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In a recent paper, Girard (2012) proposed to use his recent construction of a geometry of

interaction in the hyperfinite factor (Girard 2011) in an innovative way to characterize

complexity classes. We begin by giving a detailed explanation of both the choices and the

motivations of Girard’s definitions. We then provide a complete proof that the complexity

class co-NL can be characterized using this new approach. We introduce the non-

deterministic pointer machine as a technical tool, a concrete model to compute algorithms.

1. Introduction

Traditionally, the study of complexity relies on the definition of programs based on some

abstract machines, such as Turing machines. In recent years, a new approach to complexity

stemmed from the so-called proofs-as-program – or Curry–Howard – correspondence

which allows to understand program execution as a cut-elimination procedure in logic.

This correspondence naturally extends to quantitative approaches that made it possible

to work on complexity with tools coming from logic. Due to its resource-awareness, linear

logic (LL) is particularly suitable to treat computational questions, and many bridges have

been built between complexity classes and this formalism. To name a few, elementary

linear logic (ELL) (Danos and Joinet 2003), soft linear logic (Lafont 2004) and bounded

linear logic (Dal Lago and Hofmann 2010) characterize complexity classes, but only

deterministic, sequential and equal to P (polytime) or above. New directions have recently

been explored to characterize other complexity classes: SBAL (Schöpp 2007) characterizes

L (logarithmic space), boolean proof nets (Aubert 2011; Terui 2004), was the first success

toward a characterization of parallel classes.

All those attempts belong to the field of implicit computational complexity (ICC). One

of the main advantages of the ICC approach is that it does not refer to a particular

model or an external measuring condition. We only have to consider language restrictions

(for instance by limiting the primitive recursion) or to infer the complexity properties

of a program, for instance with techniques like quasi-interpretations. Linear logic offers

a particularly nice framework to study complexity questions since the decomposition

† This work was partly supported by the ANR-10-BLAN-0213 Logoi, the ANR-08-BLAN-0211-01 Complice

and the GDR-IM’s ‘visiting PhD student’ Program.
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of implication into a linear implication and a duplication modality allows some fine

tuning of the rules that govern the latter. All the previously quoted attempts are implicit

characterization of complexity classes, as those logical system rest on the limitation of

the computational power of LL. Next to the restrictions of recursion and the rewriting

system with quasi-interpretation, this approach exhibits several interesting results as there

is no need to perform the computation to know the space or time needed.

The geometry of interaction program (Girard 1989b) was introduced by Girard a

few years after the introduction of LL. In a first approximation, it aims at giving an

interpretation of proofs – or programs – that accounts for the dynamics of cut-elimination,

hence of computation. Since the introduction of this program, Girard proposed several

constructions† to fulfill this program (Girard 1989a,b, 2011). Due to the fact that they are

centered around the notion of computation, these constructions are particularly adapted

to study computational complexity (Baillot and Pedicini 2001; Dal Lago 2005).

The approach studied in this paper, which was proposed recently by Girard, differs

from the previous works on complexity. Indeed, though it uses the tools of Girard’s

geometry of interaction in the hyperfinite factor (Girard 2011), its relation to the latter is

restricted to the representation of integers which is, in this particular setting, uniform‡:

each integer is represented as an operator Nn in the hyperfinite type II1 factor R. By using

an operator-theoretic construction – the crossed product – it is possible to internalize some

isomorphisms acting on R. These internalized isomorphisms can be understood as sort

of ‘basic instructions’ one can use to define a sort of abstract machine. Such an abstract

machine is thus an operator constructed using these basic instructions: the operators in

the algebra generated by the internalizations of the isomorphisms. One can then define

the language accepted by such an operator φ: the set of natural numbers such that the

product φNn is nilpotent. We will only refer to co-NL and will not use the famous result

that it is equal to NL (Immerman 1988; Szelepscényi 1987), because it is more natural to

think of our framework as capturing complementary of complexity classes.

In this paper, we present in detail a first result obtained from this approach: considering

the group of finite permutations of the natural numbers, we can obtain a characterization

of the complexity class co-NL. To ease the presentation and proofs of the result, we will

introduce non-deterministic pointer machines (NDPM), which are a new characterization

of co-NL in terms of abstract machines.

1.1. Outline

We start (Section 2) by explaining in detail, with numerous examples, how the proofs

representing binary integers are represented by graphs in the setting of geometry of

interaction, graphs that can be then seen as matrices. Computation will then be represented

by the computation of the iterated products of a matrix PN where N is a matrix

† The interested reader can find a more unifying approach in the second author’s ‘Interaction Graphs’ (Seiller

2012a).
‡ All (size of) inputs are represented as object in a unique space, whereas the naive GoI interpretation of

integers as matrices (see Section 2) would yield matrices of varying sizes, hence not all elements of a single

algebra.
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representing an integer and P is a matrix representing the program. The nilpotency of

this product will represent the fact that the integer represented by N is accepted by the

program represented by P .

But the representation of an integer as a matrix is non-uniform: the size of the matrix

depends on the integer considered. Since we want the representations of programs to

be able to handle any size of input, we embed the matrices representing integers into

the hyperfinite factor, whose definition is recalled in Section 3. Operators that represent

programs are constructed from finite permutations, which can be internalized – represented

as operators – using the crossed product construction. This allows them to perform some

very simple operations on the input. Namely, they will be able to cope with several copies

of the input and to scan them independently. However, since the representation of integers

in the hyperfinite factor is not unique, one needs the notion of normative pair (Subsection

4.2) to guarantee that a program is insensitive to the chosen representation of the integer.

We next introduce, in Section 5, a notion of abstract machines – non-deterministic

pointer machines (NDPM) – well suited to be represented by operators. This model is very

close to multi-head finite automata, a classical characterization of logspace computation,

but we begin this section by presenting its specificities. We then prove that NDPMs can

recognize any set in co-NL by providing an example of a co-NL-complete problem solved

by a NDPM and a mechanism of reduction between problems.

We then define (Section 6) an encoding of NDPMs as a certain kind of operators –

named boolean operators, which proves that co-NL is contained in the set of languages

accepted by such operators. To show the converse, we first show that checking the

nilpotency of a product PN in the hyperfinite factor, where P is a boolean operator and

N represents an integer, is equivalent to checking that a certain matrix is nilpotent (this

rest on the quite technical Lemma 31). Finally, we can show that deciding if this matrix

is nilpotent is in co-NL.

2. Binary integers

In this paper, we will be working with binary integers. In this section, we will explain

how it is possible to represent these integers by matrices. As it turns out, representation

by matrices is not satisfactory, and it will be necessary to represent integers by oper-

ators acting on an infinite-dimensional (separable) Hilbert space, as it will be done in

Section 4.

In intuitionistic logic, binary lists are typed with ∀X (X ⇒ X) ⇒ ((X ⇒ X) ⇒ (X ⇒
X)). In ELL, the type of binary lists is as follows:

∀X !(X � X) � (!(X � X) �!(X � X)).

To a binary integer† corresponds a proof of the sequent �?(X⊗X‹), ?(X⊗X‹), !(X � X).

One can easily read from a proof of this sequent the binary list it represents by looking

at the occurrences of contraction (and in some cases, weakening) rules. We develop below

† As binary lists trivially represent binary integers, we may focus on binary integers for free.
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three examples: the empty list �, the lists �0 and �110. In these examples, we labelled

the variables in order to distinguish between the different occurrences of the variable X.

This is necessary because we need to keep track of which formulas are principal in the

contraction rule. This distinction, which by the way appears in geometry of interaction,

is crucial since it may be the only difference between the proofs corresponding to two

different binary lists. For instance, without this information, the proofs representing �110

and �010 would be exactly the same‡.

To each sequent calculus proof, we associate a graph which represents the axiom links

in the sequent calculus proof. The vertices are arranged as a table where the different

occurrences of the variables in the conclusion are represented on a horizontal scale, and

a number of slices are represented on a vertical scale: the contraction is represented in

geometry of interaction by a superimposition which is dealt with by introducing new

copies of the occurrences using the notion of slices. In previous works (Seiller 2012a,b),

one of the authors showed how to obtain a combinatorial version of (a fragment) of

Girard’s geometry of interaction in the hyperfinite factor. Though the graphs shown here

are more complex than the ones considered in these papers (in particular, the edges may

go from one slice to another), they correspond exactly to the representation of binary lists

in Girard’s framework§.

• The proof representing the empty list � uses the weakening rule twice:

ax

� X(S )‹ , X(E) `
� X(S ) � X(E)

!
�!(X(S ) � X(E))

?w

� ?(X(0i)⊗X(0o)‹), !(X(S ) � X(E))
?w

� ?(X(0i)⊗X(0o)‹), ?(X(1i)⊗X(1o)‹), !(X(S ) � X(E)) `
� ?(X(0i)‹ � X(0o)‹), ?(X(1i)⊗X(1o)‹), !(X(S ) � X(E)) `
� ?(X(0i)‹ � X(0o)‹), ?(X(1i)‹ � X(1o)‹), !(X(S ) � X(E)) `
� ?(X(0i)‹ � X(0o)‹), (!(X(1i) � X(1o)) � (!(X(S ) � X(E)))) `
� (!(X(0i) � X(0o)) � ((!(X(1i) � X(1o)) � (!(X(S ) � X(E)))))

∀
� ∀X (!(X(0i) � X(0o)) � (!(X(1i) � X(1o)) �!(X(S ) � X(E))))

We will use a double line in the following to ignore the bureaucracy of introducing all

the `. The corresponding graph is:

(0o, 0) (0i, 0) (1o, 0) (1i, 0) (S, 0) (E, 0)

• The proof representing the list �0 (resp. �1) uses a weakening to introduce X(1i) �
X(1o) (resp. X(0i) � X(0o)):

‡ Or more precisely, they would be indistinguishable. This is consequence of the fact that the contraction rule

in sequent calculus does not distinguish which formulas it is contracting, even though it should in order to

be correctly defined. For instance, there are more than one proof of � A,A obtained from � A,A, A by means

of a contraction rule, but even though these are different, they are indistinguishable with the usual syntax of

sequent calculus.
§ For more details, one may consult Seiller’s PhD Thesis (2012c).
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ax

� X(S )‹ , X(0i)
ax

� X(0o)‹ , X(E)
⊗

� X(0i)⊗X(0o)‹ , X(S )‹ , X(E) `
� X(0i)⊗X(0o)‹ , X(S ) � X(E)

!

� ?(X(0i)⊗X(0o)‹), !(X(S ) � X(E))
?w

� ?(X(0i)⊗X(0o)‹), ?(X(1i)⊗X(1o)‹), !(X(S ) � X(E))

�!(X(0i) � X(0o)) � (!(X(1i) � X(1o)) �!(X(S ) � X(E)))
∀

� ∀X !(X(0i) � X(0o)) � (!(X(1i) � X(1o)) �!(X(S ) � X(E)))

The corresponding graph is:

(0o, 0) (0i, 0) (1o, 0) (1i, 0) (S, 0) (E, 0)

(0o, 1) (0i, 1) (1o, 1) (1i, 1) (S, 1) (E, 1)

• The proof representing the list �110 contracts the occurrences X(Ai) ⊗ X(Ao)‹ and

X(1i)⊗X(1o)‹, in bold below:

ax

� X(0i), X(E)‹
ax

� X(1i), X(0o)‹
⊗

� X(0i)⊗X(0o)‹ , X(1i), X(E)‹
ax

� X(Ai), X(1o)‹
⊗

� X(0i)⊗X(0o)‹ , X(1i)⊗X(1o)‹ , X(Ai), X(E)‹
ax

� X(S ), X(Ao)‹
⊗

� X(0i)⊗X(0o)‹ , X(1i)⊗X(1o)‹ , X(Ai)⊗X(Ao)‹ , X(S ), X(E)‹ `
� X(0i)⊗X(0o)‹ , X(1i)⊗X(1o)‹ , X(Ai)⊗X(Ao)‹ , X(S ) � X(E)

!

� ?(X(0i)⊗X(0o)‹), ?(X(1i)⊗ X(1o)‹ , ?(X(Ai)⊗ X(Ao)‹ , !(X(S ) � X(E))
?c

� ?(X(0i)⊗X(0o)‹), ?(X(1i)⊗ X(1o)‹), !(X(S ) � X(E))

� ∀X !(X(0i) � X(0o)) � (!(X(1i) � X(1o)) �!(X(S ) � X(E)))

The corresponding graph is:

(0o, 0) (0i, 0) (1o, 0) (1i, 0) (S, 0) (E, 0)

(0o, 1) (0i, 1) (1o, 1) (1i, 1) (S, 1) (E, 1)

(0o, 2) (0i, 2) (1o, 2) (1i, 2) (S, 2) (E, 2)

(0o, 3) (0i, 3) (1o, 3) (1i, 3) (S, 3) (E, 3)

The edges of the graph describe the scanning of the list. We illustrate this by explaining

how to construct the graph corresponding to the list �11010. Indeed, the graph can be

described directly from the list itself:
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� •S•E
0

1 •o•i
5

1 •o•i
4

0 •o•i
3

1 •o•i
2

0 •o•i
1

Each element of the list lives in a different slice – the integer shown above each element of

the list. Moreover, each element is connected by its output vertex to its successor’s input

vertex (the successor of the last element is �), and by its input vertex to its predecessor’s

output vertex. This gives the following graph, which is the representation of �11010:

(0o, 0) (0i, 0) (1o, 0) (1i, 0) (S, 0) (E, 0)

(0o, 1) (0i, 1) (1o, 1) (1i, 1) (S, 1) (E, 1)

(0o, 2) (0i, 2) (1o, 2) (1i, 2) (S, 2) (E, 2)

(0o, 3) (0i, 3) (1o, 3) (1i, 3) (S, 3) (E, 3)

(0o, 4) (0i, 4) (1o, 4) (1i, 4) (S, 4) (E, 4)

(0o, 5) (0i, 5) (1o, 5) (1i, 5) (S, 5) (E, 5)

Definition 1 (matricial representation of a list). Given a binary representation of an integer

n = �a1 . . . ak of size k �= 0† and its corresponding graph Gn, n is represented by Mn, a

6× 6 block matrix of the following form:

Mn =

0︷ ︸︸ ︷ 1︷ ︸︸ ︷ ∗︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

0 l00 0 l10 s0 0
}

0
l∗00 0 l∗01 0 0 e∗0
0 l01 0 l11 s1 0

}
1

l∗10 0 l∗11 0 0 e∗1
s∗0 0 s∗1 0 0 0

}
∗

0 e0 0 e1 0 0

† We will always assume in the following that the length of the binary integer representing the integer n under

study is denoted k.
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where coefficients are (k + 1)× (k + 1) matrices (the (·)∗ denotes the conjugate-transpose)

defined – for u, v ∈ {0, 1} – by:

— (luv)a,b = 1 if there is an edge in Gn from (uo, a) to (vi, b), and (luv)a,b = 0 otherwise;

— (eu)0,n = 1 if there is an edge from (uo, n) to (E, 0), and (eu)a,b = 0 otherwise;

— (sv)0,n = 1 if there is an edge from (vo, n) to (S, 0), and (sv)a,b = 0 otherwise.

One can simply make sure that no information is lost, the graph Gn – and by transitivity

the input n – is totally and faithfully encoded in Mn.

This representation of binary integers is however non-uniform: the size of the matrix

depends on the size of the binary representation. This is where the use of von Neumann

algebras takes its importance: any matrix algebra can be embedded in the type II1

hyperfinite factor R. To get a uniform representation of integers, we therefore only need

to embed the matricial representation in R. Before explaining this step in Section 4, we

review in the next section some basics of the theory of von Neumann algebras. The aim

of this section is not to introduce the reader to the theory which is much too rich to be

condensed here, but to give some ideas and intuitions on it. In the end of the next section,

we introduce the crossed product construction, an operation which will be fundamental

in the subsequent sections.

3. Von Neumann algebras and crossed products

This section aims at giving a quick overview of the theory of von Neumann algebras.

Most of the material it contains is not needed for understanding the results that follow,

and the reader can skip this section for a first reading. Section 4 uses the fact that we are

working in the type II1 hyperfinite factor, but the only results it uses is the fact that any

matrix algebra can be embedded in a type II1 factor (Proposition 2), the definition of the

crossed product algebra (Definition 5) and some properties of unitary operators acting on

a Hilbert space. The remaining sections of the paper do not use results of the theory of

operator algebras, except for the last section which contains a technical lemma (Lemma

31) whose proof essentially relies on Theorem 6.

3.1. Hilbert spaces and operators

We consider the reader familiar with the notions of Hilbert spaces and operators

(continuous – or equivalently bounded – linear maps between Hilbert spaces). We refer to

the classic textbooks of Conway (1990) for the bases of the theory, and of Murphy (1990)

for an excellent introduction to the theory of operator algebras. We will not dwell on

the definitions and properties of von Neumann algebras, factors, and hyperfiniteness. We

believe all these notions, though used in this paper and in Girard’s, are not at the core of

the characterization, and will not play an important role in the following construction. We

therefore refer to the series of Takesaki (2001, 2003a,b). A quick overview of the needed

material can also be found in the appendix of a paper by one the authors (Seiller 2012b).

We recall that an operator T is a linear map from H – a Hilbert space – to H that

is continuous. A standard result tells us that this is equivalent to T being bounded, i.e.
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that there exists a constant C such that for all ξ ∈ H, ‖Tξ‖ � C‖ξ‖. The smallest such

constant defines a norm on L(H) – the set of operators on H – which we will denote by

‖T‖.
Being given an operator T in L(H), we can show the existence of its adjoint – denoted

by T ∗ –, the operator that satisfies <Tξ, η> = <ξ,T ∗η> for all ξ, η ∈ H. It is easily

shown that T ∗∗ = T , i.e. that (·)∗ is an involution, and that it satisfies the following

conditions:

1 . For all λ ∈ C and T ∈ L(H), (λT )∗ = λ̄T ∗;

2 . For all S, T ∈ L(H), (S + T )∗ = S∗ + T ∗;

3 . For all S, T ∈ L(H), (ST )∗ = T ∗S∗.

In a Hilbert space H there are two natural topologies, the topology induced by the

norm on H, and a weaker topology defined by the inner product.

1 . The strong topology: we say a sequence {ξi}i∈N converges strongly to 0 when

‖ξi‖ → 0.

2 . The weak topology: a sequence {ξi}i∈N converges weakly to 0 when <ξi, η>→ 0 for

all η ∈ L(H). Weak convergence is thus a point-wise or direction-wise convergence.

On L(H), numerous topologies can be defined, each of which having its own advantages

and drawbacks. The five most important topologies are the norm topology, the strong

operator topology, the weak operator topology, the ultra-strong (or σ-strong) topology and

the ultra-weak (or σ-weak) topology. We can easily characterize the first three topologies

in terms of converging sequences as follows:

1 . The norm topology: {Ti}i∈N converges (for the norm) to 0 when ‖Ti‖ → 0 ;

2 . The strong operator topology, which is induced by the strong topology on H: {Ti}i∈N

converges strongly to 0 when, for any ξ ∈ H, Tiξ converges strongly to 0 ;

3 . The weak operator topology, which is induced by the weak topology on H: {Ti}i∈N

converges weakly to 0 when, for any ξ ∈ H, Tiξ converges weakly to 0.

We can show that L(H) is the dual of a space denoted by L(H)∗ containing the trace-

class operators. For further details, the reader may refer to Murphy (1990) or Takesaki

(2001). We remind here of this result only to define the σ-weak topology: if A is a

topological space and A∗ is its dual, the weak∗ topology on A is defined as the point-wise

topology.

3.2. Von Neumann algebras in a nutshell

Let H be a Hilbert space, and L(H) be the set of bounded – continuous – linear maps from

H to itself. It is standard knowledge that L(H) is an associative algebra when endowed with

composition and pointwise scalar multiplication and addition. It is moreover a complete

normed vector space for the operator norm, defined as ‖u‖ = sup{x ∈ H | ‖u(x)‖/‖x‖}.
It is therefore what is called a Banach algebra. On the other hand, it is known that every

element of L(H) has an adjoint operator u∗. This operation (·)∗ is an involution satisfying

(t + u)∗ = t∗ + u∗, (tu)∗ = u∗t∗, (λu)∗ = λ̄u∗, ‖u∗‖ = ‖u‖, and ‖u∗u‖ = ‖u‖2. A Banach

algebra endowed with such an involution is called a C∗-algebra. As it turns out (this is
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the famous Gelfand–Naimark–Segal construction), any C∗-algebra can be represented as

a norm-closed ∗-subalgebra of L(H) for a Hilbert space H.

A von Neumann algebra K is a C∗-subalgebra of L(H), where H is a Hilbert space,

which is closed for a weaker topology than the norm topology: the strong-operator

topology, which is pointwise convergence on H considered with its norm topology. The

first important result of the theory, obtained by von Neumann, is that this requirement

is equivalent to the requirement that K is closed for the even weaker weak operator

topology which is pointwise convergence on H considered with its weak topology. It is

also equivalent to a completely algebraic condition which is the fact that K is equal to

its bi-commutant: let us denote K′ – the commutant of K – the set of elements of L(H)

which commute with every element of K, then K′′ denotes the bi-commutant of K, that is

the commutant of the commutant of K.

The study of von Neumann algebras was quickly reduced to the study of factors, that is

von Neumann algebras K whose center – the algebra of elements commuting with every

element of K – is trivial: i.e. von Neumann algebras K such that K ∩ K′ = C1K. Indeed,

any von Neumann algebra can be decomposed along its center as a direct integral (a

continuous direct sum) of factors. Factors N can then be easily classified by considering

their sets of projections (operators p such that p = p∗ = p2). Two projections p, q are

equivalent in N – denoted by p ∼N q – in the sense of Murray and von Neumann if there

exists a partial isometry u ∈ N such that uu∗ = p and u∗u = q. A projection p is infinite

in N if there exists a proper subprojection q < p (where q � p is defined as pq = q, i.e. as

the inclusion of the subspaces corresponding to p and q) such that p ∼N q. A projection

is finite when it is not infinite. The classification of factor is as follows:

— Type I: N contains non-zero finite minimal projections. If the identity of N is the sum

of a finite number – say n – of minimal projections, N is of type In, and if it is not

the case N is of type I∞.

— Type II: N contains finite projections but has no minimal projections. Then if the

identity of N is a finite projection, N is of type II1, and it is of type II∞ otherwise.

— Type III: all the non-zero projections of N are infinite.

A typical example of type In factor is the algebra of n× n matrices. Similarly, a typical

example of type I∞ factor is the algebra L(H) of bounded linear maps from a Hilbert

space H to itself. Examples of type II and type III factors are more difficult to come by,

and are generally constructed as von Neumann algebras defined from groups, or as von

Neumann algebras induced by the (free and ergodic) action of a topological group acting

on a measured space. Both these constructions are particular cases of the crossed product

construction which is defined at the end of this section.

Proposition 2. Any matrix algebra can be embedded in a type II1 factor.

Proof. Let k be an integer, and M denote the algebra of k×k matrices. Let N be a type

II1 factor. One can find in N a family π1, . . . , πk of projections such that
∑k

i=1 πi = 1 and

which are equivalent in the sense of Murray and von Neumann, i.e. there exists partial

isometries (ui,j)1�i<j�k such that ui,ju
∗
i,j = πi and u∗i,jui,j = πj . We will denote by uj,i the

partial isometry u∗i,j and by ui,i the projection πi. We can then define an embedding Ψ of
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M into N as follows:

(ai,j)1�i,j�k �→
∑
i,j

ai,jui,j .

One can then easily check that Ψ is a ∗-algebra injective morphism.

Among von Neumann algebras, the approximately finite dimensional ones are of

particular interest, and are usually called hyperfinite. These are algebras in which every

operator can be approximated (in the sense of the σ-weak topology†) by a sequence of

finite-dimensional operators (elements of type In factors, for n ∈ N). In particular, the

type II1 hyperfinite factor is unique up to isomorphism (in fact, hyperfinite factors of

almost all types are unique).

The definition we gave of von Neumann algebras is a concrete definition, i.e. as an

algebra of operators acting on a Hilbert space. It turns out that von Neumann algebras

can be defined abstractly as C∗-algebras that are the dual space of a Banach space. In the

next subsection, and more generally in this paper, the term ‘von Neumann algebra’ will

have the meaning of ‘abstract von Neumann algebra’.

3.3. von Neumann algebras and groups

Definition 3 (representations). Let K be a von Neumann algebra. A couple (H, ρ) where

H is a Hilbert space and ρ is a ∗-homomorphism from K to L(H) is a representation of K.

If ρ is injective, we say the representation is faithful.

Among the numerous representations of a von Neumann algebra, one can prove

the existence (Haagerup 1975) of the so-called standard representation, a representation

satisfying several important properties.

The operation that will be of interest to us will be that of taking the crossed product of

an algebra and a group. This operation is closely related to that of semi-direct product

of groups and is a way of internalizing automorphisms. Given an algebra A and a group

G of automorphisms of A, we construct the algebra A � G generated by the elements of

A and the elements of G.

Definition 4. An action of a topological group G on a von Neumann algebra K is a

continuous homomorphism of G into Aut(K).

Definition 5 (crossed product (representations)). Let (H, ρ) be a representation of a von

Neumann algebra K, G a locally compact group, and α an action of G on K. Let

K = L2(G,H) be the Hilbert space of square-summable H-valued functions on G. We

define representations πα of K and λ of G on K as follows:

(πα(x).ξ)(g) = (ρ(α(g)−1(x))ξ(g) (x ∈ K, ξ ∈ K, g ∈ G)

(λ(g).ξ)(h) = ξ(g−1h) (g, h ∈ G, ξ ∈ K).

† In a nutshell, the algebra L(H) is the dual of the algebra of trace-class operators. As a dual, it thus inherits

the traditional weak∗ topology, which is called in the context of von Neumann algebras the σ-weak topology.
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Then the von Neumann algebra on K generated by πα(K) and λ(G) is called the crossed

product of (H, ρ) by α.

An important fact is that the result of the crossed product does not depend on the chosen

representation of K. The following theorem, which states this fact, will be of use in a

technical lemma at the end of this paper.

Theorem 6 (unicity of the crossed product (Takesaki 2003a, Theorem 1.7, p. 241)). Let

(H, ρ) and (K, ρ′) be two faithful representations of a von Neumann algebra K, and let

G be a locally compact group together with an action α on K. Then there exists an

isomorphism between the crossed product of (H, ρ) by α and the crossed product of (K, ρ′)

by α.

As a consequence, one can define the crossed product of a von Neumann algebra and a

group acting on it by choosing a particular representation. Of course, the natural choice

is to consider the standard representation.

Definition 7 (crossed product). Let K be a von Neumann algebra, G a group and α an

action of G on K. The algebra K �α G is defined as the crossed product of the standard

representation of K by α.

A particular case of crossed product is the crossed product of C by a (trivial) action of a

group G. The resulting algebra is usually called the group von Neumann algebra N(G) of

G. As it turns out, the operation of internalizing automorphisms of algebras (the crossed

product) and the operation of internalizing automorphisms of groups (the semi-direct

product) correspond: the algebra N(G�α H) is isomorphic to N(G) �α̃ H where α̃ is the

action of H on N(G) induced by the action of H on G.

4. Integers in the hyperfinite factor

4.1. Binary representation

We will embed the (k + 1) × (k + 1) matrices of Definition 1 in the hyperfinite factor R

to have a uniform representation of the integers: an integer will be represented by an

operator in M6(R) fulfilling some properties. To express them we define, given a sequence

�a1 . . . ak representing an integer n and for j, l ∈ {0, 1}, the sets:

Injl = {1 � i � k | ai = j, ai+1 = l}
InSj = {i = 1 | ai = j}
InjE = {i = k | ai = j}.

Roughly speaking, InSj (resp. InjE) tells us about the first (resp. last) bit of n and Injl is the

set of sequences of a j followed by a l.

Definition 8 (binary representation of integers). An operator Nn ∈ M6(R) is a binary

representation of an integer n if there exists projections π0, π1, . . . , πk in R that satisfy
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∑k
i=0 πi = 1 such that:

Nn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 l00 0 l10 lS0 0

l∗00 0 l∗01 0 0 l∗0E
0 l01 0 l11 lS1 0

l∗10 0 l∗11 0 0 l∗1E
l∗S0 0 l∗S1 0 0 0

0 l0E 0 l1E 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where the coefficients are partial isometries fulfilling the equations (where πk+1 = π0):

l� =
∑
i∈In�

πi+1l�πi (� ∈ {00, 01, 10, 11, S0, S1, 0E, 1E})

π0 = (l0E + l1E)(l00 + l01 + l10 + l11)
k−1(lS0 + lS1).

Proposition 9 (binary and matricial representations). Given Nn ∈ M6(R) a binary rep-

resentation of the integer n, there exists an embedding θ : Mk+1(C) → R such that†

Id⊗ θ(Mn) = Nn, where Mn is the matricial representation of n.

Proof. Let Nn ∈ R a binary representation of n ∈ N, and π0, . . . , πk the associated

projections. Notice that the projections πi are pairwise equivalent.

We now define an embedding θ : Mk+1(C)→ R:

θ : (ai,j)0�i,j�k �→
k∑
i=0

k∑
j=0

ai,jui,j

with:

ui,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(l00 + l01 + l10 + l11)
j−1(lS0 + lS1) if i = 0

(l00 + l01 + l10 + l11)
j−1 if i < j and i �= 0

((l00 + l01 + l10 + l11)
i−1(lS0 + lS1))

∗ if j = 0

((l00 + l01 + l10 + l11)
i−1)∗ if i > j and j �= 0

πk if i = j = k

We can easily check that the image by Id⊗ θ of the matrix Mn representing n is equal to

Nn.

This new representation is a gain in terms of uniformity, as all the integers are

represented by matrices of the same size. But at the same time, as any embedding

θ : Mk+1(C) → R define a representation of the integers, we have to check that they

all are equivalent (Proposition 10) and to define (Definition 11) a framework where the

representation of the integers and the programs can interact as expected.

Proposition 10 (equivalence of binary representations). Given Nn and N ′n two binary

representations of n ∈ N, there exists a unitary u ∈ R such that (Id⊗ u)Nn(Id⊗ u)∗ = N ′n.

† We denote by Id the identity matrix of M6(C). We will allow ourselves the same abuse of notation in the

following statements and proofs in order to simplify the formulas.
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Proof. Let π0, . . . , πn (resp. ν0, . . . , νn) be the projections and l� (resp. l′�) the partial

isometries associated to Nn (resp. N ′n). It is straightforward that π0 and ν0 are equivalent

according to Murray and von Neumann definition, so there exists a partial isometry v

such that vv∗ = ν0 and v∗v = π0. For all 0 � i � n we define the partial isometries:

vi = ((l′00 + l′01 + l′10 + l′11)
i−1(l′S0 + l′S1))v((l00 + l01 + l10 + l11)

i−1(lS0 + lS1))
∗.

We can easily check that:

viv
∗
i = νi

v∗i vi = πi.

It follows that the sum u =
∑n

i=0 vi is a unitary and (Id⊗ u)Nn(Id⊗ u)∗ = N ′n.

4.2. Normative pairs

The notion of normative pair, a pair of two subalgebras (N,O), was defined by Girard

(2012) in order to describe the situations in which an operator in O acts uniformly on the

set of all representations of a given integer in N. Indeed, as we just explained, we no longer

have uniqueness of the representation of integers. An operator representing a kind of

abstract machine should therefore interact in the same way with different representations

of the same integer.

The notion of normative pair therefore depends on the notion of interaction one is

considering. The interaction used by Girard was based on Fuglede–Kadison determinant†.

As a matter of fact, Girard defines his interaction with the determinant but actually uses

nilpotency in his proofs. In order to give more flexibility to the definitions, we chose to

work with an interaction based on nilpotency, which represents the fact the computation

ends. This change in definition does not modify the fact that one can characterize co-NL,

but allows one to consider a broader class of groups‡, and a broader class of languages§.

Definition 11 (normative pairs). Let N and O be two subalgebras of a von Neumann

algebra K. The pair (N,O) is a normative pair (in K) if:

— N is isomorphic to R;

— For all Φ ∈M6(O) and Nn,N
′
n ∈M6(N) two binary representations of n,

ΦNn is nilpotent⇔ ΦN ′n is nilpotent.

Proposition 12. Let S be a set and for all s ∈ S , Ns = R. For all group G and all action α

of G on S , the algebra K = (
⊗

s∈S Ns) �α̂ G – where α̂ denotes the action induced by α on

† A generalization of the usual determinant of matrices that can be defined in a type II1 factor.
‡ The use of the determinant forces Girard to consider only amenable groups, so that the result of the crossed

product in Proposition 12 yields the type II1 hyperfinite factor.
§ In this paper and in Girard’s, we consider languages obtained from finite positive linear combinations of

unitaries induced by the group elements. The positivity of the coefficients is needed so that the condition

involving the determinant implies the nilpotency. However, these conditions are no longer equivalent if one

allows negative coefficients. As a consequence, this new definition of normative pair extends the number of

languages that can be defined.
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the tensor product – contains a subalgebra generated by G that we will denote G. Then

for all s ∈ S , the pair (Ns,G) is a normative pair (in K).

Proof. From the hypotheses, Ns is isomorphic to R. Regarding the second condition,

we will only show one implication, the other being obtained by symmetry. By Lemma 10,

there exists a unitary u such that (Id⊗ u)Nn(Id⊗ u)∗ = N ′n. We define v =
⊗

s∈S u and πv
the unitary in K induced by v. Then πv commutes with the elements of G, so if there exists

d ∈ N such that (φNn)
d = 0, then (φN ′n)

d = (φuNnu
∗)d = (uφNnu

∗)d = u(φNn)
du∗ = 0.

Definition 13 (observations). Let (N,G) be a normative pair. An observation is an operator

in M6(G) ⊗Q, where Q is a matrix algebra, i.e. Q = Ms(C) for an integer s, called the

algebra of states.

Definition 14. Let (N0,G) be a normative pair, and φ an observation. We define the set

of natural numbers:

[φ] = {n ∈ N | φNn is nilpotent, Nn a binary representation of n}.

Definition 15. Let (N,G) be a normative pair and X ⊂ ∪∞i=1M6(G) ⊗Mi(C) be a set of

observations. We define the language decided by X as the set:

{X} = {[φ] | φ ∈ X}.

Corollary 16. Let S be the group of finite permutations over N, and for all n ∈ N,

Nn = R. Then (N0,G) is a normative pair in (
⊗

n∈N Nn) �α̂ S.

In this particular case, the algebra (
⊗

n∈N Nn) �α̂ S is the type II1 hyperfinite factor.

This is one of the reason why Girard considered it, as it is then possible to use Fuglede–

Kadison determinant. From now on, we will consider this normative pair fixed, and we

will study two sets of observations.

Definition 17 (P�0 and P+). An observation (φi,j)0�i,j�6s ∈ M6(G) ⊗Ms(C) is said to be

positive (resp. boolean) when for all i, j, φi,j is a positive finite linear combination (resp. a

finite sum) of unitaries induced by elements of S, i.e. φi,j =
∑

k∈Ii,j α
k
i,jλ(σ

k
i,j) with αki,j � 0

(resp. αki,j = 1).

We then define the following sets of observations:

P�0 = {φ | φ is a positive observation}
P+ = {φ | φ is a boolean observation}.

It is not clear at this point how a program could be expressed as an observation. In

the next section, we will introduce a notion of abstract machines which is well suited to

be represented as an observation. We will then show how one can define an observation

that simulates such a machine.
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5. Non-deterministic pointer machines

We define in this section the notion of non-deterministic pointer machines (NDPM),

an abstract device really close to the multi-head finite automata (Rosenberg 1966), well

known to characterize logspace computation. The two have in common the fact that they

may only move a fixed number of pointers, read the pointed values and according to their

(non-deterministic) transition function change the position of the pointers and their state.

However, we felt it necessary to introduce this model of computation because it has

several peculiarities that will help encode them as operators:

— It is ‘universally non-deterministic’: if one branch of computation rejects, the whole

computation rejects. It is convenient because acceptance is represented as the nilpo-

tency of an operator.

— Acceptance and rejection are in the codomain of the transition function, and not

states, because we want the computation to stop or to loop immediately, and not to

have to define the ‘last movement’ of the pointers.

— The alphabet is fixed to {0, 1, �}, because these are the only values encoded in the

binary representation of the integers.

— Its input is circular, because in the binary representation we can access both the last

and first bits of the integer from the symbol �.

— The ‘initial configuration’ (in fact, the pseudo-configuration, defined below) is a

parameter that will be used to make the operator loop properly.

— The values are read and stored only when the pointer move, because before the

computation starts, the operator cannot access the input.

— If the transition relation is not defined for the current situation, the NDPM accepts,

because that is the way the operator will behave. So acceptation is the ‘default’

behaviour, whereas rejection is meaningful. We could equivalently have forced the

relation transition to be total.

Moreover, we will prove in the following that NDPMs can be modified to always halt,

and to move at most one pointer at a time.

This device may remind of the programming language PURPLE (Hofmann and Schöpp

2009) as we cannot remember any value nor access the address of the pointers, and it

may be interesting to study the relations between the latter and our machines. However,

since this paper is focused on the study of a non-deterministic framework†, we postpone

this question to a future work dealing with deterministic complexity classes. Here, we will

focus on proving that NDPMs can recognize any co-NL set.

A pointer machine is given by a set of pointers that can move back and forth on the

input tape and read (but not write) the values it contains, together with a set of states.

For 1 � i � p, given a pointer pi, only one of three different instructions can be performed

at each step:

pi+, i.e. ‘move one step forward’,

† Since the writing of this paper, an article dealing with a non-deterministic variant of PURPLE has been

published (Hofmann et al. 2013).
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pi−, i.e. ‘move one step backward’,

εi, i.e. ‘do not move’.

We define the set of instructions I{1,...,p} = {pi+, pi−, εi | i ∈ {1, . . . , p}}. We will denote by

�pi the value of the pointer (the address it points at), that is the number of cells clockwise

between � and the bit pointed by pi, i.e. the distance between � and the bit pointed. Note

that the alphabet Σ is fixed to {0, 1, �}.

Definition 18. A NDPM with p ∈ N∗ pointers is a pair M = (Q,→) where Q is the set of

states and →⊆ ({0, 1, �}p × Q)× ((Ip{1,...,p} × Q) ∪ {accept, reject}) is the transition relation.

We write NDPM(p), the set of NDPMs with p pointers.

We define a pseudo-configuration c of M ∈ NDPM(p) as a ‘partial snapshot’: an element

in {0, 1, �}p ×Q that contains the last values read by the p pointers and the current state,

but does not contain the addresses of the p pointers. The set of pseudo-configurations of a

machine M is written CM and it is the domain of the transition relation.

Let M ∈ NDPM(p), c ∈ CM and n ∈ N an input. We define Mc(n) as M with n encoded

as a string on its circular input tape (as �a1 . . . ak for a1 . . . ak the binary encoding of n and

ak+1 = a0 = �) starting in the pseudo-configuration c with �pi = 0 for all 1 � i � p (that

is, the pointers are initialized with the address of the symbol �). The pointers may be

considered as variables that have been declared but not initialized yet. They are associated

with memory slots that store the values and are updated only when the pointer moves,

so as the pointers did not move yet, those memory slots have not been initialized. The

initial pseudo-configuration c initializes those p registers, not necessarily in a faithful way

(it may not reflect the values contained at �pi). The entry n is accepted (resp. rejected ) by

M with initial pseudo-configuration c ∈ CM if after a finite number of transitions every

branch of Mc(n) reaches accept (resp. at least a branch of M reaches reject). We say that

Mc(n) halts if it accepts or rejects n and that M decides a set S if there exists an initial

pseudo-configuration c ∈ CM such that Mc(n) accepts if and only if n ∈ S . We write L(M)

the set decided by M.

Definition 19. Let {NDPM} be the class of sets S such that there exists a NDPM that

decides S .

5.1. One movement at a time

We can prove that for all M ∈ NDPM(p) there exists M ∈ NDPM(p) such that for all

σ1, . . . , σp, q→′ p1, . . . , pp, q
′ at most one instruction among p1, . . . , pp differs from εi – stated

informally, such that no more than one pointer moves at every transition – and such

that L(M) = L(M ′). The number of states of M ′ and the number of transitions needed

by M ′ to decide the same set increase, but that does not affect our machine in terms of

complexity as the number of transitions and the cardinality of Q will not be measures of

the complexity of our machines.
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5.2. Shorthands

We use the symbol ∗ for any symbol among {0, 1, �}, 0/1 for ‘0 or 1’. For instance

(∗, 0, q)→ (ε1, p2+, q
′) will be a shorthand for

(0, 0, q) → (ε1, p2+, q
′)

(1, 0, q) → (ε1, p2+, q
′)

(�, 0, q) → (ε1, p2+, q
′).

5.3. Sensing pointers

We can easily mimic ‘sensing pointers’, i.e. answer the question ‘Is �p1 = �p2?’, by the help

of the following routine, which need a third pointer p3 with �p3 = 0. At every transition,

p1 and p2 move one square left and p3 moves one square right. Two cases arise:

— p1 and p2 reach � after the same transition,

— p1 (or p2) reaches � whereas the other pointer is not reading �.

According to the situation, we encode that they were at the same position or not in

the state. Then p1 and p2 moves at each transition one square right, p3 moves at each

transition one square left, and when �p3 = 0, we resume the computation. We can easily

check that p1 and p2 are back to their initial position, and now we can retrieve from the

state if they were at the same position or not, i.e. if we had �p1 = �p2. Notice moreover

that p3 is back to � and ready to be used for another comparison.

5.4. To express any number

It is possible to express a distance superior to the size k of the input to a routine: j

pointers can represent a distance up to kj . Every time the ith pointer made a round-trip

(that is, is back on �), the i+ 1-th pointer goes one cell right. By acting like the hands of

a clock, the j pointers can encode any integer inferior to kj .

To decode the distance expressed by j pointers p1, . . . , pj , it is sufficient to have j

pointers p′1, . . . , p
′
j and to move them clockwise until for all 1 � i � j, �pi = �p′i.

We will for the sake of simplicity consider that any distance O(kj) can be expressed

by a single pointer, even if it may require several pointers to be properly expressed. We

make this idea formal in the proof of Lemma 25, by defining how to implement a clock

in any NDPM.

5.5. Pointer arithmetic

It is classical pointer arithmetic to prove that with the help of some additional pointers,

NDPMs can compute addition, subtractions, multiplication, division, logarithm and

modulo, i.e. that given two pointers p1 and p2, it is possible to let a third pointer p3

be at �p1 + �p2, �p1 − �p2, �p1 × �p2, ��p1/�p2�, �log(�p1)� or �p1 mod �p2. Needless to

say, those operations permit to establish bit by bit the binary expression of an integer

encoded by �p.
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We will only deal with decision problems and ask ourselves what sets can be recognized

in this framework. It turns out that we can recognize any co-NL-set, and to prove it we

will use the most common method†: we will exhibit a NDPM that can solve a co-NL-

complete problem, and define another NDPM that can reduce any co-NL problem to this

co-NL-complete problem.

Definition 20 (STConnComp). We define the following problem: ‘given a (directed) graph

encoded as a list of adjacences, accept if and only if there is no path from the

source (numbered 1) to the target (numbered n) in the graph’. This problem, known

as STConnComp or REACHABILITYComp, is co-NL complete. We define the set as

follows:

STConnComp = {n ∈ N | n does not encode a graph where there is a path from 1 to n}.

Proposition 21. STConnComp ∈ {NDPM}

Proof. Given a graph of size n, the input will be encoded as

� 00 . . . 00︸ ︷︷ ︸
n bits

1

edges going from1︷ ︸︸ ︷
a110a120 . . . 0a1n−10a1n 1 . . . 1

edges going from n︷ ︸︸ ︷
an10an20 . . . 0ann−10ann 1

where (aij) is the adjacency list, that is to say that aij = 1 if there is an edge from the

vertex numbered by i to the vertex numbered by j, 0 elsewhere. The boxed bits in the

figure above are ‘separating’ bits, between the coding of n and the list of adjacences, and

between the coding of the edges of source i and the coding of the edges of source i+ 1.

We define a NDPM M such that Mc(n) with c = {�, �, �, �, Init} accepts if and only if

n ∈ STConnComp.

The transition relation of M is presented in the Figure 1. Informally, our algorithm

goes as follow:

The pointer p1 counts the size of the path followed. Every time we follow an edge, we

move p1 forward on the string made of n bits (second line of 10). The pointer p2 will scan

the encoding of the outgoing edges of a vertex, ‘followed’ by p3: when p2 is reading aij
then p3 will be at aj1. If aij = 1 (premise of 10), a non-deterministic transition takes place:

on one hand we continue to scan the outgoing edges from i, on the other we increment

p1, place p2 at aj1 and p3 at a11. The pointer p4 ‘follows’ p3 on the n first bits, and if p4

reaches a 1 when p2 reads that there is an edge, it means that there is an edge whose

target is n, and so we reject (11). When p2 finishes to browse the adjacency list of an edge,

we accept (6). If p1 reaches a 1 and p4 reads a 0 (premise of 12), it means that we already

followed n edges without ever targeting the vertex n, so we end up accepting. As we know

that if there is a path from 1 to n then there exists a path of size at most n, Mc(n) will

accept if and only if n ∈ STConnComp, elsewhere Mc(n) rejects.

† That can be reminded to the reader in Arora and Barak (2009), pp 88–89.
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Fig. 1. The transition relation to decide STConnComp.

We now adapt the classical logspace-reduction from any problem in NL to STConn.

Given a co-NL-problem Pb, there exists a non-deterministic logspace Turing Machine M

that decides it. To solve Pb is just to establish if there is no transition from the initial

configuration to a rejecting configuration of M, once the computational graph of M is

given. We now make some assumptions on M and prove how a NDPM can output any

bit of the transition graph of M.

Given any set Pb ∈ co-NL, there exists a non-deterministic logspace Turing Machine M

such that M accepts n† iff n ∈ Pb. We can assume w.l.o.g. that M works on the alphabet

Σ = {0, 1}, does not cycle, always halts, has one read-only tape and one read-write

working tape whose precise bound is k× (log(|n|)). Those are classical ‘hacking’ of Turing

Machines that should not surprise the reader. We may also assume that the names of the

states are written in binary, so that for |Q| = q the number of states of M, any state may

be written with �log q� bits. At last, we may assume that the instructions to move the

† Meaning that all branches reach accept after a finite number of transitions.
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heads are written with two bits. All those assumptions make clear that M may be entirely

described with a binary string.

We know that M(n) has less than

2(k×(log(|n|))) × (k × (log(|n|)))× (log(|n|))× �log(q)�

different configurations. It reflects respectively the content of the working tape, the position

of the read-write and read-only heads and the state. This is equivalent to 2O(log(|n|)), so we

know there exists a d such that M(n) has less than |n|d different configurations.

Any configuration of M(n) may be described as

01000 . . . 010 . . . 011︸ ︷︷ ︸
Position of the read head

Working tape and position of the working head︷ ︸︸ ︷
σ0σ0 . . . σ0σ1σ0 . . . σ0σ0σ0σ0σ0σ0σ0 01 . . . 10︸ ︷︷ ︸

state

where the �log(|n|)� first bits encode the position of the reading head in binary, σ

corresponds to the bits on the working tape and the bit that follows σ equals 1 iff the

working head is on that cell. The remaining �log(q)� bits express the current state.

This binary string is of length �log(|n|)�× (2× (�log |n|� × k))×�log(q)�, i.e. there exists

a e such that this string is of length inferior to e× log(|n|)2.
Among all the binary strings of size e × log(|n|)2, some correspond to configurations,

and some do not (for instance because the working head is supposed to be in several

places at the same time) – we will call them ‘phantom configurations’.

The configuration graph of M on input n is simply the graph where configurations are

vertices, and there is an edge between two vertices iff there is a transition in M(n) between

the two corresponding configurations.

Lemma 22 (pointer-reduction). For all non-deterministic logspace Turing Machine M,

there exists a NDPM T such that for all n, given a pointer pd with �pd = j, T accepts iff

the j-th bit of the encoding of the computation graph of M on input n is 1, rejects if it is

0.

Proof. Recall we use the encoding of the proof of Proposition 21 to express the encoding

of the configuration graph of M. The NDPM T will act as a ‘transducer’ as follow:

— It computes the number of binary strings of size e× log(|n|)2. This number is bounded

by 2e×log(|n|)2 and we saw previously that a NDPM could express such distances. Then

T compares this value to j : if j is inferior, it rejects, if j is equal, it accepts, elsewhere

it goes on. This reflects the initial bits set to 0 to express in unary the size of the

graph.

— Elsewhere, T establishes if j corresponds to a ‘separating bit’ and accepts or rejects

accordingly, that can be simply made with the division and modulo operations.

— Elsewhere, j encodes a query regarding the presence or absence of transition between

two configurations a and b. If a = b, there is no need to explore this transition†, and

† Because that would imply that there is a transition from a configuration to itself, and so M(n) is stuck in a

loop.
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T rejects. Elsewhere T establishes if there is a transition between a and b, and accepts

or rejects accordingly.

This last point needs to be made more precise: if j > 2e×log(|n|)2 and if j does not

correspond to a ‘separating bit’, it means that the value of j corresponds to the absence

or presence of an edge between two vertices. So there exists a and b such that j = aab. A

simple arithmetic of pointers allows us to retrieve those two values expressed as integers

(i.e. as distances).

Then, they are converted to binary strings: the positions of the read-only heads need

a bit of pointer arithmetic to be obtained and compared, but the rest of the integer just

needs to be compared bitwise. The rest of the binary expression of the vertex encodes

directly the configuration, and as all the transitions make only local changes to them,

there is only a constant number of information to remember.

Every time there is a difference between the binary expression of a and the binary

expression of b, T checks that the difference between them is legal regarding the transition

function of M – that may be encoded in the states of T or may be given as a parameter.

The transducer T also have to check that a and b are not ‘phantom configurations’

and that j is not ‘too big’, i.e. does not represent a query on vertices that does not exist.

Corollary 23. co-NL ⊆ {NDPM}

Proof. Let Pb ∈ co-NL, there exists a non-deterministic logspace Turing Machines

N that decides Pb. Suppose given n ∈ N, we will compose the NDPM M that solves

STConnComp with the transducer T that computes the graph of N(n).

Every time M has to read a value, it asks T by letting a pointer be on the position j of

the value it wants to know. There is some kind of layer of abstraction in this composition,

for M goes through the input tape without ever reading the actual values, but asks the

values to T , which actually reads n.

We have to make sure that the j of the proof of Proposition 22 can be big enough:

what is the size of the encoding of the graph of N(n)? We encode it as being of size

2e×log(|n|), i.e. we also take ‘phantom configurations’ to be vertices. The encoding of this

‘completed’ graph – for every string of size e × log(|n|) is taken to be one of its vertex,

even if it is not reachable – is of size O(2log(|n|))2, an expression bounded by a power of

|n|, so we can express it.

We can suppose moreover that there is a transition between the ‘phantom config-

uration’ encoded by 000 . . . 001 and the initial configuration, and that there exists a

transition between any rejecting configuration and the ‘phantom configuration’ encoded

by 111 . . . 111. This allows us to keep the STConnComp algorithm as is, computing only

if there is no path from the vertex 1 to the vertex n.

The transducer T can compute the configuration graph of N(x) bit-by-bit and pass it

to M which solves STConnComp. So M ◦ T (n) accepts iff there is no path from 1 to a

rejecting configuration in the graph of N(n), i.e. iff N(n) accepts. Hence Pb ∈ NPM.

It turns out that all NDPMs cannot be represented as operators. Indeed, Lemma 29

which establishes the equivalence between NDPMs and operators needs an additional
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requirement: acyclicity. However, as we will now show, a language which is decided by a

NDPM is decided by an acyclic NDPM.

Definition 24 (acyclicity). A NDPM M is said to be acyclic when for all c ∈ CM and all

entry n ∈ N, Mc(n) halts.

Lemma 25. For all NDPM M that decides a set S there exists an acyclic NDPM M ′ that

decides S .

Proof. To prove this, we need to prove that for all n ∈ N of size |n| and c ∈ CM there

exists a c′ ∈ CM ′ such that if Mc(n) does not halt then M ′c′(n) rejects, and if Mc(n) accepts

(resp. rejects) then M ′c′(n) accepts (resp. rejects).

We know that the number of configurations of M – with p pointers – is bounded by

|n|p × (3)p × |Q| that is to say bounded by O(|n|d) for d a constant. So we know that if

M does more than O(|n|d) transitions, it will never halt. To obtain M ′ we will simply add

d + 1 pointers that will behave like the hands of a clock. The first one moves forward

each time we make a transition. Each time the ith one has travelled through the whole

input tape, the i + 1-th one moves forward. When the last one is back on the beginning

of the input tape, M ′ rejects. It ensures us that M ′ – which has apart from that the

same computational behaviour as M – will halt after at most O(|n|d+1) transitions. We

set p′ = p+ d+ 1, and for all q ∈ Q, every time we had in M the transition:

(�i, q)→ (�m, q′)

we add to →′∈M ′ the following set of transitions (for p+ 1 � a < p′):

(�i, �, . . . , �, q)→′ (�m, pp+1+, . . . , pp′+, q’)

(�i, 0/1, . . . , 0/1, q)→′ (�m, pp+1+, εp+2, . . . , εp′ , q’)

(�i, 0/1, . . . , 0/1, ia = �, 0/1, , . . . , 0/1, q)→′ (�m, εp+1, . . . , εa−1, pa+, pa+1+, εa+2, . . . , εp′ , q’)

(�i, 0/1, . . . , 0/1, �, q)→′ reject.

Then, for all c′ = (�i, pp+1, . . . , pp′ ) ∈ CM ′ that does not appear on the left-hand side in the

previous set of transitions, we add c′ →′ reject.
For all c = (m1, . . . , mp, q) ∈ CM we define ct = (m1, . . . , mp, �, . . . , �, q) ∈ CM ′ .
Now take a pseudo-configuration c ∈ CM , several cases arise:

— If Mc(n) was halting, it was in less than O(|n|d) transitions so M ′ct (n) will have the

same behaviour.

— If Mc(n) was entering a loop, M ′ct (n) rejects after O(|n|d+1) transitions.

However, since we supposed that M was deciding S , we know there exists a pseudo-

configuration s ∈ CM such that for all n ∈ N, Ms(n) halts, hence never enters a loop. As

a result, by considering the pseudo-configuration st we can see that M ′ will decide the set

S . Moreover it is clear that for all c′ ∈ CM ′ and all n ∈ N, M ′c′(n) always halt, so M ′ is

acyclic.

Definition 26. Let {ANDPM} be the class of sets S such that there exists an acyclic

NDPM that decides S .
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Proposition 27.

co-NL ⊆ {ANDPM}

Proof. Corollary 23 shows that co-NL ⊆ {NDPM}. Moreover, it is clear that

{ANDPM} ⊆ {NDPM} and the preceding lemma shows that {NDPM} ⊆ {ANDPM}.
As a consequence, we have {NDPM} = {ANDPM} and thus co-NL ⊆ {ANDPM}.

6. Encoding non-deterministic pointer machines

6.1. Encoding a machine

Our aim in this section is to prove (Lemma 29) that for any acyclic NDPM M and

pseudo-configuration c ∈ CM , there exists an observation M•c ∈ M6(G) ⊗ QM such that

for all Nn ∈M6(N) a binary representation of n, Mc(n) accepts if and only if M•c (Nn⊗1QM
)

is nilpotent.

We will define M•c as an operator of M6(G)⊗QM , where

QM = M6(C)⊗M6(C)⊗ · · · ⊗M6(C)︸ ︷︷ ︸
p times

⊗Ms(C).

The intuition is that the jth copy of M6(C) represents a ‘memory block’ that contains the

last value read by the jth pointer. We will therefore distinguish for each copy of M6(C)

a basis (0o, 0i, 1o, 1i, s, e) corresponding to the different values a pointer can read. The

last algebra in the tensor product represents a set of states: we will distinguish a basis

Q ∪ B where Q is the set of states of the machine M and B is an additional set of states

needed for the definition of M•c . To sum up, the distinguished basis of QM considered

will be denoted by tuples (a1, . . . , ap, q). Notice that such a tuple naturally corresponds to

a pseudo-configuration when q ∈ Q.

As a consequence of the tensoring of Nn with the unit of the algebra of states, the

integer is considered at the same time in every possible pseudo-configuration. As a result,

the computation for c a pseudo-configuration represented by the sequence M•c (Nn⊗ 1QM
),

(M•c (Nn ⊗ 1QM
))2, . . . somehow simulates all the computations Mc(n) simultaneously.

However, the representation of reject cannot be done without considering an initial

pseudo-configuration, something that will be explained in the next subsection.

The main difficulty is now to encode the transition relation. In order to do this, we will

encode each couple (c, t) ∈→ by an operator φc,t. The encoding of the transition relation

will then correspond to the sum:

→•=
∑
c∈CM

∑
t s.t. c→t

φc,t.

Before explaining the encoding of basic operations, we first define the projections π0o,

π0i, π1o, π1i, πstart, πend of M6(C) as the projections onto the subspace generated by the

distinguished basis. We moreover define π0· = π0i + π0o and π1· = π1o + π1i to identify the

bit currently read without considering if we come from the left (the output of the bit) or

the right (the input of the bit).
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For the sake of simplicity, we also define the following operators in QM: if c and c′ are

respectively equal to (a1, . . . , ap, q) and (a′1, . . . , a
′
p, q
′), we define the partial isometry:

(c→ c′) = (a1 → a′1)⊗ · · · ⊗ (ap → a′p)⊗ (q→ q′)

where

(p→ p′) =

p

p′

⎛
⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . 1 . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(p ∈ {a1, . . . , ap, q})
(p′ ∈ {a′1, . . . , a′p, q′})

For S a set of states, we will use the notation (S → a′i) (denoted (→ a′i) when S contains

all possible states) for the element that goes from any state in S to a′i, which is defined as∑
s∈S(s→ a′i).

A transition that impacts only the values stored in the subset pi1 , . . . , pil and the state q

will be denoted by

([ai1 → a′i1 ]i1 ; . . . ; [ail → a′il ]il ; q→ q’) = u1 ⊗ u2 ⊗ · · · ⊗ up ⊗ (q→ q’)

where ui = (aij → a′ij ) if ∃j, i = ij , ui = Id elsewhere, and q→ q′ = Id if q = q′.

We are now ready to define the operators needed to encode the basic operations of the

machine. Considering the von Neumann algebra M6(R) ⊗QM as M6(C) ⊗R ⊗QM , we

will define these operators as tensor products u ⊗ v ⊗ w, where u ∈ M6(C), v ∈ G ⊂ R

and w ∈ QM .

6.2. Basic operations

From now on, we consider given a machine M and a pseudo-configuration c ∈ CM .

6.2.1. Move forward (resp. backward) a pointer, read a value and change state. We want

to encode the action ‘move forward (resp. backward) the pointer j when we are in the

pseudo-configuration c = (a1, . . . , ap; q), read the value a′j stored at �pj and change the

pseudo-configuration for c′ = (a1, . . . , aj−1, a
′
j , aj+1, . . . , ap; q′)’. Although the operators we

are going to define are all parametric in q and q′, those parameters will not appear in

their name for the sake of readability.

We first define two matrices [out] and [in] that will be used to keep only the values

that comes next, respectively for the forward and backward move:

[out] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

[in] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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The reader can refer to Definition 8 to see that the application of one of those two

matrices to the input get the desired result.

We then define the operators ←−mj and −→mj , that somehow select the j-th pointer thanks

to the transposition τ0,j that exchanges 0 and j and puts it in the right direction:

←−mj = [out]⊗ τ0,j ⊗ (q→ movej)
−→mj = [in]⊗ τ0,j ⊗ (q→ movej).

Notice that we also changed the state to movej . Finally, we define the three operators

that encode the different actions the machine will make according to which of the three

possible values (0, 1, �) the jth pointer read. Those operators come in two variants, since

in case of a backward move we are going to read the output of a bit, whereas a forward

move leads to the reading of the input of a bit†.

←−
lj,0 = π0o ⊗ τ0,j ⊗ ([→ π0o]j; movej → q′).

←−
lj,1 = π1o ⊗ τ0,j ⊗ ([→ π1o]j; movej → q′).

←−
lj,� = π�o ⊗ τ0,j ⊗ ([→ π�o]j; movej → q′).

We define
−→
lj,0,
−→
lj,1 and

−→
lj,� in a similar way by substituting i to o in the previous equations.

Those six operators {←−lj,b,
−→
lj,b | b ∈ {0, 1, �}} allow to move forward or backward according

to the direction, when the next bit is b and change the state to q′.

To sum up, we encode the backward and forward moves by:

←−mj +
∑

b∈{0,1,�}

←−
lj,b and −→mj +

∑
b∈{0,1,�}

−→
lj,b.

6.2.2. Accept. The case of acceptance is especially easy: we want to stop the computation,

so every transition (a1, . . . , an; q)→ accept will be encoded by 0.

6.2.3. Reject. We want the operator to loop to simulate the reject of the machine. Indeed,

a rejection must ensure that the resulting operator M•c (Nn⊗ 1QM
) will not be nilpotent. A

first naive attempt:

rejectnaive = IdM6(C) ⊗ Id⊗ πreject
shows that it is possible to make the computation loop, as Nd

n �= 0 for all d ∈ N.

((Nn ⊗ 1Q)IdM6(C) ⊗ Id⊗ πreject)d = (Nn ⊗ πreject)d = Nd
n ⊗ πreject.

However, as →• is built as a sum of the basic operations, rejectnaive appears in it, and so

M•(Nn ⊗ 1QM
) cannot be nilpotent‡. This is problematic since we want this operator to

be nilpotent in case of acceptance.

So we have to be a little more clever to insure the operator will loop if and only

if the operator that simulates the reject is reached. To do that, we simply make the

operator go back to the chosen pseudo-configuration c = (a1, . . . , ap; q0) when it reaches

† We consider that �o = start and �i = end.
‡ Remember that Nn ⊗ 1Q = Nn ⊗ Id⊗p

i=1
M6(C) ⊗ πreject +Nn ⊗ Id⊗p

i=1
M6(C) ⊗ (1− πreject).
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this operator. In these way, if reject was reached after applying the machine with a pseudo-

configuration c′, we enforce the computation of the machine on c. As a consequence, if

the integer was accepted by the machine in state c, the rejection that corresponds to a

computation on c′ will be temporary: once rejection attained, the computation restarts

with pseudo-configuration c and will therefore halt accepting.

To encode this, we add two states to the machine – backj and move-backj – for each

j = 1, . . . , p, and we define:

rmj = 1⊗ τ0,j ⊗ (backj → move-backj)

rrj = π0o + π1o ⊗ τ0,j ⊗ ([→ π0o + π1o]j; move-backj → backj)

rcj = πstart ⊗ τ0,j ⊗ ([→ aj]j; move-backj → backj+1) (1 � j < p)

rcp = πstart ⊗ τ0,p ⊗ ([→ ap]p; move-backp → q0).

The operator simulating the reject by making the operator loop is then defined as follows:

rejectc =

⎛
⎝ p∑

j=1

rmj + rrj + rcj

⎞
⎠ + (reject→ back0).

Definition 28. Let M be a pointer machine,→ its transition relation and c a configuration.

The operator M•c is defined as:

M•c =→• +rejectc.

6.3. First inclusions

Lemma 29. Let M be an acyclic NDPM, c ∈ CM and M•c the encoding we just defined.

For all n ∈ N and every binary representation Nn ∈M6(N0) of n:

Mc(n) accepts⇔M•c (Nn ⊗ 1) is nilpotent.

Proof. Let us fix n ∈ N and Nn one of its binary representations. Considering the

representation of the reject it is clear that if a branch of Mc(n) rejects, the operator

M•c (Nn ⊗ 1) will not be nilpotent, so we just have to prove that if Mc(n) accepts then

M•c (Nn⊗1) is nilpotent. We prove its reciprocal: let us suppose M•c (Nn⊗1) is not nilpotent.

In this productNn is given to the operatorM•c that starts the simulation of the computation

of M with input n in every possible pseudo-configuration at the same time. Since the

encoding of M takes in argument a pseudo-configuration c ∈ CM , we know that there

exists a j such that M•c (Nn ⊗ 1)πj is the simulation of Mc(n), but the computation takes

place in the other projections too: for i �= j it is possible that M•c (Nn⊗1)πi loops where for

a d (M•c (Nn⊗1))dπj = 0. We can correct this behaviour thanks to acyclicity: if M•c (Nn⊗1)

is not nilpotent it is because at some point the reject state has been reached. After this

state of reject is reached (let us say after r ∈ N iterations) we know that M•c (Nn ⊗ 1)rπi
is exactly the simulation of Mc(n). If it loops again, it truly means that Mc(n) rejects. So

we just proved that M•c (Nn ⊗ 1) is not nilpotent if and only if (M•c (Nn ⊗ 1))dπj �= 0 for all
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d ∈ N. But it is clear that in this case M with pseudo-configuration c rejects the entry n.

Proposition 30.

co-NL ⊆ {ANDPM} ⊆ {P+} ⊆ {P�0}.

Proof. The first inclusion is given by Proposition 27. By Lemma 29, we have

{ANDPM} ⊆ {P+} since the representation M•c of a couple (M, c), where M is an

acyclic NDPM and c ∈ CM , is obviously in P+. Moreover, since P+ ⊂ P�0, we have

{P+} ⊆ {P�0}.

7. Positive observations and co-NL

To show that {P�0} is included in co-NL, we will show that the product of a binary

representation and an observation in P�0 is the image of a matrix by an injective

morphism. This return from the type II1 hyperfinite factor to matrix algebras is necessary

to prove that we can reduce the nilpotency of an operator to the nilpotency of a

matrix, so that a finite machine can decide it. This fact was used by Girard†, but we

felt it needed to be more precisely stated and proved in the following (quite technical)

lemma.

Lemma 31. We consider the normative pair (N0,G) defined in Corollary 16 and denote by

K the algebra (
⊗

n�0 R)�S. Let Nn be a binary representation of an integer n in M6(N0)

and Φ ∈M6(G)⊗Q be an observation in P�0. Then there exists an integer k, an injective

morphism ψ : Mk(C) → K and two matrices M ∈ M6(Mk(C)) and Φ̄ ∈ M6(Mk(C)) ⊗Q

such that Id⊗ ψ(M) = (Nn ⊗ 1Q) and Id⊗ ψ ⊗ IdQ(Φ̄) = Φ.

Proof. We denote by n the integer represented by Nn and R ∈M6(n+1)(C) its matricial

representation. Then there exists a morphism θ : Mn+1(C)→ R such that Id⊗ θ(R) = Nn

by Proposition 9. Composing θ with the inclusion μ : Mn+1(C) →
⊗N

n=0 Mn+1(C), x �→
x⊗ 1⊗ · · · ⊗ 1, we get:

Id⊗ (

N⊗
n=0

θ(μ(R)) = N̄n ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N copies

where N̄n is the representation of n in M6(C) ⊗ R (recall the representation Nn in the

statement of the lemma is an element of M6(C)⊗ K).

Moreover, since Φ is an observation, it is contained in the subalgebra induced by the

subgroup SN where N is a fixed integer, i.e. the subalgebra of S generated by {λ(σ) | σ ∈
SN}. We thus consider the algebra (

⊗N
n=0 Mn+1(C)) � SN . It is isomorphic to a matrix

algebra Mk(C): the algebra
⊗N

n=0 Mn+1(C) can be represented as an algebra of operators

† Although this point is not dwelled on, this statement is necessary in Girard (2012, Proof of Theorem 12.1,

p.258).
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acting on the Hilbert space CN(n+1), and the crossed product (
⊗N

n=0 Mn+1(C))�SN is then

defined as a subalgebra I of the algebra L(L2(SN,C
(n+1)N )) ∼= M(n+1)NN!(C). We want to

show that (Nn ⊗ 1Q) and Φ are the images of matrices in I by an injective morphism ψ

which we still need to define.

Let us denote by α the action of SN on
⊗N

n=0 Mn+1(C). By definition, I = (
⊗N

n=0 Mn+1

(C)) � SN is generated by two families of unitaries:

— λα(σ) where σ ∈ SN;

— πα(x) where x is an element of
⊗N

n=0 Mn+1(C).

We will denote by γ the action of S on
⊗∞

n=0 R. Then K = (
⊗

n�0 R) �S is generated by

the following families of unitaries:

— λγ(σ) for σ ∈ S;

— πγ(x) for x ∈
⊗

n�0 R.

As we already recalled, Φ is an observation in P�0 and is thus contained in the subalgebra

induced by the subgroup SN . Moreover, Nn is the image through θ of an element of

Mn+1(C). Denoting β the action of SN on
⊗N

n=0 R, the two operators we are interested

in are elements of the subalgebra J of K generated by:

— λβ(σ) for σ ∈ SN;

— πβ(
⊗N

n=0 θ(x)) for x ∈
⊗N

n=0 Mn+1(C).

We recall that Φ is a matrix whose coefficients are finite positive linear combinations of

elements λγ(σ) where σ ∈ SN , i.e. (denoting by k the dimension of the algebra of states):

Φ = (
∑
i∈Ia,b

αia,bλγ(σ
i
a,b))1�a,b�6k.

We can therefore associate to Φ the matrix Φ̄ defined as Φ̄ = (
∑

i∈Ia,b α
i
a,bλα(σ

i
a,b))1�a,b�6k .

We will now use the theorem stating the crossed product algebra does not depend on the

chosen representation (Theorem 6). The algebra
⊗N

n=0 Mn+1(C) is represented (faithfully)

by the morphism πβ ◦
⊗N

n=0 θ. We deduce from this that there exists an isomorphism

from I to the algebra generated by the unitaries λβ(σ) (σ ∈ SN) and πβ ◦
⊗N

n=0 θ(x)

(x ∈
⊗N

n=0 Mn+1(C)). This isomorphism induces an injective morphism ω from I into J

such that:

ω(πα(x)) = πβ(

N⊗
n=0

θ(x))

ω(λα(σ)) = λβ(σ).

We will denote by ι the inclusion map
⊗N

n=0 R ⊂
⊗∞

n=0 R and υ the inclusion map

SN ⊂ S. We will once again use the same theorem as before, but its application is not as

immediate as it was. Let us denote by SN\S the set of the orbits of S for the action of

SN by multiplication on the left, and let us chose a representant τ̄ in each of these orbits.

Recall the set of orbits is a partition of S and that SN ×SN\S is in bijection with S.

As a consequence, the Hilbert space L2(SN, L
2(SN\S,

⊗∞
n=0 H)) is unitarily equivalent to

L2(S,
⊗∞

n=0 H). We will therefore represent
⊗N

n=0 R on this Hilbert space and show this
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Fig. 2. Representation of the main morphisms defined in the proof of Lemma 31.

representation corresponds to πγ . For each x ∈
⊗N

n=0 R, we define ρ(x) by:

ρ(x)ξ(τ̄) = γ(τ̄−1)(ι(x))ξ(τ̄).

This representation is obviously faithful. We can then define the crossed product of this

representation with the group SN on L2(SN, L
2(SN\S,

⊗∞
n=0 H)). The resulting algebra

is generated by the operators (in the following, ξ is an element of the Hilbert space

L2(SN, L
2(SN\S,

⊗∞
n=0 H))):

λ(ν)ξ(τ̄)(σ) = ξ(τ̄)(ν−1σ)

π(x)ξ(τ̄)(σ) = ρ(β(σ−1)(x))ξ(τ̄)(σ)

= γ(τ̄−1)(γ(σ−1)(ι(x)))ξ(τ̄)(σ)

= γ(τ̄−1σ−1)(ι(x)))ξ(τ̄)(σ)

= γ((στ̄)−1)(ι(x)))ξ(τ̄)(σ).

Through the identification of L2(SN, L
2(SN\S,

⊗∞
n=0 H)) and L2(S,

⊗∞
n=0 H)), we there-

fore get (where ξ ∈ L2(SN, L
2(SN\S,

⊗∞
n=0 H))):

λ(ν)ξ(στ̄) = ξ(ν−1στ̄)

= λγ(ν)ξ(στ̄)

π(x)ξ(στ̄) = γ((στ̄)−1)(ι(x)))ξ(στ̄)

= πγ(ι(x))ξ(στ̄).

Applying theorem 6 we finally get the existence of an injective morphism ζ from J into

K such that:

πβ(x) �→ πγ(ι(x))

λβ(σ) �→ λγ(σ).

Figure 2 illustrates the situation.
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We now define ψ : I→ K by ψ = ζ ◦ω. Noticing that Nn = IdM6(C)⊗ (πγ(ι ◦ μ(N̄n)), we

get:

IdM6(C) ⊗ ψ(M) = IdM6(C) ⊗ ψ(Id⊗ πα(Id⊗ μ)(R))

= IdM6(C) ⊗ πγ(ι ◦
N⊗
n=0

θ(μ(R)))

= IdM6(C) ⊗ πγ(ι(N̄n ⊗ 1⊗ · · · ⊗ 1))

= IdM6(C) ⊗ πγ(ι ◦ μ(N̄n))

= Nn.

IdM6(C) ⊗ ψ ⊗ IdQ(Φ̄) = (
∑
i∈Ia,b

αia,bψ(λα(σ
i
a,b)))1�a,b�6k

= (
∑
i∈Ia,b

αia,bλγ(σ
i
a,b))1�a,b�6k

= Φ.

The (injective) morphism ψ thus satisfies all the required properties.

We are now ready to prove the last inclusion to get the main theorem.

Proposition 32. {P�0} ⊆ co-NL.

Proof. Let Φ ∈ P�0, Q its algebra of states and Nn a representation of an integer n.

By lemma 31, we know there exists a morphism χ (with ψ as defined in the lemma,

χ = IdM6(C) ⊗ ψ ⊗ IdQ) and two matrices M and Φ̄ such that χ(M ⊗ 1Q) = Nn ⊗ 1Q and

χ(Φ̄) = Φ. So we have Φ(Nn ⊗ 1Q) nilpotent if and only if Φ̄(M ⊗ 1Q) nilpotent. Our aim

is now to prove that checking the nilpotency of this matrix is in co-NL.

Our algebra is:

M6(C)⊗ ((Mn+1(C)⊗ · · · ⊗Mn+1(C)︸ ︷︷ ︸
p copies

) � SN)⊗Q

and we know an element of its basis will be of the form

(π, a0, a1, . . . , ap; σ; e)

where π is an element of the basis (0o, 0i, 1o, 1i, s, e) of M6(C), ai ∈ {1, . . . , k} (for i ∈
{1, . . . , p}) are the elements of the basis chosen to represent the integer n, σ ∈ SN and e is

an element of a basis of Q. When we apply M⊗1Q representing the integer to an element

of this basis, we obtain one and only one vector of the basis: (π, a0, a1, . . . , ap; σ; e). When

we apply to this element the observation Φ̄ we obtain a linear positive combination of

L ∈ N elements of the basis:

Φ̄(π, a0, a1, . . . , ap; σ; e) =

L∑
i=0

αi(ρ, aτi(0), . . . , aτi(p); τiσ; ei).
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With a non-deterministic machine, we can follow the computation in parallel on each

basis vector thus obtained. The computation can then be regarded as a tree (denoting by

b
j
i the elements of the basis encountered):

bi00

b1
i0

b2
0 b2

p2
. . .
Φ

b3
0 b3

p3

. . .
Φ

. . .
Φ

Nn

Nn Nn

We know that L and the nilpotency degree of Φ̄(M ⊗ 1Q) are both bounded by the

dimensions of the underlying space, that is to say 6(k + 1)pp!q where q is the dimension

of Q. Since every coefficient αi is positive, the matrix is thus nilpotent if and only if every

branch of this tree is of length at most 6(k + 1)pp!q.

We only have a logarithmic amount of information to store (the current basis vector),

and every time a branch splits a non-deterministic transition takes place to continue the

computation on every sub-branch.

Theorem 33.

{ANDPM} = {P+} = {P�0} = co-NL.

Proof. By combining Propositions 30 and 32.

8. Conclusion and perspectives

This work explains the motivations and choices made by Girard when he proposed

this new approach to study complexity classes. In particular, we explained how the

representation of integers by matrices is an abstraction of sequent calculus proofs of the

type of binary lists in ELL, and how using the hyperfinite factor allows to overcome the

lack of uniformity of the matrix representation. We then introduced a notion of normative

pair which differs from the one introduced by Girard and showed how the crossed product

construction can be used to define such pairs. Going from an interaction based on the

determinant to one relying on nilpotency allows to consider a larger class of groups in

the construction based on the crossed product. Moreover, even if the two definitions are

equivalent in some cases, such as the one considered in this paper, they differ in some

others.

We then introduced non-deterministic pointer machines as a technical tool to show that

co-NL ⊆ {P+}. The proof of this inclusion, which was only sketched in Girard’s paper,

helps to get more insights on how computation is represented by operators. Moreover,

it gives a new characterization of co-NL in term of machines. We then proved that

{P�0} ⊆ co-NL following the proof given by Girard (2012), providing a proper statement
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and a proof of the key technical result that was not provided by Girard. Of course, we

could have used the famous result which states that REACHABILITYComp, is in NL

(Immerman 1988), to prove that we also characterized NL, but we hope to get a different

proof of this closure by complementation with our tools.

We believe that this new approach of complexity can be used to characterize other com-

plexity classes. Two different possibilities should be considered: changing the normative

pair, and changing the set of observations. As we showed, one could define a normative

pair from a group action by using the crossed product construction. However, obtaining

new results in this way requires to overcome the difficulty of finding appropriate groups.

The second possibility, which seems at the time less complicated, would be to consider

other sets of observations for the same normative pair. For instance, one could define

the set of observations whose coefficients are unitaries induced by group elements and

whose norm is equal to 1 (so that there are at most one non-zero coefficient in each

column). Denoting this set by P1, we can easily adapt the proof of Proposition 32 to show

that {P1} ⊆ L. However, the question of whether the corresponding class {P1} is equal

or strictly included in L, and its eventual relations to PURPLE (Hofmann and Schöpp

2009), still need to be answered.
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