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Abstract Let G be a reductive p-adic group which splits over an unramified extension of the ground field.
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1. Introduction

Let G be a connected reductive group defined over a non-Archimedean local field K,

and write G = G(K). We are interested in irreducible G-representations, always tacitly

assumed to be smooth and over the complex numbers. The most basic example of such
representations are the unramified or spherical representations [32, 45] of G, which play a

fundamental role in the Langlands correspondence by virtue of the Satake isomorphism.

By a famous result of Borel [4, 11], the smallest block of the category of smooth rep-
resentations of G which contains the spherical representations is the abelian subcategory

generated by the unramified minimal principal series representations. The objects in this

block are smooth representations generated by the vectors which are fixed by an Iwahori
subgroup I of G. The study of such Iwahori-spherical representations is a classical topic,

about which a lot is known.

The local Langlands correspondence for Iwahori-spherical representations was estab-

lished by Kazhdan and Lusztig [27], for G split simple of adjoint type. It parametrises
the irreducible Iwahori-spherical representations with enhanced unramified Deligne–

Langlands parameters for G, where a certain condition is imposed on the enhancements.

The category of representations of G which naturally completes this picture (by lifting the
restriction on the enhancements) is the category of so-called unipotent representations,

as envisaged by Lusztig. An irreducible smooth representation of G is called unipotent if

its restriction to some parahoric subgroup Pf of G contains a unipotent representation of
Pf (by which we mean a unipotent representation of the finite reductive quotient of Pf).

In the special case that Pf is an Iwahori subgroup of G, we recover the Iwahori-spherical

representations.

Unipotent representations of simple adjoint groups over K were classified by Lusztig
[30, 31]. The classification has also been worked out in several papers when G splits over

an unramified extension of K. We have exhibited a local Langlands correspondence for

supercuspidal unipotent representations of reductive groups over K in [16, 17]. Then the
second author generalised this to a Langlands parametrisation of all tempered unipotent

representations in [39]. Finally, with different methods, the third author constructed a

local Langlands correspondence for all unipotent representations of reductive groups over
K [49]. In Theorem 3.1 we show that the approaches in [39] and [49] agree, and we derive

some extra properties of these instances of a local Langlands correspondence. (Meanwhile,

all this has been generalised to ramified groups [51].)
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On formal degrees of unipotent representations 1949

Hiraga, Ichino and Ikeda [24] suggested that, for any irreducible tempered representa-

tion π of a reductive p-adic group, there is a relation between the Plancherel density of π

and the adjoint γ-factor of its L-parameter. In fact, they conjectured an explicit formula,
to be sketched later in terms of a (tentative) enhanced L-parameter of π.

Let LG be the Langlands dual group of G, with identity component G∨. Let π ∈ Irr(G)

be square-integrable modulo centre and suppose that (φπ,ρπ) is its enhanced L-parameter
(so we need to assume that a local Langlands correspondence has been worked out for

π). To measure the size of the L-packet, we use the group

S�
φπ

:= π0

(
Z(G/Z(G)s)

∨(φπ)
)
, (1)

where Z(G)s denotes the maximal K-split central torus in G. Let WK be the Weil group
of K and let AdG∨ denote the adjoint representation of LG on

Lie(G∨)
/
Lie
(
Z (G∨)

WK

)
∼= Lie

(
(G/Z(G)s)

∨)
.

Let ψ : K → C× be a character of order 0 – that is, trivial on the ring of integers oK

but nontrivial on any larger fractional ideal. We endow K with the Haar measure that

gives oK volume 1. We refer to equation (72) for the definition of the adjoint γ-factor
γ(s,AdG∨ ◦φ,ψ).
We normalise the Haar measure on G as in [18, 24]. (For ramified groups, the

normalisations in [24, (1.1)] and [24, Correction] are not entirely satisfactory; see [17,
(A.23)] for an improvement.) It was conjectured in [24, §1.4] that

fdeg(π) = dim(ρπ)
∣∣∣S�

φπ

∣∣∣−1

|γ(0,AdG∨ ◦φπ,ψ)|. (2)

More generally, let P = MU be a parabolic K-subgroup of G, with Levi factor M and
unipotent radical U . Let π ∈ Irr(M) be square-integrable modulo centre and let Xunr(M)

be the group of unitary unramified characters of M . Let O =Xunr(M)π ⊂ Irr(M) be the

orbit in Irr(M) of π, under twists by Xunr(M). We define a Haar measure of dO on O as
in [57, p. 239 and 302]. This also provides a Haar measure on the family of (finite-length)

G-representations IGP (π′) with π′ ∈ O.

Denote the adjoint representation of LM on Lie(G∨)/Lie
(
Z (M∨)WK

)
by AdG∨,M∨ .

Conjecture 1 ([24, §1.5]). Suppose that the enhanced L-parameter of π ∈ Irr(M) is

(φπ,ρπ). Then the Plancherel density at IGP (π) ∈ Rep(G) is

cM dim(ρπ)
∣∣∣S�

φπ

∣∣∣−1

|γ(0,AdG∨,M∨ ◦φπ,ψ)|dO(π),

for some constant cM ∈ R>0 independent of K and O.

We point out that the validity of equation (2) and Conjecture 1 does not depend

on the choice of the additive character ψ :K → C×. For another choice of ψ, the adjoint
γ-factors will be different [24, Lemma 1.3]. But also the normalisation of the Haar measure

on G has to be modified, which changes the formal degrees [24, Lemma 1.1]. These two

effects precisely compensate each other.
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We note that representations of the form IGP (π) are tempered [57, Lemme III.2.3]

and that almost all of them are irreducible [57, Proposition IV.2.2]. Every irreducible

tempered G-representation appears as a direct summand of IGP (πM ), for suitable choices
of the involved objects [57, Proposition III.4.1]. Moreover, if IGP (πM ) is reducible, its

decomposition can be analysed quite explicitely in terms of R-groups [46]. In this sense,

Conjecture 1 provides an expression for the Plancherel densities of all tempered irreducible
G-representations.

In the remainder of the introduction, we assume that G splits over an unramified field

extension. The conjectures by Hiraga, Ichino and Ikeda (‘HII-conjectures’) were proven for
supercuspidal unipotent representations in [43, 16, 15, 17], for unipotent representations of

simple adjoint groups in [38] and for tempered unipotent representations in [39]. However,

in the last case the method only sufficed to establish the desired formulas up to a constant.

Of course, the formal degree of a square-integrable representation is just a number, so a
priori we gain nothing from knowing it up to a constant. Fortunately, the formal degree of

a unipotent square-integrable representation can be considered as a rational function of

the cardinality q of the residue field of K [38]. Then ‘up to a constant’ actually captures
a substantial part of the information. The main result of this paper is a complete proof

of the HII-conjectures for unipotent representations:

Theorem 2. Let G be a connected reductive K-group which splits over an unramified

extension, and write G = G(K). Use the local Langlands correspondence for unipotent

G-representations from Theorem 3.1.

(a) The HII-conjecture (equation (2)) holds for all unipotent, square-integrable modulo
centre G-representations.

(b) Conjecture 1 holds for tempered unipotent G-representations, in the following

slightly stronger form:

dμPl

(
IGP (π)

)
=±dim(ρπ)

∣∣∣S�
φπ

∣∣∣−1

γ(0,AdG∨,M∨ ◦φπ,ψ)dO(π).

In the appendix we work out explicit formulas for the adjoint γ-factors, in terms of a

maximal torus T∨ ⊂G∨ and the root system of (G∨,T∨) (Lemma A.2 and Theorem A.4).
These expressions can also be interpreted with μ-functions for a suitable affine Hecke

algebra [36]. The calculations entail in particular that all involved adjoint γ-factors are

real numbers (Lemma A.5).

Our proof of Theorem 2 proceeds stepwise, in increasing generality. The most
difficult case is unipotent square-integrable representations of semisimple groups. The

argument for that case again consists of several largely independent parts. First we

recall (in Section 6.1) that equation (2) has already been proven for square-integrable
representations of adjoint groups [38, 17].

Our main strategy is a pullback of representations along the adjoint quotient map

η : G →Gad. The homomorphism of K-rational points η :G→Gad need not be surjective,
so this pullback operation need not preserve irreducibility of representations. For πad ∈
Irr(Gad), the computation of the length of η∗(πad) has two aspects. On the one hand,

we determine in Section 5 how many Bernstein components for G are involved. On the
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other hand, we study the decomposition within one Bernstein component in Section 4.
The latter is done in terms of affine Hecke algebras, via the types and Hecke algebras

from [33, 34, 30]. Considerations with affine Hecke algebras also allow us to find the exact

ratio between fdeg(πad) and the formal degree of any irreducible constituent of η∗(πad)
(see Theorem 4.4).

On the Galois side of the local Langlands correspondence, the comparison between G

and Gad is completely accounted for by results from [52]. In Lemma 3.4 we put those

in the form that we actually need. With all these partial results at hand, we finish
the computation of the formal degrees of unipotent square-integrable representations

of semisimple groups in Theorem 6.4.

After a first version of this paper appeared, we learned that Gan and Ichino [19] had
already devised a different method to reduce the proof of equation (2) from semisimple

groups to adjoint groups. Their argument is much shorter, but it applies only when

K is a p-adic field and G is an inner form of a K-split group. We work this out in
Appendix B.

The generalisation from semisimple groups to square-integrable modulo centre rep-

resentations of reductive groups (Section 6.3) is not difficult, because the unipotent

representations of a p-adic torus are just the characters trivial on the unique parahoric
subgroup. That proves Theorem 2(a).

To get Theorem 2(b) for square-integrable modulo centre representations (so with M =

G), we need to carefully normalise the involved Plancherel measures (Section 7.1). In
Section 7.2 we establish Theorem 2(b) for any Levi subgroup M ⊂ G. This involves a

translation to Plancherel densities for affine Hecke algebras, via the aforementioned types.

In the final stage we use the fact that Theorem 2 was already known up to constants [39].

2. Background on unipotent representations

Let K be a non-Archimedean local field with ring of integers oK and uniformiser �K .

Let k = oK/�KoK be its residue field, of cardinality q = qK .

Let Ks be a separable closure of K. Let WK ⊂ Gal(Ks/K) be the Weil group of K

and let Frob be an arithmetic Frobenius element. Let IK be the inertia subgroup of
Gal(Ks/K), so that WK/IK ∼= Z is generated by Frob.

Let G be a connected reductive K-group. Let T be a maximal torus of G, and let Φ(G,T )

be the associated root system. We also fix a Borel subgroup B of G containing T , which
determines a basis Δ of Φ(G,T ).

Let Φ(G,T )∨ be the dual root system of Φ(G,T ), contained in the cocharacter lattice

X∗(T ). The based root datum of G is(
X∗(T ),Φ(G,T ),X∗(T ),Φ(G,T )∨,Δ

)
.

Let S be a maximal K-split torus in G. By [53, Theorem 13.3.6.(i)] applied to ZG(S), we
may assume that T is defined over K and contains S. Then ZG(S) is a minimal K-Levi
subgroup of G. Let

Δ0 := {α ∈Δ : S ⊂ kerα}
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be the set of simple roots of (ZG(S),T ). Recall from [53, Lemma 15.3.1] that the root

system Φ(G,S) is the image of Φ(G,T ) in X∗(S), without 0. The set of simple roots

of (G,S) can be identified with (Δ \Δ0)/μG(WK), where μG denotes the action of
Gal(Ks/K) on Δ determined by (B,T ).

We write G = G(K) and similarly for other K-groups. Let G∨ be the split reductive

group with based root datum(
X∗(T ),Φ(G,T )∨,X∗(T ),Φ(G,T ),Δ∨).

Then G∨ = G∨(C) is the complex dual group of G. Via the choice of a pinning, the
action μG of WK on the root datum of G determines an action of WK of G∨. That
action stabilises the torus T∨ = X∗(T )⊗Z C

× and the Borel subgroup B∨ determined

by T∨ and Δ∨. The Langlands dual group (in the version based on WK) of G(K) is
LG :=G∨�WK .

Define the abelian group

Ω =X∗(T )IK/(ZΦ(G,T )∨)IK .

Then Z (G∨) can be identified with Irr(Ω) = Ω∗, and Ω is naturally isomorphic to the

group X∗ (Z (G∨)) of algebraic characters of Z (G∨). In particular,

ΩWK ∼=X∗ (Z (G∨))
WK =X∗ (Z (G∨)WK

)
. (3)

In [17] this group is called Ωθ, while in [49] the notation Ω is used for a group naturally

isomorphic to formula (3). To indicate the underlying p-adic group and reconcile the

notations from [17] and [49], we write

ΩG =ΩWK .

Kottwitz defined a natural, surjective group homomorphism κG :G→ΩG. (The definition
of Ω in [49] is equivalent to G/ker(κG).) The action of ker(κG) on the Bruhat–Tits

building preserves the types of facets – that is, preserves a colouring of the vertices.

Further, the kernel of κG contains the image (in G) of the simply connected cover of the
derived group of G (see [41, Appendix]). We say that a character of G is weakly unramified

if it is trivial on ker(κG). Thus, the group Xwr(G) of weakly unramified characters of G

can be identified with the Pontryagin dual of ΩG.
Let Z(G)s be the maximal K-split torus in Z(G). As H1(K,Z(G)s) = 1, there is a short

exact sequence

1→ Z(G)s(K)→G(K)→ (G/Z(G)s)(K)→ 1. (4)

In view of the naturality of the Kottwitz homomorphism κG, this induces a short exact

sequence

1→ ΩZ(G)s → ΩG → ΩG/Z(G)s → 1. (5)

Recall from [29, Part 3] that an irreducible representation of a reductive group over a

finite field is called unipotent if it appears in the Deligne–Lusztig series associated to
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the trivial character of a maximal torus in that group. An irreducible representation of a
linear algebraic group over oK is called unipotent if it arises, by inflation, from a unipotent

representation of the maximal finite reductive quotient of the group.

We call an irreducible smooth G-representation π unipotent if there exists a parahoric
subgroup Pf ⊂ G such that π|Pf

contains an irreducible unipotent representation of Pf.

Then the restriction of π to some smaller parahoric subgroup Pf′ ⊂G contains a cuspidal

unipotent representation of Pf′ , as required in [30]. An arbitrary smooth G-representation

is unipotent if it lies in a product of Bernstein components, all of whose cuspidal supports
are unipotent.

The category of unipotent G-representations can be described in terms of types and

affine Hecke algebras. For a facet f of the Bruhat–Tits building B(G,K) of G, let Gf be the
smooth affine oK-group scheme from [6], such that G◦

f is an oK -model of G and G◦
f (oK)

equals the parahoric subgroup Pf of G. Then P̂f := Gf(oK) is the pointwise stabiliser of f
in G. Let Gf be the maximal reductive quotient of the k-group scheme obtained from Gf

by reduction modulo �K . Thus

Gf(k) = P̂f/Uf and G◦
f
(k) = Pf/Uf,

where Uf is the pro-unipotent radical of Pf. We normalise the Haar measure on G as in
[18, 24]. When G splits over an unramified extension of K, the computation of the volume

of the Iwahori subgroup of G [22, (4.11)] says that

vol(Pf) =
∣∣∣G◦

f
(k)
∣∣∣q−(dimG◦

f
+dimG)/2. (6)

By [13, §5.1], this actually holds for every facet f. We note that with the counting formulas

for reductive groups over finite fields [9, Theorem 9.4.10],
∣∣∣G◦

f
(k)
∣∣∣ can be considered as a

polynomial in q = |k|.
Replacing the objects involved by a suitable G-conjugate, we can achieve that f lies in

the closure of a fixed ‘standard’ chamber C0 of the apartment of B(G,K) associated to

S. Since G splits over an unramified extension, the group ΩG = ΩWK from formula (3)

equals ΩFrob. It acts naturally on C0, and we denote the setwise stabiliser of f by ΩG,f

and the pointwise stabiliser of f by ΩG,f,tor. It was noted in [49, (32)] that

P̂f/Pf
∼=ΩG,f,tor. (7)

Suppose that (σ,Vσ) is a cuspidal unipotent representation of G◦
f
(k) (in particular, this

includes that it is irreducible). We inflate it to a representation of Pf, still denoted σ. It

was shown in [35, §6] and [34, Theorem 4.8] that (Pf,σ) is a type for G. Let Rep(G)(Pf,σ)

be the corresponding direct factor of Rep(G). By [30, 1.6.b],⎧⎨⎩Rep(G)(Pf,σ) =Rep(G)(Pf′,σ
′) if gf′ = f,Ad(g)∗σ = σ′, for some g ∈G,

Rep(G)(Pf,σ)∩Rep(G)(Pf′,σ
′) = {0} otherwise.

(8)

By [30, §1.16] and [17, Lemma 15.7], σ can be extended (not uniquely) to a representation

of Gf(k), which we inflate to an irreducible representation of P̂f that we denote by (σ̂,Vσ).
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It is known from [34, Theorem 4.7] that
(
P̂f,σ̂
)

is a type for a single Bernstein block

Rep(G)s. Conversely, every Bernstein block consisting of unipotent G-representations is

of this form. We note that Rep(G)(Pf,σ) is the direct sum of the Rep(G)s associated to

the different extensions of σ to P̂f.

To
(
P̂f,σ̂
)
Bushnell and Kutzko associated the algebra

H
(
G,P̂f,σ̂

)
= EndG

(
indGPf

(σ̂)
)opp

, (9)

where the superscript means ‘opposite algebra’. In [8] it is shown that

Rep(G)s → Mod
(
H
(
G,P̂f,σ̂

))
π 	→ HomP̂f

(σ̂,π)
(10)

is an equivalence of categories. It turns out that H
(
G,P̂f,σ̂

)
is an (extended) affine Hecke

algebra (see [30, §1] and [49, §3]). Moreover, a finite-length representation in Rep(G)s is

tempered (resp., essentially square integrable) if and only if the associated H
(
G,P̂f,σ̂

)
-

module is tempered (resp., and essentially discrete series) [7, Theorem 3.3.(1)].

The (extended) affine Hecke algebra H
(
G,P̂f,σ̂

)
comes with the following data:

• a lattice Xf and a complex torus Tf = Irr(Xf);
• a root system Rf in Xf, with a basis Δf;
• a Coxeter group Waff =W (Rf)�ZRf in W (Rf)�Xf;
• a set Sf,aff of affine reflections, which are Coxeter generators of Waff ;
• a parameter function qN :Waff → R>0.

Furthermore, it has a distinguished basis {Nw : w ∈W (Rf)�Xf}, an involution * and a

trace τ . Thus H
(
G,P̂f,σ̂

)
has the structure of a Hilbert algebra, and we can define a

Plancherel measure and formal degrees for its representations. The unit element Ne of

H
(
G,P̂f,σ̂

)
is the central idempotent eσ̂ (in the group algebra of P̂f) associated to σ̂.

The trace τ is normalised so that

τ(Nw) =

⎧⎨⎩eσ̂(1) = dim(σ̂)vol
(
P̂f

)−1

, w = e,

0, w 
= e.
(11)

It follows from [7, Theorem 3.3.(2)] that with this normalisation, the equivalence of

categories in formula (10) preserves Plancherel measures and formal degrees. For affine

Hecke algebras, these were analysed in depth in [36, 40, 12].

Consider a discrete series representation δ of H
(
G,P̂f,σ̂

)
, with central character

W (Rf)r ∈ Tf/W (Rf). By [36], its formal degree can be expressed as

fdeg(δ) =±dim(σ̂)vol
(
P̂f

)−1

dH,δm
(
qN
)(r)

, (12)
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where dH,δ ∈Q>0 is computed in [12] (often it is just 1). The factor m
(
qN
)
is a rational

function in r ∈ Tf and the parameters qN (sα)
1/2 with sα ∈ Sf,aff , while the superscript

(r) indicates that we take its residue at r. We refer to equations (71) and (94) for the

explicit definition of m
(
qN
)
.

3. Langlands parameters

Recall that a Langlands parameter for G is a homomorphism

φ :WK ×SL2(C)→ LG=G∨�WK,

with some extra requirements. In particular, φ|SL2(C) has to be algebraic, φ(WK) must
consist of semisimple elements and φ must respect the projections to WK .

We say that an L-parameter φ for G is

• discrete if it does not factor through the L-group of any proper Levi subgroup of
G;

• bounded if φ(Frob) = (s,Frob) with s in a bounded subgroup of G∨;
• unramified if φ(w) = (1,w) for all w ∈ IK .

Let G∨
ad be the adjoint group of G∨, and let G∨

sc be its simply connected cover. Let

G∗ be the unique K-quasi-split inner form of G. We consider G as an inner twist of G∗,
so endowed with a Ks-isomorphism G → G∗. Via the Kottwitz isomorphism, G is labelled
by a character ζG of Z (G∨

sc)
WK (defined with respect to G∗). We choose an extension ζ

of ζG to Z (G∨
sc). As explained in [17, §1], this is related to the explicit realisation of G

as an inner twist of G∗.
Both G∨

ad and G∨
sc act on G∨ by conjugation. As

ZG∨(im φ)∩Z (G∨) = Z (G∨)
WK ,

we can regard ZG∨(im φ)/Z (G∨)WK as a subgroup of G∨
ad. Let Z1

G∨
sc
(im φ) be its

inverse image in G∨
sc (it contains ZG∨

sc
(im φ) with finite index). A subtle version of the

component group of φ is

Aφ := π0

(
Z1
G∨

sc
(im φ)

)
.

It is related to the component group S�
φ from equation (1) by natural maps

Aφ ←− π0 (ZG∨
sc
(im φ))−→ π0

(
Z(G/Z(G)s)∨(φ)

)
= S�

φ,

the first of which is injective and, when G/Z(G)s is semisimple, the second of which is

surjective. An enhancement of φ is an irreducible representation ρ of Aφ.
Via the canonical map Z (G∨

sc)→Aφ, ρ determines a character ζρ of Z (G∨
sc). We say

that an enhanced L-parameter (φ,ρ) is relevant for G if ζρ = ζ. This can be reformulated

with G-relevance of φ in terms of Levi subgroups [25, Lemma 9.1]. To be precise, in

view of [5, §3] there exists an enhancement ρ such that (φ,ρ) is G-relevant if and only if
every L-Levi subgroup of LG containing the image of φ is G-relevant. The group G∨ acts

naturally on the collection of G-relevant enhanced L-parameters, by

g · (φ,ρ) =
(
gφg−1,ρ◦Ad(g)−1

)
.
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We denote the set of G∨-equivalence classes of G-relevant (resp., enhanced) L-parameters

by Φ(G) (resp., Φe(G)). A local Langlands correspondence for G (in its modern

interpretation) should be a bijection between Φe(G) and the set Irr(G) of (isomorphism
classes of) irreducible smooth G-representations, with several nice properties.

We denote the set of irreducible unipotent (resp., cuspidal) G-representations by
Irrunip(G) (resp., Irrcusp(G)). Let Φnr(G) (resp., Φnr,e(G)) be the subset of Φ(G) (resp.,

Φe(G)) formed by the unramified L-parameters. Recall from [2] that there is a notion of

cuspidality for enhanced L-parameters and that the cuspidal support map Sc associates
to each enhanced L-parameter for G a cuspidal L-parameter for a Levi subgroup of G

(unique up G∨-conjugacy).
The next theorem is a combination of the main results of [17, 49, 39].

Theorem 3.1. Let G be a connected reductive K-group which splits over an
unramified extension. There exists a bijection

Irrunip(G) −→ Φnr,e(G)

π 	→ (φπ,ρπ)

π(φ,ρ) 	→ (φ,ρ).

We can construct such a bijection for every group G of this kind, in a compatible way.

The resulting family of bijections satisfies the following properties:

(a) They are compatible with direct products of reductive K-groups.

(b) They are equivariant with respect to the canonical actions of the group Xwr(G) of

weakly unramified characters of G.

(c) The central character of π equals the character of Z(G) determined by φπ.

(d) π is tempered if and only if φπ is bounded.

(e) π is essentially square-integrable if and only if φπ is discrete.

(f) π is supercuspidal if and only if (φπ,ρπ) is cuspidal.

(g) The analogous bijections for the Levi subgroups of G and the cuspidal support maps
Sc form a commutative diagram

Irrunip(G) −→ Φnr,e(G)⏐⏐�Sc ⏐⏐�Sc⊔
M Irrcusp,unip(M)

/
NG(M) −→

⊔
M Φnr,cusp(M)

/
NG∨ (M∨�WK) .

Here M runs over a collection of representatives for the conjugacy classes of Levi

subgroups of G.

(h) Suppose that P =MU is a parabolic subgroup of G and that
(
φ,ρM

)
∈ Φnr,e(M) is

bounded. Then the normalised parabolically induced representation IGP π
(
φ,ρM

)
is a

direct sum of representations π(φ,ρ), with multiplicities
[
ρM : ρ

]
AM

φ

.

(i) They are compatible with the Langlands classification for representations of reduc-

tive groups and the Langlands classification for enhanced L-parameters.
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(j) They are compatible with restriction of scalars of reductive groups over non-

Archimedean local fields.

(k) Let G̃ be a group of the same kind as G, and let η : G̃ → G be a homomorphism of

K-groups such that the kernel of dη : Lie
(
G̃
)
→ Lie(G) is central and the cokernel

of η is a commutative K-group. Let Lη : LG̃→ LG be the dual homomorphism and

let φ ∈ Φnr(G).

Then the L-packet ΠLη◦φ

(
G̃
)
=
{
π̃ ∈ Irr

(
G̃
)
: φπ̃ = φ

}
consists precisely of the

constituents of the completely reducible G̃-representations η∗(π) with π ∈Πφ(G).

(l) Conjecture 1 holds for tempered unipotent G-representations, up to some rational
constants that do not change if we replace IGMU (π) by IGMU (χπ) with χ ∈Xunr(M).

Moreover, these properties uniquely determine the surjection

Irrunip(G) → Φnr(G)/Xwr(G,Z(G))

π 	→ Xwr(G,Z(G))φπ,

where Xwr(G,Z(G)) denotes the group of weakly unramified characters of G that are

trivial on Z(G).

Remark 3.2. We regard this as a local Langlands correspondence for unipotent
representations. We point out that for simple adjoint groups, Theorem 3.1 differs

somewhat from the main results of [30, 31] – which do not satisfy (d) and (e). In [3,

§3.5] this is fixed by composing a parametrisation of irreducible representations with the

Iwahori–Matsumoto involution of a Hecke algebra, and that propagates to a difference
between Theorem 3.1 and Lusztig’s parametrisation.

Proof. A bijection satisfying properties (a)–(i) was exhibited in [49, §5]. The construction
involves some arbitrary choices; we will fix some of those here.

For property (j), see [17, Lemma A.3] and [49, Lemma 2.4]. For property (k) we refer

to [52, Corollary 5.8 and §7].
Denote by Irrtemp(G) the set of (isomorphism classes of) tempered irreducible smooth

G-representations, and let Φbdd(G) be the collection of bounded L-parameters for G. It

was shown in [39, Theorem 4.5.1] that there exists a ‘Langlands parametrisation’

φHII : Irrunip,temp(G)→ Φnr,bdd(G) (13)

which satisfies property (l) and is unique up to twists by certain weakly unramified

characters. Notice that the image of φHII consists of L-parameters, not enhanced as before.

For supercuspidal representations, both φHII and [49] boil down to the same source,

namely [16, 17]. There it is shown that on the cuspidal level for a Levi subgroup M of G,
in the bijection

Irrunip,cusp(M)→ Φnr,cusp(M) : π 	→ (φπ,ρπ), (14)

the L-parameter φπ is canonical up to twisting by Xwr(M/Z(M)s). For use in [49] we may

pick any instance of formula (14) from [17, Theorem 2]. For use in [39, 4.5.1] there are

some extra conditions, related to the existence of suitable spectral transfer morphisms.
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We fix a set Lev(G) of representatives for the conjugacy classes of Levi subgroups of G.

For every M ∈Lev(G) we choose a bijection (14) which satisfies all the requirements from

[39]. In this way we obtain

φπ = φHII(π) ∈ Φnr,bdd(M) for every tempered π ∈ Irrunip,cusp(M). (15)

To prove property (l), we will show that

φπ = φHII(π) ∈ Φnr,bdd(G) for all π ∈ Irrunip,temp(G). (16)

The infinitesimal (central) character of an L-parameter φ is defined as

inf.ch.(φ) =G∨-conjugacy class of φ
(
Frob,

(
q−1/2 0

0 q1/2

))
∈G∨Frob.

By the definition of L-parameters this is a semisimple adjoint orbit, and by [5, Lemma
6.4] it corresponds to a unique W (G∨,T ∨)Frob-orbit in T∨

Frob (the coinvariants of T∨ with

respect to the action of 〈Frob〉). That in turn can be interpreted as a central character of

the Iwahori–Hecke algebra H(G∗,I∗) of the quasi-split inner form G∗ of G.

By [39, Theorems 3.8.1 and 4.5.1], the Langlands parametrisation φHII is completely
characterised by the map

inf.ch.◦φHII : Irrunip,temp(G)→G∨Frob/G∨-conjugacy. (17)

Hence equation (16) is equivalent to

inf.ch.(φπ) = inf.ch.(φHII(π)) for all π ∈ Irrunip,temp(G). (18)

By construction, the cuspidal support map Sc for enhanced L-parameters preserves

infinitesimal characters (see [2, Definition 7.7 and (108)]). Then property (g) says that
inf.ch.(φπ) does not change if we replace π by its supercuspidal support.

Map (17) is constructed in [39] in three steps:

• Let Hs be the Hecke algebra associated to a Bushnell–Kutzko type for the
Bernstein block Rep(G)s that contains π, as in equation (9). Consider the image
πH of π in Irr(Hs) under formula (10).

• Compute the central character of πH, an orbit for the finite Weyl group Ws acting
on the complex torus Ts – both attached to Hs as described after formula (10)
(but there in terms of f).

• Apply a spectral transfer morphism Hs �H(G∗,I∗) and the associated map Ts →
T∨
Frob/K

n
L (see the definitions in [37, §5.1]). This map sends the central character of

πH to a unique W (G∨,T ∨)Frob-orbit in T∨
Frob, which we interpret as a semisimple

G∨-orbit in G∨Frob.

For irreducible Hs-modules, the central character map corresponds to restriction to the

maximal commutative subalgebra O(Ts) of Hs. There is a Levi subgroup M of G with a

type, covered by the type for Rep(G)s, whose Hecke algebra is O(Ts). The equivalence of
categories in formula (10) is compatible with normalised parabolic induction and Jacquet

restriction [50, Lemma 4.1], so the central character map for Hs corresponds to the

supercuspidal support map for Rep(G)s.
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As in [38, §3.1.1], Hs � H(G∗,I∗) can be restricted to a spectral transfer morphism

O(Ts) � H(M∗,I∗), where the Levi subgroup M∗ of G∗ is the quasi-split inner form

of M . Up to adjusting by an element of W (G∨,T ∨)Frob, these two spectral transfer
morphisms are represented by the same map Ts →T∨

Frob/K
n
L. Consequently, map (17) does

not change if the input π is replaced by its supercuspidal support. These considerations

reduce equations (18) and (16) to equation (15).
Now we have the bijection of the theorem and all its properties, except for the asserted

uniqueness. The L-parameters for Irrunip,temp(G) completely determine the L-parameters

for all (not necessarily tempered) irreducible unipotent G-representations, which follows
from the compatibility with the Langlands classification [49, Lemma 5.10]. Hence it

suffices to address the essential uniqueness for tempered representations and bounded

L-parameters. For adjoint groups, it was shown in [39, Theorems 4.4.1.c and 4.5.1.b].

The case where Z(G) is K-anisotropic is reduced to the adjoint case in the proof
of [39, Theorem 4.5.1]. This proceeds by imposing compatibility of the Langlands

parametrisation φHII with the isogeny G → Gad×G/Gder, in the sense that

• every irreducible tempered unipotent representation of G should be ‘liftable’ in an
essentially unique way to one of Gad× (G/Gder)(K),

• which should determine the L-parameters.

In this way we conclude essential uniqueness in [39, Theorem 4.5.1.b], but in a weaker

sense than we want. However, the compatibility of G → Gad×G/Gder with L-parameters

actually is a requirement: it is an instance of property (k). If we invoke that, the argument

for [39, Theorem 4.5.1] shows that the nonuniqueness (when Z(G) is K-anisotropic) is
essentially the same as in the adjoint case. That is, the parametrisation is unique up to

twists by the image of Xwr(Gad)∼= Z
(
Gad

∨)Frob in LG, which is just Xwr(G).
Finally, we consider the case where G is reductive and the maximal K-split central torus

Z(G)s is nontrivial. Then G/Z(G)s = (G/Z(G)s)(K) does have K-anisotropic centre. The

Langlands correspondence for Irrunip(G) is deduced from that for Irrunip(G/Z(G)s) (see
[17, §15] and [39, p.35]). What happens for Z(G) is determined by property (c) and

the natural local Langlands correspondence for tori. This renders a local Langlands

correspondence for Irrunip(G) precisely as canonical as for Irrunip(Gad). In view of the
cases considered above, the only non-uniqueness comes from twisting by Xwr(Gad).

This twisting goes via the image of Xwr(Gad) in Xwr(G), which consists of the weakly

unramified characters of G that are trivial on Z(G).

Next we recall some results from [52] about the behaviour of unipotent representations

and enhanced L-parameters under isogenies of reductive groups. We will formulate them
for quotient maps, because we will only need them for such isogenies.

Let Z be a central K-subgroup of G and consider the quotient map

η : G → G′ := G/Z.

The dual homomorphism η∨ :G′∨ →G∨ gives rise to maps
Lη : LG′ → LG and Φ(η) : Φ(G′)→ Φ(G).

For φ′ ∈ Φ(G′) and φ = Φ(η)φ′ ∈ Φ(G), Aφ′ is a normal subgroup of Aφ and Aφ/Aφ′ is

abelian [52, Lemma 4.1].
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The map between groups of K-rational points η :G→G′ need not be surjective, but in

any case its cokernel is compact and commutative. This implies that the pullback functor

η∗ : Rep(G′)→ Rep(G)

preserves finite length and complete reducibility [47]. It is easily seen, for instance from
[52, Proposition 7.2], that η∗ maps one Bernstein block Rep(G′)s

′
into a direct sum of

finitely many Bernstein blocks Rep(G)s.

Theorem 3.3 ([52, Theorem 3 and Lemma 7.3]). Let G be a connected reductive K-group

which splits over an unramified extension. Set (φ′,ρ′)∈Φnr,e(G
′) and let π(φ′,ρ′)∈ Irr(G′)

be associated to it in Theorem 3.1. Then, with φ=Φ(η)φ′,

η∗π(φ′,ρ′) =
⊕

ρ∈Irr(Aφ)

HomAφ

(
ind

Aφ

Aφ′ρ
′,ρ
)
⊗π(φ,ρ) =

⊕
ρ∈Irr(Aφ)

HomAφ′ (ρ
′,ρ)⊗π(φ,ρ).

Let us work out a few more features of this result.

Lemma 3.4.

(a) All irreducible constituents of the G-representation η∗π(φ′,ρ′) have the same

Plancherel density and appear with the same multiplicity. This multiplicity is 1

if π(φ′,ρ′) is supercuspidal.

(b) All ρ ∈ Irr(Aφ) with HomAφ′ (ρ
′,ρ) 
= 0 have the same dimension.

(c) For any such ρ, the length of the G-representation η∗π(φ′,ρ′) is

dim(ρ′) [Aφ :Aφ′ ]dim(ρ)−1.

Proof. (a) We abbreviate π′ = π(φ′,ρ′). Since this G′-representation is irreducible, all

irreducible subrepresentations of η∗(π′) are equivalent under the action of G′ on Irr(G).
Conjugation with g′ ∈G′ defines a unimodular automorphism of G, so Ad(g′)∗ preserves

the Plancherel density on Irr(G).

Similarly, all isotypic components of η∗(π′) are G′-associate. As already shown in [21,
Lemma 2.1], this implies that every irreducible constituent of η∗(π′) appears with the

same multiplicity. By [52, Lemma 7.1], this multiplicity is 1 if π′ is supercuspidal.
(b) We briefly recall how to construct irreducible representations of Aφ that contain

ρ′. Let (Aφ)ρ′ be the stabiliser of ρ′ in Aφ (with respect to the action of Aφ on Irr(Aφ′)

coming from conjugation). The projective action of (Aφ)ρ′ on Vρ′ gives rise to a 2-cocycle

κρ′ and a twisted group algebra C

[
(Aφ)ρ′ ,κρ′

]
. Clifford theory (in the version of [2,

Proposition 1.1]) says that

• for every (τ,Vτ ) ∈ Irr
(
C

[
(Aφ)ρ′ ,κρ′

])
, τ � ρ := ind

Aφ

(Aφ)ρ′
(Vτ ⊗Vρ′) is an irre-

ducible Aφ-representation containing ρ′; and
• every irreducible Aφ-representation containing ρ′ is of the form τ �ρ′.

For ρ= τ �ρ′, we see that

HomAφ′ (ρ
′,ρ) = HomAφ′

(
Vρ′,ind

Aφ

(Aφ)ρ′
(Vτ ⊗Vρ′)

)
∼=HomAφ′ (Vρ′,Vτ ⊗Vρ′)∼= Vτ .
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We can compute the dimension of ρ= τ �ρ′ in these terms:

dim(ρ) =
[
Aφ : (Aφ)ρ′

]
dim(Vτ )dim(Vρ′) =

[
Aφ : (Aφ)ρ′

]
dim(ρ′)dimHomAφ′ (ρ

′,ρ).

(19)

By Theorem 3.3,

HomG(π(φ,ρ),η
∗(π′))∼=HomAφ′ (ρ

′,ρ).

By part (a) this space is independent of ρ (as long as it is nonzero). With equation (19)

we conclude that dim(ρ) is the same for all such ρ.

(c) By Frobenius reciprocity,

HomAφ

(
ind

Aφ

Aφ′ρ
′,ρ
)
∼=HomAφ′ (ρ

′,ρ).

Hence ind
Aφ

Aφ′ρ
′ is a direct sum of irreducible subrepresentations of common dimension

dim(ρ). Then its length is

dim
(
ind

Aφ

Aφ′ρ
′
)
dim(ρ)−1 = dim(ρ′) [Aφ :Aφ′ ]dim(ρ)−1.

By Theorem 3.3 that is also the length of η∗(π′).

4. Affine Hecke algebras

From now on, G denotes a connected reductive K-group which splits over the maximal

unramified extension Knr of K. In this section we assume moreover that it has anisotropic

centre. Let Gad = G/Z(G) be its adjoint group. We intend to investigate the behaviour
of the formal degrees with respect to the quotient map η : G → Gad. As preparation, we

consider the analogous question for the affine Hecke algebras from Section 2.

This means that we focus on one Bernstein component Rep(G)(P̂f,σ̂) for G and one

Bernstein component Rep(Gad)(P̂fad
,σ̂ad) for Gad, such that the pullback of the latter has

nonzero components in the former. As already noted in [17, §13] and [49, §3.3], we may

assume that fad = f and that the underlying cuspidal unipotent representations σ and σad

are essentially the same. That is, they are defined on the same vector space Vσ, and σ is

the pullback of σad via the natural map G◦
f (k)→G◦

ad,f (k). More precisely, we may even

assume that σ̂ is the pullback of σ̂ad along η : P̂f → P̂f,ad.

In this setting, η induces an inclusion

ηH :H
(
G,P̂f,σ̂

)
→H

(
Gad,P̂ad,f,σ̂ad

)
, (20)

which we need to analyse in more detail. Let Xf,ad denote the lattice Xf for Gad. From

[49, Proposition 3.1 and Theorem 3.3.b], we see that Xf can be regarded as a sublattice

of Xf,ad and that

Xf,ad/Xf
∼=
(
ΩGad,f

/
ΩGad,f,tor

)/(
ΩG,f

/
ΩG,f,tor

)
. (21)

To make sense of the right-hand side, we remark that the natural map ΩG,f → ΩGad,f is

injective, because G is Knr-split. Group (21) is finite because Z(G) is K-anisotropic. We
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recall from [30, §1.20] and [49, (42)] that ΩGad,f/ΩGad,f,tor acts on H
(
G,P̂f,σ̂

)
by algebra

automorphisms, and that

H
(
G,P̂f,σ̂

)
∼=Haff (G,Pf,σ)�ΩG,f/ΩG,f,tor. (22)

By [49, Lemma 3.5], Haff (G,Pf,σ) and all the data for that algebra are the same for G
and for Gad. So the difference between formula (22) and its analogue for Gad lies only in

the finite group ΩG,f/ΩG,f,tor. Inclusion (20) is the identity on Haff (G,Pf,σ).

Let τ and τad denote the normalised traces of the affine Hecke algebras H
(
G,P̂f,σ̂

)
and H

(
Gad,P̂ad,f,σ̂ad

)
. Let Z(G)◦1 be the unique parahoric subgroup of Z(G)◦(K). By

equation (6) and [20, Proposition 1.4.12.c]

vol(Pf) = vol(Pf,ad)vol(Z (G)◦1) . (23)

By formulas (11), (7) and (23),

τ(Ne)

τad(Ne)
=

dim(σ̂)

vol
(
P̂f

) vol
(
P̂f,ad

)
dim(σ̂ad)

=
|ΩGad,f,tor|

|ΩG,f,tor|vol(Z(G)◦1)
. (24)

Both formulas (21) and (24) contribute to the difference between the Plancherel measures

for H
(
G,P̂f,σ̂

)
and H

(
Gad,P̂ad,f,σ̂ad

)
. For the latter, that is clear; for the former, we

compute the effect later.

We abbreviate A=ΩGad,f/ΩGad,f,tor, Had =Haff (G,Pf,σ)�A and

H=Haff (G,Pf,σ)�ΩG,f/ΩG,f,tor.

Since the abelian group A acts on Haff (G,Pf,σ) and (trivially) ΩG,f/ΩG,f,tor, formula (22)

shows that it acts on H by algebra automorphisms.

Lemma 4.1. Let V be any irreducible Had-module. All the constituents of η∗H(V ) have

the same dimension and the same Plancherel density, and they appear with the same

multiplicity.

Proof. If VH is any irreducible submodule of η∗H(V ), formula (22) shows that

V =
∑

ω∈A
Nω ·VH. (25)

As Nω normalises the subalgebra H of Had, each Nω ·VH is an irreducible H-submodule

of V . Consequently,

every constituent of η∗H(V ) is isomorphic to Ad(Nω)
∗VH for some ω ∈A. (26)

Taking into account that conjugation by Nω is a trace-preserving automorphism of H,

fact (26) shows that all the constituents of η∗H(V ) have the same dimension and Plancherel
density. Further, we see from equation (25) that any two H-isotypic submodules of V are

in bijection, via multiplication with a suitable Nω. Hence all constituents of η
∗
H(V ) appear

with the same multiplicity in that H-module.
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This rough analysis of η∗H does not yet suffice; we need more precise results from Clifford
theory. Write

C = Irr(Xf,ad/Xf) .

By formula (21), C can also be regarded as the character group of(
ΩGad,f

/
ΩGad,f,tor

)/(
ΩG,f

/
ΩG,f,tor

)
.

Using formula (22), every c ∈ C determines an automorphism of Had, namely

c · (h⊗Nω) = h⊗ c(ω)Nω, h ∈Haff (G,Pf,σ),ω ∈A.

We note that HC
ad =H.

The restriction of modules from Had to HC
ad was investigated in [42, Appendix]. Let CV

be the stabiliser (in C) of the isomorphism class of V ∈ Irr(Had). For every c ∈ C, there

exists an isomorphism of H-modules

ic : V → c∗V.

By Schur’s lemma, ic is unique up to scalars, and thus the ic furnish a projective action
of C on V . Our particular situation is favourable because the action of C on Had is free,

in the sense that it acts freely on a vector space basis. This can be exploited to analyse

the intertwining operators ic.

Lemma 4.2. The group CV acts linearly on V, by H-module automorphisms.

Proof. We normalise ic by requiring that it restrict to the identity on VH. For any

ω ∈A,c ∈ CV and v ∈ VH, we have

ic(Nω ·v) = c(Nω) · ic(v) = c(ω)Nω ·v. (27)

In view of equation (25), this formula determines ic completely. In particular, ic ◦ ic′ = icc′

for all c,c′ ∈ CV .

In the remainder of this section we assume that G is semisimple, so that formula (21)

and C are finite. By [42, Theorem A.13], the action from Lemma 4.2 gives rise to an
isomorphism of H×C[CV ]-modules

V ∼=
⊕

E∈Irr(CV )
VE ⊗E. (28)

Lemma 4.3. For every E ∈ Irr(CV ), the H-module VE =HomCV
(E,V ) is irreducible and

appears with multiplicity 1 in η∗H(V ).

Proof. By [42, Theorem A.13], the H-module VE is either zero or irreducible. Let A′ ⊂A

be a set of representatives of A/∩c∈C ker(c|A), so that Irr(CV ) is naturally in bijection
with A′. From equations (25) and (27), we see that there is a linear bijection

CA′⊗
∑

ω∈∩c∈C ker(c|A)

Nω ·VH → V : a⊗v →Na ·v.

https://doi.org/10.1017/S1474748021000062 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000062


1964 Y. Feng et al.

Hence every E ∈ Irr(CV )∼=A′ appears nontrivially in decomposition (28). The multiplicity

of VE in V is dim(E), which is 1 because CV is abelian.

For another irreducible Had-module V ′, [42, Theorem A.13] shows how the restrictions

to H compare:

η∗H (V ′)

{
∼= η∗H(V ) if V ′ ∼= c∗V for some c ∈ C,

has no constituents in common with η∗H(V ) otherwise.

(29)

From here on we assume that V is a discrete series. Casselman’s criterion for discrete

series representations [36, Lemma 2.22] entails that η∗Hδ′ is a direct sum of finitely many
irreducible discrete series representations of H.

Endow Haff and Had with the trace τ ′ so that τ ′(Ne) = 1. We indicate the formal degree

with respect to this renormalised trace by fdeg′.

Theorem 4.4. Let G be a semisimple K-group which splits over an unramified extension.

Let V be an irreducible discrete series representation of Haff (G,Pf,σ)�ΩGad,f/ΩGad,f,tor,

and let η∗HV be its pullback to Haff (G,Pf,σ)�ΩG,f/ΩG,f,tor via formulas (20) and (22).

Then

fdeg′ (η∗HV )

fdeg′(V )
= |C|=

[
ΩGad,f

ΩGad,f,tor
:

ΩG,f

ΩG,f,tor

]
.

For any irreducible constituent VE of η∗H(V ),

fdeg′(VE) = [C : CV ] fdeg
′(V ).

Here |CV | equals the length of η∗H(V ).

Proof. Let C∗
r (H) be the C∗-completion of H, as in [36, Definition 2.4]. As V is a discrete

series, we know from [36, §6.4] that C∗
r (Had) contains a central idempotent eV such that

eV C
∗
r (Had)∼= EndC(V ).

Then by definition,

τ ′(eV ) = dim(V )fdeg′(V ). (30)

The C-orbit of V in Irr(Had) has precisely [C : CV ] elements, and these are all discrete
series. The central idempotent

eC,V :=
∑

c∈C/CV

c ·eV

lies in C∗
r (Had)

C = C∗
r (H), and

eC,V C
∗
r (Had)∼=

⊕
c∈C/CV

EndC(c
∗V ).

Since the action of C preserves τ ′, we obtain

τ ′(eC,V ) =
∑

c∈C/CV

dim(c∗V )fdeg′(c∗V ) = [C : CV ]dim(V )fdeg′(V ).
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With formula (28) and Lemma 4.3, this can be expanded as

τ ′(eC,V ) = [C : CV ] fdeg
′(V )

∑
E∈Irr(CV )

dim(VE)dim(E)

= [C : CV ] fdeg
′(V )|CV |dim(VE) = |C| fdeg′(V )dim(VE).

(31)

From formulas (28) and (29) we see that

eC,V C
∗
r (H)∼=

⊕
E∈Irr(CV )

EndC(VE).

Considering τ ′ as the trace for H, using Lemma 4.1 and the commutativity of CV we find

τ ′(eC,V ) =
∑

E∈Irr(CV )
dim(VE)fdeg

′(VE) = |CV |dim(VE)fdeg
′(VE). (32)

Now we compare equations (31) and (32), for any constituent VE of η∗H(V ), and we find

the desired formula for fdeg′(VE).

From that and formula (28), we deduce

fdeg′ (η∗HV ) =
∑

E∈Irr(CV )

dim(E)fdeg(VE) = |CV |[C : CV ]fdeg(V ) = |C|fdeg(V ).

For the interpretation of |CV |, we refer to Lemma 4.3.

We note two direct consequences of Theorem 4.4 and equation (24):

fdeg(η∗HV )

fdeg(V )
=

|C| |ΩGad,f,tor|
vol(Z(G)◦1) |ΩG,f,tor|

=
[ΩGad,f : ΩG,f]

vol (Z(G)◦1)
, (33)

length of η∗H(V ) · fdeg(VE) = [ΩGad,f : ΩG,f] fdeg(V )vol(Z(G)◦1)
−1

. (34)

5. Pullback of representations

In this section, G still denotes a Knr-split connected reductive K-group with anisotropic

centre. We would like to apply Lemma 3.4 to equation (34), but to do so we first have
to find the relation between the length of η∗H(V ) and the length of the pullback of the

associated Gad-representation. This involves the number of G-orbits of facets and the

number of Bernstein components obtained from
(
P̂f,ad,σ̂ad

)
under pullback along η.

For a facet f of B(G,K), let Rep(G)f be the sum of the subcategories Rep(G)(Pf,σ), where

σ runs over the irreducible representations of Pf inflated from cuspidal representations of

G◦
f
(k). In Section 2 we saw that this is a direct sum of finitely many Bernstein blocks,

which by [34, Corollary 3.10] all come from supercuspidal Bernstein components of the
same Levi subgroup of G. By equation (8),

Rep(G)f =Rep(G)f′ if gf′ = f for some g ∈G,

Rep(G)f∩Rep(G)f′ = {0} otherwise.
(35)

Let η∗ (Rep(Gad)f) be the pullback of Rep(Gad)f along η :G→Gad.

Lemma 5.1. The number of different subcategories Rep(G)f′ involved nontrivially in

η∗ (Rep(Gad)f) is |ΩGad
· f| |ΩG · f|−1

.
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Proof. Since C0 contains a fundamental domain for the G-action on B(G,K), it suffices
by equation (35) to consider facets in C0. Since the kernel of κG : G → ΩG acts type-

preservingly on B(G,K), the G-association classes of facets in C0 are precisely the ΩG-

orbits of facets in C0.

Since ΩG embeds in the abelian group ΩGad
, all ΩG-orbits in ΩGad

· f have the same
length. The number of such ΩG-orbits is |ΩGad

· f| |ΩG · f|−1.

It is clear from the definitions that η∗ (Rep(Gad)f) has nonzero parts in the Rep(G)f′

with f′ ∈ ΩGad
· f, and maps to zero in all other subcategories Rep(G)f′′ . In view of

equation (35), the number of different Rep(G)f′ involved here equals the number of ΩG-

orbits in ΩGad
· f.

There exists a Levi subgroup M = M(K) such that
(
P̂f∩M,σ̂

)
is a type for a

supercuspidal Bernstein block sM of Rep(M), covered by
(
P̂f,σ̂
)

[34, Corollary 3.10].

We will often denote objects associated to M with an additional subscript – for example,

PM,f = Pf∩M . We note that, by [34, Theorem 2.1], f is contained in a minimal facet fM
of B(Mad,K) and PM,f = PfM is a maximal parahoric subgroup of M .
Recall from [56, §1.2] that the apartment A of B(G,K) associated to S admits a canonical

decomposition

A= AMad
×X∗(Z(M)s)⊗ZR, (36)

where AMad
is the apartment of B(Mad,K) = B(M/Z(M)s,K) associated to S/Z(M)s.

With equation (36), we can express f as fM × fM , where fM is a vertex of B(Mad,K) and
fM is an open subset of X∗(Z(M)s)⊗ZR. Now

f=
(
fM ×X∗(Z(M)s)⊗ZR

)
∩C0, (37)

so that f and fM determine each other.

Lemma 5.2. Let f′ ∈ NGad
(M) · f such that Rep(M)fM 
= Rep(M)f′M . Then Rep(G)f 
=

Rep(G)f′ .

Proof. Suppose that Rep(G)f = Rep(G)f′ . Then any inertial equivalence class s =
[M,πM ]G with Rep(G)s ⊂Rep(G)f equals an inertial equivalence class s′ with Rep(G)s′ ⊂
Rep(G)f′ . By assumption, f′ also admits a decomposition (equation (37)), with the same

M . Hence we may assume that s′ = [M,π′
M ]G.

This means that there exist g ∈NG(M) and χ ∈Xnr(M) such that π′
M =Ad(g)∗(πM ⊗

χ). Since NG(M)/M only depends on G up to isogenies, we may assume that g lies in

the image of Gsc →G. In particular, g lies in the kernel of κG and acts type-preservingly

on B(G,K).
By [30, §1] or [17, (1.18)], we can write πM ⊗χ= indM

NM(PfM ) (σ̃) for some extension σ̃

of σ to NM (PfM ). Then

Ad(g)∗(πM ⊗χ)∼= indM
gNM(PfM )g−1 (Ad(g)∗σ̃) = indM

NM(Pg·fM ) (Ad(g)∗σ̃) .

With equation (35), this implies mg · fM = f′M for some m ∈ M . Then equation (37)

shows that also mg · f = f. Since f∪ f′ ⊂ C0 and g ∈ ker(κG), it follows that κG(m)f = f′.
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From equation (37) and the naturality of the Kottwitz homomorphism, we deduce that

κM (m)fM = f′M . By equation (35), this contradicts the assumption of the lemma.

We write MAD =M/Z(G) and we restrict η to ηM :M→MAD. Let P be a parabolic

K-subgroup of G with Levi factor M and put PAD = P/Z(G). The normalised parabolic

induction functors form a commutative diagram

Rep(Gad)
η∗

−→ Rep(G).

↑ IGad

PAD
↑ IGP

Rep(MAD)
η∗
M−−→ Rep(M)

(38)

Lemma 5.3. Let πad ∈ Rep(Gad)(P̂ad,f,σ̂ad) and let πad,H be the associated module of

H
(
Gad,P̂ad,f,σ̂ad

)
. Then the length of η∗(πad) ∈ Rep(G) equals |ΩGad

· f| |ΩG · f|−1 times

the length of η∗H(πad,H) ∈ Rep
(
H
(
G,P̂f,σ̂

))
.

Proof. In every subcategory Rep(G)gf with g ∈Gad, η
∗(πad) has a nonzero component.

These components are associated by the automorphisms Ad(g) of G, so they all have the

same length. Lemma 5.1 tells us that the number of such components is |ΩGad
· f| |ΩG · f|−1.

Hence, it suffices to consider the projection πf of η
∗(πad) to Rep(G)f, and we have to

show that its length equals that of η∗H(πad,H). From commutative diagram (38) we see

that

Rep(G)f∩η∗
(
Rep(Gad)(P̂ad,f,σ̂ad)

)
= IGP (Rep(M)fM )∩ IGP

(
η∗M

(
Rep(MAD)(P̂ad,fM

,σ̂ad)

))
, (39)

where X indicates that we take the sum of all Bernstein components appearing in X.

It is known from [52, (7.8)] that η∗M

(
Rep(MAD)(P̂ad,fM

,σ̂ad)

)
involves just one Bernstein

component of Rep(M)f′M for every facet f′M ∈MAD · f, and no others. By Lemma 5.2 these

different Bernstein components remain different upon parabolic induction to G. Hence

we can identify the right-hand side of equation (39) as

IGP

(
projection of η∗M

(
Rep(MAD)(P̂ad,fM

,σ̂ad)

)
to Rep(M)fM

)
= IGP

(
Rep(M)(P̂fM

,σ̂)

)
=Rep(G)(P̂f,σ̂). (40)

From equations (39) and (40) we see that the projection πf of η
∗(πad) to Rep(G)f equals

its projection to Rep(G)(P̂f,σ̂). Via formula (10), the latter category is equivalent with

Rep
(
H
(
G,P̂f,σ̂

))
. Hence πf maps to η∗H(πad,H) by formula (10), and in particular these

two representations have the same length.
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6. Computation of formal degrees

Now G denotes a connected reductive K-group which splits over an unramified extension.
We will compute the formal degrees of square-integrable unipotent G-representations in

increasing generality.

By the choice of a Haar measure on G, we make C∞
c (G) into a convolution algebra,

denoted H(G). The Plancherel theorem asserts that there exists a unique Borel measure

μPl on Irr(G) such that

f(1) =

∫
Irr(G)

trπ(f)dμPl(π) ∀f ∈H(G).

The support of μPl is precisely the collection Irrtemp(G) of tempered irreducible G-
representations. For a self-adjoint idempotent e ∈H(G), we write

Irr(G)e = {(π,Vπ) ∈ Irr(G) : eVπ 
= 0}.

If it is nonzero, eVπ is an irreducible representation of the Hilbert algebra eH(G)e.

Suppose in addition that dim(eVπ) = d ∈ N for all π ∈ Irr(G)e. Then [7, Theorem 2.3
and Proposition 2.1] tell us that

μPl(Irr(G)e) = e(1)d−1. (41)

For an important special case, suppose that (σ,Vσ) is an irreducible representation of a

compact open subgroup J of G and that eσ ∈H(J) is the associated central idempotent.
When indGJ (σ) is irreducible, the centre Z(G) is compact, indGJ (σ) is supercuspidal and

eσH(G)eσ ∼= EndC(Vσ). Applying equation (41) to eσ, we find

μPl

(
indGJ (σ)

)
=

eσ(1)

dim(σ)
=

dim(σ)

vol(J)
. (42)

Recall that a G-representation (π,Vπ) is square-integrable modulo centre if Z(G) acts

on Vπ by a unitary character and Vπ is square-integrable as a representation of the
derived group of G. Such a representation has a G-invariant inner product and is

completely reducible. The formal degree of an irreducible square-integrable modulo centre

G-representation is defined as the unique number fdeg(π) ∈ R>0 such that∫
G/Z(G)s

〈π(g)v1,v2〉〈π(g)v3,v4〉 fdeg(π)dg = 〈v1,v3〉〈v2,v4〉 for all vi ∈ Vπ. (43)

When π is actually square-integrable (which can happen only if Z(G) is compact),

equation (43) entails that the formal degree of π is its mass with respect to the Plancherel

measure μPl on Irr(G) [14, Proposition 18.8.5]. The formal degree can be extended to
finite-length square-integrable modulo centre representations by additivity.

The foregoing depends on the choice of a Haar measure, which we need to make explicit.

Fix an additive character ψ :K → C× which is trivial on oK but nontrivial on �−1
K oK .

We endow G (and all other reductive p-adic groups) with the Haar measure as in [24]. As

ψ has order 0, this agrees with the Haar measure in [18]. Since G splits over Knr it also

agrees with [22, §4], which we used to get equation (6).
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6.1. Adjoint groups

It is known from [29, Theorems 3.22 and 3.29] that the cuspidal unipotent representations

of G◦
f
(k) depend functorially on the finite field k. This means that σ is part of a family

of representations σk′ of G◦
f
(k′), one for every finite field k′ containing k. Moreover, the

dimension of σk′ is a particular polynomial in q′ = |k′|, a product of a rational number

without factors p, a power of q′ and terms (q′n−1)±1 with n ∈ N.
When K ′ is an unramified extension of K, then G◦

f
(k′) is the finite reductive quotient

of G◦
f (oK′), a parahoric subgroup of G(K ′). As already remarked after equation (6), the

volume of G◦
f (K

′) is a rational function in q′, with the same kind of (rational) factors as
dim(σk′). This enables us to vary q while keeping f,G◦

f and σ essentially constant.

A similar variation is possible for the affine Hecke algebra

H
(
G,P̂f,σ̂

)
=H

(
Xf,Rf,q

N ) . (44)

There it means that the parameter function qN can be replaced by q′N =
(
qN
)[k′:k]

,

obtaining a new Hecke algebra H
(
Xf,Rf,q

′N ). Any discrete series representation δ of

equation (44) naturally gives rise to a discrete series representation δ′ of H
(
Xf,Rf,q

′N ),
and conversely (see [36, §5.2] and [48, Corollary 4.2.2]). In this way we can consider

fdeg(δ) as a function of q.

Further, unramified L-parameters φ can be made into functions of q. Replacing φ by a

G∨-conjugate, we may assume that φ(Frob) = tFrob with t ∈ (T∨)WF ,◦
. For q′ = |k′| we

take φ′ with φ′(Frob) = t[k
′:k]Frob and φ′ = φ on IK ×SL2(C). It is easily seen from the

explicit formulas in [23, §4] that this makes the L-functions, ε-factors and γ-factors of φ

into meromorphic functions of q.

Theorem 6.1. Suppose that G is simple and splits over an unramified extension. Let

π ∈ Irr(G) be square-integrable and unipotent.

(a) The HII-conjecture (2) holds in this setting, and more precisely,

fdeg(π) =± dim(σ)

vol(Pf)
[
P̂f : Pf

]dH,πm
(
qN
)(r)

=±dim(ρπ)∣∣∣S�
φπ

∣∣∣ γ(0,AdG∨ ◦φπ,ψ),

where m
(
qN
)(r)

is as in equation (12).

(b) The expressions γ(0,AdG∨ ◦ φπ,ψ), dim(σ), vol(Pf) and m
(
qN
)(r)

are nonzero
rational functions of q. Each of them is a product of a rational constant and factors

of the form qm/2 with m ∈ Z and (qn−1)±1 with n ∈ N.

Proof. By [17, Theorem A.1 and Lemma A.3], the objects in Theorem 3.1 do not

change under Weil restriction for reductive groups, with respect to finite unramified

extensions. Hence we may assume that G is, in addition, absolutely simple. A first
expression for γ(0,AdG∨ ◦ φπ,ψ) was given in [38, (38)]; we provide the proof in the

appendix (Theorem A.4). Then we can use the results from [38], which were obtained by

classification.
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For (a), see [38, Theorem 4.11]. For (b), see [38, Proposition 2.5 and (38)] and [23,

§4.2].

Exactly the same argument as for [17, Proposition 12.2] extends Theorem 6.1 to all

adjoint groups.

Corollary 6.2. Suppose that Gad is adjoint and splits over an unramified extension of K.

Then equation (2) holds for all irreducible square-integrable unipotent G-representations.

The functions γ(0,AdG∨ ◦ φπ,ψ), dim(σ), vol(Pf) and m
(
qN
)(r)

for Gad are the
products of the corresponding functions for the K-simple factors of Gad.

6.2. Semisimple groups

In this subsection, G is a semisimple K-group which splits over an unramified extension,

and G= G(K) as usual.

Proposition 6.3. Let π ∈ Irrunip(G).

(a) The central character of π is trivial.

(b) There exists a πad ∈ Irrunip(Gad) such that π is a constituent of the pullback η∗(πad).

(c) π is unitarisable, tempered, square-integrable or cuspidal if and only if πad also is.

Proof. (a) By definition (see Section 2), there exists a parahoric subgroup Pf ⊂ G and

an irreducible unipotent Pf-representation σ, inflated from the finite reductive quotient
Pf/Uf = G◦

f
(k), such that π is a constituent of indGPf

(σ). It is known from [29, Proposition

3.15] that the adjoint quotient map

G◦
f
(k)→G◦

f ad
(k) induces a bijection Irrunip

(
G◦
f ad

(k)
)
→ Irrunip

(
G◦
f
(k)
)
. (45)

In particular, σ is the pullback of a unique σad ∈ Irrunip

(
G◦
f ad

(k)
)
, and the Z

(
G◦
f

)
(k)-

character of σ is trivial.
We claim that Pf contains Z(G). The semisimplicity of G implies that Z(G) is finite and

fixes the entire Bruhat–Tits building B(G,K). Since G splits over an unramified extension

K ′/K, there exists a K ′-split maximal K-torus T of G. By maximality, Z(G)⊂ T . Since
T splits over an unramified extension, the Kottwitz homomorphism

κT : T →X∗
(
T̂ IK
)θK

=X∗
(
T̂
)θK

is determined by the canonical homomorphism

ν : T →X∗(S)⊗R.

(with S ⊂ T maximal K-split). Then ν(Z(G)) is a finite subgroup of X∗(S)⊗R, so
ν(Z(G)) = 0. Consequently, κT (Z(G)) = 0, which by the functoriality of the Kottwitz

homomorphism implies that κG(Z(G)) = 0. Thus Z(G) fixes the facet f and lies in the

kernel of the Kottwitz homomorphism κG, which proves the claim.
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From the claim we see that Z(G)Uf/Uf is a central subgroup of G◦
f
(k). Hence the Z(G)-

character of σ is trivial. It follows that Z(G) acts trivially on indGPf
(σ) and in particular

on π.

(b) By part (a) we can regard π as a representation of the normal subgroup G1 :=

G/Z(G) of Gad. From the long exact sequence in Galois cohomology, we see that Gad/G1

is isomorphic to a closed subgroup of H1(F,Z(G)). In particular, Gad/G1 is compact and

abelian.

These properties suffice to apply [54, §2] to G1 ⊂G and the G1-representation π. Then

[54, Proposition 2.2] shows that indGad

G1
(π) has an irreducible subrepresentation πad of

Gad such that π is a constituent of the pullback of πad to G1.

In the proof of part (a) we saw that π|Pf
contains a subrepresentation isomorphic to σ.

Since G◦
f
is an oK -model of G [6] and Z(G) is finite, the homomorphisms

G(F )→Gad(F ) and G◦
f
(oK)→G◦

f ad
(oK)

have the same kernel and the same cokernel. Hence G/Pf → Gad/Pf,ad is bijective, and
the pullback of indGad

Pf,ad
(σad) to G is isomorphic with indGPf

(σ). By Frobenius reciprocity,

HomGad

(
indGad

Pf,ad
(σad),ind

Gad

G1
(π)
)
∼=HomG1

(
indGad

Pf,ad
(σad),π

)
=HomG

(
indGPf

(σ),π
)
∼=HomPf

(σ,π) 
= 0. (46)

Let π2 be the subrepresentation of indGad

G1
(π) generated by the images of all possible

Gad-homomorphisms from indGad

Pf,ad
(σad) – that is, the component of indGad

G1
(π) in

Rep(Gad)(Pf,ad,σad). The arguments in the proof of [54, Proposition 2.2] also work with

π2 instead of indGad

G1
(π), and show that we can find a πad as before already in π2. Then

πad is unipotent and irreducible and its pullback to G contains π.

(c) This a small variation on [54, Proposition 2.7], applied to the inclusion G1 → G.
Here we regard a representation of G1 =G/Z(G) as tempered or cuspidal if its inflation

to G is tempered or cuspidal.

Proposition 6.3 guarantees that the next result applies to all square-integrable unipotent
G-representations.

Theorem 6.4. Let δ ∈ Irrunip(G) and δad ∈ Irrunip(Gad) be square-integrable, such that

δ is a constituent of η∗(δad).

(a) Their formal degrees, normalised as in [24], are related as

fdeg(η∗(δad))

fdeg(δad)
=

fdeg(δ) · lengthof η(δad)
fdeg(δad)

=
|ΩGad

|
|ΩG|

.

(b) fdeg(δ) =±dim(ρδ)
∣∣∣S�

φδ

∣∣∣−1

γ(0,AdG∨ ◦φδ,ψ).

Proof. (a) The first equality sign is a consequence of Lemma 3.4(a).

Write V = HomP̂f,ad
(σ̂ad,δad) and VE = HomP̂f,ad

(σ̂ad,δ). Recall from [7] that δ and

VE have the same formal degree, and similarly for δad and V . With equation (34) and
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Lemma 5.3, we compute

fdeg(δ)

fdeg(δad)
=

fdeg(VE)

fdeg(V )
=

[ΩGad,f : ΩG,f]

length of η∗H(V )
=

|ΩGad,f| |ΩGad
· f|

|ΩG,f| |ΩG · f| length of η∗(δad)
. (47)

By the orbit-counting lemma and formula (3), this equals

|ΩGad
|

|ΩG| length of η∗(δad)
=

∣∣∣Z (G∨
sc)

WK

∣∣∣∣∣∣Z (G∨)WK

∣∣∣ length of η∗(δad)
. (48)

Rearranging equations (47) and (48) yields the desired equality.

(b) By Theorem 3.3, φδ is the composition of φδad with the quotient map

LGad =G∨
sc�WK →G∨�WK = LG.

From Lemma 3.4(c) we know that η∗(δad) is the direct sum of exactly

dim(ρδad)
[
Aφδ

:Aφδad

]
dim(ρδ)

−1 (49)

irreducible G-representations. We know from [17, proof of Lemma 13.2] that

[
Aφδ

:Aφδad

]
= [ZG∨

sc
(φδ) : ZG∨

sc
(φδad)] =

[
S�
φδ

: S�
φδad

] ∣∣∣Z (G∨
sc)

WK

∣∣∣∣∣∣Z (G∨)WK

∣∣∣ . (50)

From formulas (47)–(50) we deduce

fdeg(δ)

fdeg(δad)
=

∣∣∣Z (G∨
sc)

WK

∣∣∣∣∣∣Z (G∨)WK

∣∣∣
∣∣∣Aφδad

∣∣∣dim(ρδ)

|Aφδ
|dim(ρδad)

=

∣∣∣S�
φδad

∣∣∣dim(ρδ)∣∣∣S�
φδ

∣∣∣dim(ρδad)
. (51)

As Lie(G∨
sc) = Lie(G∨),

γ(s,AdG∨ ◦φδ,ψ) = γ (s,AdG∨
sc ◦φδad,ψ) for all s ∈ C.

Then equation (51) says

fdeg(δ)

fdeg(δad)
=

dim(ρδ)
∣∣∣S�

φδad

∣∣∣
dim(ρδad)

∣∣∣S�
φδ

∣∣∣ γ(0,AdG∨ ◦φδ,ψ)

γ (0,AdG∨
sc
◦φδad,ψ)

.

Combining that with Theorem 6.1(a), we obtain the desired formula for fdeg(δ).

6.3. Reductive groups

To prove the HII-conjecture for unipotent representations of a reductive group G, we
want to compare its representations with those of G/Z(G)s and those of the derived

group Gder := Gder(K). (Notice that Gder may be larger than the derived group of G as

an abstract group.)
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We start with some preparations for the case where Z(G)◦ is K-anisotropic. Let Z(G)◦
be the connected reductive k-group associated by Bruhat–Tits to the unique vertex of

B(Z(G)◦,K).

For any Levi K-subgroup M of G, Md := M∩Gder is a Levi K-subgroup of Gder.
Furthermore, Z(M)s ⊂ Md – for example, because Lie(Z(M)s) ⊂ Lie(Gder). We note

also that Md/Z(M)s is the derived group of M/Z(M)s.

Lemma 6.5. Suppose that Z(G)◦ is K-anisotropic. The inclusion Md →M induces:

(a) a bijection Irrunip,cusp(M)→ Irrunip,cusp(Md);

(b) for every minimal facet f of B(Mad,K), a bijection between the types
(
P̂f,σ̂
)
for M

and for Md.

Proof. (a) Let Xwr(M) be the group of weakly unramified characters – that is, those
characters M → C× that are trivial on the kernel of the Kottwitz homomorphism κM .

From the short exact sequence (4) (for M and for Md) we deduce that there are natural

isomorphisms

Xwr(M)/Xwr(M/Z(M)s)∼=Xwr(Z(M)s)∼=Xwr(Md)/Xwr(Md/Z(M)s). (52)

By [17, (15.6)], every irreducible cuspidal unipotent M -representation is of the form

πM/Z(M)s ⊗ χM , with πM/Z(M)s ∈ Irrunip,cusp(M/Z(M)s) and χM ∈ Xnr(M). Using

weakly unramified characters, we can formulate this more precisely as a bijection

Irrunip,cusp(M/Z(M)s) ×
Xwr(M/Z(M)s)

Xwr(M)→ Irrunip,cusp(M). (53)

Similarly, there is a bijection

Irrunip,cusp(Md/Z(M)s) ×
Xwr(Md/Z(M)s)

Xwr(Md)→ Irrunip,cusp(Md). (54)

We note that Z(M/Z(M)s)
◦ is isogenous to Z(G)◦, and in particular it is K-anisotropic.

Hence we may apply [17, Lemma 15.3], which tells us that the inclusion Md/Z(M)s →
M/Z(M)s induces a bijection

Irrunip,cusp(M/Z(M)s)→ Irrunip,cusp(Md/Z(M)s). (55)

Combining formulas (55) and (52) with (53) and (54), we obtain the required bijection.

(b) The (semisimple) Bruhat–Tits buildings of M,Md,M/Z(M)s and Md/Z(M)s can

be identified [56, §2]. In particular, these buildings have the same collections of facets
f. The group M◦

f
is isogenous to the direct product of M◦

d,f and the k-torus Z(G)◦.
The only cuspidal unipotent representation of Z(G)◦(k) is the trivial representation.

The collection of cuspidal unipotent representations of
(
M◦

d,f×Z(G)◦
)
(k) does not

change under isogenies of k-groups [29, §3], so it is the same as for M◦
f
(k). As the

semisimple group Md/Z(M)s is the derived group of M/Z(M)s, [17, Lemma 15.2] says

that ΩM/Z(M)s =ΩMd/Z(M)s . Combining that with sequence (5), we find that

ΩM =ΩMd
. (56)
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With formula (7) we deduce that Md → M induces a bijection between the indicated

collections of types.

The behaviour of formal degrees of supercuspidal unipotent representations under

pullback from M to Md was analysed in [17, (16.13)]. That and Lemma 6.5 can be

generalised to all (square-integrable) unipotent representations.

Lemma 6.6. Suppose that Z(G)◦ is K-anisotropic. Let
(
P̂f,M,σ̂

)
and

(
P̂f,Md

,σ̂
)
be as

in Lemma 6.5(b).

(a) The inclusion Gder →G induces an algebra isomorphism

H
(
Gder,P̂f,Gder

,σ̂
)
→H

(
G,P̂f,G,σ̂

)
.

(b) Suppose that δ ∈ Irr(G)(P̂f,G,σ̂) is square-integrable, and let δder be its pullback to

Gder. Then δder is irreducible and

fdeg(δ)

fdeg(δder)
=

q(dimZ(G)◦+dimZ(G)◦)/2∣∣∣Z(G)◦(k)
∣∣∣ .

Proof. (a) By [49, Lemma 3.5 and (42)], these two affine Hecke algebras differ only in

the involved lattices Xf. From equation (56) and the proof of [49, Theorem 3.3.b] we see
that

Xf,G =ΩM,fM /ΩM,fM,tor =ΩMd,fM /ΩMd,fM,tor =Xf,Gder
.

Hence H
(
Gder,P̂f,Gder

,σ̂
)

can be identified with H
(
G,P̂f,G,σ̂

)
, and the canonical map

between them is an isomorphism. We note that nevertheless, the traces of these algebras

may be normalised differently.

(b) Let δH be theH
(
G,P̂f,G,σ̂

)
-module associated to δ via formula (10). By Lemma 6.5,

δder ∈ Rep(Gder)(P̂f,Gder
,σ̂). By part (a), the H

(
Gder,P̂f,Gder

,σ̂
)
-module δder,H can be

identified with δH, and in particular it is irreducible. From [7] and equation (12), we
see that

fdeg(δ)

fdeg(δder)
=

fdeg(δH)

fdeg(δder,H)
=

vol
(
P̂f,Gder

)
vol
(
P̂f,G

) .

By formulas (7) and (56), this equals

vol(Pf,Gder
) |ΩGder,f,tor|

vol(Pf,G) |ΩG,f,tor|
=

vol(Pf,Gder
) |ΩMder,f,tor|

vol(Pf,G) |ΩM,f,tor|
=

vol(Pf,Gder
)

vol(Pf,G)
. (57)

These volumes, with respect to our normalised Haar measures, are expressed in terms of

k-groups in equation (6). Since G◦
f
is isogenous to G◦

der,f×Z(G)◦, we have [20, Proposition
1.4.12.c] ∣∣∣G◦

f
(k)
∣∣∣= ∣∣∣G◦

der,f(k)
∣∣∣ ∣∣∣Z(G)◦(k)

∣∣∣ .
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With that and equation (6), equation (57) becomes

vol(Pf,Gder
)

vol(Pf,G)
=

∣∣∣G◦
der,f(k)

∣∣∣q−(dimG◦
der,f+dimGder)/2∣∣∣G◦

f
(k)
∣∣∣q−(dimG◦

f
+dimG)/2

=
q(dimZ(G)◦+dimZ(G)◦)/2∣∣∣Z(G)◦(k)

∣∣∣ . (58)

With all preparations complete, we can prove our main result: HII-conjecture (2) for

unipotent representations.

Theorem 6.7. Let G be a connected reductive K-group which splits over an unramified
extension. Let δ ∈ Irrunip(G) be square-integrable modulo centre and let (φδ,ρδ) be its

enhanced L-parameter via Theorem 3.1. Let ψ :K → C× have order 0 and normalise the

Haar measure on G as in [24] and [18]. Then

fdeg(δ) =±dim(ρδ)
∣∣∣S�

φδ

∣∣∣−1

γ(0,AdG∨ ◦φδ,ψ).

Proof. For the moment we assume that Z(G)◦ is K-anisotropic. Then Lemma 6.6 tells us
that the pullback δder of δ along Gder →G is irreducible, so that Theorem 6.4(b) applies

to δder ∈ Irrunip(Gder).

In the proof of [17, Lemma 16.3] it was shown that

dim(ρδ)
∣∣∣S�

φδder

∣∣∣γ(0,AdG∨ ◦φδ,ψ)

dim(ρδder)
∣∣∣S�

φδ

∣∣∣γ(0,AdG∨
der

◦φδder,ψ
) =

q(dimZ(G)◦+dimZ(G)◦)/2∣∣∣Z(G)◦(k)
∣∣∣ .

By Lemma 6.6(b), the right-hand side equals fdeg(δ)fdeg(δder)
−1. Combining that with

the formula for fdeg(δder) from Theorem 6.4(b), we find the desired expression for fdeg(δ).

Now we consider any G as in the statement of the theorem. The connected reductive
K-group G/Z(G)s has K-anisotropic connected centre. It was shown in [17, proof of

Theorem 3 on page 43] how the theorem for G can be derived from the theorem for

G/Z(G)s. Although [17] is formulated only for supercuspidal representations, this proof
also works for square-integrable modulo centre representations when we use the local

Langlands correspondence from Theorem 3.1 (especially part (b) on compatibility with

weakly unramified characters).

7. Extension to tempered representations

7.1. Normalisation of densities

In this subsection we study the Plancherel densities for essentially square-integrable

representations of a reductive group G with noncompact centre.

We fix an essentially square-integrable unipotent π ∈ Irr(G), trivial on the maximal
central split torus Z(G)s. Recall that we have canonical Haar measures and hence

canonical Plancherel measures for G and for G/Z(G)s. Further, Conjecture 1 and [57]

impose a measure on O=Xunr(G)π ⊂ Irr(G). Our conventions force us to slightly modify
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the latter measure. We propose a new normalisation and we check that it results in a nice
formula for the Plancherel mass of O.

Let G1 be the subgroup of G generated by all compact subgroups and let Z(G)1s be

the unique maximal compact subgroup of Z(G)s. We endow Xunr(Z(G)s) with the Haar

measure of total mass vol
(
Z(G)1s

)−1
. Following [57, p. 302], we decree that the covering

maps

Xunr(Z(G)s) ← Xunr(G) → O
χ|Z(G)s

	→ χ 	→ χ⊗π

are locally measure-preserving. We denote the associated density on O by dO. Notice

that the degree of Xunr(G)→Xunr(Z(G)s) equals
[
G :G1Z(G)s

]
. Write

O∩ Irr(G/Z(G)s) = {π⊗χ ∈ O : Z(G)s ⊂ kerχ}.

Tensoring π with χ gives a covering map

ker
(
Xunr(G)→Xunr(Z(G)s)

)
→O∩ Irr(G/Z(G)s),

whose degree equals the degree of Xunr(G)→O. Hence the number of elements of any
fibre of Xunr(G)→O is [

G :G1Z(G)s
]
|O∩ Irr(G/Z(G)s)|−1.

It follows that

vol(Xunr(G)) =
[
G :G1Z(G)s

]
vol
(
Z(G)1s

)−1
, (59)

vol(O) = |O∩ Irr(G/Z(G)s)|vol
(
Z(G)1s

)−1
. (60)

Lemma 7.1. The Plancherel density on O is fdeg(π)dO and

μPl(O) = fdeg(π)vol(O).

Proof. Choose a test function f ∈C∗
r (G) such that f is supported on G1, trπ(f) = 1 and

f acts as 0 on all irreducible G-representations outside O. Then f is Z(G)1s-invariant and

tr(π⊗χ)(f) = 1 for all χ ∈Xunr(G). By definition,

f(1) =

∫
O
trπ(f)dμPl(π) = μPl(O). (61)

Since f is Z(G)1s-invariant, it defines a function f1 on

G1/Z(G)1s
∼=G1Z(G)s/Z(G)s,

which we extend by zero to the whole of G/Z(G)s. Due to the difference in the Haar
measures, f and f1 act differently on representations of G/Z(G)s. Instead, the function

f2 := vol
(
Z(G)1s

)
f1 has the same action as f on any smooth G/Z(G)s-representation.

This can be seen by expressing f on a small subset of the form X ∼=X/Z(G)1s×Z(G)1s as

f
∣∣
X
= f2

∣∣
X/Z(G)1s

·
1Z(G)1s

vol(Z(G)1s)
.
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In view of the construction of f , the function f2 detects only the G-representations χ⊗π
with χ ∈Xunr(G) and Z(G)s ⊂ kerχ. All these representations have the same Plancherel

density (both for G and for G/Z(G)s). The Plancherel formula for G/Z(G)s gives

f(1)vol
(
Z(G)1s

)
= f2(1) =

∫
O∩Irr(G/Z(G)s)

trπ(f2)dμPl,G/Z(G)s(π)

= μPl,G/Z(G)s(O∩ Irr(G/Z(G)s)) = |O∩ Irr(G/Z(G)s)|μPl,G/Z(G)s(π). (62)

Comparing with equations (60) and (61), we find

μPl(O) = vol
(
Z(G)1s

)−1 |O∩ Irr(G/Z(G)s)|μPl,G/Z(G)s(π) = vol(O)fdeg(π).

As tensoring with unramified unitary characters preserves the Plancherel density, this

means that fdeg(π)dO is the Plancherel density on O.

Let (P̂f,σ̂) be the unipotent type such that π ∈ Irr(G)(P̂f,σ̂)
. We abbreviate H =

H(G,P̂f,σ̂). The representation σ̂ is trivial on Z(G)1s, so (P̂f,σ̂) descends to a type

(P̂f/Z(M)1s,σ̂) for the group G/Z(G)s. This type can detect more than one Bernstein

component, because P̂G/Z(G)s,f can properly contain P̂f/Z(M)1s. Let σ′ be the (unique)

extension of σ̂ to P̂G/Z(G)s,f which is contained in π. Then

Hss :=H
(
G/Z(G)s,P̂G/Z(G)s,f,σ

′
)

is naturally a quotient of H, obtained by mapping the generators Nw ∈ H with w ∈
Z(G)/Z(G)1s to suitable scalars. The traces τ and τss of H and Hss, normalised as in

equation (11), differ at the unit element:

Lemma 7.2.
τss(Ne)

τ(Ne)
=

|ΩG,f,tor|vol
(
Z(G)1s

)∣∣ΩG/Z(G)s,f,tor

∣∣ =
|ΩG,f,tor|∣∣ΩG/Z(G)s,f,tor

∣∣
(
q−1

q

)dim(Z(G)s)
.

Proof. By formulas (11) and (7),

τss(Ne)

τ(Ne)
=

dim(σ′)vol
(
P̂G/Z(G)s,f

)−1

dim(σ̂)vol
(
P̂G,f

)−1 =
|ΩG,f,tor|vol(PG,f)∣∣ΩG/Z(G)s,f,tor

∣∣vol(PG/Z(G)s,f

) .
Let Z(G)s ∼= GL

dimZ(G)s
1 be the connected reductive k-group associated to the unique

vertex of B(Z(G)s,K). Since G◦
f

is isogenous to (G/Z(G)s)◦f × Z(G)s, a calculation

analogous to equation (58) shows that

vol(Pf)

vol
(
PG/Z(G)s,f

) =
∣∣∣Z(G)s(k)

∣∣∣
qdim(Z(G)s)

= vol
(
Z(G)1s

)
.

Finally, we note that
∣∣∣Z(G)s(k)

∣∣∣= |GL1(k)|dimZ(G)s = (q−1)dimZ(G)s .
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As only the trivial element of ΩZ(G)s fixes any point of the standard apartment A of
B(G,K), sequence (5) entails that the natural map

ΩG,f,tor → ΩG/Z(G)s,f,tor

is injective. However, in general it need not be surjective.
We write Tf,ss =Hom

(
XG/Z(G)s,f,C

×), a subtorus of Tf =Hom(Xf,C
×). The image of

Xnr(G) in Tf is another algebraic subtorus Tf,Z , which is complementary in the sense that

Tf,ssTf,Z = Tf and |Tf,ss∩Tf,Z |<∞.

Let Tf,un = Hom
(
Xf,S

1
)
, the maximal compact real subtorus of Tf. We define Tf,ss,un

and Tf,Z,un similarly. Write πH =HomP̂f
(σ̂,π) ∈Mod(H). By formula (10), the map

Xunr(G)→O : χ 	→ χ⊗π

induces a surjection

Tf,Z,un → Tf,Z,unπH =
{
HomP̂f

(σ̂,χ⊗π) : χ ∈Xunr(G)
}
.

Furthermore, Tf,Z,unπH is in bijection with O via formula (10).

Let dtZ be the Haar measure on Tf,Z,unπH with total volume 1. Since formula (10)

preserves Plancherel measures [7], μPl,G

∣∣
O and μPl,H

∣∣
Tf,Z,unπH

agree. With Lemma 7.1

we find that

dμPl,H(πH) = fdegHss
(πH)|O∩ Irr(G/Z(G)s)|vol

(
Z(G)1s

)−1
dtZ . (63)

This can also be formulated entirely in terms of affine Hecke algebras:

Lemma 7.3. dμPl,H(πH) = fdegHss
(πH)τ(Ne)τss(Ne)

−1 |(Tf,ss∩Tf,Z)πH|dtZ .

Proof. Consider an arbitrary extension σ′′ of σ̂ to P̂G/Z(G)s,f. From [30, §1.20] or [49, (40)]
we see that the number of elements of O that contain σ′′ equals the number of elements

that contain σ′. The number of possible extensions σ′′ is
∣∣ΩG/Z(G)s,f,tor

∣∣ |ΩG,f,tor|−1
, and

hence

|O∩ Irr(G/Z(G)s)|=
∣∣ΩG/Z(G)s,f,tor

∣∣ |ΩG,f,tor|−1 |Tf,ZπH∩ Irr(Hss)| . (64)

An H-representation t⊗πH ∈ TfπH descends to Hss if and only if t ∈ Tf,ss. Therefore,

|Tf,ZπH∩ Irr(Hss)|= |(Tf,ss∩Tf,Z)πH| .

Combine that with equations (63) and (64) and Lemma 7.1.

We remark that Lemma 7.3 is in accordance with a comparison formula for Plancherel

measures of affine Hecke algebras [36, (4.96)].

7.2. Parabolic induction and Plancherel densities

Let M be a Levi K-subgroup of G and let πM ∈ Irrunip(M) be essentially square-

integrable. As before, we write O =Xunr(M)πM . Let P be a parabolic K-subgroup of G
with Levi factor M and denote the normalised parabolic induction functor by IGP . We
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want to express the Plancherel density on the family of finite-length tempered unitary
G-representations

IGP (O) =
{
IGP (χ⊗πM ) : χ ∈Xunr(M)

}
. (65)

Recall that the infinitesimal character of φM is

inf.ch.(φM ) = φM

(
Frob,

(
q−1/2 0

0 q1/2

))
.

We abbreviate H =H
(
G,P̂f,σ̂

)
and HM =H

(
M,P̂M,f,σ̂

)
, where πM ∈ Irr(M)(P̂M,f,σ̂).

From the proof of Theorem 3.1, which can be retraced to [1, Theorem 3.18.b], we see that

the central character of

πM,H =HomP̂M,f
(σ̂,πM ) ∈Mod

(
HM
)

is completely determined by inf.ch.(φM ). More precisely, choose a base point for the

appropriate Bernstein component of enhanced L-parameters as in [49, Lemma 3.4] and
pick tM ∈ T∨ such that inf.ch.(φM ) equals tM times the base point. Then the central

character of πM,H is W (RM,f) tM ∈ TM,f/W (RM,f).

For t ∈ Z (M∨)θ,◦ ∼=Xnr(M), the M -representation t⊗πM corresponds to t⊗πM,H ∈
Irr
(
HM
)
and its enhanced L-parameter is (tφM,ρM ), where tφM is defined in equa-

tion (95).

Lemma 7.4. For t ∈Xunr(M), the Plancherel density dμPl

(
IGP (t⊗πM )

)
equals

±q(dimG−dimM)/2mM
s (ttM )γ(0,AdM∨ ◦ tφM,ψ)dim(ρM )

∣∣∣S�
φM

∣∣∣−1

dO(t⊗πM ).

The factor mM
s (ttM ), which depends on the Bernstein component Rep(G)s containing

IGP (πM ), is defined in [36, (3.57)] and [39, (2.17)].

Proof. Notice that t⊗ πM is still essentially square-integrable, since that property is

stable under tensoring by unitary characters. By the expression for Plancherel densities

in affine Hecke algebras [36, (4.96)],

μPl,H
(
indHHM (t⊗πM,H)

)
=mM

s (ttM )τ(Ne)τHM (Ne)
−1μPl,HM (t⊗πM,H). (66)

The factor τ(Ne)τHM (Ne)
−1 appears because in [36] the traces of the Hecke algebras are

normalised by τ ′(Ne) = 1. From formulas (11), (6) and (7) we see that

τ(Ne)

τHM (Ne)
=

vol
(
P̂f,M

)
vol
(
P̂f

) =

∣∣Mf(kF )
∣∣q(dimG◦

f
+dimG)/2∣∣Gf(kF )

∣∣q(dimM◦
f
+dimM)/2

. (67)

By [34, Theorem 2.1], Mf
∼= Gf, so that the right-hand side of equation (67) reduces to

q(dimG−dimM)/2. By Lemma 7.3 and equations (63) and (67), equation (66) equals

mM
s (ttM )q(dimG−dimM)/2fdegHss

(πM,H)|O∩ Irr(G/Z(G)s)|vol
(
Z(G)1s

)−1
dtZ .

It is known from [50, Lemma 4.1] that normalised parabolic induction commutes with

functor (10). As functor (10) preserves Plancherel densities, equations (66) and (60) yield
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μPl

(
IGP (t⊗πM )

)
= q(dimG−dimM)/2mM

s (ttM ) fdeg(t⊗πM )dO(t⊗πM ).

Applying Theorem 6.7 to t⊗πM ∈ Irrunip(M), we obtain the required formula.

On the other hand, we already know from Theorem 3.1(l) that Conjecture 1 holds up

to some constant CO ∈Q>0 – that is,

μPl

(
IGP (t⊗πM )

)
=±COγ(0,AdG∨,M∨ ◦ tφM,ψ)dim(ρM )

∣∣∣S�
φM

∣∣∣−1

dO(t⊗πM ). (68)

Theorem 7.5. Let G be a connected reductive K-group which spits over an unramified
extension. Let M be a Levi K-subgroup of G and let πM ∈ Irrunip(M) be square-integrable

modulo centre. Let O = Xunr(M)πM be the associated orbit in Irrunip(M) and define

IGP (O) as in equation (65).
Let (φM,ρM ) ∈Φnr,e(M) be the enhanced L-parameter of πM , as in Theorem 3.1. With

the normalisation from equation (60), the Plancherel density on IGP (O) is

±dim(ρM )
∣∣∣S�

φM

∣∣∣−1

γ(0,AdG∨,M∨ ◦φM,ψ)dO(πM ).

That is, Conjecture 1 holds for Irrunip(G), with cM = 1.

Proof. We may assume that M is a standard Levi subgroup – that is, M contains

the standard maximal K-split torus S and the standard maximal K-torus T . Let G∗ be
the quasi-split inner form of G. We may identify T with a maximal K-torus of G∗. Let
M∗ ⊂ G∗ be the Levi subgroup such that Φ(M∗,T ) = Φ(M,T ).

Write inf.ch.(φM ) = rMθ with rM ∈ T̂ ◦,θ (which can be achieved by replacing φM with
an equivalent L-parameter). By Lemma A.3 and equation (96),

γ(0,AdG∨,M∨ ◦ tφM,ψ) =±γ(0,AdM∨ ◦ tφM,ψ)q(dimG−dimM)/2mM∗
(trM ). (69)

Comparing Lemma 7.4 and equations (68) and (69), we see that

mM
s (ttM ) =±COm

M∗
(trM ) ∀t ∈Xunr(M). (70)

Let Rs
0 denote the root system associated with the Hecke algebra Hs from equation (9),

and let qN denote the parameter function of Hs as in [38, Section 2] and as described
after formula (10). Letms

± be the corresponding parameter functions on Rs
0. Let w

M
s ∈Ws

denote the shortest-length representative of the coset ws,0Ws,M inWs/Ws,M of the longest

element ws,0. Like in Appendix A.2, these parameters can be used to define μ-functions.

From [36, Proposition 3.27(ii)] we see that for t ∈Xunr(M),

mM
s (ttM ) = qN

(
wM

s

)−1 ∏
a∈Rs

0\Rs
M,0

(
1−γ−2

a (ttM )
)(

1+ q−ms
−(γa)γ−1

a (ttM )
)(

1− q−ms
+(γa)γ−1

a (ttM )
) .
(71)

This is analogous to formula (94) for mM∗
(trM ). The differences are that for M∗ the

product runs over more roots and the parameters ms
±(γa) need not equal m±(γa).
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Since πM is essentially square-integrable, πM,H is essentially a discrete series. Together
with [36, Lemma 3.31 and Proposition A.4], this implies thatXnr(M)tM is a residual coset

(of minimal dimension) for HM . Moreover, ms
±(γa) ∈ Z, so the value γa(tM ) ∈ C× is a

root of unity times an integral power of q [36, Theorem A.7]. In particular, limq→1 γa(tM )
is well defined, and a root of unity in C.

The discrete unramified L-parameter for M∗ determines an L-packet of essentially

square-integrable M∗-representations. The Iwahori-spherical members of that packet

correspond to a finite set of essentially discrete series representations of the parabolic
subalgebra H(M∗,I∗∩M∗) of H(G∗,I∗), with central character

W (M∨,T∨)
θ
rM ∈ T∨

θ /W (M∨,T∨)
θ
.

As before for tM , Xnr(M
∗)rM is a residual coset (of minimal dimension) for H(M∗,I∗∩

M∗). It follows as before that the values γa(rM ), with a∈ (Φ\ΦM∗)/θ as in equation (94),

are products of roots of unity and integral powers of q.

Taking this dependence of tM and rM on q into account, we regard both sides of

equation (70) as rational functions in t and in q. Fix t∈Xunr(M) such that both ttM and
trM are in generic position with respect to all the involved roots. Then equations (71)

and (94) entail

lim
q→1

mM
s (ttM ) = 1 and lim

q→1
mM∗

(trM ) = 1.

Combining that with equation (70), we find CO = 1 and mM
s (ttM ) =±mM∗

(trM ) for all
t ∈Xunr(M). Then equation (69) becomes

γ(0,AdG∨,M∨ ◦ tφM,ψ) =±mM (ttM )γ(0,AdM∨ ◦ tφM,ψ).

Hence the expression in Lemma 7.4 equals (68) with CO = 1, as required.

Appendix A. Adjoint γ-factors

Let (ρ,V ) be a finite-dimensional Weil–Deligne representation over C – that is, a
semisimple representation of WK on V together with a nilpotent operator N ∈ EndC(V )

– such that

ρ(w)Nρ(w)−1 = ‖w‖N for all w ∈WK .

The contragredient of (ρ,V ) is the contragredient (ρ∨,V ∨) as a WK -representation,

together with the nilpotent operator N∨ ∈ EndC (V
∨) which sends λ to −λ ◦N . We

write VN = ker(N) and fix an additive character ψ :K → C×.
We define a new Weil–Deligne representation (ρ0,V ) by decreeing that as a WK -

representation it is the same as (ρ,V ), but with nilpotent operator N0 = 0. Recall from

[55, §4.1.6] that the local factors of (ρ,V ) are defined, as meromorphic functions of s ∈C,
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by

L(s,ρ) = det
(
1− q−sρ(Frob)|V IK

N

)−1

,

ε(s,ρ,ψ) = ε(s,ρ0,ψ)det
(
−q−sρ(Frob)|V IK/V IK

N

)
,

γ(s,ρ,ψ) = ε(s,ρ,ψ)L(1−s,ρ∨)L(s,ρ)−1.

(72)

The ε-factor can be described further with [55, §3.4] and the Artin conductor a(V ):

ε(s,ρ0,ψ) = ε
(
ρ0⊗‖ ·‖1/2,ψ

)
qa(V )(1/2−s).

We note that in [55], ε-factors also depend on a Haar measure dx on K. In view of [55,

(3.4.3)], it is harmless to fix any normalisation of dx, and we do so by giving oK volume 1.
It is well known, for instance from [23, Proposition 2.2], that ρ gives rise to a semisimple

representation

ρ̃ :WK ×SL2(C)→AutC(V ) such that N = dρ̃|SL2(C) (
0 1
0 0) . (73)

Such a ρ̃ is unique up to conjugacy in AutC(V ), and it determines ρ. We say that (ρ,V )

is self-dual if it is isomorphic to its contragredient. This is equivalent to self-duality of ρ̃.

A.1. Independence of the nilpotent operator

In view of the known properties of γ-factors for representations of GLn(K) [26, (2.7.3)],
we can expect a relation between the γ-factors of ρ and of ρ0.

Proposition A.1. Let (ρ,V ) be a finite-dimensional self-dual Weil–Deligne representa-

tion over C. Then

γ(0,ρ,ψ) =±γ(0,ρ0,ψ).

That is, up to a sign, the γ-factor of ρ at s = 0 does not depend on the nilpotent

operator N .

Proof. Let (ρ′,V ′) be the sum of the irreducible nontrivial IK-subrepresentations of
(ρ,V ). We denote the irreducible SL2(C)-representation of dimension n+1 by (σn,Sym

n)

and write

Vn := HomIK×SL2(C)(triv⊗σn,ρ̃).

We can decompose the WK ×SL2(C)-representation ρ̃ as

V = V ′⊕
⊕∞

n=0
Vn⊗Symn. (74)

In view of the additivity of the local factors (72), it suffices to prove the proposition
for each of the direct summands in equation (74) separately. It follows directly from the

definitions that

γ(s,ρ′,ψ) = ε(s,ρ′0,ψ) = γ(s,ρ′0,ψ),
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so we only have to consider Vn⊗Symn for a fixed (but arbitrary) n ∈ Z≥0. Since IK is

normal in WK , ρ̃ induces an action of WK/IK ∼= Z on Vn. We decompose it as

Vn =
⊕

χ∈Irr(WK/IK)
Cmχ

χ , (75)

where mχ denotes the multiplicity of χ in Vn.

Since (ρ̃,V ) is self-dual and Symn is self-dual (as an SL2(C)-representation), the WK -

representation Vn is also self-dual. Hence

mχ−1 =mχ for all χ ∈ Irr(WK/IK). (76)

To simplify the notation, we assume from now on that V = Vn⊗Symn, and in particular

that V IK = V . The relation between ρ and ρ̃ entails that

ρ(Frob) = ρ̃(Frob)⊗ ρ̃
(
1,
(

q−1/2 0

0 q1/2

))
= ρ̃(Frob)⊗σn

(
q−1/2 0

0 q1/2

)
. (77)

From equation (76) we see that

det(ρ̃(Frob)|Vn) =
∏

χ∈Irr(WK/IK)
χ(Frob)mχ = (−1)mχ− , (78)

where χ− denotes the unique quadratic character of WK/IK . As σn(SL2(C)) ⊂
SLn+1(C), equations (77) and (78) yield

det(ρ(Frob)|V ) = det(ρ̃(Frob)|Vn)
n+1 = (−1)(n+1)mχ− . (79)

Since Symn
N is 1-dimensional with

(
q−1/2 0

0 q1/2

)
acting as q−n/2,

det
(
σn

(
q−1/2 0

0 q1/2

)∣∣Symn/Symn
N

)
= qn/2. (80)

With equations (77)–(80), we can express the ε-factor as

ε(s,ρ,V ) = ε(s,ρ0,ψ)det
(
−q−sρ(Frob)|Vn⊗Symn/Symn

N

)
= ε(s,ρ0,ψ)(−q−s)dim(Vn)n(−1)nmχ− qdim(Vn)n/2. (81)

Using self-duality and equations (72) and (81), we compute

γ(s,ρ,ψ)

γ(s,ρ0,ψ)
=

(−1)nmχ− qdim(Vn)n/2

(−qs)dim(Vn)n

det
(
1− qs−1ρ(Frob)|Vn⊗Symn/Symn

N

)
det(1− q−sρ(Frob)|Vn⊗Symn/Symn

N )

=
(−1)nmχ− qdim(Vn)n/2

(−qs)dim(Vn)n

∏
χ

n∏
k=1

(
1− qs−1χ(Frob)qk−n/2

1− q−sχ(Frob)qk−n/2

)mχ

=
(−1)nmχ− qdim(Vn)n/2

(−1)dim(Vn)n

∏
χ

n∏
k=1

(
1− qsχ(Frob)qk−1−n/2

qs−χ(Frob)qk−n/2

)mχ

.

(82)

When s goes to 0, the products over k in equation (82) attain telescopic behaviour, and
all terms in the numerator (except k = 1) cancel against all terms in the denominator

(except k = n). This is obvious when χ(Frob)qk−n/2 
= 1, whereas we pick up an extra

factor −1 if χ(Frob)qk−n/2 = 1. Collecting all factors −1 in one symbol ±, equation (82)
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yields

γ(0,ρ,ψ)

γ(0,ρ0,ψ)
=±qdim(Vn)n/2 lim

s→0

∏
χ

(
1− qsχ(Frob)q−n/2

qs−χ(Frob)qn/2

)mχ

=± lim
s→0

∏
χ

χ(Frob)mχ

(
qn/2χ(Frob)−1− qs

qs−χ(Frob)qn/2

)mχ

.

(83)

In view of equation (78), all the terms χ(Frob)mχ together just contribute a sign, so

we may omit them (or rather, put them into ±). When χ(Frob) 
= q±n/2, equation (76)
shows that the terms in equation (83) associated to χ will cancel against the terms

associated to χ−1, up to a sign. Thus only the characters χ±1 with χ(Frob) = qn/2 remain

in equation (82) upon taking the limit s→ 0, and for those we compute

γ(0,ρ,ψ)

γ(0,ρ0,ψ)
=± lim

s→0

(
1− qs

qs− qn

)mχ
(
qn− qs

qs−1

)mχ

=±(−1)2mχ =±1. (84)

This concludes the proof, and we note that by retracing the various steps we could find

an explicit (but involved) formula for the sign.

The adjoint γ-factor of an L-parameter φ for G = G(K) comes from a Weil–Deligne

representation on Lie(G∨)/Lie
(
Z (G∨)WK

)
, which is self-dual with respect to the Killing

form [23, §3.2]. Proposition A.1 says that the γ-factor of ρ̃=AdG∨ ◦φ equals the γ-factor

of ρ0 (both at s= 0 and up to a sign). We note that

ρ0(Frob) = AdG∨

(
φ
(
Frob,

(
q−1/2 0

0 q1/2

)))
, (85)

where we recognise the right-hand side as the adjoint representation AdG∨ applied to the

infinitesimal character of φ. In these terms, Proposition A.1 says that

γ(0,AdG∨ ◦φ,ψ) depends only on φ|IK and the infinitesimal character of φ.

A.2. Relation with μ-functions

The goal of this subsection is to relate adjoint γ-factors of unramified L-parameters to

μ-functions for Iwahori–Hecke algebras. The desired equality was already claimed in [38,
(38)]; we take this opportunity to work out the proof.

From now on, the additive character ψ :K → C× has order 0, like in the body of the

paper. We assume that G is unramified over K – that is, G is quasi-split and splits over

an unramified extension of K. Fix a pinning of the Lie algebra Lie(G∨) and let θ denote
the pinned automorphism of Lie(G∨) induced by Frob. The quotient G/Z(G)s defines a

θ-stable reductive subgroup Ĝ⊂G∨ with Lie algebra

ĝ := Lie
(
Ĝ
)
∼= Lie(G∨)/Lie

(
Z (G∨)

θ
)
.
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Let AdG∨ denote the adjoint action of LG on ĝ. Let us denote the distinguished Cartan

subgroup of Ĝ by T̂ , with corresponding Cartan subalgebra t̂ := Lie
(
T̂
)
of ĝ. Clearly

T∨ = Z (G∨)
θ
T̂ = Z (G∨)

θ,◦
T̂ , (86)

where Z (G∨)θ,◦ is the identity component of Z (G∨)θ. By [44, Section 3.3], the Lie algebra

ĝθ is semisimple.

Lemma A.2. Let φT be an unramified L-parameter for T and write φT (Frob) = rθ. Then

γ (s,AdG∨ |̂t ◦φT ,ψ) =
det(1− q−sAdG∨(rθ)|̂t)
det(1− qs−1AdG∨(rθ)|̂t)

.

For s near 0 this can be expressed as

γ (s,AdG∨ |̂t ◦φT ,ψ) = s|Δ/θ|n1 log(q)
|Δ/θ|∏

a∈Δ/θ |a∩Δ|
det(1− q−1AdG∨(rθ)|̂t)

+O
(
s|Δ/θ|+1

)
.

Here n1 is a positive integer which reduces to 1 if Z(G)◦ is K-split.

Proof. For any unramified representation ρ of WK and an additive character ψ of order
0, [55, (3.2.6) and (3.4.2)] say that

ε(s,ρ,ψ) = 1 for all s ∈ C. (87)

This applies to ρ = AdG∨ |̂t ◦φ, and moreover, ρ is self-dual with respect to the Killing

form. Knowing that, the definitions in equation (72) yield the asserted formula for
γ (s,AdG∨ |̂t ◦φT ,ψ).

The finite-order map AdG∨(rθ)|̂t cannot have an eigenvalue q ∈ R>1. Hence the

denominator det
(
1− qs−1AdG∨(rθ)|̂t

)
is regular at s= 0, and behaves as expected.

The numerator det(1− q−sAdG∨(rθ)|̂t) can be analysed by splitting

t̂= (1−θ)Z(ĝ)⊕
(̂
t∩ ĝder

)
. (88)

On the first summand of equation (88) we get

lim
s→0

det
(
1− q−sAdG∨(rθ)|(1−θ)Z(ĝ)

)
= det

(
1−θ|(1−θ)Z(ĝ)

)
. (89)

Identifying (1−θ)Z(ĝ) with the Lie algebra of the complex dual group of Z(G)◦/Z(G)s, we
see that equation (89) can be computed as the determinant of a linear transformation of a
(co)character lattice, so in particular it is an integer. More precisely, as θ has finite order

but no eigenvalues 1 on the involved lattice, equation (89) equals the natural number

n1 := det
(
1−θ|X∗(Z(G)◦/Z(G)s)

)
∈ N.

If Z(G)◦ is K-split, then Z(G)◦/Z(G)s = 1 and n1 = 1.
The basis of t̂∩ ĝder consisting of the simple coroots is permuted by θ, with orbits of

length |a∩Δ|. For the second summand in equation (88) we find a contribution of

lim
s→0

det
(
1− q−sAdG∨(rθ)|̂t∩ĝder

)
= lim

s→0

∏
a∈Δ/θ

(
1− q−s|a∩Δ|

)
. (90)
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The leading order term of equation (90) for s near 0 is∏
a∈Δ/θ

(s|a∩Δ| log(q)) = s|Δ/θ| log(q)|Δ/θ|
∏

a∈Δ/θ
|a∩Δ|. (91)

We start the definition of the μ-functions for the relevant Hecke algebras. Let Φ/θ be

the set of equivalence classes in the root system Φ of
(
ĝ, t̂
)
as defined in [44, Section 3.3]

and Δ/θ be the set of equivalence classes of the basis Δ of Φ. For each a ∈ Φ/θ, put

γa :=
∑

α∈a
α|̂tθ .

Then Φθ = {γa}a∈Φ/θ is a reduced root system on t̂θ. With Φθ we also consider its

(untwisted) affine extension Φ
(1)
θ = Φθ ×Z, naturally indexed by Φ/θ×Z – that is, we

will denote the affine root (γa,n) with a ∈ Φ/θ and n ∈ Z by γ(a,n).

Recall the Kac root system Φ̂θ = {βa | a ∈ Φ/θ}, where βa = α|̂tθ for an α ∈ a such
that βa/2 is not of this form. This root system has a twisted affine extension with ‘Kac

diagram’ D(ĝ,θ) [44, Section 3.4]. By [44, Section 3], Φ̂θ is the root system of ĝθ. For each

a ∈Φ/θ×Z there exists a positive integer fa such that γa = faβa. If γa ∈Φθ is a minimal

root, then by construction f(a,1) is the order of θ on the union of the components of Φ
which intersect a.

We say that a ∈ Φ/θ (or α ∈ a) has

• type I if the θ-orbit of α consists of mutually orthogonal roots;
• type II if a contains a triple {α1,α2,α1+α2} with α2 ∈ 〈θ〉α1.

Type II occurs only if some irreducible component of Φ has type A2n and a power of θ

acts on it by the nontrivial diagram automorphism.

From [44, Table 2] we see that for every root of type I and every e ∈ Z,

f(a,e) = fa = |a|.

On the other hand, for a ∈ Φ/θ of type II,

f(a,e) =

{
fa = 4|a|/3 if e is even,

fa/2 = 2|a|/3 if e is odd.

Recall that S ⊂ G denotes a maximal K-split torus of G contained in T . Let Φ(G,S)0
(resp., Φ(G,S)1) be the set of indivisible (resp., nonmultipliable) roots of Φ(G,S). From
[44, (26)] we conclude that Φ∨

θ =Φ(G,S)0 and Φθ =Φ(G,S)∨0 .
Let I ⊂G be an Iwahori subgroup and letH(G,I) be the Iwahori–Hecke algebra ofG. We

write the underlying root datum as (R0,X∗(S),R∨
0 ,X

∗(S)) and the parameter functions

on R0 as m±. That means that the q-parameter for any simple reflection sα ∈W (R0) is

qN (sα) = qm
+(α), while the simple affine reflection s′α with linear part conjugate to sα (if

it exists) has q-parameter qN (s′α) = qm
−(α).

Then Rm (in the sense of [38, Subsection 2.3.3]) is equal to Φθ (compare [16, Section

4.2]), or equivalently, R∨
0 = Φ(G,S)1. We identify the roots of R0 with {γa}a∈Φ/θ. If
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a ∈ Φ/θ is of type I, then ρ0(Frob) = AdG∨(rθ) and the parameters of H(G,I) on Φθ are

given by

m+(γa) = fa and m−(γa) = 0. (92)

If a ∈ Φ/θ is of type II, then these parameters are given by

m+(γa) = f(a,0)/2 = 2|a|/3,
m−(γa) = f(a,1)/2 = |a|/3.

(93)

Another way of expressing this is that the linearly extended parameter function m∨
R on

the affine Kac roots D(ĝ,θ) is constant and equal to 1 (see [16, Proposition 4.2.1]).

For Section 7.2 we need a μ-function of H(G,I) relative to a Levi subgroup (or

equivalently, relative to a parabolic subalgebra). Let P be a standard parabolic K-
subgroup of G, with standard Levi factor M. Let ΦM ⊂Φ be the corresponding parabolic

root subsystem. We recall from [36, (3.57) and (4.96)] that

mM (t) = q(dim ĝ−dimm̂)/2
∏

a∈(Φ\ΦM )/θ

(
γ2
a(t)−1

)(
qm−(γa)γa(t)+1

)(
qm+(γa)γa(t)−1

)
= q(dimm̂−dim ĝ)/2

∏
a∈(Φ\ΦM )/θ

(
1−γ−2

a (t)
)(

1+ q−m−(γa)γ−1
a (t)

)(
1− q−m+(γa)γ−1

a (t)
), (94)

a rational function of t ∈ T∨/(1−θ)T∨. We note that for M equal to the maximal torus

T , mT (t) involves all roots from Φ/θ.

We denote the adjoint representation of LM on Lie(G∨)/Lie(M∨) = ĝ/m̂ by AdG∨ |ĝ/m̂.
Let φM be an unramified L-parameter for M =M(K) and write

rMθ = φM

(
Frob,

(
q−1/2 0

0 q1/2

))
.

Upon replacing φM by an equivalent L-parameter, we may assume that rM ∈ T̂ θ,0 [44,

Lemma 3.2]. For z ∈ Z (M∨)◦θ
∼= Xnr(M), we define another unramified L-parameter

zφM ∈ Φ(M) by

(zφM ) = φM on IK ×SL2(C), (zφM )(Frob) = z(φM (Frob)). (95)

By the additivity of γ-factors,

γ(s,AdG∨,M∨ ◦zφM,ψ) = γ(s,AdM∨ ◦zφM,ψ)γ
(
s,AdG∨ |ĝ/m̂ ◦zφM,ψ

)
. (96)

Lemma A.3. There is an equality of rational functions of z ∈ Z (M∨)◦θ:

γ
(
0,AdG∨ |ĝ/m̂ ◦zφM,ψ

)
=±q(dim ĝ−dimm̂)/2mM (zrM ).

Proof. Let ρ,ρ0 be the associated self-dual Weil–Deligne representations as in for-
mula (73). By Proposition A.1,

γ(0,ρ,ψ) =±γ(0,ρ0,ψ). (97)

Using the definitions in equation (72) we plug equation (87) into equation (97) to obtain

γ
(
0,AdG∨ |ĝ/m̂ ◦φ,ψ

)
=± lim

s→0
L(1−s,ρ0)L(s,ρ0)

−1. (98)
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For a ∈Φ/θ, let ĝa ⊂ ĝ be the subspace
∑

α∈a ĝα, so that we have an AdG∨(zrMθ)-stable

decomposition

ĝ= m̂⊕
⊕

a∈(Φ\ΦM )/θ
ĝa. (99)

Using equations (99) and (98), we see that

γ
(
0,AdG∨ |ĝ/m̂ ◦zφM,ψ

)
=± lim

s→0

det
(
1− q−sAdG∨(zrMθ)|ĝ/m̂

)
det
(
1− qs−1AdG∨(zrMθ)|ĝ/m̂

)
=± lim

s→0

∏
a∈(Φ\ΦM )/θ

det
(
1− q−sAdG∨(zrMθ)|ĝa

)
det
(
1− qs−1AdG∨(zrMθ)|ĝa

) . (100)

In [44, Section 3.4], the characteristic polynomial of AdG∨(rθ) on ĝa was determined.
(Strictly speaking, Reeder treats only the case where Φ is irreducible, but his calculations

generalise readily.) For a ∈ Φ/θ of type I this gives

det
(
1− q−sAdG∨(zrMθ)|ĝa

)
= 1− q−sm+(γa)γa(zrM ), (101)

while for a ∈ Φ/θ of type II it gives

det
(
1− q−sAdG∨(zrMθ)|ĝa

)
=
(
1+ q−sm−(γa)γa(zrM )

)(
1− q−sm+(γa)γa(zrM )

)
.

(102)

With these expressions for the characteristic polynomials, equation (100) becomes
precisely

±q(dim ĝ−dimm̂)/2mM (zrM ).

Finally, we note that equations (101) and (102) are regular for z in a dense Zariski-open

subset of Z (M∨)◦θ, so that equation (100) defines a rational function on Z (M∨)◦θ.

Consider an Iwahori subgroup Iss ⊂ G/Z(G)s. The Iwahori–Hecke algebra Hss :=

H(G/Z(G)s,Iss) of G/Z(G)s is a quotient of H(G,I). It has the same root system and

the same parameter functions m±, and hence (essentially) the same relative μ-function
mM =mM/Z(G)s .

Let Iss be the maximal finite reductive quotient of the Iwahori subgroup Iss ⊂G/Z(G)s.

By [10, Proposition 3.3.5],∣∣Iss∣∣= det(q−Ad(θ)|̂t) = qdim t̂det
(
1− q−1Ad(θ)|̂t

)
. (103)

Recall from equation (6) that the normalised Haar measure on G/Z(G)s satisfies

vol(Iss) = q−(dim(t̂)+dim(ĝ)/2) det(q−Ad(θ)|̂t) . (104)

The μ-function of the Iwahori–Hecke algebra Hss is denoted mT in [36, Theorem 3.25]. In

our setting, we replace the subscript T (the torus associated to an affine Hecke algebra) by

the relevant group. With the Haar measure from before and the normalisation convention

[38, §2.4.1 and Proposition 2.5], the μ-function for G/Z(G)s becomesx

mG/Z(G)s(t) = vol(Iss)
−1mT (t)
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=
qdim(t̂)

det(q−Ad(θ)|̂t)
∏

a∈Φ/θ

(
1−γ−2

a (t)
)(

1+ q−m−(γa)γ−1
a (t)

)(
1− q−m+(γa)γ−1

a (t)
) . (105)

Here t lies in T̂ /(1− θ)T̂ , the torus associated to Hss. However, as the roots γa are

trivial on Z (G∨)θ, equation (86) entails the possibility that we may just as well consider

mG/Z(G)s as a Z (G∨)θ-invariant function on T∨/(1−θ)T∨ =Hom(X∗(S),C×).
Recall from [23, Proposition 3.2] that γ(0,AdG∨ ◦φ,ψ) is nonzero if and only if φ is

discrete. Observe that it is a priori clear that equation (85), and hence the γ-value in

equation (72) for the adjoint representation ρ̃, is invariant under Xnr(G) ∼= Z (G∨)θ,◦.
Therefore it suffices to consider a discrete unramified L-parameter for G/Z(G)s in the

next theorem.

Theorem A.4. Let G be an unramified reductive K-group and fix an additive character

ψ of order 0. Let φ be an unramified discrete L-parameter for G/Z(G)s and write ρ̃ =

AdG∨ ◦φ and ρ0(Frob) = AdG∨(rθ) as in equation (85). By [44, Lemma 3.2] we may
assume that r ∈ T̂ θ,0. There exists d ∈Q× such that, as rational functions in q,

γ(0,AdG∨ ◦φ,ψ) = dm
({r})
G/Z(G)s

=
d

det(1− q−1Ad(θ)|̂t)

∏′
a∈Φ/θ

(
1+γ−1

a (r)
)∏′

a∈Φ/θ

(
1+ q−m−(γa)γ−1

a (r)
) ∏′

a∈Φ/θ

(
1−γ−1

a (r)
)∏′

a∈Φ/θ

(
1− q−m+(γa)γ−1

a (r)
),

where
∏′

a∈Φ/θ denotes the product in which zero factors are omitted.

The constant d equals ±1 if G is semisimple and K-split, while in general it is of the
form ±n12

n23n3 , with n1,n2,n3 ∈ Z.

Proof. By the additivity of γ-factors,

γ(s,AdG∨ ◦φ,ψ) = γ (s,AdG∨ |̂t ◦φ,ψ)γ
(
s,AdG∨ |ĝ/t̂ ◦φ,ψ

)
. (106)

Define φT :WK → LT by φT (Frob) = rθ. By Proposition A.1, applied to the factor for t̂,
equation (106) equals

±γ (s,AdG∨ |̂t ◦φT ,ψ0)γ
(
s,AdG∨ |ĝ/t̂ ◦φ,ψ

)
.

With Lemma A.2 and equation (100), we find that equation (106) equals

± det(1− q−sAdG∨(rθ)|̂t)
det(1− qs−1AdG∨(rθ)|̂t)

∏
a∈Φ/θ

det
(
1− q−sAdG∨(rθ)|ĝa

)
det
(
1− qs−1AdG∨(rθ)|ĝa

) . (107)

The behavior for s → 0 was already analysed in Lemmas A.2 and A.3. In the current

situation we can do better, by comparing the poles and the zeros.

Let r= sc ∈ T̂ θ,◦ be the polar decomposition of r, with s a torsion element and c in the
positive part of a real split subtorus. Since φ is unramified and discrete, H := ZĜ(sθ) is

a semisimple group and

φ′ := φ|SL2(C) : SL2(C)→H
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has finite centraliser inH [44, §3.3]. This means that sθ ∈ Ĝθ is an isolated torsion element

[44, Section 3.8], and the root system of H is a maximal proper subdiagram of D(ĝ,θ).

Moreover, φ′ corresponds to a distinguished unipotent orbit of H, and

c= φ′
(

q−1/2 0

0 q1/2

)
∈ T̂ θ,◦ ⊂H. (108)

It follows [36, Appendix A] that the image of r ∈ T̂ θ,◦ in T̂ /(1− θ)T̂ is a residual point

for H (or equivalently for mG/Z(G)s).
Now we analyse the product obtained from formula (107) by applying equations (101)

and (102):∏
a∈Φ/θ

det
(
1− q−sAdG∨(rθ)|ĝa

)
det
(
1− qs−1AdG∨(rθ)|ĝa

) = ∏
a∈Φ/θ

1− q−sm+(γa)γa(r)

1− q(s−1)m+(γa)γa(r)

1+ q−sm−(γa)γa(r)

1+ q(s−1)m−(γa)γa(r)
.

The residuality of r means that the pole order of this expression at s = 0 is precisely

dim
(̂
tθ
)
= |Δ/θ|. Notice that the terms with m−(γa) = 0 in the numerator cancel out

against the same kind of terms in the denominator.

Consider a linear factor 1± qmγa(r), of the numerator or the denominator, which has

a zero at s= 0. Its leading order term near s= 0 is linear, namely s log(q)m±(γa) for the
numerator and −s log(q)m±(γa) for the denominator.

Let N be the subset of (a,ε) ∈ Φ/θ × {±1} for which the corresponding term in

the numerator has a pole at s = 0, but with mε(γa) 
= 0. Similarly, define P for the

denominator. Then∏
(a,ε)∈N 1− εq−smε(γa)γa(r)∏

(a,ε)∈P 1− εq(s−1)mε(γa)γa(r)
=

s−|Δ/θ|

log(q)|Δ/θ|

∏
(a,ε)∈N mε(γa)∏
(a,ε)∈P −mε(γa)

+O
(
s1−|Δ/θ|

)
. (109)

It follows that∏
a∈Φ/θ

det
(
1− q−sAdG∨(rθ)|ĝa

)
det
(
1− qs−1AdG∨(rθ)|ĝa

)
=

∏′
a∈Φ/θ

(
1+γ−1

a (r)
)∏′

a∈Φ/θ

(
1+ q−m−(γa)γ−1

a (r)
) ∏′

a∈Φ/θ

(
1−γ−1

a (r)
)∏′

a∈Φ/θ

(
1− q−m+(γa)γ−1

a (r)
) × equation (109).

(110)

From formula (107), Lemma A.2 and equation (110), we conclude

γ(0,AdG∨ ◦φ,ψ) =
±(−1)|P |n1

∏
a∈Δ/θ |a∩Δ|

det(1− q−1AdG∨(rθ)|̂t)

∏
(a,ε)∈N mε(γa)∏
(a,ε)∈P mε(γa)

×
∏′

a∈Φ/θ

(
1+γ−1

a (r)
)∏′

a∈Φ/θ

(
1+ q−m−(γa)γ−1

a (r)
) ∏′

a∈Φ/θ

(
1−γ−1

a (r)
)∏′

a∈Φ/θ

(
1− q−m+(γa)γ−1

a (r)
) . (111)

It remains to analyse the expression∏
a∈Δ/θ |a∩Δ|

∏
(a,ε)∈N mε(γa)∏

(a,ε)∈P mε(γa)
. (112)
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Since we omitted the terms with m±(γa) = 0, expression (112) is a nonzero rational

number. It factors as a product, over the irreducible components Ri of Φ/θ, of the terms

with a ∈Ri. The restriction of r to any of the Ri is still a residual point, so there are as
many terms with a ∈Ri in the numerator as in the denominator. Let |θi| be the number

of irreducible components of Φ that go into Ri, and pick one such component Φi. Then

|a| = |θi| |a∩Φi| for a ∈ Ri. The factor |θi| appears equally often in the numerator and
the denominator of expression (112), so it cancels. Writing m±,i(γa) :=m±(γa)|θi|−1, we

find that expression (112) equals∏
i

∏
a∈Ri∩(Δ/θ) |a∩Δ∩Φi|

∏
(a,ε)∈N :a∈Ri

mε,i(γa)∏
(a,ε)∈P :a∈Ri

mε,i(γa)
. (113)

Formulas (92) and (93) entail that each of the factors in expression (113) is the length

of an orbit of an automorphism of a connected Dynkin diagram of finite type. That is,

they are 1, 2 or 3, where 3 can only occur for an exceptional automorphism of D4. Hence
expression (113) is of the form 2n23n3 with n2,n3 ∈ Z. We insert this into equation (111)

and obtain the claimed formula for the adjoint γ-factor.

When G is an almost direct product of restrictions of scalars of split groups, all the

factors in expression (113) are 1. In the special case where G is K-split, we also have
n1 = 1, so that equation (111) becomes the desired expression with d=±1.

We conclude this appendix by showing that adjoint γ-factors of bounded unramified
L-parameters have real values. Notice that every such L-parameter arises from a discrete

unramified L-parameter for a Levi subgroup M ⊂G, via an inclusion LM → LG.

Lemma A.5.

(a) In the notation of Theorem A.4, γ(0,AdG∨ ◦φ,ψ) ∈ R×.

(b) Suppose that φM ∈ Φ(M) is a discrete bounded unramified L-parameter and that

z ∈Xunr(M). Then γ
(
0,AdG∨ |ĝ/m̂ ◦zφM,ψ

)
∈ R.

Proof. (a) For t ∈ T∨ we define t ∈ T∨ by x
(
t
)
= x(t) for all x ∈ X∗ (T∨). From

equation (108) we see that r−1 = sc−1 = sc−1 is conjugate to sc by the element

wc := φ′ ( 0 1
−1 0

)
. We note that wc commutes with s and with θ, and that it normalises T∨.

Hence it defines an element of W (G∨,T∨)θ.
Since γ(0,AdG∨ ◦φ,ψ) = γ

(
0,AdG∨ ◦wcφw

−1
c ,ψ

)
, expression (107) does not change if

we replace rθ by wcrθw
−1
c = r−1θ. As the product in expression (107) runs over all roots

(both positive and negative), we may further replace r−1θ by rθ without changing the

value. Continuing the calculation from the proof of Theorem A.4 with rθ, we end up with
γ(0,AdG∨ ◦φ,ψ) = dm

({r})
G/Z(G)s

, which is exactly the complex conjugate of dm
({r})
G/Z(G)s

=

γ(0,AdG∨ ◦φ,ψ).
(b) As observed before, we may assume that rM ∈ T̂ θ,◦. Replacing φM by tφM (and z

by zt−1) for a suitable t ∈Xunr(M), we can further obtain rM ∈ T̂ θ,◦∩M∨
der. In the proof

of part (a) we showed that rM is conjugate to rM
−1 by an element wc ∈NM∨(T∨)θ. As

z = z−1 ∈ Z (M∨)θ,◦ is fixed by wc, we have wczrMθw−1
c = zrM

−1θ.
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Since W (M∨,T∨)θ acts on ĝ/m̂, it is clear that equation (100) does not change if we
conjugate zφM and zrθ by wc. Further, from equations (101) and (102) we see that

equation (100) is invariant under replacing zrM by (zrM )−1. From equation (100) with

zrM instead of zrM we obtain

γ
(
0,AdG∨ |ĝ/m̂ ◦zφM,ψ

)
=±q(dim ĝ−dimm̂)/2mM (zrM ).

From equation (94) we see that this the complex conjugate of ±q(dim ĝ−dimm̂)/2mM (zrM ).

In combination with Lemma A.2, that means that it is a real number, or∞ if zrM happens
to be a pole.

However, the latter cannot happen, which can be seen with the residual cosets from [36,

Appendix A]. Namely, if zrM were a pole of mM , the tempered residual coset Xunr(M)rM
for mG/Z(G)s would contain a tx1empered residual coset (with the point zrM ) of smaller

dimension. But that is excluded by [36, Theorem A.17].

Appendix B. The case char(K) = 0

Throughout this appendix we assume that the field K underlying G is p-adic. Then the
arguments from [19] with Galois cohomology are available. For some reductive groups

this allows us to reduce the proof of Theorem 2 to the case of adjoint groups much more

quickly than we do in the body of the paper.
Let G and G′ be connected reductiveK-groups which split over an unramified extension.

We assume that

G′
der ⊂ G ⊂ G′ and the canonical map G → G′/Z(G′)s is a central isogeny. (114)

In particular, Z(G)s = {1} and G′ is generated by G and Z(G′)s. The following was shown

by Tadić [54, §2]:

Proposition B.1.

(a) Every irreducible representation of G appears in an irreducible representation of G′.

(b) For π,π′ ∈ Irr(G′) the following are equivalent:

(i) ResG
′

G (π) and ResG
′

G (π′) have a common irreducible subquotient.

(ii) ResG
′

G (π)∼=ResG
′

G (π′).

(iii) There is a γ ∈ Irr(G′/G) such that π′ ∼= π⊗γ.

(c) The restriction of (π′,V ′) ∈ Irr(G′) to G is a finite direct sum of irreducible G-

representations, each one appearing with the same multiplicity.

(d) Let (π,V ) be an irreducible G-subrepresentation of (π′,V ′). Then the stabiliser in

G′ of V is an open, finite-index normal subgroup which contains G and the centre
of G′.

For (π′,V ′) ∈ Irr(G′) we write

XG(π′) = {γ ∈ Irr(G′/G) : π′⊗γ ∼= π′}.
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By Proposition B.1(d) this is a finite group. For every γ ∈XG(π) there exists a nonzero

intertwining operator

I(γ,π′) ∈HomG′(π′⊗γ,π′)⊂ EndG(π
′).

By Schur’s lemma it is unique up to a scalar. These operators determine a 2-cocycle κπ′

of XG(π′) by

I(γ,π′)I(γ′,π′) = κπ′(γ,γ′)I(γγ′,π′).

According to [25, Lemma 2.4], the I(γ,π′) form a basis of the G-intertwining algebra of

(π′,V ′):

EndG

(
ResG

′

G (π′)
)
∼= C
[
XG(π′),κπ′

]
, (115)

where the right-hand side denotes the twisted group algebra of XG(π′). By [25,

Corollary 2.10], the decomposition of (π′,V ′) into irreducible representations of CG⊗
EndG

(
ResG

′

G (π′)
)
is

π′ =
⊕

η∈Irr(C[XG(π′),κπ′ ])

η⊗HomC[XG(π′),κπ′ ](η,π
′) =

⊕
η∈Irr(C[XG(π′),κπ′ ])

η⊗π′
η. (116)

Assume now that π′ is in addition square-integrable modulo centre. The crucial

contribution from [19, Lemma 13.2] says

fdeg
(
π′
η

)
fdeg(π′)

=

∣∣∣Z ((G′/Z(G′)s)
∨)WK

∣∣∣dimη∣∣∣Z (G∨)WK

∣∣∣ |XG(π′)|
. (117)

We note that here it is essential that K is a p-adic field. For local fields of positive

characteristic p, the proof of [19, Lemma 13.2] breaks down if p divides the order of the

kernel of G → G′/Z(G′)s.
For unipotent representations we can reformulate equation (117) in terms of enhanced

L-parameters.

Lemma B.2. Let π′ be an irreducible unipotent square-integrable modulo centre repre-

sentation of G′ and let π be an irreducible constituent of ResG
′

G (π′). Then

fdeg(π)

fdeg(π′)
=

∣∣∣S�
φπ′

∣∣∣dim(ρπ)∣∣∣S�
φπ

∣∣∣dim(ρπ′)
.

Proof. From equation (116) we see that

EndG(π
′,V ′)∼=

⊕
η∈Irr(C[XG(π′),κπ′ ])

EndC(η)⊗CidV ′
η
.

Together with formula (115) and Proposition B.1(c), that yields∣∣XG(π′)
∣∣= dim(η)2

∣∣Irr(C[XG(π′),κπ′
])∣∣ . (118)
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Theorem 3.3 also holds for the inclusion i : G →G′ (see [52, Theorem 3]). Combining that

with equation (116), we obtain φπ =Φ(i)φπ′ and

⊕
η∈Irr(C[XG(π′),κπ′ ])

η⊗π′
η
∼=

⊕
ρ∈Irr(Aφπ )

HomAφπ

(
ind

Aφπ

Aφ
π′
ρπ′,ρ

)
⊗π(φπ,ρ). (119)

Then Proposition B.1(c) shows that

dim(η) = dimHomAφπ

(
ind

Aφπ

Aφ
π′
ρπ′,ρ

)
(120)

for any η ∈ Irr
(
C
[
XG(π′),κπ′

])
and any ρ appearing in ind

Aφπ

Aφ
π′
ρπ′ . Another consequence

of formula (119) is

∣∣Irr(C[XG(π′),κπ′
])∣∣= ∣∣∣{ρ ∈ Irr(Aφπ

) : ρ appears in ind
Aφπ

Aφ
π′
ρπ′

}∣∣∣ . (121)

With equations (118), (120) and (121) we compute

∣∣XG(π′)
∣∣

dim(η)
= dim(η)

∣∣Irr(C[XG(π′),κπ′
])∣∣

= dimHomAφπ

(
ind

Aφπ

Aφ
π′
ρπ′,ρ

)∣∣∣{ρ ∈ Irr(Aφπ
) : ρ appears in ind

Aφπ

Aφ
π′
ρπ′

}∣∣∣
(122)

= length of ind
Aφπ

Aφ
π′
ρπ′ in Rep(Aφπ

) .

By equation (120), all irreducible constituents of ind
Aφπ

Aφ
π′
ρπ′ have the same dimension.

We continue equation (122):

=
dim
(
ind

Aφπ

Aφ
π′
ρπ′

)
dimρπ

=
|Aφπ

|dim(ρπ′)∣∣Aφπ′

∣∣dim(ρπ)
. (123)

From the proof of [17, Lemma 13.2] and the discreteness of φπ′ we see that

[
Aφπ′ : ZG∨

sc(φπ′)
]
=
[
Z (G∨

sc) : Z (G∨
sc)

WK

]
= [Aφπ

: ZG∨
sc(φπ)] . (124)
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Further, from definition (1) of S�
φπ′ we deduce

|ZG′∨
sc
(φπ′)|∣∣∣S�

φπ′

∣∣∣ =
|ker(ZG′∨

sc
(φπ′)→ ZG′∨

der
(φπ′))|[

S�
φπ′ : ZG′∨

der
(φπ′)

]
=

∣∣∣Z (G′∨
sc)

WK

∣∣∣ ∣∣∣Z (G′∨
der)

WK

∣∣∣−1

[
Z ((G′/Z(G′)s)∨)

WK : Z (G′∨
der)

WK

] =
∣∣∣Z (G′∨

sc)
WK

∣∣∣∣∣∣Z ((G′/Z(G′)s)∨)
WK

∣∣∣ .
(125)

Now we continue equation (123). With equation (124), we replace Aφπ
by ZG∨

sc
(φπ), and

simultaneously for π′. Then we use equation (125) to replace ZG′∨
sc
(φπ′) by S�

φπ′ , with a

correction term involving central elements in complex dual groups. We do the same with
ZG∨

sc
(φπ), and using G∨

sc =G′∨
sc we find that equation (122) equals∣∣∣S�

φπ

∣∣∣∣∣∣S�
φπ′

∣∣∣
∣∣∣Z ((G′/Z(G′)s)

∨)WK

∣∣∣∣∣∣Z (G∨)WK

∣∣∣ dim(ρπ′)

dim(ρπ)
.

That equality can be rearranged to∣∣∣Z ((G′/Z(G′)s)
∨)WK

∣∣∣∣∣∣Z (G∨)WK

∣∣∣ dim(η)

|XG(π′)| =

∣∣∣S�
φπ′

∣∣∣∣∣∣S�
φπ

∣∣∣ dim(ρπ)

dim(ρπ′)
. (126)

Finally we combine equation (126) with equation (117).

Corollary B.3. Suppose that the HII-conjecture (as in equation (2) and [24, §1.4])
holds for a unipotent square-integrable modulo centre π′ ∈ Irr(G′). Then it holds for every

irreducible constituent π of ResG
′

G (π′).

Proof. Lemma B.2 and the assumption entail

fdeg(π) = fdeg(π′)

∣∣∣S�
φπ′

∣∣∣dim(ρπ)∣∣∣S�
φπ

∣∣∣dim(ρπ′)
= |γ(0,AdG∨ ◦φπ′,ψ)|dim(ρπ)∣∣∣S�

φπ

∣∣∣ .

Since φπ = Φ(i)φπ′ and G → G′/Z(G′)s is a central isogeny, AdG∨ ◦φπ = AdG′∨ ◦φπ′ as

representations of WK ×SL2(C). In particular, φπ′ and φπ have the same adjoint γ-

factors.

While Corollary B.3 applies in large generality, it is not clear whether it can be used

to reduce the HII-conjecture for G to that for Gad. The problem lies in the existence

of a group G′ satisfying condition (114), such that at the same time G′/Z(G′)s equals
Gad. (Instead of Gad, the direct product of an adjoint group with a K-anisotropic torus

would also be acceptable, because the HII-conjecture for anisotropic tori is known [24,

Correction].)
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When G is an inner form of a K-split semisimple group, such a G′ always exists. Indeed,
then Gal

(
K/K

)
acts trivially on Hom(Z(G),GL1) and the construction of Langlands [28,

p. 120–121] suffices. It yields a reductive K-group G′ with connected K-split centre, such
that G′/Z(G′)s = Gad and condition (114) holds.

For outer forms of semisimple K-groups, we do not know whether a suitable G′ exists.
Langlands’ construction produces a group with a connected centre, which however need
not be split. For instance, if G is a special unitary group, Langlands’ method yields a full

unitary group, which in this setting is not easier.

Theorem B.4. Let K be a p-adic field. Let G be a semisimple K-group, which is an inner

form of a K-split group and splits over an unramified extension. Then the HII-conjecture

[24, §1.4] holds for all square-integrable unipotent irreducible G-representations.

Proof. Let G′ be as indicated before, so as constructed in [28]. Then G′/Z(G′) = Gad,

for which the HII-conjecture (equation (2)) was shown in [38]. (See Section 6.1 for the
details.) With the method from [17, proof of Theorem 3 on page 43], we can derive the

HII-conjecture for G′ from that for G′/Z(G′).
Consider an irreducible unipotent square-integrable G-representation π, with enhanced

L-parameter (φπ,ρπ) from Theorem 3.1. We note that φπ is discrete. By condition (114),

G′∨ → G∨ is a surjection with commutative kernel. As φπ is unramified and G splits

over an unramified extension, φπ factors via WK/IK ×SL2(C). That makes it easy to

lift φπ to an unramified L-parameter φ′ ∈ Φ(G′), necessarily discrete. Then Aφπ
⊂ Aφ′

[52, Proposition 5.4.a]. Let ρ′ be a representation of Aφ′ that contains ρπ, and define

π′ = π(φ′,ρ′). By Theorem 3.1(e), π′ is unipotent and essentially square-integrable. By

tensoring π′ with a suitable unramified character (automatically trivial on G), we can
achieve that π′ is in fact square-integrable modulo centre.

By Theorem 3.3, π appears in ResG
′

G (π′). Now apply Corollary B.3.
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Villars Éditeur, Paris, 1969).

[15] Y. Feng, A note on the spectral transfer morphisms for affine Hecke algebras, J. Lie
Theory 29(4) (2019), 901–926.

[16] Y. Feng and E. Opdam, On a uniqueness property of cuspidal unipotent representations,
Adv. Math. 375 (2020), https://doi.org/10.1016/j.aim.2020.107406.

[17] Y. Feng, E. Opdam and M. Solleveld, Supercuspidal unipotent representations: L-
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