf,Z) 7T7.[| diz.

Proof. Consider an arbitrary extension ¢’ of 6 to Pg/z(g)&f. From [30, §1.20] or [49, (40)]
we see that the number of elements of O that contain ¢” equals the number of elements
that contain ¢’. The number of possible extensions ¢’ is ’Qg/Z(G)S,Hor‘ ‘Qg,f’tor|71, and
hence

ONLG/Z(G),)| = |20y o] Rl Thzmn M)l (64)
An H-representation t ® my € Tjmy descends to Hs, if and only if ¢ € Tj 4. Therefore,
[T, 7t NIrr(Hss)| = |(T5,6s N 15, 2) T2 | -
Combine that with equations (63) and (64) and Lemma 7.1. O

We remark that Lemma 7.3 is in accordance with a comparison formula for Plancherel
measures of affine Hecke algebras [36, (4.96)].

7.2. Parabolic induction and Plancherel densities

Let M be a Levi K-subgroup of G and let mp; € Irrynip(M) be essentially square-
integrable. As before, we write O = Xy, (M)mpr. Let P be a parabolic K-subgroup of G
with Levi factor M and denote the normalised parabolic induction functor by Ig. We
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want to express the Plancherel density on the family of finite-length tempered unitary
G-representations

Ig((/)):{Ig(X®7TM>:X€Xunr(M)}- (65)

Recall that the infinitesimal character of ¢ is
inf.ch.(éar) = dus (Frob, (‘f;“ qf’ﬂ)) .

We abbreviate H = H (G,Pw%) and HM =H (M,vaf,ﬁ), where m; € Irr(M)(};M 1o):
From the proof of Theorem 3.1, which can be retraced to [1, Theorem 3.18.b], we see that
the central character of

TM,H = HOHl]sMYi (a',ﬂ'M) € Mod (HIVI)

is completely determined by inf.ch.(¢ps). More precisely, choose a base point for the
appropriate Bernstein component of enhanced L-parameters as in [49, Lemma 3.4] and
pick tpr € TV such that inf.ch.(dpr) equals ¢y, times the base point. Then the central
character of TM,H is W(RMj)tM S TM’f/W (RM’f).

For t € Z(MV)0’° = X, (M), the M-representation ¢t @ wps corresponds to t@mas, 4 €
Irr (HM ) and its enhanced L-parameter is (t¢ar,pnr), where ¢y is defined in equa-
tion (95).

Lemma 7.4. Fort € Xy (M), the Plancherel density dup; (Ig(t®7rM)) equals

. . -1
iq(d1mg—dnn/\/l)/2m£/[ (ttM)’y(O,Ade Ot(bM,’(/)) dim(pM) ‘SiM ’ d(’)(t®7rM)

s

The factor mé\/[(ttM), which depends on the Bernstein component Rep(QG)
IS (7ar), is defined in [36, (3.57)] and [39, (2.17)].

containing

Proof. Notice that ¢t ® mp,; is still essentially square-integrable, since that property is
stable under tensoring by unitary characters. By the expression for Plancherel densities
in affine Hecke algebras [36, (4.96)],

1PLH (ind%M (t®7TM,H)) =md (ttar)T(Ne)Tane (Ne) ™ ppyn (E@Tar,3¢)- (66)

The factor 7(N, )7y (N.) ™! appears because in [36] the traces of the Hecke algebras are
normalised by 7/(N,) = 1. From formulas (11), (6) and (7) we see that

T(Ne) B vol (Pf,M> B |M(/€F)|q(dimg7’+dimg)/2
T (Ne) ol (Pf) B ‘@(kF>‘q(dimMg+dimM)/2.

(67)

By [34, Theorem 2.1], M; 2 G;, so that the right-hand side of equation (67) reduces to
q(dim9—dimM)/2 By T emma 7.3 and equations (63) and (67), equation (66) equals

m (tpr) g I AmM 2 deg, (70 50)|ONT(G/Z(G) ) vol (Z(G)L) ™ dt 5.

It is known from [50, Lemma 4.1] that normalised parabolic induction commutes with
functor (10). As functor (10) preserves Plancherel densities, equations (66) and (60) yield
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per (15 (t@mar)) = g I=am M2 M (1) fdeg(t @ mar) dO(E @ T ).

Applying Theorem 6.7 to t @ mas € Irrunip (M), we obtain the required formula. O

On the other hand, we already know from Theorem 3.1(1) that Conjecture 1 holds up
to some constant Cp € Qs — that is,

—1
wpi (Ig(t@%M)) ::l:Co’y(O,Ade7Mv Ot(Z)M,w)dim(pM)‘SﬁM dO(t(X)ﬂ'M) (68)

Theorem 7.5. Let G be a connected reductive K-group which spits over an unramified
extension. Let M be a Levi K -subgroup of G and let mpy € Irrynip (M) be square-integrable
modulo centre. Let O = Xy (M)mar be the associated orbit in Irryn,(M) and define
I§(0) as in equation (65).

Let (dar,pnr) € Pur,e (M) be the enhanced L-parameter of wpr, as in Theorem 3.1. With
the normalisation from equation (60), the Plancherel density on IS (0) is

-1
+dim(par) ‘SiM ’ (0, Adgv a1 © dar,h)dO(mar).
That is, Conjecture 1 holds for Irryunip (G), with cpr = 1.

Proof. We may assume that M is a standard Levi subgroup — that is, M contains
the standard maximal K-split torus S and the standard maximal K-torus 7. Let G* be
the quasi-split inner form of G. We may identify 7 with a maximal K-torus of G*. Let
M* C G* be the Levi subgroup such that ®(M*,T) = ®(M,T).

Write inf.ch.(¢ar) = ras6 with ry; € 79 (which can be achieved by replacing ¢a; with
an equivalent L-parameter). By Lemma A.3 and equation (96),

7(0,Adgv, arv ot t)) = £7(0,Adpsv oty 1h)q I M2 M (4 iy (69)
Comparing Lemma 7.4 and equations (68) and (69), we see that
mM (ttpr) = £Com™ (trar) Vit € Xune(M). (70)

Let R§ denote the root system associated with the Hecke algebra Hs from equation (9),
and let ¢ denote the parameter function of H, as in [38, Section 2] and as described
after formula (10). Let m?. be the corresponding parameter functions on R§. Let w) € W,
denote the shortest-length representative of the coset w0 W, as in We /W, as of the longest
element ws . Like in Appendix A.2, these parameters can be used to define p-functions.
From [36, Proposition 3.27(ii)] we see that for t € X, (M),

(1—7a2(ttar))
a€R3\R3, , (1 +q_mi(7“)7¢;1(th)> (1 - q_mi(%)ﬁ’«fl(ttMD
(71)
This is analogous to formula (94) for m™ (try;). The differences are that for M* the
product runs over more roots and the parameters m? (7,) need not equal m4 (vq)-

m (ttar) = ¢ (wl) "
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Since s is essentially square-integrable, mas 4 is essentially a discrete series. Together
with [36, Lemma 3.31 and Proposition A.4], this implies that X, (M )¢/ is a residual coset
(of minimal dimension) for HM. Moreover, m3.(7,) € Z, so the value y,(tp) € CX is a
root of unity times an integral power of ¢ [36, Theorem A.7]. In particular, lim,_1 V4 (tar)
is well defined, and a root of unity in C.

The discrete unramified L-parameter for M* determines an L-packet of essentially
square-integrable M *-representations. The Iwahori-spherical members of that packet
correspond to a finite set of essentially discrete series representations of the parabolic
subalgebra H(M*,I* N M*) of H(G*,I*), with central character

W (MY, TV) ry e Ty JW (MY, TV)’.

As before for ¢y, Xy, (M*)rps is a residual coset (of minimal dimension) for H(M*,I*N
M*). Tt follows as before that the values v, (ras), with a € (®\ @ py+)/0 as in equation (94),
are products of roots of unity and integral powers of gq.

Taking this dependence of t;; and rp; on ¢ into account, we regard both sides of
equation (70) as rational functions in ¢ and in q. Fix t € Xy, (M) such that both ¢, and
tras are in generic position with respect to all the involved roots. Then equations (71)
and (94) entail

. M - . M* -
gﬂms (ttpr) =1 and ;Em (trar) = 1.

Combining that with equation (70), we find Co =1 and mM (ttp;) = +m™ " (try) for all
t € Xune(M). Then equation (69) becomes

’y(O,AdeJy[v Ot(]SM,lZJ) = :I:mM(ttM)'y(O,Ade OthMﬂ,[})-

Hence the expression in Lemma 7.4 equals (68) with Co =1, as required. O

Appendix A. Adjoint ~-factors

Let (p,V) be a finite-dimensional Weil-Deligne representation over C — that is, a
semisimple representation of W g on V together with a nilpotent operator N € Endc¢ (V)
— such that

p(w)Np(w)™! = ||w||N for all w € W.

The contragredient of (p,V) is the contragredient (pv,VV) as a W g-representation,
together with the nilpotent operator NV € Endc (V') which sends A to —Ao N. We
write Viy = ker(V) and fix an additive character ¢ : K — C*.

We define a new Weil-Deligne representation (pg,V') by decreeing that as a Wk-
representation it is the same as (p,V'), but with nilpotent operator Ny = 0. Recall from
[55, §4.1.6] that the local factors of (p,V') are defined, as meromorphic functions of s € C,
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N
L(s,p) = det (1 —q_sp(Frob)\VNK) ,

e(5,p,) = els.po. ) det (=g~ p(Evob) VX / VA< ) (72)
v(s,p,) = €(s,p,¢0) L (1 — Svpv) L(s,p)_l.

The e-factor can be described further with [55, §3.4] and the Artin conductor a(V):

€(s,p0,10) =€ (po ®| - ||1/2’w> qa(V)(l/Q_s).

We note that in [55], e-factors also depend on a Haar measure dz on K. In view of [55,
(3.4.3)], it is harmless to fix any normalisation of dz, and we do so by giving 0k volume 1.

It is well known, for instance from [23, Proposition 2.2], that p gives rise to a semisimple
representation

p: Wk x SLy(C) — Autc (V) such that N =dp|sr,c) (0 8)- (73)
Such a p is unique up to conjugacy in Autc(V), and it determines p. We say that (p,V)

is self-dual if it is isomorphic to its contragredient. This is equivalent to self-duality of p.

A.1l. Independence of the nilpotent operator

In view of the known properties of ~-factors for representations of GL, (K) [26, (2.7.3)],
we can expect a relation between the «-factors of p and of pg.

Proposition A.1. Let (p,V) be a finite-dimensional self-dual Weil-Deligne representa-
tion over C. Then

7(07paw) = j:’}/(OapOaw)

That is, up to a sign, the ~y-factor of p at s =0 does not depend on the nilpotent
operator N.

Proof. Let (p/,V') be the sum of the irreducible nontrivial Ix-subrepresentations of
(p,V'). We denote the irreducible S Ly (C)-representation of dimension n+1 by (o4,,Sym™)
and write

Vy :=Homy,, xS L2 (C) (tl"iV ® Um[))'
We can decompose the W g x SLo(C)-representation p as
V=V'® @nzo V,, ® Sym”™. (74)

In view of the additivity of the local factors (72), it suffices to prove the proposition
for each of the direct summands in equation (74) separately. It follows directly from the
definitions that

Y(s,0",00) = €(5,p0,0) = (5,0, 1),
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so we only have to consider V,, ® Sym™ for a fixed (but arbitrary) n € Z>q. Since Ix is
normal in Wg, p induces an action of Wy /Ix =27 on V,,. We decompose it as

V, = @Xem R CTx, (75)

where m,, denotes the multiplicity of x in V,.
Since (p,V) is self-dual and Sym" is self-dual (as an SLo(C)-representation), the W -
representation V,, is also self-dual. Hence

my -1 =m, forall xy € ir(Wg /If). (76)

To simplify the notation, we assume from now on that V = V,, ® Sym”, and in particular
that VIx = V. The relation between p and j entails that

~ ~ —1/2 - —1/2
plFrob) = j(Frob) @5 (1, (7, 0.)) = pFrob) oo, (©)7 0.). (1)
From equation (76) we see that
det(p(Frob)|V;,) :erlrr(WK/IK)X(Frob) X = (=1)"x-, (78)

where x_ denotes the unique quadratic character of Wk /Ix. As 0,(SLy(C)) C
SLp+1(C), equations (77) and (78) yield

det(p(Frob)|V) = det(5(Frob)|V,,)"+! = (—1)FDmx (79)

. . . . . -1/2 .
Since Sym'y, is 1-dimensional with (" 0 q10/2> acting as ¢~"/2,

det (O’n (‘f;p q10/2> |Sym”/SymR,> =q"2 (80)
With equations (77)—(80), we can express the e-factor as
e(s,p,V) = €(s,po,) det (—q " p(Frob)|V,, ® Sym” /Symy )
= (s, 0.) (g IR (e gl 2, (s1)
Using self-duality and equations (72) and (81), we compute

Y(s,ptp)  (—1)""x=gdim(VaIn/2 det (1 — ¢*~ ! p(Frob)|V,, @ Sym™ /Sym7;)
v(5,00,%) qs)dlm("“” det(l—q p(Frob)IV ® Sym™ /Symyy; )

)
(-
( 1)“ d1m w)n/2 Fl“Ob) k—n/2\ Mx
- ( qs d1m Va)n HH ( 1—q sx FI'Ob) k—n/2 ) (82)
)

X k=1
( 1)mx— qdlm(V n)n/2

HH 1—qu1“Ob) k—=1-n/2\™
( dlm(V n g5 —x Frob) k—n/2

X k=1

When s goes to 0, the products over k in equation (82) attain telescopic behaviour, and
all terms in the numerator (except k = 1) cancel against all terms in the denominator
(except k =n). This is obvious when y(Frob)g®~"/2 # 1, whereas we pick up an extra
factor —1 if x(Frob)g*~™/2 = 1. Collecting all factors —1 in one symbol +, equation (82)
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yields

s —n/2\ Mx
7(0,p,%) — g dim(Va)n/2 i, (1_(1 x(Frob)q 2/ )
(0,0, =0\ ¢° = x(Frob)g™/

(83)

n/2+ (Frob)~! — ¢° Mx
==+ lim Hx(Frob)mX ¢"“x(Frob) q
50 q° — x(Frob)q"/2

In view of equation (78), all the terms x(Frob)™x together just contribute a sign, so
we may omit them (or rather, put them into ). When y(Frob) # ¢*"/2, equation (76)
shows that the terms in equation (83) associated to x will cancel against the terms
associated to x ', up to a sign. Thus only the characters y** with y(Frob) = ¢"/? remain
in equation (82) upon taking the limit s — 0, and for those we compute

7(0,p,9) . ( 1—¢* )mx (qn_qs>mx )
0. pow) T = (—1)2mx = 41, 84
7(O7p0aw) 5s—0 qS _qn qS_l ( ) ( )

This concludes the proof, and we note that by retracing the various steps we could find
an explicit (but involved) formula for the sign. O

The adjoint -factor of an L-parameter ¢ for G = G(K) comes from a Weil-Deligne
representation on Lie (GY) /Lie (Z (GV)WK) , which is self-dual with respect to the Killing

form [23, §3.2]. Proposition A.1 says that the v-factor of p = Adgv o ¢ equals the ~-factor
of po (both at s =0 and up to a sign). We note that

po(Frob) = Adgv (¢ (Frob, (‘1‘;/2 q1°/2))> : (85)

where we recognise the right-hand side as the adjoint representation Adgv applied to the
infinitesimal character of ¢. In these terms, Proposition A.1 says that
~v(0,Adgv o ¢,1)) depends only on @1, and the infinitesimal character of ¢.

A.2. Relation with p-functions

The goal of this subsection is to relate adjoint ~-factors of unramified L-parameters to
p-functions for Iwahori-Hecke algebras. The desired equality was already claimed in [38,
(38)]; we take this opportunity to work out the proof.

From now on, the additive character ¢ : K — C* has order 0, like in the body of the
paper. We assume that G is unramified over K — that is, G is quasi-split and splits over
an unramified extension of K. Fix a pinning of the Lie algebra Lie (GY) and let § denote
the pinned automorphism of Lie (GV) induced by Frob. The quotient G/Z(G)s defines a
f-stable reductive subgroup G c GV with Lie algebra

§:=Lie (G) >~ Lie(G") /Lie (z (GV)9> .
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Let Adgv denote the adjoint action of G on §. Let us denote the distinguished Cartan
subgroup of G by T', with corresponding Cartan subalgebra t := Lie (T) of §. Clearly

™V =2(G")"'T=2G")"°T, (86)
where Z (GY)"° is the identity component of Z (GV)?. By [44, Section 3.3], the Lie algebra
g? is semisimple.

Lemma A.2. Let ¢ be an unramified L-parameter for T and write ¢ (Frob) =r6. Then

det (1—¢ *Adgv(r0)})

i (S,AdGV ‘{ o (Z)Taw) = det (1 _ qS*lAde (7’9)“) '

For s near 0 this can be expressed as

Y (SvAdGV |{ o ¢T7¢)

a/6]
_ Jaje Mgl IHaGA/@‘“mAI +@(sm/e|+1).
det(l—q* Adgv (T@)h)

Here ny is a positive integer which reduces to 1 if Z(G)° is K -split.

Proof. For any unramified representation p of W and an additive character v of order
0, [55, (3.2.6) and (3.4.2)] say that

e(s,p,p) =1 for all s € C. (87)

This applies to p = Adgv|; o ¢, and moreover, p is self-dual with respect to the Killing
form. Knowing that, the definitions in equation (72) yield the asserted formula for
Y (S,Adgv ‘;L o ¢T7¢).

The finite-order map Adgv(rf)|; cannot have an eigenvalue ¢ € Rsq. Hence the
denominator det (1 —¢* " TAdgv (r@)h) is regular at s = 0, and behaves as expected.

The numerator det (1 —¢ *Adgv (r)|;) can be analysed by splitting

t=(1-0)Z(g) ® (tNfaer) - (88)
On the first summand of equation (88) we get
gl_rf(l) det (1 —q °Adgv (T9)|(1—9)Z(;§)) =det (1 — 9|(1—6)Z(@)) . (89)

Identifying (1—6)Z(§) with the Lie algebra of the complex dual group of Z(G)°/Z(G)s, we
see that equation (89) can be computed as the determinant of a linear transformation of a
(co)character lattice, so in particular it is an integer. More precisely, as 6 has finite order
but no eigenvalues 1 on the involved lattice, equation (89) equals the natural number

ny :=det (1 - 9|X*(Z(Q)°/Z(9)s)) €N.

If Z(G)° is K-split, then Z(G)°/Z(G)s =1 and n; = 1.
The basis of tN §qer consisting of the simple coroots is permuted by 6, with orbits of
length |aNA|. For the second summand in equation (88) we find a contribution of

limy det (1 - g™"Ade (r6) ieg,,,) = Im T (1 - q-S‘a”AI) . (90)

s—0
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The leading order term of equation (90) for s near 0 is

I1,.., (slanaliog(a)) = s/ "og(@) /I T[ _, lanal. (1)

acA/0
O

We start the definition of the p-functions for the relevant Hecke algebras. Let ®/6 be
the set of equivalence classes in the root system ® of (@,’E) as defined in [44, Section 3.3]
and A/ be the set of equivalence classes of the basis A of ®. For each a € /6, put

Ya = Zae‘lah"'

Then ®g = {V4}acw/o is a reduced root system on t’. With ®; we also consider its

(untwisted) affine extension <I>g,1) = ®y x Z, naturally indexed by ®/60 x Z — that is, we
will denote the affine root (v4,n) with a € ®/0 and n € Z by 7(4,)-

Recall the Kac root system ®p = {8, | a € ®/6}, where 8, = a; for an a € a such
that ,/2 is not of this form. This root system has a twisted affine extension with ‘Kac
diagram’ D(§,6) [44, Section 3.4]. By [44, Section 3], ®g is the root system of 3. For each
a € ®/0 x Z there exists a positive integer f, such that v, = f,S4. If 74 € Py is a minimal
root, then by construction f(, 1) is the order of § on the union of the components of ®
which intersect a.

We say that a € /6 (or « € a) has

e type I if the f-orbit of a consists of mutually orthogonal roots;
e type IT if a contains a triple {a1,a9,a1 + s} with ay € (0)ay.

Type II occurs only if some irreducible component of ® has type As, and a power of 6
acts on it by the nontrivial diagram automorphism.
From [44, Table 2] we see that for every root of type I and every e € Z,

f(a,e) = fa = |a"
On the other hand, for a € ®/6 of type 11,

f _ fa=4|al/3 if e is even,
@7 1, /2=2]al/3 if e is odd.

Recall that & C G denotes a maximal K-split torus of G contained in 7. Let ®(G,S)o
(resp., ®(G,S)1) be the set of indivisible (resp., nonmultipliable) roots of ®(G,S). From
[44, (26)] we conclude that @) = ®(G,S)o and P9 = ¢(G,S)y.

Let I C G be an Iwahori subgroup and let (G, T) be the Iwahori—Hecke algebra of G. We
write the underlying root datum as (Rg, X.(S),Ry,X*(S)) and the parameter functions
on Ry as m+. That means that the g-parameter for any simple reflection s, € W(Ryp) is
V(sq) = qur("‘)7 while the simple affine reflection s/, with linear part conjugate to s, (if
it exists) has ¢-parameter ¢V (s,,) = ¢ ().

Then R,, (in the sense of [38, Subsection 2.3.3]) is equal to @y (compare [16, Section
4.2]), or equivalently, Ry = ®(G,S):. We identify the roots of Ry with {v4}aca/0. If
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a € ®/0 is of type I, then pg(Frob) = Adgv(rf) and the parameters of H(G,I) on @y are
given by

my(Ye)=fa and m_(y,)=0. (92)
If a € ®/6 is of type II, then these parameters are given by

My (Va) = fa,0)/2 = 2|al/3,
m—(Va) = f(a,1)/2 =1al/3.

Another way of expressing this is that the linearly extended parameter function my, on
the affine Kac roots D(g,0) is constant and equal to 1 (see [16, Proposition 4.2.1]).

For Section 7.2 we need a p-function of H(G,I) relative to a Levi subgroup (or
equivalently, relative to a parabolic subalgebra). Let P be a standard parabolic K-
subgroup of G, with standard Levi factor M. Let ®;; C ® be the corresponding parabolic
root subsystem. We recall from [36, (3.57) and (4.96)] that

(93)

o 2(t)—1)
mM t :q(dlmg—dlmm)/Q (PYa(
v ae<¢gM>/e (7= 070 (8) +1) (@ O)ya(t) — 1)
_ q(dimﬁifdimﬁ)/Q H (1 _’Ya_2<t)) , (94)

we(@ e (LHE 0 (1) (1= g Cadag (1))

a rational function of ¢t € TV /(1 —0)T". We note that for M equal to the maximal torus
T, mT (t) involves all roots from ®/6.

We denote the adjoint representation of “M on Lie (GY) /Lie(M") = g/ by Adev |3/
Let ¢ps be an unramified L-parameter for M = M(K) and write

vl =oum (Frob, (‘f;m qlo/z)) .

Upon replacing ¢ by an equivalent L-parameter, we may assume that rp; € 76:0 [44,
Lemma 3.2]. For z € Z(M"), = X,,,(M), we define another unramified L-parameter
zpp € (M) by

(zép) = opr on I X SLy(C), (zér) (Frob) = z(é s (Frob)). (95)
By the additivity of -factors,
v(s,Adgv, pmrv 0 zdnr,0) = (s, Adprv 0 zdar, )y (S7Adgv g/ © z(;SM,z/J) . (96)
Lemma A.3. There is an equality of rational functions of z € Z (MV),:
v (0,Adgv |50 0 2nr,1p) = £q A EdmM 2, M (o 1y,

Proof. Let p,py be the associated self-dual Weil-Deligne representations as in for-
mula (73). By Proposition A.1,

Using the definitions in equation (72) we plug equation (87) into equation (97) to obtain
7(0.Adgv g/ 0 6,) =+ lim L(1 = 5,p0)L(s,p0) " (98)
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For a € ®/0, let g, C g be the subspace ) ., §a, so that we have an Adgv (2rps6)-stable
decomposition

R :m@@ae@\@m/gga. (99)

Using equations (99) and (98), we see that

det (1 —g *Adgv (2rum)ls/a)
O Ad Vilg/m 9 = :I: 1
7 (0, AdGv|g/m 0 26, 9) = £ lim det (1 —¢*~tAdgv (2rm0)[g/m)

H det (1—q_sAdgv(Z’I“M9)|g“a>
, det (1—¢*~'Adgv (2rab)lg,)

==+ lim

s—0

(100)
a€(@\ @)/

In [44, Section 3.4], the characteristic polynomial of Adgv(rf) on g, was determined.
(Strictly speaking, Reeder treats only the case where ® is irreducible, but his calculations
generalise readily.) For a € /6 of type I this gives

det (1 —q¢ *Adgv (ZTM9)|QL) =1-— (]_S"L*(”’“)'ya(z:rM)7 (101)

while for a € ®/6 of type II it gives

det (1-g~*Adav (zru0)lg,) = (107" 0D ya(zran) ) (1= a7+ 0 (zr))
(102)
With these expressions for the characteristic polynomials, equation (100) becomes
precisely

iq(dimg—dimrﬁ)/2mlw (ZTM)

Finally, we note that equations (101) and (102) are regular for z in a dense Zariski-open
subset of Z (M), so that equation (100) defines a rational function on Z (MV)s,. O

Consider an Iwahori subgroup Iss C G/Z(G)s. The Iwahori-Hecke algebra Hgs :=
H(G/Z(G)s,1ss) of G/Z(G)s is a quotient of H(G,I). It has the same root system and

the same parameter functions m., and hence (essentially) the same relative p-function
mM — g M/Z(G)s

Let I, be the maximal finite reductive quotient of the Iwahori subgroup I,s C G/Z(G)s.
By [10, Proposition 3.3.5],

|E| =det(¢—Ad(9)|;) = qdimidet (1 — q_lAd(Q)h) . (103)
Recall from equation (6) that the normalised Haar measure on G/Z(G), satisfies
vol(,,) = g~ (Am()+aim(@/2) geg (4 — Ad(0);). (104)

The p-function of the Iwahori-Hecke algebra H; is denoted my in [36, Theorem 3.25]. In
our setting, we replace the subscript T' (the torus associated to an affine Hecke algebra) by
the relevant group. With the Haar measure from before and the normalisation convention
[38, §2.4.1 and Proposition 2.5], the p-function for G/Z(G)s becomesx

mGz2(G). (t) = vol(L) ~m™ (t)
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dim (&) 1—~=2(¢
= et (5—Ad(9)|~) 11 (ltq 0 L (,))fm Gty (109
Y oacd /0 q Ya (1) (1 =g m+0e)yg (1))
Here t lies in T'/(1 —6)T, the torus associated to . However, as the roots 7, are
trivial on Z (GV)97 equation (86) entails the possibility that we may just as well consider
me/z(c), as a Z (GV)?-invariant function on TV /(1—6)T" = Hom (X, (S),C*).

Recall from [23, Proposition 3.2] that v(0,Adgv o ¢,7) is nonzero if and only if ¢ is
discrete. Observe that it is a priori clear that equation (85), and hence the y-value in
equation (72) for the adjoint representation p, is invariant under X, (G) & Z(GV)H’O.
Therefore it suffices to consider a discrete unramified L-parameter for G/Z(G), in the
next theorem.

Theorem A.4. Let G be an unramified reductive K-group and fiz an additive character
Y of order 0. Let ¢ be an unramified discrete L-parameter for G/Z(G)s and write p =
Adgv o ¢ and po(Frob) = Adgv (r8) as in equation (85). By [44, Lemma 3.2] we may
assume that v € T%°. There exists d € Q% such that, as rational functions in q,

Y(0.Adgv 0 ,9) = dm )
o Micoo 1+92°0)  Thaeaso 122 0)
det (1 =g Ad(O)]}) [T,cq/p (1+ 0™ )7 (1) [Tacayo (1—q ™+ 00 (1))

where H;eb/e denotes the product in which zero factors are omitted.
The constant d equals £1 if G is semisimple and K-split, while in general it is of the
form £n12™23"3  with ny,ne,n3 € Z.

Proof. By the additivity of «-factors,
Y(s,Adgy 06,0) =7 (s, Adav |10 6,8) 7 (5,Adav ]y 10 68) (106)

Define ¢ : Wx — LT by ¢ (Frob) = rf. By Proposition A.1, applied to the factor for {,
equation (106) equals

:l:")/ (S7AdGV |E o ¢T7¢0) vy (SvAdGV |@/E o QS,’[/)) .
With Lemma A.2 and equation (100), we find that equation (106) equals

det (1 —¢ *Adgv(r0)[;) H det (1—¢~*Adgv (r6)
det (1 —g¢*~1Adgv(r0)

Aa)
det (1 — qs—lAde (T&) |gg}l) ’ (107)

%) acd/0

The behavior for s — 0 was already analysed in Lemmas A.2 and A.3. In the current
situation we can do better, by comparing the poles and the zeros.

Let r = sc € T%° be the polar decomposition of r, with s a torsion element and c in the
positive part of a real split subtorus. Since ¢ is unramified and discrete, H := Z;(s) is
a semisimple group and

(b/ = ¢|SL2((C) : SLQ((C) —H
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has finite centraliser in H [44, §3.3]. This means that s6 € G6 is an isolated torsion element
[44, Section 3.8], and the root system of H is a maximal proper subdiagram of D(g,6).
Moreover, ¢’ corresponds to a distinguished unipotent orbit of H, and

—1/2

c:¢’(q ; q10/2) eT%° C H. (108)

It follows [36, Appendix A] that the image of r € T7%° in T/(1 —0)T is a residual point
for H (or equivalently for meg,z(q).)-
Now we analyse the product obtained from formula (107) by applying equations (101)

and (102):
H det (1 —q_SAdG\/ (7“9)‘%) . ]_ 7q75m+('7a)fya(7ﬂ) 1+q78m7(7a)fya(rr~)
det (1 _ qsflAde (r9)|gAa) o 1— q(s—l)m+(’Ya,)fya(r) 1+ q(s—l)m—(’)’a,)rya(’r_) .

acd/0 acd/0

The residuality of » means that the pole order of this expression at s =0 is precisely
dim (t%) = |A/6]. Notice that the terms with m_(v,) =0 in the numerator cancel out
against the same kind of terms in the denominator.

Consider a linear factor 14 ¢™v,(r), of the numerator or the denominator, which has
a zero at s = 0. Its leading order term near s =0 is linear, namely slog(q)m4 (7,) for the
numerator and —slog(q)m (7,) for the denominator.

Let N be the subset of (a,e) € ®/0 x {£1} for which the corresponding term in
the numerator has a pole at s =0, but with me(v,) # 0. Similarly, define P for the
denominator. Then

[eenl— eq— <)y, (r) 5718/l [T, e v me(va)
eeprl— eqle=Dmeta)y, () log(@)2/1 ], opep —me(Va)
It follows that
H det (1 —q %Adgv (7"9)‘911)
det (1 —q¢*~1Adgv (rf) |gAa)

acd/0
/ — ! —
weaso (L7 (r aceso (L=7a ' (r
_ Tleeasp (14327() Hacaso (12727 (1) x equation (109).

[Thewss 1+ =070 (1) [Theays (1— a7+ 0270 (1))

From formula (107), Lemma A.2 and equation (110), we conclude

+0 (81%/9\) . (109)

(110)

+(=1)Flny HaEA/9 lanA| H(a,e)eNme('Ya)
det (1—g¢~'Adev (r0);) [l(a,e0epme(Va)
H;eb/e 1+ () H;e@/e (1=7z'(r)
1T S (g 1 7 Gy (1))
[Tocaso (1+4a )95 (1) [Toeaso (1= a7+ 02)va ' (r)

It remains to analyse the expression

HaeA/e lanA| H(Q,E)EN me(Va)
H(am)EPmE(VG)

(0, Adg 0 ¢,3h) =

(111)

(112)
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Since we omitted the terms with m4 (y,) = 0, expression (112) is a nonzero rational
number. It factors as a product, over the irreducible components R; of ®/6, of the terms
with a € R;. The restriction of r to any of the R; is still a residual point, so there are as
many terms with a € R; in the numerator as in the denominator. Let |6;| be the number
of irreducible components of ® that go into R;, and pick one such component ®;. Then
la| = 16;]|aN ®;| for a € R;. The factor |6;| appears equally often in the numerator and
the denominator of expression (112), so it cancels. Writing m ;(7va) :=m4 (74)[0:] 71, we
find that expression (112) equals

H HaGRiﬁ(A/e) |a’mA mé"' H(a,E)GN:aGRi mgi(')/a)

(113)
H(a,e)EP:aERi me,i(’)/a)

7
Formulas (92) and (93) entail that each of the factors in expression (113) is the length
of an orbit of an automorphism of a connected Dynkin diagram of finite type. That is,
they are 1, 2 or 3, where 3 can only occur for an exceptional automorphism of Dy. Hence
expression (113) is of the form 2™23"8 with ng,ns € Z. We insert this into equation (111)
and obtain the claimed formula for the adjoint ~y-factor.
When G is an almost direct product of restrictions of scalars of split groups, all the
factors in expression (113) are 1. In the special case where G is K-split, we also have
ny = 1, so that equation (111) becomes the desired expression with d = £1. O

We conclude this appendix by showing that adjoint ~-factors of bounded unramified
L-parameters have real values. Notice that every such L-parameter arises from a discrete
unramified L-parameter for a Levi subgroup M C G, via an inclusion “M — LG.

Lemma A.5.

(a) In the notation of Theorem A.4, v(0,Adgv 0 ¢,p) € R*.

(b) Suppose that ¢pr € ®(M) is a discrete bounded unramified L-parameter and that
2 € Xunr(M). Then ~ (O,Adgv g/ oz¢M,w) cR.

Proof. (a) For t € TV we define ¢t € T¥ by z(f) = x(t) for all z € X*(TV). From
equation (108) we see that 7—! =3¢ ! = sc™! is conjugate to sc by the element
we = ¢’ (,01 é) We note that w, commutes with s and with 0, and that it normalises TV.
Hence it defines an element of W (G, TV).

Since v(0,Adgv 0 ¢,0)) = v (O,Adgv owcqﬁwc’l,w), expression (107) does not change if
we replace 7 by w.rfw; ! =710. As the product in expression (107) runs over all roots
(both positive and negative), we may further replace 76 by 70 without changing the
value. Continuing the calculation from the proof of Theorem A.4 with 70, we end up with
~v(0,Adgv 0 p,0)) = dm(G{/T;)(G)S, which is exactly the complex conjugate of dm(c;‘{/%((;)s =
7(0,Adg 0 6,1). )

(b) As observed before, we may assume that 7, € T%°. Replacing ¢ps by tén (and z
by 2t~1) for a suitable t € X, (M), we can further obtain 7y, € 00 NMY,.. In the proof
of part (a) we showed that rj; is conjugate to a7 * by an element w, € Npsv (TV)9. As
2=z le Z(Mv)e’O is fixed by w., we have wezryfw; ! =zrar 0.
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Since W (MY, TV)? acts on §/m, it is clear that equation (100) does not change if we
conjugate z¢y and zrf by w.. Further, from equations (101) and (102) we see that
equation (100) is invariant under replacing zrps by (zrar)~!. From equation (100) with
zr instead of zr); we obtain

Y (O,Ade |@/ﬁ1 o Z(;SM,w) = iq(dimﬁfdimﬁ‘l)/ZmM (ZTM)

From equation (94) we see that this the complex conjugate of 4-q(dim8=dim@)/2, M (5., )
In combination with Lemma A.2, that means that it is a real number, or oo if zr); happens
to be a pole.

However, the latter cannot happen, which can be seen with the residual cosets from [36,
Appendix A]. Namely, if zry; were a pole of m* | the tempered residual coset Xy, (M )7y
for mq,z (@), would contain a txlempered residual coset (with the point zrys) of smaller
dimension. But that is excluded by [36, Theorem A.17]. O

Appendix B. The case char(K)=0

Throughout this appendix we assume that the field K underlying G is p-adic. Then the
arguments from [19] with Galois cohomology are available. For some reductive groups
this allows us to reduce the proof of Theorem 2 to the case of adjoint groups much more
quickly than we do in the body of the paper.

Let G and G’ be connected reductive K-groups which split over an unramified extension.
We assume that

Glher € G C G’ and the canonical map G — G'/Z(G')s is a central isogeny. (114)

In particular, Z(G)s = {1} and G’ is generated by G and Z(G');. The following was shown
by Tadié [54, §2]:

Proposition B.1.

(a) Ewvery irreducible representation of G appears in an irreducible representation of G'.
(b) For m,«’ € Irr(G') the following are equivalent:
(1) Resg,(ﬂ') and Resg/ (7") have a common irreducible subquotient.
(ii) Resg/(ﬂ') = Resg/ ().
(iii) There is a v € Irr(G'/G) such that ' 2w Q7.
(¢) The restriction of (n',V') € Irr(G’) to G is a finite direct sum of irreducible G-
representations, each one appearing with the same multiplicity.

(d) Let (m,V) be an irreducible G-subrepresentation of (7',V'). Then the stabiliser in
G’ of V is an open, finite-index normal subgroup which contains G and the centre

of G'.
For (7', V') € Irr(G’) we write

XC(r)y={yelr(G'/G): 7' @y=n'}.
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By Proposition B.1(d) this is a finite group. For every v € X () there exists a nonzero
intertwining operator
I(y,7") € Homg (' @ v,7') C Endg(n').

By Schur’s lemma it is unique up to a scalar. These operators determine a 2-cocycle K
of X%(n') by

I(’Yaﬂ-/)'[(’y/vﬂ—/) = Rn/ (777/)‘[(7’}/7’”/)'
According to [25, Lemma 2.4], the I(,7’) form a basis of the G-intertwining algebra of
(7', V'):

Endg (Resg’(w’)) = C[XC(n'), k], (115)

where the right-hand side denotes the twisted group algebra of X%(n’). By [25,
Corollary 2.10], the decomposition of (7/,V’) into irreducible representations of CG ®

Endg (Resg/ (W’)) is
ﬂ-/ = @ 77®H0mC[XG(Tr/),R,,/](T]77T/) = @ 77®7T:7 (116)
nERT(CIXE (1), k) nERT(CIXE (1), k)

Assume now that #’ is in addition square-integrable modulo centre. The crucial
contribution from [19, Lemma 13.2] says

fdeg () ‘Z((G'/Z(G/)S)V)WK
fdeg(ﬂ’) - ’Z (G\/)WK‘ |XG(7T/)|

dimn

(117)

We note that here it is essential that K is a p-adic field. For local fields of positive
characteristic p, the proof of [19, Lemma 13.2] breaks down if p divides the order of the
kernel of G — G'/Z(G')s.

For unipotent representations we can reformulate equation (117) in terms of enhanced
L-parameters.

Lemma B.2. Let 7’ be an irreducible unipotent square-integrable modulo centre repre-
sentation of G' and let w be an irreducible constituent of Res& (n'). Then

fdeg(m) ‘Sﬁs dim(px)

fdeg(n’) ‘Si

dim(p)

Proof. From equation (116) we see that

Endg(n', V') = b Endc(n) ® Cidy;.
n€lrr(C[X G (n'), k1))

Together with formula (115) and Proposition B.1(c), that yields
| X (n")| = dim(n)?|Irr (C[XC ('), 5]) |- (118)
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Theorem 3.3 also holds for the inclusion i : G — G’ (see [52, Theorem 3]). Combining that
with equation (116), we obtain ¢, = ®(i)¢, and

[a¥) . A T
@ nem, = @ Hom 4, _ (mdAz,,, pwl,p) QT (s p)- (119)

ne€lrr(C[X G ('), k1)) p€lrr(Ag )

Then Proposition B.1(c) shows that

dim(p) = dim Hom 4, (indﬁi”/ par, p) (120)

for any n € Irr ((C [X G(r! ),/@ﬂ/]) and any p appearing in indji” prr. Another consequence
of formula (119) is !

|Trr (C [ Kar])| = Hp € Irr (A, ) : p appears in mdA p,r/}’. (121)

With equations (118), (120) and (121) we compute

| X ()|

=dim T G
dim(n) =d (77)|I (C[X ( ) 77])|

= dimHomy,,_ (indﬁj", pﬂ/,p) Hp € Irr(Ag, ) : p appears in mdA p,r,H
(122)

= length of 1ndA px in Rep(Ag,).

By equation (120), all irreducible constituents of indjz" pn have the same dimension.

We continue equation (122):

(A _
_ dim (md,%ﬂ, Pr ) _ [Ag, [dim(p) (123)
dim py | Ay, |dim(px)

From the proof of [17, Lemma 13.2] and the discreteness of ¢,/ we see that

Ao+ Zav. (60)] = [2(6¥0) : 2(G)™™ | = s 1 Zav. (00)). (124)
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Further, from definition (1) of Si , we deduce

‘ZG’VSC(¢Tr’)| _ |ker (ZG’VSC(¢W) — ZG/vdcr(qSﬂ',))‘
s, (S5, ¢ Zaraun(600)]
-1
‘Z(G/\/SC)WK ’Z(G/vder)WK‘ ‘Z(G/\/SC)WK‘

[z 2@V z6Man™ | |20 z@n0) Y|

(125)

Now we continue equation (123). With equation (124), we replace Ay by Zgv,. (¢=), and
simultaneously for 7/. Then we use equation (125) to replace Zgv_ (¢x/) by Sgﬂ/, with a
correction term involving central elements in complex dual groups. We do the same with
Zgv.. (¢r), and using GVs. = GV we find that equation (122) equals

st | 2@ 1290 dim(pn)
se.| |z dimlen)

That equality can be rearranged to

2@ 2G| ey |5

- | dim(px)
- : . (126)
Finally we combine equation (126) with equation (117). O

Corollary B.3. Suppose that the HII-conjecture (as in equation (2) and [24, §1.4])
holds for a unipotent square-integrable modulo centre ' € Irr(G"). Then it holds for every
irreducible constituent = of Res$ (n).

Proof. Lemma B.2 and the assumption entail

#
de

dim(pr) di
fdeg(m) = fdeg(n") = |y(0,Adgv o¢ﬂf7z/J)|u:ﬁ(p”)
br

‘sgﬂ \ dim(py)

Since ¢ = ®(i)¢p and G — G'/Z(G')s is a central isogeny, Adgv 0 ¢ = Adg o ¢ as
representations of Wg x SLy(C). In particular, ¢, and ¢, have the same adjoint -
factors. .

While Corollary B.3 applies in large generality, it is not clear whether it can be used
to reduce the HII-conjecture for G to that for G,q. The problem lies in the existence
of a group G’ satisfying condition (114), such that at the same time G'/Z(G’)s equals
Gaa. (Instead of G.q, the direct product of an adjoint group with a K-anisotropic torus
would also be acceptable, because the HII-conjecture for anisotropic tori is known [24,
Correction).)
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When G is an inner form of a K-split semisimple group, such a G’ always exists. Indeed,
then Gal(K/K) acts trivially on Hom(Z(G),GL1) and the construction of Langlands [28,
p. 120-121] suffices. It yields a reductive K-group G’ with connected K-split centre, such
that G'/Z(G’)s = Gaq and condition (114) holds.

For outer forms of semisimple K-groups, we do not know whether a suitable G’ exists.
Langlands’ construction produces a group with a connected centre, which however need
not be split. For instance, if G is a special unitary group, Langlands’ method yields a full
unitary group, which in this setting is not easier.

Theorem B.4. Let K be a p-adic field. Let G be a semisimple K -group, which is an inner
form of a K-split group and splits over an unramified extension. Then the HII-conjecture
[24, §1.4] holds for all square-integrable unipotent irreducible G-representations.

Proof. Let G’ be as indicated before, so as constructed in [28]. Then G'/Z(G') = Gad,
for which the HII-conjecture (equation (2)) was shown in [38]. (See Section 6.1 for the
details.) With the method from [17, proof of Theorem 3 on page 43], we can derive the
HII-conjecture for G’ from that for G'/Z(G").

Consider an irreducible unipotent square-integrable G-representation 7, with enhanced
L-parameter (¢,p) from Theorem 3.1. We note that ¢, is discrete. By condition (114),
G" — GV is a surjection with commutative kernel. As ¢, is unramified and G splits
over an unramified extension, ¢, factors via W /Ix x SLy(C). That makes it easy to
lift ¢, to an unramified L-parameter ¢’ € ®(G’), necessarily discrete. Then A, C Ay
[52, Proposition 5.4.a]. Let p’ be a representation of Ay that contains p,, and define
7' =m(¢',p’). By Theorem 3.1(e), 7’ is unipotent and essentially square-integrable. By
tensoring 7’ with a suitable unramified character (automatically trivial on G), we can
achieve that 7’ is in fact square-integrable modulo centre.

By Theorem 3.3, m appears in Resg(ﬂ’ ). Now apply Corollary B.3. O
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