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Abstract. The joint study of functionals of a Brownian motionB and its Lévy transform
β = |B| − L, whereL is the local time ofB at zero, is motivated by the conjectured
ergodicity of the Lévy transform.

Here, we compute explicitly the covariance of the last zeros before time one ofB and
β, which turns out to be strictly positive.

1. Motivation and main results
1.1. Let(Bt , t ≥ 0) be a one-dimensional Brownian motion starting from zero, and
(Lt , t ≥ 0) its local time at zero. There has been quite some interest during the last decade

in the so-called perturbed Brownian motions(B
(µ)
t

def= |Bt | − µLt , t ≥ 0) which have a
number of interesting properties, for example: the time spent by(B

(µ)
t , t ≤ 1) below zero

is beta distributed, a generalization of the arcsine law due to F. Petit; see, more generally,
the last chapter of Yor [18] for a number of recent studies.

As is well known, in the particular caseµ = 1, (B(1)
t , t ≥ 0), the Lévy transform ofB,

is a Brownian motion, and some interest in the pair(B,B(1)) stems from the open question:

is the Lévy transformT : (Bt ) −→ (B
(1)
t ) ergodic?

For more details about the ergodicity problem for L´evy’s transform, see Dubinset al [5],
Dubins and Smorodinsky [6] and Malric [11].

1.2. As a step towards the study of the ergodicity ofT , Smorodinsky [15] asked one
of us to describe the joint law of the pair(g, γ ), where

g
def= sup{t < 1 : Bt = 0} and γ

def= sup{t < 1 : |Bt | − Lt = 0},
which, as is well known, has arcsine distributed marginals.
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From [15], we infer that certain properties of this joint law might lead to a density

property of the sequencegn
def= g(T n(B)), n ∈ N, of the last zeros of the iterates ofB

underT . This, in turn, could lead to the ergodicity ofT ; however, we leave the exploitation
of the results in our paper to ergodic experts.

1.3. The apparently simple and quite natural question of describing the joint law of
(g, γ ) turns out to necessitate in fact the use of most of the present knowledge about the
decomposition of the Brownian path(Bt , t ≤ 1) before and afterg.

Below, we shall express the law of(g, γ ) in terms of the following independent
variables:
(a) g;

(b) Sm
def= supu≤1 mu, where(mu, u ≤ 1) is a standard Brownian meander;

(c) (θ̃ , m̃1), where(m̃u, u ≤ 1) is a standard Brownian meander process andθ̃
def=

inf{t > 0 : m̃t = m̃1};
(d) (Ub, Sb), where (b(u), u ≤ 1) is a standard Brownian bridge process,Sb

def=
supu≤1 b(u), andUb is the almost surely unique location of the maximum ofb.

Here are our main results.

THEOREM 1.1. For every Borel functionf : [0, 1]2 −→ R+, one has

E[f (g, γ )] = 1
2E[f (gUb, g)] + 1

2E[f (gUb, g)1l{Sm<
√

g/(1−g)Sb}]
+ E[f (g, g(1 − θ̃ ))1l{Sm<

√
g/(1−g)m̃1}]. (1.1)

THEOREM 1.2. The covariance ofg andγ is given by

cov(g, γ ) = E(gγ ) − E(g)E(γ ) = E(gγ ) − 1
4,

and
E(gγ ) = 1

8 + 1
24π

2 − 7
32ζ(3) ≈ 0.273. . . ,

whereζ(·) is the Riemann zeta function. Consequently,cov(g, γ ) > 0.

1.4. Our paper is organized as follows: in §2, we prove Theorem 1.1; in §3, we give
a precise description of the law of(θ̃ , m̃1) found in (c) above; in §4, we present some
probabilistic discussions of the formula (1.2) below, and give a few extensions.

In §5, we prove Theorem 1.2, which hinges on the key formula: fora > 0, andCa a
Cauchy variable with parametera,

E

[
Ca

sinh(Ca)

]
= 1 + 2

∞∑
k=1

(−1)k
a

a + kπ
, (1.2)

and some of its consequences. As the reader will soon realize, we shall often use formula
(1.2) together with the identity in law:

|C1| law=
√

g

1 − g
. (1.3)
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Originally, we found formula (1.2) in Gradshteyn and Ryzhik [7, p. 348], in the
analytical form:

1

π

∫ ∞

0

dx

b2 + x2

x

sinh(ax)
= 1

2ab
+

∞∑
k=1

(−1)k

ab + kπ
. (1.4)

However, in §3, we offer a discussion of (1.4), emphasizing in particular how closely
related this formula is to the classical Kolmogorov–Smirnov result:

sup
u≤1

|b(u)|2 law= T
(3)
π/2,

whereT
(3)
c

def= inf{t > 0 : Rt = c} with R a three-dimensional Bessel process starting
from 0.

In §6, we explicitly compute the martingale representations ofE(g | F t ) andE(γ | Ft ),
where(Ft )t≥0 denotes the natural filtration ofB. This would shed light on the dependence
structure of(g, γ ).

Finally, in §§7 and 8, we discuss some related questions.

2. Proof of Theorem 1.1
We recall a decomposition theorem for the Brownian sample paths. For any stochastic
process(Xt , 0 ≤ t ≤ 1), and any random timesa andb with 0 ≤ a < b ≤ 1, define

X[a,b] def=
(

1√
b − a

Xa+t (b−a), 0 ≤ t ≤ 1

)
.

Then,b
def= B[0,g] is a standard Brownian bridge;m

def= |B|[g,1] is a Brownian meander;b,
m andg are independent.

Another representation of the meander process is given by [1, 3]:

(|bu| + `u, u ≤ 1),

where(`u) is the local time at zero of the bridgeb.
We also recall the following representation of the meander [1; 14, Exercise XII.4.25]:(

2 sup
s≤u

bs − bu, u ≤ 1

)
.

We now study the joint law of(g, γ ) on two disjoint events:{g > γ } and{g < γ }.

2.1. First situation:g > γ . Observe that on{g > γ },
γ = sup{t ≤ g : |Bt | = Lt }

= g sup{u ≤ 1 : |bu| = `u},
where(`u) denotes as before the local time process at zero of the Brownian bridgeb.
Therefore, on{g > γ },

γ = g(1 − inf{v ≤ 1 : |b1−v| + (`1 − `1−v) = `1}).
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Write b̃v
def= b1−v, which is again a Brownian bridge, whose local time at zero is˜̀

v = `1 − `1−v. Thus,

γ = g(1 − inf{v < 1 : |̃bv| + ˜̀
v = ˜̀1}).

Definem̃t
def= |̃bt | + ˜̀

t , which is a Brownian meander. Accordingly,

γ = g(1 − θ̃ ), on {g > γ }, (2.1)

where
θ̃

def= inf{v ≤ 1 : m̃v = m̃1},
andm̃ is a Brownian meander, independent ofg andm.

It remains to express the set{g > γ } in terms ofg, m andb (or m̃). Note that

g > γ ⇐⇒ |Bu| 6= Lu, for all u ≥ g

⇐⇒ |Bu| < Lu = Lg, for all u ≥ g

⇐⇒ sup
u≥g

|Bu| < Lg

⇐⇒ Sm
def= sup

s≤1
ms <

√
g

1 − g
`1,

which means that

{g > γ } =
{
Sm <

√
g

1 − g
m̃1

}
. (2.2)

In view of (2.1), we have

E[f (g, γ )1l{g>γ }] = E[f (g, g(1 − θ̃ ))1l{Sm<
√

g/(1−g)m̃1}], (2.3)

whereg, Sm and(θ̃, m̃1) are independent. Note that the law ofSm is known ([3, p. 69]):

S2
m

law= T (3)
π ,

whereT
(3)
a is as before the first hitting time ata of a three-dimensional Bessel process

starting from zero.

2.2. Second situation:g < γ . Recall Lévy’s identity in law:

(|Bt |, Lt , t ≥ 0)
law= (St − Bt , St , t ≥ 0),

whereSt
def= sup0≤s≤t Bs . It immediately follows that

(g, γ )
law= (sup{t ≤ 1 : St = Bt }, sup{t ≤ 1 : Bt = 0})
= (ρ, g),

whereρ
def= sup{t ≤ 1 : St = Bt }. We thus have to determine the law of(ρ, g) on the

event{ρ < g}. Observe that on{ρ < g},
ρ = sup{t ≤ g : St = Bt }

= g sup
{
u ≤ 1 : sup

s≤u
b(s) = b(u)

}
= gUb,
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whereUb
def= sup{t ≤ 1 : Sb = b(t)} andSb

def= sups≤1 b(s).
It is well known thatUb is uniformly distributed in(0, 1). It remains therefore to study

the set{ρ < g}.
If B1 < 0, thenρ ≤ g almost surely, i.e.{B1 < 0} ⊂ {ρ < g}.
If B1 > 0, we have

ρ < g ⇐⇒ Bu < Su = Sg, for all u ≥ g

⇐⇒ sup
u≥g

|Bu| < Sg

⇐⇒ Sm <

√
g

1 − g
Sb.

Consequently,

E[f (g, γ )1l{g>γ }] = E[f (g, γ )1l{g>γ }1l{B1<0}] + E[f (g, γ )1l{g>γ }1l{B1>0}]
= 1

2E[f (gUb, g)] + 1
2E[f (gUb, g)1l{Sm<

√
g/(1−g)Sb}].

This, combined with (2.3), completes the proof of Theorem 1.1. 2

Remark.According to Theorem 1.1, to study the joint distribution of(g, γ ) we need the
law of (θ̃ , m̃1), which is characterized in the next section. We also need the law of(Ub, Sb),
which can be described as follows. Let(rt , 0 ≤ t ≤ 1) denote a standard three-dimensional
Bessel bridge, independent of the random variableU which is uniformly distributed in
(0, 1). According to Williams’ identification,(rt , 0 ≤ t ≤ 1) is also a normalized
Brownian excursion process. Using Vervaat’s transformation relating the Brownian bridge
with the normalized Brownian excursion [1], it is easily seen that

(Ub, Sb)
law= (1 − U, rU ). (2.4)

The joint law ofU andrU is studied in the forthcoming Lemma 5.1 (see §5).

3. Characterization of the joint law of(θ̃, m̃1)

Let (βt , t ≥ 0) be a one-dimensional Brownian motion starting from zero, and let

T1
def= inf{t > 0 : βt = 1}. Define

gT1

def= sup{t < T1 : βt = 0} and T (3) = T1 − gT1.

Recall that(βgT1+t , t ≤ T (3)) is a three-dimensional Bessel process starting from zero,

considered until its first hitting time at one (this justifies the notationT (3)). Moreover,
(βu, u ≤ gT1) and(βgT1+t , t ≤ T (3)) are independent.

PROPOSITION3.1. The joint law of(θ̃ , m̃1) is characterized by the following: for any
Borel functionf : [0, 1] × R+ → R+,

E(f (θ̃, m̃1)) =
√

π

2
E

[
1√
T1

f

(
T (3)

T1
,

1√
T1

)]
. (3.1)
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Remark 3.1.1.According to Williams’ path decomposition theorem for(βt , t ≤ T1),

(T1, T
(3))

law= (4U2T̂1 + T (3), T (3)), (3.2)

where, on the right-hand side,̂T1, U andT (3) are independent variables,U being uniformly

distributed in(0, 1) andT̂1
law= T1.

Proof of Proposition 3.1.We recall the following results (see also [2]).
(a) Imhof’s relation:

E(F (m̃u, u ≤ 1)) =
√

π

2
E

[
1

R1
F(Ru, u ≤ 1)

]
;

(b) absolute continuity between(Ru, u ≤ 1) and(Zu
def= RuL1/

√
L1, u ≤ 1), whereL1

is the last exit time from one ofR (three-dimensional Bessel process starting from
zero):

E(F (Zu, u ≤ 1)) = E

[
1

R2
1

F(Ru, u ≤ 1)

]
;

(c) Williams’ time reversal forR:

(Ru, u ≤ L1)
law= (1 − βT1−u, u ≤ T1).

Combining (a)–(c) yields

E(F (m̃u, u ≤ 1)) =
√

π

2
E

[
1√
T1

F

(
1 − βT1(1−u)√

T1
, u ≤ 1

)]
or, equivalently,

E(F (m̃1 − m̃1−u, u ≤ 1)) =
√

π

2
E

[
1√
T1

F

(
βT1(1−u)√

T1
, u ≤ 1

)]
.

This immediately yields the proposition. 2

4. Probabilistic discussions on analytical formulae
4.1. We first discuss formula (1.2). To begin with, we transform the left-hand side of
(1.2): as is well known,

x

sinhx
= E

[
exp

(
−x2

2
T

(3)
1

)]
,

whereT
(3)
1 = inf{t > 0 : R

(3)
t = 1} andR(3) is a three-dimensional Bessel process,

starting from zero. Hence, we have

E

[
Ca

sinh(Ca)

]
= E

[
exp

(
−a2

2
(C2

1T
(3)
1 )

)]
.

Now, we use

C2
1

law= N2

(N ′)2
law= N2T1
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whereN andN ′ are two standard independent Gaussian variables, andT1
def= inf{t > 0 :

Bt = 1} is assumed to be independent ofN . Thus, we obtain

E

[
Ca

sinh(Ca)

]
= E

[
exp

(
−a|N |

√
T

(3)
1

)]
= E

[
exp

(
−a|N |

S
(3)
1

)] (
S

(3)
1

def= sup
s≤1

R(3)
s

)
=
√

2

π

∫ ∞

0
E

[
S

(3)
1 exp

(
−y2(S

(3)
1 )2

2

)]
exp(−ay) dy,

after some elementary change of variables.
Inspection of the right-hand side of (1.2) shows that it is the Laplace transform, with

respect to the argumenta, of the function

π/2

(cosh(πy/2))2
.

Consequently, from the injectivity of the Laplace transform, we deduce that (1.2) is
equivalent to √

2

π
E

[
S

(3)
1 exp

(
−y2(S

(3)
1 )2

2

)]
= π/2

(cosh(πy/2))2
. (4.1)

Multiplying on both sides of (4.1) byya and integrating with respect toy overR+, we can
determine all the positive moments ofT

(3)
1 : for a > 0,

E[(T (3)
1 )a] = 2aπ−2a+1/2

0(a + 1/2)

∫ ∞

0

x2a

(coshx)2 dx. (4.1′)

(See also Pitman and Yor [13].) We note that the negative moments ofT
(3)
1 , which are

calculated in Yor [18, Ch. XI], are in formal agreement with(4.1′); see also, for similar
computations related to the Riemann zeta function in terms of the sumT

(3)
1 + T̂

(3)
1 of two

independent copies ofT (3)
1 , Williams [16, p. 369]. The integral on the right-hand side of

(4.1′) may be explicitly computed in terms of the gamma and Riemann zeta functions (see
Gradshteyn and Ryzhik [7, p. 352]); we obtain: fora > 0,

E[(T (3)
1 )a] =

{
2a+1π−2a(1 − 21−2a)0(a + 1)ζ(2a), if a 6= 1/2,√

2/π ln 2, if a = 1/2.

We now give two confirmations of (4.1).
(i) Recall that the Fourier transform (onR) of the function

y 7→ π/4

(cosh(πy/2))2

is ξ/sinhξ , see e.g. the table in Biane and Yor [3]. Thus, (4.1) is equivalent to

1√
2π

∫ ∞

−∞
dy exp(iξy)E

[
S

(3)
1 exp

(
−y2(S

(3)
1 )2

2

)]
= ξ

sinhξ
,
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and it is now easily shown that the left-hand side is equal to

E

[
exp

(
−ξ2

2
T

(3)
1

)]
,

which as we have already recalled is equal toξ/sinhξ .
(ii) Our second confirmation of (4.1) consists in showing that it is equivalent to the

well-known Kolmogorov–Smirnov law:

sup
u≤1

|b(u)|2 law= T
(3)
π/2. (4.2)

To show this, we use a particular case of the following.

THEOREM A. (Agreement formula; Biane and Yor [3], Pitman and Yor [12]) LetR andR̂

be two independent Bessel processes of dimensionδ, starting from zero,T andT̂ their first
hitting times of one. DefinẽR by connecting the paths ofR on [0, T ] andR̂ on [0, T̂ ] back
to back:

R̃t
def=
{

Rt, if t ≤ T ,

R̂T +T̂ −t , if T ≤ t ≤ T + T̂ ,

and letR̃br be obtained by Brownian scaling of̃R onto the time scale[0, 1]:

R̃br
u

def= R̃u(T +T̂ )√
T + T̂

, 0 ≤ u ≤ 1.

Let Rbr be a standard Bessel bridge of dimensionδ. Then for all positive or bounded
measurable functionsF : C[0, 1] → R,

E[F(Rbr)] = cδE[F(R̃br)(M̃br)2−δ],
where

M̃br def= sup
0≤u≤1

R̃br
u = (T + T̂ )−1/2,

cδ
def= 2(δ−2)/20(δ/2).

Remark.A detailed study of the law of sup0≤u≤1 Rbr
u is made in Pitman and Yor [13] with

the help of the agreement formula.

We now consider the particular caseδ = 1; we obtain the following relationship
between supu≤1 |b(u)| andT + T̂ :√

2

π
E

[
f

(
sup
u≤1

|b(u)|
)]

= E[(T + T̂ )−1/2f ((T + T̂ )−1/2)]. (4.3)

Now, on the one hand, we have

E

[
exp

(
−y2

2
(T + T̂ )

)]
= 1

(coshy)2

and, on the other hand,S
(3)
1

law= 1/

√
T

(3)
1 ; together with these remarks, the comparison of

(4.1) and (4.3) yields the well-known Kolmogorov–Smirnov identity (4.2).
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4.2. For the reader’s convenience, we now present a few formulae and identities about
the laws of the suprema of the Brownian bridge and meander processes (see Biane and Yor
[3], Chung [4], Kennedy [10]):

S2
m

law= 4 sup
u≤1

|b(u)|2 law= T (3)
π , (4.4)

P(Sm < x) = P

(
sup
u≤1

|b(u)| <
x

2

)
=

∞∑
n=−∞

(−1)n exp

(
−n2x2

2

)
(4.5)

=
√

8π

x

∞∑
k=1

exp

(
− (2k − 1)2π2

2x2

)
, x > 0. (4.6)

The next item is a collection of a few analytical formulae. From a probabilistic point of
view, they ensue from (1.3). Note that (4.7) is a particular case of (1.4)†:∫ ∞

−∞
b

b2 + x2

x

sinh(πx)
dx = 1 + 2b

∞∑
k=1

(−1)k

k + b
, (4.7)

∫ ∞

−∞
b

b2 + x2

1

cosh(πx)
dx = 4

∞∑
k=1

(−1)k−1

(2k − 1) + 2b
, (4.8)

∫ ∞

−∞
b

b2 + x2

1

(cosh(πx))2
dx = 8

π

∞∑
k=1

1

((2k − 1) + 2b)2
, (4.9)

∫ ∞

−∞
b

b2 + x2

tanh(πx)

x
dx = 8

∞∑
k=1

(−1)k−1

(2k − 1)((2k − 1) + 2b)
. (4.10)

Again, formulae (4.7)–(4.10) can be interpreted in a probabilistic way. They
respectively lead to the following identities, where (4.11) is a rewriting of (4.1). We write

S
(1)
t

def= sup0≤s≤t |Bs |, d1
def= inf{t > 1 : Bt = 0} andS

(R)
1

def= sup0≤s≤1 Bs − inf0≤s≤1 Bs

(‘R’ for ‘Range’). Fory ∈ R,√
2

π
E

[
S

(3)
1 exp

(
−y2(S

(3)
1 )2

2

)]
= π/2

(cosh(πy/2))2 , (4.11)√
2

π
E

[
S

(1)
1 exp

(
−y2(S

(1)
1 )2

2

)]
= 1

cosh(πy/2)
, (4.12)√

2

π
E

[
S

(R)
1 exp

(
−y2(S

(R)
1 )2

2

)]
= πy/2

sinh(πy/2)
, (4.13)

√
2

π
E

[
S

(1)
d1

exp

(
−y2(S

(1)
d1

)2

2

)]
= 1

π
log

(
coth

(
π |y|

4

))
. (4.14)

Observe that by the above agreement formula (Theorem A, withδ = 1), (4.13) can be
rewritten as

E

[
exp

(
−y2

2
sup
u≤1

b2(u)

)]
= πy/2

sinh(πy/2)
,

which is a re-confirmation of (4.2).

† For some enjoyable discussion about (4.7)–(4.9) of a purely analytical nature, see [19].
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Remark.The reader will find in Jurek [9] a useful discussion of the right-hand sides of
(4.11)–(4.14), from the point of view of infinite divisibility.

5. Proof of Theorem 1.2

Applying Theorem 1.1 to the functionf (u, v) = uv yields

E(gγ ) = 1
2E(g2) + 1

2E[g2Ub1l{Sm<
√

g/(1−g)Sb}] + E[g2(1 − θ̃ )1l{Sm<
√

g/(1−g)m̃1}]
def= I1 + I2 + I3,

with obvious notation. Sinceg has the arcsine law, it immediately follows that

I1 = 3
32. (5.1)

The computation ofI2 is based on the following lemma. In the rest of the section,
(rt , 0 ≤ t ≤ 1) denotes a standard three-dimensional Bessel bridge, independent of the
random variableU which is uniformly distributed in(0, 1).

LEMMA 5.1. For any a > 0, both quantitiesE[(1 − U)1l{rU >a}] and E[U1l{rU >a}] are

equal to e−2a2
/2. Consequently,P(rU > a) = e−2a2

.

Proof. Recall that(rt , t < 1) can be realized as((1 − t)Rt/(1−t ), t < 1), whereR is a
three-dimensional Bessel process starting from zero. Accordingly,

(U, r2
U)

law= (U,U(1 − U)R2
1).

A few lines of elementary computations, together with the fact thatR2
1 is a chi-square

variable, yieldE[(1 − U)1l{rU>a}] = e−2a2
/2.

On the other hand, by the symmetry of the Bessel bridge,(1−U, rU)
law= (U, rU ), which

completes the proof of the lemma. 2

We now evaluateI2. By (2.4) and Lemma 5.1,

I2 = 1

2
E[g2(1 − U)1l{Sm<

√
g/(1−g)rU }]

= 1

4
E

[
g2 exp

(
−2(1 − g)

g
S2

m

)]
.

Using the exact Laplace transform ofS2
m (taking into account the identity in law (4.5)), we

obtain

I2 = 1

4
E

[
g2 2

√
(1 − g)/gπ

sinh(2
√

(1 − g)/gπ)

]
=
∫ ∞

0

dx

(1 + x2)3

x

sinh(2πx)
,
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the second equality following from (1.3). On the other hand, differentiating on both sides
of equation (1.4) gives, fora > 0 andb > 0,

1

π

∫ ∞

0

dx

(b2 + x2)2

x

sinh(ax)
= 1

4ab3 + a

2b

∞∑
k=1

(−1)k

(ab + kπ)2 , (5.2)

1

π

∫ ∞

0

dx

(b2 + x2)3

x

sinh(ax)
= 3

16ab5
+ a

8b3

∞∑
k=1

(−1)k

(ab + kπ)2
+ a2

4b2

∞∑
k=1

(−1)k

(ab + kπ)3
.

(5.3)

Applying (5.3) toa = 2π andb = 1 yields

I2 = 37
32 − 1

48π
2 − 3

4ζ(3). (5.4)

It remains to computeI3. Recall the distribution function ofSm from (4.6). By
conditioning on(g, θ̃ , m̃1), we obtain

I3 = √
8πE

[
g2

∞∑
k=1

I4

(
(2k − 1)2π2

2

1 − g

g

)]
, (5.5)

where

I4(λ)
def= E

[
1 − θ̃

m̃1
exp

(
− λ

m̃2
1

)]
, λ > 0.

Note that, by means of Proposition 3.1, the derivative ofλ 7→ I4(λ) is

I ′
4(λ) = −E

[
1 − θ̃

m̃3
1

exp

(
− λ

m̃2
1

)]

= −
√

π

2
E[(4U2T̂1) exp(−λ(4U2T̂1 + T (3)))].

SinceEe−aT̂1 = exp(−√
2a) andEe−aT (3) = √

2a/sinh
√

2a for all a > 0, this yields

I ′
4(λ) = −

√
π

2

(
e−√

2λ

2λ
− e−2

√
2λ

√
2λ sinh

√
2λ

)
.

Going back to (5.5), we have

I3 = −2πE

[
g2
∫ ∞

(2k−1)π
√

(1−g)/g

(
e−x

x
− e−2x

sinhx

)
dx

]
.

From here, a few lines of elementary computations based on (5.2) and (5.3), together with
the fact thatg has the arcsine law, readily yield the following:

I3 = −9
8 + 1

16π
2 + 17

32ζ(3). (5.6)

SinceE(gγ ) = I1 + I2 + I3, assembling (5.1), (5.4) and (5.6) completes the proof of
Theorem 1.2. 2
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6. Martingale representations
The covariance betweeng andγ may be expressed as the expectation of the covariation
between the martingales with final valuesg andγ . Thus, it is natural to look for the explicit
Itô–Clark representation ofg (hence, ofγ ) as a stochastic integral.

Let, for 0< t ≤ 1,

gt
def= sup{s ≤ t : Bs = 0},

γt
def= sup{s ≤ t : |Bs | = Ls},

(thusg = g1 andγ = γ1). Let (Ft )t≥0 be the natural filtration ofB. For any bounded
Borel functionϕ, andt ∈ (0, 1),

E(ϕ(g) | Ft ) = ϕ(gt )P(g ≤ t | Ft ) + E(ϕ(g)1l{g>t} | Ft ). (6.1)

According to Jeulin [8] (see also Yor [18, p. 42]),

P(g ≤ t | Ft ) = 9

( |Bt |√
1 − t

)
, (6.2)

where

9(x)
def=
√

2

π

∫ x

0
e−y2/2 dy. (6.3)

On the other hand,{g > t} = {inft≤u≤1 |Bu| = 0}. On {g > t}, g is identical to
sup{u ∈ (t, 1) : Bu = 0}. By means of the (strong) Markov property, it is easily checked
that

E(ϕ(g)1l{g>t} | Ft ) =
√

2

π

∫ 1

t

ϕ(u)√
2π(u − t)(1 − u)

exp

(
− B2

t

2(u − t)

)
du. (6.4)

We mention that the constant
√

2/π on the right-hand side of (6.4) comes from 1/E(m1).
In the particular caseϕ(x) = x, we have the following.

PROPOSITION6.1. Define the martingalesM(g)
t

def= E(g | Ft ), M
(γ )
t

def= E(γ | Ft ), and

the Brownian motionβt
def= ∫ t

0 sgn(Bs) dBs . Then

M
(g)
t = E(g) +

∫ t

0
µ

(g)
s dBs, (6.5)

M
(γ )
t = E(γ ) +

∫ t

0
µ

(γ )
s sgn(Bs) dBs. (6.6)

Here,E(g) = E(γ ) = 1/2, and

µ
(g)
s

def= −
√

2

π

(s − gs) sgn(Bs)√
1 − s

exp

(
− B2

s

2(1 − s)

)
−
(

1 − 9

( |Bs |√
1 − s

))
Bs, (6.7)

µ
(γ )
s

def= −
√

2

π

(s − γs) sgn(βs)√
1 − s

exp

(
− β2

s

2(1 − s)

)
−
(

1 − 9

( |βs |√
1 − s

))
βs, (6.8)

where9 is the function defined in (6.3). Consequently, we obtain

cov(g, γ ) = E

(∫ 1

0
µ

(g)
s µ

(γ )
s sgn(Bs) ds

)
. (6.9)
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Proof. By (6.1),

dM
(g)
t = gt dZt + Zt dgt + dXt ,

where

Zt
def= 9

( |Bt |√
1 − t

)
,

Xt
def= E(g1l{g>t} | Ft ),

and9 is the function defined in (6.3). In view of (6.4), we have

Xt = H(t, Bt ),

where

H(t, x)
def= 1

π

∫ 1

t

u√
(u − t)(1 − u)

exp

(
− x2

2(u − t)

)
du.

From the formula

1

π

∫ 1

0

1√
v(1 − v)

exp

(
−x2

2v

)
dv =

√
2

π

∫ ∞

x

e−y2/2 dy, (6.10)

we easily deduce that

H(t, x) = t

(
1 − 9

( |x|√
1 − t

))
+ (1 − t)h

( |x|√
1 − t

)
, (6.11)

with

h(y)
def= 1

π

∫ 1

0

√
v√

1 − v
exp

(
−y2

2v

)
dv.

Applying Itô’s formula to the semimartingalesZt andXt = H(t, Bt ) (with H in the form
of (6.11)) readily yields (6.7).

To check (6.8), we rewrite (6.7) asµ(g)
s

def= F(Bu, u ≤ s). We can apply the same
argument to the Brownian motionβt = ∫ t

0 sgn(Bs) dBs = |Bt | − Lt , to see that

M
(γ )
t = E(γ ) +

∫ t

0
µ

(γ )
s dβs = 1

2
+
∫ t

0
µ

(γ )
s sgn(Bs) dBs,

whereµ
(γ )
s = F(βu, u ≤ s). Using the form ofF in (6.7) yields (6.11). This completes

the proof of the proposition. 2

Remark 6.1.1.In general, for any bounded Borel functionϕ, we can evaluate the

martingale representation ofM
(ϕ,g)
t

def= E(ϕ(g) | Ft ) by means of (6.1), (6.2) and (6.4).
Indeed, instead of (6.5), we have

M
(ϕ,g)
t = E(ϕ(g)) +

∫ t

0
µ

(ϕ,g)
s dBs,
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where

µ
(ϕ,g)
s

def= −
√

2

π

(ϕ(s) − ϕ(gs)) sgn(Bs)√
1 − s

exp

(
− B2

s

2(1 − s)

)

− Bs

π(1 − s)

∫ 1

0

ϕ(s + (1 − s)u) − ϕ(s)

u3/2(1 − u)1/2 exp

(
− B2

s

2(1 − s)u

)
du.

The martingale representation ofE(ϕ(γ ) | Ft ) is derived directly from the preceding
formulae. Consequently, we obtain an analytical formula for cov(ϕ(g), ϕ(γ )) which
generalizes (6.9) above.

Remark 6.1.2.Formula (6.10) may be seen as an analytical application of the identity in
law,

N2 law= 2Eg,

whereE denotes an exponential variable with mean one, independent ofg, andN is as
before a GaussianN (0, 1) variable. For further discussions on (6.10) and related formulae,
see Yor [17].

7. Moments of(θ,m1)

We determine the joint moments ofθ andm1.

PROPOSITION7.1. For (p, q) ∈ N
2,

E(θpm
q

1) = π1/2

0((2p + q + 1)/2)2(2p+q+2)/2

∫ ∞

0
λ2p+q−1(1 − e−2λ)fp(λ) dλ, (7.1)

where

fp(λ) = E

[
(T (3))p exp

(
−λ2

2
T (3)

)]
.

Moreover,fp satisfies the recurrence relation:{
−λfp+1(λ) = f ′

p(λ),

f0(λ) = λ/sinh(λ).

Whenp = 1, (7.1) becomes

E(θm
q

1) = π1/20(q + 1)

0((q + 3)/2)2(q+2)/2
((q + 1)(2 − 2−(q+1))ζ(q + 2) − (q + 2)), (7.2)

whereζ(·) is as before the Riemann zeta function. In particular,

E(θ) = 1
4π2 − 2.

Proof. It is an immediate consequence of Proposition 3.1 that

E(θpm
q

1) =
√

π

2
E((T (3))pT

−(2p+q+1)/2
1 ).
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Since

x−(2p+q+1)/2 = 1

0((2p + q + 1)/2)

∫ ∞

0
e−tx t(2p+q−1)/2 dt

= 1

0((2p + q + 1)/2)2(2p+q−1)/2

∫ ∞

0
e−λ2x/2λ2p+q dλ,

it follows from (3.2) that (writinga(p, q)
def= π1/2/0((2p + q + 1)/2)2(2p+q)/2)

E(θpm
q

1) = a(p, q)

∫ ∞

0
λ2p+q

E

(
(T (3))p exp

(
−λ2

2
T (3)

))
E

(
exp

(
−λ2

2
4U2T1

))
dλ

= a(p, q)

2

∫ ∞

0
λ2p+q−1

E

(
(T (3))p exp

(
−λ2

2
T (3)

))
(1 − e−2λ) dλ,

proving (7.1).
To check (7.2), note that by the relation betweenf0 andf1,

E(θm
q

1) = a(1, q)

2

∫ ∞

0
λq(1 − e−2λ)f ′

0(λ) dλ

= −a(1, q)

2

∫ ∞

0

λ

sinhλ
(qλq−1(1 − e−2λ) + 2λqe−2λ) dλ

= a(1, q)

∫ ∞

0

e−λ

1 − e−2λ
(qλq(1 − e−2λ) + 2λq+1e−2λ) dλ

= a(1, q)

(
q0(q + 1) + 2

∞∑
n=0

∫ ∞

0
λq+1e−(3+2n)λ dλ

)

= a(1, q)

(
q0(q + 1) + 20(q + 2)

∞∑
n=0

1

(3 + 2n)q+2

)
.

Since
∞∑

n=0

1

(3 + 2n)q+2
= ζ(q + 2) − 1 − 2−(q+2)ζ(q + 2)

= (1 − 2−(q+2))ζ(q + 2) − 1,

this yields (7.2), and thus completes the proof of the proposition. 2

8. Some related computations
8.1. The probability ofg > γ . Recall thatm1 is Rayleigh distributed, i.e.P(m1 ∈ dx)

= xe−x2/21l{x>0} dx. By (2.2),

P(g > γ ) = P

(
Sm <

√
g√

1 − g
m̃1

)
= E

[
exp

(
−1

2

g

1 − g
S2

m

)]
= E

(
π

√
g/(1 − g)

sinh(π
√

g/(1 − g))

)
.
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In view of (1.3), this implies

P(g > γ ) = 2
∫ ∞

0

y

sinh(πy)

dy

1 + y2
= 2 ln 2− 1.

8.2. The expectation ofmax(g, γ ). According to Theorem 1.1,

E(max(g, γ )) = 1
2E(g) + 1

2E(g1l{Sm<
√

g/(1−g)Sb}) + E(g1l{Sm<
√

g/(1−g)m̃1}).

SinceSb
law= rU

law= 1
2m̃1, and sincẽm1 is Rayleigh distributed, we obtain

E(g1l{Sm<
√

g/(1−g)Sb}) = E

(
g

2π
√

(1 − g)/g

sinh(2π
√

(1 − g)/g)

)
,

E(g1l{Sm<
√

g/(1−g)m̃1}) = E

(
g

π
√

(1 − g)/g

sinh(π
√

(1 − g)/g)

)
.

Again, by making use of (1.3), we arrive easily at

E(max(g, γ )) = 3
2 − 1

12π
2.
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