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Abstract The joint study of functionals of a Brownian motighand its Lévy transform
B = |B| — L, whereL is the local time ofB at zero, is motivated by the conjectured
ergodicity of the lgvy transform.
Here, we compute explicitly the covariance of the last zeros before time oBeanfl
B, which turns out to be strictly positive.

1. Motivation and main results
1.1. Let(B;,t > 0) be a one-dimensional Brownian motion starting from zero, and

(L;,t > 0) its local time at zero. There has been quite some interest during the last decade

in the so-called perturbed Brownian motioa"lg(“) def |Bi| — uL;,t > 0) which have a

number of interesting properties, for example: the time spemBW, t < 1) below zero
is beta distributed, a generalization of the arcsine law due to F. Petit; see, more generally,
the last chapter of Yord[g] for a number of recent studies.
As is well known, in the particular cage= 1, (B,(l), t > 0), the Lévy transform ofB,
is a Brownian motion, and some interest in the p&ir BY) stems from the open question:

is the Lévy transfornl : (B;) —> (B,(l)) ergodic?
For more details about the ergodicity problem fawl’s transform, see Dubiret al [5],

Dubins and Smorodinsky] and Malric [11].

1.2. As a step towards the study of the ergodicityfofSmorodinsky 15] asked one
of us to describe the joint law of the pdjy, y), where

¢ ®'supr <1:8,=0) and y E'sugr <1: (B, L, =0},

which, as is well known, has arcsine distributed marginals.
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From [15], we infer that certain properties of this joint law might lead to a density
property of the sequengg, def g(T"(B)), n € N, of the last zeros of the iterates Bf
underT. This, inturn, could lead to the ergodicity 6f however, we leave the exploitation
of the results in our paper to ergodic experts.

1.3. The apparently simple and quite natural question of describing the joint law of
(g, y) turns out to necessitate in fact the use of most of the present knowledge about the
decomposition of the Brownian patlB;, ¢+ < 1) before and afteg.
Below, we shall express the law @g, y) in terms of the following independent
variables:
@ s
(b) Sn dffsug,<lmu, where(m,, u < 1) is a standard Brownian meander;
(©) (G,ml), where (m,,u < 1) is a standard Brownian meander process 5n‘éﬁf
inf{t > 0:m; =mq);
(d) (Up, Sp), where (b(u),u < 1) is a standard Brownian bridge process, def
sup, 1 b(u), andUy, is the almost surely unique location of the maximund of
Here are our main results.

THEOREM1.1. For every Borel functiory : [0, 1] — R4, one has
ELf (8. ¥)] = 3BLf (gUs. &)1 + 3ELf (8Us. )5, - serays,)]
+E[f(g,8(1—9))]J{sm<mnql}]. (1.1)

THEOREM1.2. The covariance o andy is given by

cov(g,y) =E(gy) —E(@E(y) =E(gy) — 3
and
E(gy) = 3 + 547% — 5¢(3) ~ 0.273. ..,

where¢ () is the Riemann zeta function. Consequesty(g, y) > 0.

1.4. Our paper is organized as follows: in §2, we prove Theorem 1.1; in §3, we give
a precise description of the law of, 1) found in (c) above; in 84, we present some
probabilistic discussions of the formula (1.2) below, and give a few extensions.

In 85, we prove Theorem 1.2, which hinges on the key formulaafer 0, andC, a
Cauchy variable with parameter

C, v a
El ——|=1+2 1 1.2
|:Sinf‘(Ca)i| " Z( Ly a-+kmn’ (1.2
and some of its consequences. As the reader will soon realize, we shall often use formula

(1.2) together with the identity in law:

Cy) ' % (1.3)
— &
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Originally, we found formula (1.2) in Gradshteyn and Ryzhik p. 348], in the
analytical form:

00 00 _1\k
1 / dx X 1 -1 (1.4)
0

T b2 + x2 sinh(ax) ~ 2ab + = ab+ kn®
However, in 83, we offer a discussion of (1.4), emphasizing in particular how closely
related this formula is to the classical Kolmogorov—Smirnov result:

2 law .(3)

suplb()2 &' 7.3,

u<l

whereTC(3) def inf{t > 0: R, = ¢} with R a three-dimensional Bessel process starting

from O.

In 86, we explicitly compute the martingale representatio&@f| F,) andE(y | ),
where(F;);>0 denotes the natural filtration &. This would shed light on the dependence
structure of(g, y).

Finally, in 887 and 8, we discuss some related questions.

2. Proof of Theorem 1.1
We recall a decomposition theorem for the Brownian sample paths. For any stochastic
procesgX,,0 <t < 1), and any random timesandb with0 < a < b < 1, define

1
xla-b] dzef( Xatt(p—ay, 0= 1 < 1) .

Vb —a
def

Then,» &' Bl04] s a standard Brownian bridge: &' |B|1#-1 is a Brownian meandeb,
m andg are independent.
Another representation of the meander process is givet, 8}

byl + Ly, u < 1),

where(¢,) is the local time at zero of the bridge
We also recall the following representation of the meantiet4, Exercise XI1.4.25]:

(Zsupbs —by,u< 1).

s<u

We now study the joint law ofg, ) on two disjoint eventsf{g > y} and{g < y}.

2.1. First situation: g > y. Observe that ofig > y},

y =suft < g:|Bi| = L}
— gSUPlu < 1: |bu| = £u),

where (¢,) denotes as before the local time process at zero of the Brownian kridge
Therefore, orig > v},

y =8 —inf{v <1:[b1y|+ (€1 — l1—) = £1}).

https://doi.org/10.1017/50143385700000389 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700000389

712 C. Donati-Martin et al

Write b, def b1—,, Which is again a Brownian bridge, whose local time at zero is

£y = €1 —€1_,. Thus,
y =gl —inflv < 1:|by| + €, = C1}).

Defineni; def |5,| + Z, which is a Brownian meander. Accordingly,

where
6 Llinfv < 1: 71, = mq),

andm is a Brownian meander, independengcdndsm.
It remains to express the sgt > '} in terms ofg, m andb (or m). Note that

g >y & |By|l # L, fOI’a”l,tzg
< |Byl < Ly=Lg, forallu=>g
<= sup|B,| < L,

uzg

— Sn d=8fsupms < /Lel,
s<1 1_g
g ~
{g>v}t= {Sm < —ml} . (2.2)
Vi-g

In view of (2.1), we have
ELf (8. 1) ig=y)] = ELf (. 8L — 05, - ser—orm)- (2.3)
whereg, S, and(@, 1) are independent. Note that the lawSf is known (3, p. 69]):

which means that

2 law (3
Sm = ng )’

whereTa(s) is as before the first hitting time at of a three-dimensional Bessel process
starting from zero.

2.2. Second situationg < y. Recall Lévy’s identity in law:

law

(|Bt|1Ll‘1t = O) = (St - B[,St,t = 0)1

wheresS; dzefsupJSSS, By. Itimmediately follows that
(2.7) 2 (supr <1:S, = B,),supr < 1: B, =0}
=(p, 8),

wherep def supr < 1: S, = B;}. We thus have to determine the law @f, g) on the
event{p < g}. Observe that ofpo < g},

p=supt<g:S8 = B}
= gsup[u < 1:suph(s) = b(u)}

= gUp,
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whereU, d=E]csup{t <1:8,=0>b()}ands, d=efsupg,<lb(s).

It is well known thatUy is uniformly distributed_ir(o, 1). It remains therefore to study
the sef{p < g}.

If B1 <0, thenp < g almost surely, i.e{B1 < 0} C {p < g}.

If B1 > 0, we have

pP<g&= B, <S8, =8 forallu=>g
> sup|B,| < S,

uzg

— Sy < Sp.

l-g¢g

Consequently,

ELf (g, ¥)ig>y)] = E[f (g, ¥)Vig=y) Ui <0)] + ELf (g, V) Vig>y) AiBy>0}]
= 3EL£ (8Us. &)1+ 3ELf (8Us. )i, - ye7ays,))-
This, combined with (2.3), completes the proof of Theorem 1.1. |

Remark.According to Theorem 1.1, to study the joint distribution(ef y) we need the

law of (5, m1), which is characterized in the next section. We also need the |aui;0f),),

which can be described as follows. l(et, 0 < r < 1) denote a standard three-dimensional
Bessel bridge, independent of the random varidblerhich is uniformly distributed in
(0,1). According to Williams' identification,(r;,0 < ¢t < 1) is also a normalized
Brownian excursion process. Using Vervaat's transformation relating the Brownian bridge
with the normalized Brownian excursiof[ it is easily seen that

law

(Ub7Sb) = (1_ U7 rU)' (24)
The joint law of U andry is studied in the forthcoming Lemma 5.1 (see 85).
3. Characterization of the joint law qﬁ m1)

Let (8;,t > 0) be a one-dimensional Brownian motion starting from zero, and let
T1 d:efinf{t > 0: B; = 1}. Define

&n dzefsup{t <Ty:B, =0} and 7O =14 — 81y

Recall that(Bg; +1,1 < T®) is a three-dimensional Bessel process starting from zero,
considered until its first hitting time at one (this justifies the notafé®). Moreover,
(Busu < gry) and(Bgy, 41,1 < 7®) are independent.

PrRoOPOSITION3.1. The joint law of(@, 1) is characterized by the following: for any
Borel functionf : [0, 1] x Ry — Ry,

~ T 1 T® 1
E(f(8,m1)) = \/;E \/—T—lf T \/—T—l . (3.1)
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Remark 3.1.1According to Williams’ path decomposition theorem @, r < Ty),

law

(11, T®) & 4u?T, + 7@, 79), (3.2)

where, on the right-hand sid&, U andT® are independent variabldg,being uniformly
law

distributed in(0, 1) and7; =~ T;.

Proof of Proposition 3.1 We recall the following results (see alsg])]
(@) Imhof’s relation:

E(F (my,u < 1)) = \/gE [RiF(Ru, u =< 1)} ;
1

(b) absolute continuity betwed®,, u < 1) and(Z, def Ry, /L1, u < 1), wherely

is the last exit time from one aR (three-dimensional Bessel process starting from
Zero):

E(F(Zy,u=1D)=E [%F(Ru, u =< 1)} ;
1

(c) Williams’ time reversal foIR:
[
(Ruyu <La) & (1= Bryu,u < T1).

Combining (a)—(c) yields

E(F (i, u < 1)) = %E[\/lT_lF <1_f7;_i1”),u < 1)}

or, equivalently,

E(F (g — i1y, u < 1)) = \/?E |:\/iT_1F <% u< 1)} .

This immediately yields the proposition. m|

4. Probabilistic discussions on analytical formulae
4.1. We first discuss formula (1.2). To begin with, we transform the left-hand side of

(1.2): as is well known,
2
X X 3)
=E|e 7!
sinhx |:xp< 21 >}
)

whereT;” = inf{t > 0 : R® = 1} and R® is a three-dimensional Bessel process,
starting from zero. Hence, we have

C. 1. a® o3

NZ
2 law law N2Ty
1 (N')Z

Now, we use
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whereN andN’ are two standard independent Gaussian variablesTﬁ%g inf{t > 0:
B; = 1} is assumed to be independent®df Thus, we obtain

Ca _ _ €)
E [sinh(ca)} =E [exp( a|NyT; )}
—E | ex _alNl (5(3) d_efsu R(3))
00 2 S(3) 2
_ \/?/ E |:S§_3) eXp(_w exq_ay) dy,
T Jo 2

after some elementary change of variables.
Inspection of the right-hand side of (1.2) shows that it is the Laplace transform, with
respect to the argumeant of the function

/2
(coshiny/2))?’
Consequently, from the injectivity of the Laplace transform, we deduce that (1.2) is
equivalent to
3)\2
2 ) y2(s5Y) n/2
—E|S,” exp| — = . 4.1
\/; [ 1 Xp( 2 (coshry/2))2 (4.1)

Multiplying on both sides of (4.1) by and integrating with respect tooverR ., we can
determine all the positive momentsBf>: for a > 0,

2an72a+1/2 00 x2a

I'a+1/2) Jo (coshx)?2 dv. (4.1)

E[(1{ )] =

(See also Pitman and YoLJ].) We note that the negative moments]Q(?), which are
calculated in Yor 18, Ch. XIl], are in formal agreement witt#.1'); see also, for similar
computations related to the Riemann zeta function in terms of theréﬁfnok ?1(3) of two
independent copies df1(3), Williams [16, p. 369]. The integral on the right-hand side of
(4.1') may be explicitly computed in terms of the gamma and Riemann zeta functions (see
Gradshteyn and Ryzhik[ p. 352]); we obtain: for: > O,

20t =201 — 2120 (a 4+ )¢ (2a), ifa #1/2,
V2/7In2, if a =1/2.
We now give two confirmations of (4.1).

(i) Recall that the Fourier transform (@) of the function

/4

-, -

(coshiry/2))?
is £/sinh&, see e.g. the table in Biane and Y8F.[Thus, (4.1) is equivalent to

2,¢(3y2
o0 . A _Y9(877) &
N . dy expi&éy)E |:S1 exp( — >:| = Sinhe’

E[(TP)*] = :

y
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and it is now easily shown that the left-hand side is equal to

i)
Pl—5 T ;

which as we have already recalled is equdi teinhé.
(i) Our second confirmation of (4.1) consists in showing that it is equivalent to the
well-known Kolmogorov—Smirnov law:
|
suplb(u)? &' Tﬁ)z (4.2)
u<l

To show this, we use a particular case of the following.

THEOREMA. (Agreement formula; Biane and Yo3][ Pitman and Yor12]) LetR andR
be two independent Bessel processes of dimedsatarting from zero7 andT their first
hitting times of one. Defing by connecting the paths & on [0, T] andR on [0, T] back
to back:

t =

o~

1 def | Ry, ifr<T,
Ry, 7, ifT§t§T+?,

and letR"" be obtained by Brownian scaling &fonto the time scalg0, 1]:
or def Rur+7)

VT +T

Let R be a standard Bessel bridge of dimensionThen for all positive or bounded

measurable functiong : C[0, 1] — R,
E[F(R™)] = csE[F(R”)(M")?>~),

O<u<l

where
M sup RO = (1 +7)722,
O<u<1
cs L 206-2/2p (5 /2.

Remark.A detailed study of the law of syp, -4 RP" is made in Pitman and Yof.B] with
the help of the agreement formula.

We now consider the particular ca8e= 1; we obtain the following relationship
between sup.; |b(u)| andT + T

2 ~ ~
\/; E [f (sup|b(u)|)} =E[(T 4+ T) V25T +T)"V?)]. (4.3)

u<l

Now, on the one hand, we have

2
y ~ . 1
E |:exp<—7(T + T)>:| = 7(coshy)2

and, on the other handf’) law 1/ T1(3); together with these remarks, the comparison of
(4.1) and (4.3) yields the well-known Kolmogorov—Smirnov identity (4.2).
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4.2. For the reader’s convenience, we now present a few formulae and identities about
the laws of the suprema of the Brownian bridge and meander processes (see Biane and Yor
[3], Chung H], Kennedy [LO]):

52 4 supb(u) 22 7O, (4.4)
u<l
. n nz'xz
P(Sy <x)=P fgflb(u)|< = =n;oo(—1) exp| ——— (4.5)
_ 1N2.2
_ Ve exp<—w> . x>0 (4.6)
x = 2x

The nextitem is a collection of a few analytical formulae. From a probabilistic point of
view, they ensue from (1.3). Note that (4.7) is a particular case of (1.4)t:

/00 bzb Py _1+2”Z( 24 4.7)
+x smh(nx) k+b

/Oo b2—l|9—x2 coshrx) de = 4}2 (2k( 11);{_:217 (4.8)

/Z b2 —l|7— x2 (cosr(lmc))2 de = ; ki: m (4.9)

/Z ﬁmm}cﬂ dr = 8:2 (2% — 1)((22112](__11) pTt (4.10)

Again, formulae (4.7)—-(4.10) can be interpreted in a probabilistic way. They

respectively lead to the following identities, where (4.11) is a rewriting of (4.1). We write

s e SURy<y < | Bsl, d1 ®infir > 1: B, = 0) ands\P € def SURy<;<1 By — infos<1 By

(‘R’ for ‘Range’). Fory € R,

\/EIE |:S§3) exp(—yz%P)z): = ﬁ/iﬂ))z’ (4.11)
e [si” exp< 5 2(1))2>_ - T (4.12)
2o [ng> exp(—yzL;))z>: - 22 (4.1
ool )2

Observe that by the above agreement formula (Theorem A, &vith 1), (4.13) can be

rewritten as
2
E Y cuop? /2
{exp< 2 SupP (“))} sinh(zy/2)’

which is a re-confirmation of (4.2).

t For some enjoyable discussion about (4.7)—(4.9) of a purely analytical naturé9see [
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Remark.The reader will find in Jurek9] a useful discussion of the right-hand sides of

(4.11)—(4.14), from the point of view of infinite divisibility.

5. Proof of Theorem 1.2
Applying Theorem 1.1 to the functiofi(u, v) = uv yields

E(gy) = 3E(g + %E[gzUb:“{Sm<4/g/(l—7g)Sb}] +E[g?(1- 5)11{Sm<4/—g/(lfg)n71}]
f
L h+ b+ I3,

with obvious notation. Sincg has the arcsine law, it immediately follows that

(5.1)

ge

L =

The computation ofl; is based on the following lemma. In the rest of the section,
(r,0 < t < 1) denotes a standard three-dimensional Bessel bridge, independent of the
random variablé/ which is uniformly distributed in(0, 1).

LEMMA 5.1. For anya > 0, both quantitiesE[(1 — U)1j,,~a)] and E[U 1, ~4] are
equal to €2¢° /2. ConsequenthP(ry > a) = e~24°,

Proof. Recall that(r;,r < 1) can be realized ag1 — 1)R;;1—1),t < 1), whereR is a
three-dimensional Bessel process starting from zero. Accordingly,

law

U, r2) 2 (U, UL —-U)R?).

A few lines of elementary computations, together with the fact fés a chi-square
variable, yieldE[(1 — U)Xy, >q)] = e—zaz/z_

On the other hand, by the symmetry of the Bessel bride U, ry) law (U, ry), which
completes the proof of the lemma. |

We now evaluatd,. By (2.4) and Lemma 5.1,

1
I = QE[gz(l — U, < 7=y
1 2(1 -
_ 1l [gz exp(—g‘g’%ﬂ .
! g

Using the exact Laplace transform&# (taking into account the identity in law (4.5)), we
obtain

L 1E[ 2 2J/(1—g)/gn }
2 ¥ SN2/ - g)/g1)

4
/‘Oo dx x
o (1+x?)3sinh2rx)’
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the second equality following from (1.3). On the other hand, differentiating on both sides
of equation (1.4) gives, far > 0 andb > 0,

1 [ dx x 1 a & (=D
= = —y = 2
p- /0 b2 + x22 sinhax)  4ab3 | 2b k; (b + km)2’ (5-2)
1/"" e x 8  ag CD o U
mJo b2+ x?)3sinhax)  16ab® * 83 & (ab+km)?  4b% & (ab+ km)3
(5.3)
Applying (5.3) toa = 27 andb = 1 yields
L=3%—4An%-3:@3). (5.4)

It remains to computds. Recall the distribution function of,, from (4.6). By
conditioning on(g, 6, m1), we obtain

0 N2.24
13=@E[g2214<(2k 21)” 1gg)}, (5.5)
k=1

1-6 A
Loy & [%1 exp(—%)}, A > 0.
1

Note that, by means of Proposition 3.1, the derivative 66 I4(1) is

17
I(0) = —-E [ ~39 exp(—%)]
my my

— _\/g]E[(4U2?1) exp—A(AUZTL + T®))].

where

SinceEe 471 — exp(—+/2a) andEe—<7® = ~/2a/sinh+/2a for all a > 0, this yields
7 [eV2 e2V2
Loy =-/= - . :
2\ 20 A/2) sinh~/21
Going back to (5.5), we have

o0 e efzx
I3 = —2nIE|:g2/ — — = dx:|
@-DrA-g)g \ X  sinhx

From here, a few lines of elementary computations based on (5.2) and (5.3), together with
the fact thatg has the arcsine law, readily yield the following:

L=-3+ 7%+ ¢ 3. (5.6)

SinceE(gy) = I1 + I> + I3, assembling (5.1), (5.4) and (5.6) completes the proof of
Theorem 1.2. |
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6. Martingale representations
The covariance betweenandy may be expressed as the expectation of the covariation
between the martingales with final valugandy . Thus, it is natural to look for the explicit
Itdo—Clark representation @f (hence, ofy) as a stochastic integral.

Let,forO<r <1,

¢ Esups <12 B, =0),
def
v E'supls <1 :|By| = Ly},

(thusg = g1 andy = y1). Let (F):>0 be the natural filtration oB. For any bounded
Borel functiong, andr € (0, 1),

E(p(9) | Fi) = 0(8)P(g <t | Fi) + E(@(g) Yg=r) | Fo). (6.1)
According to Jeulin§] (see also Yor18, p. 42]),
P(gsuft):nv( 'f"t), (6.2)

where

W (x) d—ef\/g /0 e /2dy. (6.3)

On the other handig > ¢} = {inf,<,<1|B,| = 0}. On{g > ¢}, g is identical to
supu € (¢, 1) : B, = 0}. By means of the (strong) Markov property, it is easily checked
that

2 B?
E(p@)Nigssy | Fr) = \/;/; «/% p( t)) du. (6.4)

We mention that the constagf2/7 on the right-hand side of (6.4) comes fronfiElm;).
In the particular case(x) = x, we have the following.

PROPOSITIONG.1. Define the martingaless®’ d=EfIE(g | 7y, MY d=8fE(y | ), and

the Brownian motiorg, def [é sgnB,) dBy. Then

M® =E(g)+/0 ©) q4p,, (6.5)

MY —E()/)—i-/ ) sgn(By) dB,. (6.6)
0

Here,E(g) = E(y) = 1/2,and

(o) def (s—gs>sgrrB> B _< . (|Bs| ))
\/7 p( 2(1_s)) 1-v T Bs;, (6.7)

L0 e \[ (s - ys)sgrrﬁs) exp<_ 2(1ﬂ3 S)) ~ (1_ v ('fil» 5. (6.8)
— J1—5

whereV is the function defined in (6.3). Consequently, we obtain

cov(g, y)=E( f 1 (V)sgn(B)ds) (6.9)
0
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Proof. By (6.1),

th(g) = g dZ[ —+ Z[ dgt + dX;,

where

def
X; —e E(g]l {g>1} | -7:t)

andV is the function defined in (6.3). In view of (6.4), we have
= H(tv Bl‘)s
where

H(, x) %

efi/ IS S I
) Ja-nazw P\T2u-0p

From the formula

1/t 1 /2 22
— = A
= v(l = v) ( ) dv = / e dy, (6.10)

we easily deduce that

_(1_ |x] B x|
H(t,x)_t<1 w( 1_t>>+(1 t)h(Jl——t)’ (6.11)

def 1 Vv y?
h(y) = /0 T exp(—zv) dv.

Applying Itd’s formula to the semimartingalés andX, = H (¢, B;) (with H in the form
of (6.11)) readily yields (6.7).

To check (6.8), we rewrite (6.7) asy F(B,,u < s). We can apply the same
argument to the Brownian motigs) = fo sgn(Bs) dB; = |B;| — L;, to see that

with

(g) def

u? =500+ [ w0 ap =5+ [ u sasa.

wherepl”) = F(B.,u < s). Using the form ofF in (6.7) yields (6.11). This completes
the proof of the proposition. |

Remark 6.1.1In general, for any bounded Borel functign we can evaluate the

martingale representation o1 ¥’ " E(o(g) | F,) by means of (6.1), (6.2) and (6.4).
Indeed, instead of (6.5), we have

t
M =B + [l d,
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00 el / (p(s) — w(gs))Sgr(B ) ox ( B2 )
p —_
2(1—y)

B, @(s + (L= s)u) — p(s) B?
Ca(l—s) /0 u3/2(1 — w2 eXp(_ 2(1—s)u) u

The martingale representation Bfo(y) | F;) is derived directly from the preceding
formulae. Consequently, we obtain an analytical formula for(@®y), ¢(y)) which
generalizes (6.9) above.

where

Remark 6.1.2Formula (6.10) may be seen as an analytical application of the identity in
law,
N?2 law 2Lg

where& denotes an exponential variable with mean one, independentarid N is as
before a Gaussiai'(0, 1) variable. For further discussions on (6.10) and related formulae,
see Yor L7].

7. Moments of9, mj)
We determine the joint moments @fandm1.
PROPOSITION7.1. For (p, ¢) € N?,

1/2
E@©7m}) =

T > 2ptg-1 —2).
H@p+q+bﬂﬂ®”ﬁ@ﬁA P AmE L@, ()

2
fr() =E |:(T(3))1’ eXp(—%T@))] '

Moreover, f,, satisfies the recurrence relation:

where

—hfpa1(h) = [0,
fox) = A/sinh(h).

Whenp = 1, (7.1) becomes

72T (g +1)

M@ /220 2R @ TDR-2NG+2 - +2). (7.2

E@m?) =

where¢ (+) is as before the Riemann zeta function. In particular,

E@©) = in% - 2.

Proof. Itis an immediate consequence of Proposition 3.1 that

E@67m]) = \/gE((T@))pTl_(z”‘”l)/ ?).
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Since

o~ @pa+D/2 _ 1 / ¥ et @pta-D/2 g,
I'(2p+q+1/2) Jo
1

B I'(2p + g +1)/2)2@r+a=1)/2

* .2
/ ef)n x/2A2p+q d)\”
0

it follows from (3.2) that (writinga (p, ¢) & 712/ T((2p + ¢ + 1)/2)2@r+0)/?2)

o0 )»2 )\2
E@©7m?) =a(p,q)/ A2PHE ((T®)? exp —ET@) E ( exp —?4U2T1 dx
0
o0 2
“(”2’ 9) / A2 Ha-1g ((T<3>>Pexp<—%T<3>)>(l—eﬂ) d,
0

proving (7.1).
To check (7.2), note that by the relation betwgfgrand f1,

a(l,q)
2

E@m]) = / A7(1—e ™) fh () da
0

1, )
0
00 e—A
=a(l,q) / m(q,\‘i(l — ey 4 209 le= 2y d
b 1-

x oo
=a(l, q)(qF(q +1+ 22/ 34+l (3+2m)1 dk)
n=0v0

o 1
=a(l, q)(qF(q +D+2MG+2) ) 7>
n=0

— (34 2n)9+2
Since
s 1
;W =0(q+2) —-1-2"4Drg +2)
=1-279*) g +2) -1,
this yields (7.2), and thus completes the proof of the proposition. |

8. Some related computations
8.1. The probability of¢ > y. Recall thatnq is Rayleigh distributed, i.d(m1 € dx)
= xe*xz/zll{»o} dx. By (2.2),

P(g>y)=P(Sm< V8 n71>
1-g

[ow(-355%)]
( n/g/(1—g) )
sinh(z/g/(T—¢)) /)

E
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In view of (1.3), this implies

y dy

2 _2In2-1.
sinh(y) 1+ y?

P<g>y>=2/
0

8.2. The expectation omax(g, y). According to Theorem 1.1,

1 1
Emaxg, y)) = 3E@) + 3B s, - erags,) T E@s, < vera—gm))-

Sinces, &, ' 171, and sinceiiy is Rayleigh distributed, we obtain

(g 2n/(1—-g)/g )
sinh2r/(1T=¢)/g) /)’

E(gdys, < vera—gs,) =

o ol /A-¢)/g
(&5, < yera=gim)) = gsinh(yr\/m) .

Again, by making use of (1.3), we arrive easily at

E(maxg, y)) = 3 — 572
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