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SUMMARY
Singular configurations of parallel manipulators (PMs) are special poses in which the manipulators
cannot maintain their inherent infinite rigidity. These configurations are very important because they
prevent the manipulator from being controlled properly, or the manipulator could be damaged. A
geometric approach is introduced to identify singular conditions of planar parallel manipulators
(PPMs) in this paper. The approach is based on screw theory, Grassmann–Cayley Algebra (GCA),
and the static Jacobian matrix. The static Jacobian can be obtained more easily than the kinematic
ones in PPMs. The Jacobian is expressed and analyzed by the join and meet operations of
GCA. The singular configurations can be divided into three classes. This approach is applied to ten
types of common PPMs consisting of three identical legs with one actuated joint and two passive joints.

KEYWORDS: Singularity; Planar parallel manipulators; Grassmann–Cayley Algebra; Screw theory;
Plücker coordinates.

1. Introduction
Singular configurations of PPMs are special poses in which the manipulators cannot maintain their
inherent infinite rigidity, meaning that subsequent behavior may be inscrutable. This leads to gaining
uncontrollable degrees of freedom (DOFs).1,2 Mathematically, the physical parameters (motions,
forces, etc.) cannot be determined by the mathematical models such as kinematics equations or statics
equations. Singular configurations should be avoided for a manipulator to be operated successfully.
One way to avoid singularities is by path planning.3 Another way to avoid singularities is eliminating
the singular configurations. Several approaches have been suggested to eliminate the singularities
of PPMs in the workspace, such as over-constraint4,5 and actuator redundancy.6,7 In both of these
methods, the first step is to find the singularity configurations in the workspace.

The most common way to define a singular configuration is by defining the Jacobian matrices
by differentiating the constraint equations of PPMs.8 The method obtains the differential velocity
equation Aẋ + Bq̇ = 0 by differentiating the constraint equation, where ẋ and q̇ are the velocities
of the end-effector and actuated joints, while A and B are Jacobian matrices. Three types of singular
configurations are classified in this paper. Type-I singularities (inverse kinematics singularities) occur
when det(B) = 0. Type-II singularities (direct kinematics singularities) occur when det(A) = 0.
Type-III singularities occur when both det(A) and det(B) equal 0. Physically, Type-I singularities
occur when a leg reaches the boundaries of the workspace, Type-II occurs when the end-effector
is locally movable if all actuated joints are locked. A serial of examples contain ten types 3-DOFs
PPMs to illustrate the corresponding configurations of these kind singularities will be given in
Section 4.

A different approach to define singular configurations involves using twists.9 The twist equation is
obtained based on the notion of reciprocal screws in screw theory.10 The formula can be written in the
form of Zξ = �θ̇ , where ξ and θ̇ are the velocities of the end-effector and actuated joints, which have
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Table I. Singularity analysis methods based on GCA.

Research Characteristics

Ben-Horin et al.16,17 Singularity analysis on 6-DOF PM (Gough-Stewert platforms, and three leged robots)
Staffetti18 Instantaneous kinematic analysis on spatial PMs
Amine et al.19 Singularity analysis on 3T2R spatial PMs
Kanaan et al.20 Singularity analysis on lower mobility spatial PMs with no spherical joint
Proposed method Singularity analysis on all types of 3-DOF planar parallel manipulators

a similar form to the Aẋ + Bq̇ = 0. The singularity is classified in a similar way to that presented by
Gosselin and Angeles.8 The screw-based method has advantages of geometrical intuition and easy
calculation without parameter differentiation.

Several studies have been conducted based on geometrical approaches to define the singular
configurations.11,12 The line geometry and linear complex approximation method were used to identify
the singularity of a 3-DOF CaPaMan PM.11 Degani and Wolf studied Maxwell’s reciprocal figure
theory method.12 The method is convenient for describing one case of Type-II singularity in which
three reciprocal screws of a PPM are intersecting at one point. However, the case of three reciprocal
screws in parallel and Type-I singularities were not included.

Screw-based geometrical methods have advantages of geometrical intuition, so the method can be
useful for the mechanism synthesis of rigid or flexure mechanisms. Huang et al. applied reciprocal
screw theory to the type synthesis of symmetrical lower-mobility PMs, and they invented several
novel manipulators based on this theory.13 Kong et al.14 used screw theory to synthesize 3-DOF
spherical PMs. Yu et al.15 explored a screw theory methodology for deterministic type synthesis of
flexure mechanisms.

This paper focuses on investigating Type-I and Type-II singularities using the statics (or wrench)
Jacobian matrix. For PPMs, the total wrench which acts on the moving platform is simply a
linear combination of the corresponding force screws. This wrench Jacobian contains two 3 × 3
matrices, the same as in the twist equation. Every column vector in these two matrices can be
transformed into a geometric entity using the reciprocal product operation of two screws and GCA. The
singular conditions are found intuitively by observing the geometrical relationship of these geometric
entities.

The contributions of this paper are as follows. First, the wrench Jacobian is derived by the join
operation of GCA. The wrench Jacobian can be set up by a simple linear combination of three
reciprocal screws defined by the join operation. Second, the method is a coordinate-free method,
and the singular configurations can be found by intuitive observation without numerical calculation.
Third, we classify two types of singular configurations via the physical meaning of the reciprocal
actuating direction and the distance or angle of the actuator screws and reciprocal screws. Physically,
the reciprocal actuating direction corresponds to the Type-II singularity, and the distance and angle
metric gives the Type-I singularity. Moreover, the GCA-based method can be applied to all types of
3-DOF PPMs.

This research is not the first try to apply GCA to find a singularity of mechanisms. Table I
summarized relevant papers of singularity analysis based on GCA. As you see in Table I, all the
previous studies were tried to find the singularity of a full or lower DOF spatial PMs while this
research aims to define the singularities of all types of 3-DOF PPMs. Because this paper analyzed
singularities of all kinds of PPM, this research can be a good reference for researchers of mechanism
theory. Also, from the geometric intuition of the proposed method, this method is very helpful to
understand the motion of PPMs including singularities.

The rest of the paper is organized as follows. Wrenches and reciprocal screws are defined based
on screw theory in Section 2, along with the join and meet operations of GCA. Section 3 presents the
wrench statics based on the theoretical background of screw theory and GCA. The wrench Jacobian is
defined by the linear combination of three reciprocal screws, and the results give a matrix composed
of the reciprocal screws and distances/angles. In Section 4, the singular configurations of ten PPMs
with different types of identical legs are analyzed geometrically. Concluding remarks are given in
Section 5.

https://doi.org/10.1017/S0263574715000661 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000661


Geometric approach for singularity analysis of 3-DOF planar parallel manipulators 513

Fig. 1. Representation of a wrench on XY plane.

2. Theoretical Background

2.1. Wrenches and reciprocal screws
2.1.1. Representation of wrenches. In 3-dimensional Euclidean space, a force acting on a rigid body
is expressed as a line in Plücker coordinates:

Ŝ = (S; S0)T = (L, M, N ; P, Q, R), (1)

where L, M, and N are the magnitudes of the force, and P, Q, and R are the moments of the force with
respect to the X, Y, and Z axes of the base coordinate frame, respectively. This is called a zero-pitch
wrench (or zero-pitch force screw).21 In a 2-dimensional plane, a wrench is reduced to (L, M; R)T ,
and it can be separated into the magnitude of the force multiplied by a unit line segment along the
screw axis:

w = f $ = f (c, s; p)T , (2)

where c = cosθ and s = sinθ , which denote the orientation of the line, and p is the perpendicular
distance from the origin to the line, as shown in Fig. 1. $ = (c, s; p)T is also called a unit screw.

2.1.2. Distance between two screws. The reciprocal product of two zero pitch screws in space is
given as:

Ŝ1 ◦ Ŝ2 = ST
1 · S0

2 + ST
2 · S0

1 = −dsin ϕ, (3)

where ◦ denotes the reciprocal product operator, and d = ‖d‖ is the norm of d, which is the common
vertical line vector between Ŝ1 and Ŝ2. ϕ is the twist angle from Ŝ1 to Ŝ2, as illustrated in Fig. 2.

The distance between these two screws can be obtained by dividing by –sin ϕ on both sides of
Eq. (3):

d = (Ŝ1 ◦ Ŝ2)/(−sinϕ). (4)

2.2. Grassmann–Cayley algebra
In this section, join and meet operations in GCA are introduced. GCA provides a symbolic approach
for Plücker coordinates based on Grassmann’s expansion.22 It gives a convenient way to represent
twists and wrenches.23 In this section, some examples are used to introduce the main notions of join
(∨) and meet (∧) operations in 2-space.24 More details on GCA can be found elsewhere.25

2.2.1. Join operation in 2-space. The join operation is used to define a line screw passing through
two points. The configuration is shown in Fig. 3(a). A line on the XY plane expressed in the Plücker
coordinate form may be obtained by the join of two distinct points, as shown in Fig. 3(a). The formula
is as follows:

L = a ∨ b = ab = (
bx − ax, by − ay ; byax − aybx

)T
, (5)

in which the points a and b are expressed as the homogeneous coordinates a = (axay 1) and b =
(bxby 1), respectively.
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Fig. 2. Reciprocal product of two screws.

Fig. 3. Join and meet operations in GCA. (a) A line joined by two points. (b) Two lines meet at a point. (c) Two
parallel lines meet at infinity.

If the point is assumed to be located at infinity, the point is assumed as c = (cosθ , sinθ , 0) in GCA,
where the θ is the angle of the line as shown in Fig. 3(a). Note that a∨c and b∨c result in the same
line, as shown in Fig. 3(a).

2.2.2. Meet operation in 2-space. The meet operation (∧) is used to determine the point of intersection
between two lines. The point of intersection may be expressed as the meet of two lines. The
configuration is shown in Fig. 3(b), and the equation is written as follows:

ab ∧ cd = [abc]d − [abd]c = αe, (6)

where the brackets denote the determinant of the matrices, which contain the points as their columns,
and α is a non-zero scalar that depends on the selection of points a, b, c, and d. A bracket will be
zero when the same point appears more than once in the same bracket. Two parallel lines intersect at
infinity, as shown in Fig. 3(c). If two lines are parallel, there is no intersection. However, in GCA, the
intersection is at infinity, and the coordinates are assumed to be m = α(cosθ , sinθ , 0), where θ is the
angle of the parallel lines (Fig. 3(c)). Essentially, the intersection point m is the same as the infinite
point c in Section 3.1. Using this characteristic, it is easy to calculate the intersection when two lines
are parallel, because only the angle is required to determine the point. This characteristic is used to
define the singularity configuration when the legs are parallel.

3. Statics of PPMs

3.1. Wrench equation by GCA
A wrench represented by Eq. (2) has a corresponding GCA representation involving the join of two
distinct points on the screw axis, like in Eq. (5). Normalizing the last item in Eq. (5) yields

L = f (c, s; p)T = f ab. (7)
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Fig. 4. Reciprocal wrenches of ten different types of legs. The underlines denote the actuated joints.

The distance between points a and b on the unit screw axis can be adjusted to achieve the
appropriate magnitude of f.

3.2. Reciprocal wrenches of PPMs
Our main concern is 3-DOF PPMs, which are composed of three identical legs with only prismatic
and revolute joints. Each leg consists of one actuated and two passive joints. These legs have ten
different types of architectures. The probable reciprocal wrenches are illustrated in Fig. 4.

3.3. Corresponding forces of actuated forces/torques
The corresponding forces denote the forces whose active lines are on the reciprocal wrenches.26 They
are expressed as two types, depending on the prismatic or revolute actuated joints. For prismatic
actuated joints, if the force along the joint screw axis is f, then the force f r along the reciprocal
wrench axis $r can be expressed as

f r = f · cos � ff r . (8)

The angle between f and f r could be 0, γ , or π /2– γ for (RPR), (PRR, PRP), and (RPP, RPP)
types of legs, respectively (Fig. 4). The values of the angles are constant except for the (PRR, PRP)
type. For revolute actuated joints, if the torque along the revolute actuated joint screw axis is τ , then
the force along the reciprocal wrench axis f r can be expressed as

f r = τ/d, (9)

where d is the vertical distance of the reciprocal screw and actuated joint screw, which was solved
with Eq. (4).

3.4. Statics equation of PPMs
The statics equation is the linear combination of the reciprocal wrenches of each PPM.

w = f r
1 $r

1 + f r
2 $r

2 + f r
3 $r

3. (10)

For prismatic actuated PPMs, substituting Eqs. (8) and (9) into Eq. (10) yields

w = [
$r

1 $r
2 $r

3

]
C

⎡
⎢⎣

f1

f2

f3

⎤
⎥⎦ , where C =

⎡
⎢⎣

c1 0 0

0 c2 0

0 0 c3

⎤
⎥⎦ (11)
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in which ci = cos � fif
r
i , i = 1, 2, 3. The following is obtained for revolute actuated PPMs:

w = [
$r

1 $r
2 $r

3

]
D

⎡
⎢⎣

f1

f2

f3

⎤
⎥⎦ , where D =

⎡
⎢⎣

1/d1 0 0

0 1/d2 0

0 0 1/d3

⎤
⎥⎦ . (12)

Equations (11) and (12) are abbreviated with the following form:

w = Jλ, (13)

where J = J1J2 is the wrench Jacobian, here J1 = [ $r
1 $r

2 $r
3 ], J2 = C, while λ = [f1 f2 f3]T for

prismatic actuated PPMs and J2 = D, while λ = [τ1τ2τ3]T for revolute actuated PPMs.
If det(J2) = 0, one or more legs in a PPM will reach the boundaries of the workspace, this is similar

to the case of det(B) = 0 in Section 1. Therefore, det(J2) = 0 corresponds to Type-I singularity. While
det(J1) = 0 is similar to det(A) = 0. It is not obvious but we will see in the next Section, det(J1) = 0
occurs when the three legs of a PPM are intersect at one point or parallel to each other, this provides
a locally DOF for the PPM, then det(J1) = 0 corresponds to the Type-II singularity. As mentioned
in Section 2, the columns in J1 are actually the normalized Plücker coordinates of the join of two
distinct points on the screw axis. Then, the determinant of J1 may be transformed into the bracket
algebra form27 as follows:

det(ji) = [
A1B1, A2B2, A3B3

]
, (14)

where A1B1, A2B2, and A3B3 denote the normalized lines of A1B1, A2B2, and A3B3, respectively.
And Ai , Bi (i = 1,2,3) are two different points on $r

i .
The situation where det(J1) = 0 is identical to

[A1B1, A2B2, A3B3] = 0. (15)

[A1B1, A2B2, A3B3] can be translated into a Grassmann–Cayley expression by implementing
Cayley factorization:28

[A1B1, A2B2, A3B3] = [A1B1A3] [A2B2B3] − [A1B1B3] [A2B2A3] = A1B1 ∧ A2B2 ∧ A3B3,

(16)
which is the meet of the three lines. As said in Section 2.2.b, any bracket in the middle part of Eq.
(16) will be zero if a same point appears more than once in the same bracket. For example, if A2 and
B2 are located in a same position, the second and fourth brackets equal 0 and then Eq. (16) will be
0–0 = 0. This provides a convenient geometric method for singularity analysis.

4. Singularity Analysis of PPMs

4.1. Singularity analysis of 3-RPR PPMs
For this type of PPMs, the angle between ff r is 0. Therefore, a Type-I singularity does not exist,
while Type-II singularities occur in two cases. In case 1, three lines intersect at one point m, while
in case 2, the three lines are parallel to each other, which is also understood as the intersection point
m being at infinity, as in Eq. (17). The two possible singularity configurations in these situations are
illustrated in Fig. 5. The equations of the singularities can be expressed with the same form:

[A1M, A2M, A3M] = [A1MA3] [A2M/M] − [A1M/M] [A2MA3] = 0. (17)

4.2. Singularity analysis of 3-PRR and 3-PRP PPMs
The corresponding forces of these types of PPMs pass through two revolute joints and form an angle
γ i with the prismatic joint on each leg. It is convenient to select six points located in the R joints, as
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Fig. 5. The Type-II singular configurations of a 3-RPR PPM. (a) Three legs are concurrent. (b) Three legs are
parallel.

Fig. 6. 3-DOF PPMs with P actuated legs of (a) A 3-PRR PPM. (b) A 3-PRP PPM.

shown in Fig. 6(a). The Jacobian j2 of 3-PRR PPMs is

j2 =

⎡
⎢⎣

cos γ1 0 0

0 cos γ2 0

0 0 cos γ3

⎤
⎥⎦ . (18)

Type-I singularities occur when cosγi = π/2 for at least one value of i. In these configurations,
the RR link is perpendicular to the P joint in each leg. Referring to Eq. (16), in order to obtain j1, it is
convenient to select six points located in the R joints, as shown in Fig. 6(a). The Type-II singularities
occur when all three lines AiBi are concurrent or parallel to each other.

The corresponding forces of 3-PRP PPMs are always through the R joint and intersect at right
angles with the distal link. It is possible to select two points to confirm the orientation of each
corresponding force, with one at the R joint and another one outside the leg but located on the
reciprocal wrench axis. The Jacobians of these types of PPMs have the same form as 3-PRR PPMs.
Type-I singularities occur when the two P joints in a leg are parallel.

For Type-II singularity analysis, the orientations of the corresponding forces are not independent
of the distal legs, as shown in Fig. 6(b). The positional relations of the three distal legs are constant
during all working modes. For an appropriate design, these legs will not be concurrent or parallel to
each other.

4.3. Singularity analysis of 3-RPP and 3-RPP PPMs
In Fig. 7(a), the corresponding forces are through R joints and normal to the distal link in each
leg, while they are normal to the first link in Fig. 7(b). The Jacobian B is always constant for both
types of PPMs, so there are no Type-I singularities. The reciprocal wrenches of 3-RPP PPMs have
the same geometrical configuration as those of 3-PRP PPMs, so they have similar results regarding
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Fig. 7. 3-DOF PPMs with P actuated legs of (a) A 3-RPP PPM. (b) A 3-RPP PPM.

Type-II singularities. This type of singularity for 3-RPP PPMs will also occur when the three lines
are concurrent.

4.4. Singularity analysis of PPMs with revolute actuated joint
This section investigates the five remaining types of PPMs (3-RPR, 3-RRR, 3-RRR, 3-PRR, and 3-
RRP), which use revolute actuated joints. In contrast to previous configurations, these PPMs translate
the actuated torques into corresponding forces. The singularity configurations may be found more
intuitively by using GCA. In these cases, the Jacobian j2 is expressed as

j2 =

⎡
⎢⎣

1/d1 0 0

0 1/d2 0

0 0 1/d3

⎤
⎥⎦ . (19)

For 3-RPR PPMs, the corresponding forces pass through the passive R joints and are normal to
P joints. The Type-I singularities occur when two R joints in any one leg coincide with each other,
because the distance d in this leg is 0, as shown in Fig. 8(a). Type-II singularity conditions are the
same as for 3-RPR PPMs, occurring when the three lines are concurrent. The possible singularity
configurations of both types are illustrated in Fig. 8(b).

The 3-RRR and 3-RRR PPMs have the same static characteristics. The corresponding forces
are along the lines which pass through the two passive joints in each leg. There are two different
architectures when the PPMs are in Type-I singularities, in which the three R joints are collinear, or
the first and finial R joints coincide in a leg. The Type-II singularities can be found simply when the
three lines are concurrent. Two different possible Type-I singularity configurations of both types of
PPMs are shown in Fig. 9.

The 3-PRR and 3-RRP PPMs can be considered together since the corresponding forces of each
leg are always passing through the passive R joints and normal to the P joints. This is the same as
3-RPR PPMs. The singularity analysis procedure is the same, but the Type-I singularities occur when
the first and distal links are perpendicular in a leg.

4.5. Summary of singularity analysis for PPMs
All of the ten types of PPMs can be divided into four groups according to the determinants of j1 and
j2. The 3-RPR, 3-RPP, and 3-RPP PPMs have Type-II singularities only, while the 3-PRP PPMs have
only Type-I singularities. The 3-PRR and the five types of R actuated PPMs both have Type-I and
Type-II singularities, but the condition determining Type-II singularities is different. Table II gives
the result of singularity analysis for the ten types of PPMs.

4.6. Singularity analysis of non-identical legs PPMs
The GCA based method is also available to the singularity analysis of those 3-DOF PPMs with
non-identical legs. The analysis procedure is the same as identical legs PPMs. For any type legs,
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Table II. The result of singularity analysis for the ten types of PPMs.

Type of PPM Det(j1) = 0 Det(j2) = 0

3-RPR, 3-RPP, 3-RPP ∗ ≡ Not existed
3-PRR ∗ ≡ Any cosγi = 0
3-PRP Not existed Any cosγi = 0
Five types of R actuated PPMs ∗ ≡ Any di = 0
∗: Three lines intersect at one point. ≡: Three lines are parallel.

Fig. 8. Possible singularity configurations of a 3-RPR PPM. (a) Type-I singularity. (b) Type-II singularity.

Fig. 9. Two different configurations of Type-1 singularity for 3-RRR and 3-RRR PPMs. (a) A leg is fully
extended. (b) A leg is folded.

using Eqs. (8) and (9), we can obtain the force f r along the reciprocal wrench axis $r. Subsequently,
find J1 and J2 from Eq. (11) or (12). The rest is to inspect det(J1) and det(J2).

5. Conclusion
The singularity configurations of ten types of PPMs have been analyzed geometrically using GCA.
The GCA is a coordinate-free method and does not require calculation of the inverse Jacobian matrix.
The results show that all of the R actuated PPMs have both Type-I and Type-II singularities, but this
is not exactly true for the P actuated PPMs. For example, the 3-RPR, 3-RPP, and 3-RPP PPMs have
only Type-II singularities, while the 3-PRP PPMs have only Type-I singularity. This means that the
motion of these PPMs has just one type of singularity and will be more dexterous, so they will be
easier to control.

There is limitation of the research that since this method found sufficient condition for the
singularity, the method cannot guarantee all the singularities are found. Therefore, further discussion
is necessary to find the necessary condition of all the singularities.
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