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Climate Models and the
Irrelevance of Chaos
Corey Dethier*y

Philosophy of science has witnessed substantial recent debate over the existence of a
structural analogue of chaos, which is alleged to spell trouble for certain uses of climate
models. The debate over the analogy can and should be separated from its alleged episte-
mic implications: chaos-like behavior is neither necessary nor sufficient for small dynam-
ical misrepresentations to generate erroneous results. The kind of sensitivity that matters
in epistemology is one that induces unsafe beliefs, and the existence of a structural ana-
logue to chaos is better seen as an explanation for known safety failures than as providing
evidence for unknown ones.
1. Introduction. Tomake predictions about the future of a system, we need
to know two things: the initial conditions, or, present state of the system, and
the dynamics of the system, or, how it evolves with time. Chaotic systems
present particular difficulties because small differences in initial conditions
amplify into large differences in the end state of the system. Is there an anal-
ogous dynamical property of systems? Intuitively, it seems like there might
be: small differences in the dynamics amplify into large differences in the
end state of the system.

In a series of papers, a group of philosophers and scientists have argued
this analogous dynamical property exists and that it spells epistemic trouble
for certain hypotheses in climate science. Specifically, they argue that because
most climate models heavily idealize the dynamics of the climate, the possi-
bility that such models exhibit a dynamical phenomenon analogous to chaos
should cause us to have low confidence in the accuracy of some of the quantitative
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predictions that rest on them. An opposed group of critics have argued that
the analogy breaks down and that the epistemic conclusions do not follow;
the possibility of small dynamical errors does not undermine the general war-
rant for quantitative climate predictions.

While the mathematical question concerning the alleged analogy with chaos
is interesting on its own terms, the focus on it is misleading from a purely
epistemic perspective: a tight analogy to chaos is neither necessary nor suf-
ficient for the kinds of epistemic error that motivate the debate. Chaotic behav-
ior involves growth in physical distance with time; such growth is relevant to
the accuracy of a given prediction only when (a) the starting distances are
small relative to the desired level of precision, (b) the later distances are large
from the same perspective, and (c) the time frame covered by the prediction
is the same as that on which the system is chaotic. The type of epistemic sen-
sitivity relevant to error is better captured by the failure of a safety condition.
And while it is true that there is good reason to worry about safety failures
in climate science, the arguments in question are better seen as explaining
known safety failures than as providing evidence for the existence of un-
known ones.

In sections 2 and 3, I briefly characterize the debate over dynamical ana-
logues of chaos and argue that it has misfired insofar as it presupposes a con-
nection between chaos-like behavior and (the probability of ) error. In section 4,
I provide an alternative notion of sensitivity that is best expressed in terms of
the failure of a safety principle when a hypothesis is only justified given an
assumption that’s uncertain or risky. Finally, in section 5, I offer a reinterpre-
tation of the original arguments: what they motivate is low confidence in our
ability to substantially increase the precision of model reports.

2. The Debate over Dynamical Analogues of Chaos. The debate over
dynamical analogues of chaos has largely focused on a particular minimal
condition on chaotic behavior, what is known as sensitive dependence on ini-
tial conditions (SDIC). Roughly speaking, a system exhibits SDIC if “even
arbitrarily close initial conditionswill follow very different trajectories” through
the state space that characterizes the system (Frigg et al. 2014, 34). Trivially,
SDIC implies that a model that slightly misrepresents the initial conditions of
the system will misrepresent (some) later states of the system to a much larger
degree. In a series of recent papers, a group of philosophers and scientists as-
sociated with the London School of Economics—and thus termed the “LSE
group” by their critics—have argued that structural model error (SME) pres-
ents epistemological problems similar to those presented bySDIC (Frigg, Smith,
and Stainforth 2013, 2015; Frigg et al. 2014).

It is important to recognize that SME is not supposed to be directly analo-
gous to SDIC. On the contrary, SME occurs whenever a model misrepresents
the dynamics of the target system (Frigg et al. 2014, 32). The analogy, if
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there is one, is between the behavior of complex systems relative to SME
and the behavior of SDIC-exhibiting systems relative to misrepresentation
of initial conditions. That is, the existence of small amounts of SMEwill lead
a model to dramatically misrepresent some later states of a complex system in
much the same way that a small misrepresentation of initial conditions will
lead a model to dramatically misrepresent some later states of a chaotic sys-
tem. In effect, complex systems exhibit sensitive dependence on dynamical
equations. The LSE group then draws the further conclusion that this sensitiv-
ity should lead us to have low confidence in “decision-relevant” probabilistic
climate predictions in at least some cases—although they acknowledge that
just how sensitive the models are to SME is a question the requires further in-
vestigation (48).1

The arguments of the LSE group have spawned a series of responses
(Goodwin and Winsberg 2016; Winsberg and Goodwin 2016; Winsberg 2018;
Nabergall, Navas, and Winsberg 2019) from a group of philosophers and
scientists associated with the University of South Florida (who I will term
the “USF group”). The main contention of the USF group is that the analogy
between systems that exhibit SDIC and what I above termed sensitive depen-
dence on dynamical equations cannot be made precise for two reasons. First,
the space of dynamical equations is topological but not metrical, meaning that
there is no general way to say what it means to be an “arbitrarily close” equa-
tion (Winsberg and Goodwin 2016, 14). Second, and for similar reasons, the
mathematically well-defined property closest to sensitive dependence on dy-
namical equations shows only that small dynamical misrepresentations can
amplify into large errors in the representation of later states of the target sys-
temnot that theywill (Nabergall et al. 2019, 11–12). TheUSF group concludes
that there is no general threat to quantitative climate predictions stemming
from “infinitesimally small” dynamical misrepresentations (21). Acknowledg-
ing, of course, that dynamicalmisrepresentations do pose epistemic problems in
some cases, they argue that the failure of the analogy means that we should
resist the LSE group’s general conclusions; the epistemic implications for
decision-relevant quantitative climate predictionsmust be evaluated individ-
ually (Winsberg and Goodwin 2016, 16; Nabergall et al. 2019, 20).

3. Chaos and Error. Both the LSE and USF groups appear to consider
the (alleged) epistemic problem to be one of error.2 In their central thought
experiment, for instance, the LSE group presents the problem associated with
1. This presentation of the LSE group undersells the detail found in the actual discussion
of climate models in Frigg et al. (2013, 2015).

2. That said, in their more careful moments, the LSE group can be read as primarily con-
cerned with the trade-off between precision and certainty (see, e.g., Frigg et al. 2014,
50).
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SME as one of erroneous probabilistic predictions: the agent facing SME-
related problems “regards events that do not happen as very likely, while he
regards what actually happens as very unlikely” (Frigg et al. 2014, 39). Sim-
ilarly, in their discussion of the primary motivating case study—a project
involving generating decision-relevant probabilistic predictions about the
future climate in Great Britain—they worry that “trying to predict the true
climate with structurally wrong models is like trying to predict the trajectory
of Mercury with Newtonian models. These models will invariably make mis-
leading (and likely maladaptive) projections beyond some lead time, and
these errors cannot be removed by adding a linear discrepancy term derived
[solely] from other Newtonian models” (Frigg et al. 2015, 3997).

And theUSF group is no different. They echo the language of the LSE group
in their own discussion of the motivating example (Goodwin and Winsberg
2016, 1125), andmore recently, they stated that “only strong versions [of chaos]
are usually taken to have strong epistemological consequences, since they
are likely to produce error” (Nabergall et al. 2019, 7 n. 13).

To be sure, in the context of the examples employed by the LSE group,
introducing chaos while holding the predictions of the agent fixed at a given
level of precision does increase the probability of error. Introducing sensi-
tive dependence to dynamical equations has the same effect. The USF group
is also right that the effect is only significant for stronger versions of chaos
and (we could add) only significant if the time frames line up in the right
way. But these facts do not imply that there is a connection between chaos
(or chaos-like behavior) and error in general. If there were such a connec-
tion, the consequence would be that we cannot make accurate or precise pre-
dictions about chaotic systems—or (more weakly) that the behavior of such
systems is generally harder to predict than that of nonchaotic systems. But
this simply is not the case.

The LSE group’s own analogy illustrates the point nicely. The errors inNew-
tonian predictions of the trajectory of Mercury are on the order of mere arc sec-
onds per century—that is, a prediction ofwhereMercurywill appear in the sky a
hundred years out will exhibit an error roughly one-fortieth of the apparent
width of the moon. It is hard to argue that such small errors are genuinely mal-
adaptive. And the solar system as a whole is chaotic: eventually—that is, ap-
proximately 5 million years from now—small differences between present
conditions will have grown exponentially larger. And yet we are nevertheless
able to make astoundingly precise (and decision-relevant) predictions about
the locations of various stellar bodies, for the simple reason that the 5 million
year timescale is totally irrelevant for predictions in the here and now.3 While
3. Well, not totally irrelevant, because the same physical properties that engender the
chaotic behavior of the solar system generate attractors that can affect satellite trajecto-
ries; see Wilhelm (2019).
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there are cases in which chaotic behavior creates genuine problems for predic-
tive accuracy, in other words, it is simply illegitimate to draw inferences from
either chaotic behavior or the lack thereof to the existence of such problems
without further information.

The same conclusion is suggested by close attention to more precise defi-
nitions of chaotic behavior. Consider the common definition of SDIC in terms
of Lyapunov exponents. Suppose that there is a system characterized by a state
space X and dynamical mapping f : X → X such that xt 5 f (xt21). This sys-
tem exhibits SDIC if and only if there is some y “arbitrarily” close to x0,

d(xt, yt) > eltd(x0, y),

wherel, the “Lyapunov exponent,” is positive. Essentially, trajectories that are
currently “nearby” will grow exponentially farther apart. If d(x0, y) represents
the present uncertainty, then SDIC entails that uncertainty will grow exponen-
tially with time. It is a significant step from uncertainty growing exponentially
with time to either a high probability of error at a given time or some sort of
guarantee of inaccuracy. Tomake this step there needs to be a tight relationship
between the relevant timescales and (as we saw above) there is no guarantee
that the timescale relevant to our predictions will be the same one that is rel-
evant to chaos. Similar comments apply to other technical definitions of chaos.
Werndl (2009), for example, shows that a system is “topologically mixing” if
and only if

lim
n→∞

Pr(x0jx2n) 2 Pr(x0) 5 0:

Essentially, the probabilistic relevance of past events to future events eventu-
ally approaches zero. Chaotic systems “lose” information over time, but themere
fact that information is guaranteed to be lost eventually does not implicate our
ability to make precise or accurate predictions now.

The explanation for the disconnect between chaotic behavior on the one
hand and predictive inaccuracy on the other is that SDIC defines a notion of
physical sensitivity that is independent of human interests. Until we specify
a timeframe and desired level of precision for a hypothesis, we cannot know
what implications SDIC will have for said hypothesis. Since our interests do
not map onto physical distances in any consistent way—a few centimeters of
error is a disaster in a surgical setting but incredible in astrophysics—SDIC
does not have any general implications for either error or the probability of
error. Similarly,we should expect that the failure of a system to exhibit SDIC—
or an SDIC-like property—also has no general implications for error. The con-
tested claims about the analogy between SDIC and sensitive dependence on
dynamical equations therefore has no clear or direct implications for the epis-
temology of climate modeling. Like the solar system, climate models could
exhibit exponential growth in the distances between alternative trajectories
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over time frames on the scale of millions of years. Or they could fail to ex-
hibit any growth in distances between trajectories, but the starting uncertainty
could be too substantial to license decision-relevant predictions. Insofar as
our concern is something like the probability of error in general, chaos and
chaos-like behavior simply are not relevant.

4. Failures of Safety. To determinewhether the presence of dynamicalmis-
representations renders decision-relevant quantitative climate predictions
untrustworthy, we need a different, interest-relative, concept of sensitivity to
small errors. My view is that the relevant concept is given by the failure of
a kind of safety condition.

Speaking abstractly, when we are concerned with whether we should be-
lieve some hypothesis, one relevant desideratum is that the justification for
the hypothesis should be safe: the degree of support for the hypothesis should
be (nearly) the same given nearby alternative background assumptions, where
a background assumption is “nearby” to the extent that it has a relatively high
probability on the total evidence available.4 So, for instance, if my evidence
for the fact that it is freezing outside is the reading of my thermometer, then
the hypothesis is safer in the situation in which the thermometer reads 257C
than when it reads 217C; the former allows for more leeway in the back-
ground assumptions concerning the accuracy of the thermometer. When the
evidence for a hypothesis rests either fully or partially on a model, the hypoth-
esis is more or less safe to the extent that sufficiently small changes to the as-
sumptions of the model do not (substantially) affect the results or outputs of
the model. The reasoning here is the same. If the hypothesis is only supported
by the model given precise and risky assumptions, then there is a relatively
high chance that these assumptions do not hold. By contrast, if the hypothesis
is supported regardless of whether we use the specific assumptions in question
or any one of a number of nearby assumptions, then the hypothesis is safe.

Intuitively, safety is going to be related to the probability of error at least
under conditions inwhich there is some degree of uncertainty about the quality
of the evidence. Since humans are not ideal reasoners, we are often in situa-
tions inwhichwe do not know how likely some hypothesis is on our evidence.
So, for instance, we might know that we should be confident in P if Q is true
but not either whether Q is true or what our confidence in P should be given
relatively likely alternatives to Q. Why might we be in this situation? One
common and relevant reason is that our evidence relies on an idealized model.
Since the inner workings ofmodels are often “opaque” (Humphreys 2004),we
4. This notion of safety is essentially the one found in Reed (2000) and Staley (2004)
and is tightly connected to Smith’s (2002) discussion of “quam proxime” reasoning. I
take it that a more precise definition is unnecessary for present purposes.
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cannot know a priori whether the idealizations in questionmerely serve to sim-
plify the problem in a harmless manner or, by contrast, whether they substan-
tially affect the output of the model.5 In other words, we do not knowwhether
P is safe, whether it would still be justified given small changes to the back-
ground assumptions. If it is safe, then the evidence is trustworthy and provides
good reason to believe that P; if it is not, then the total evidence does not pro-
vide reason to believe that P. If we accept P, therefore, safety and error will be
inversely correlated: the safer the hypothesis, the higher its overall justification
and thus the lower the chance that it is has been accepted in error.

The foregoing is highly abstracted from the practices of science. Consider,
therefore, the derivation of inverse-square gravity from Kepler’s first law.6

Suppose that Kepler’s first law holds exactly, meaning that sun is at the fo-
cus of each planet’s elliptical orbit and that the distance function between
planet and sun is

d 5 A
(1 2 ε2)

1 2 ε cos v
,

where A is the long arm of the ellipse and ε the eccentricity. In combination
with some other information about the nature of ellipses, this equation entails
that the acceleration of the planet is proportional to the inverse of the square
of the distance (a ∝ d22). It is thus possible to derive the inverse-square law
from Kepler’s first law. In the context of the present discussion, however, this
derivation faces two problems. First, there was little evidence available that
Kepler’s first law held precisely (and, in fact, it does not): the difference be-
tween an ellipse with the sun at a focus and an ellipse with the sun at the cen-
ter is virtually undetectable with seventeenth-century tools. The first problem
with the derivation, then, is that we are uncertain whether the assumptions
built into it hold precisely.

The second problem is that the derivation is extremely sensitive to small
deviations from Kepler’s first law. As just noted, at low eccentricity, there is
very little difference between an ellipse with the sun at the focus and one
with the sun at the center. The distance function for the latter is given by

d 5 A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ε2sin2v

p
:

5. Is this not a case in which we knowQ to be false? No, in this context, it is a mistake to
read Q as a claim about the truth of the idealized model rather than as a claim about its
“adequacy for purpose” (Parker 2020).

6. I am borrowing this example from Smith (2002). Smith’s point is that the safety fail-
ure found in this example provides the best explanation for why Newton himself did not
derive the inverse-square law in this manner, preferring instead the evidence provided by
the apsides of the planets, relative to which the hypothesis is extremely safe.
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And this function, in combination the same assumptions about the nature of
ellipses, entails that the acceleration of the planet is proportional to the dis-
tance directly (a ∝ d). The derivation from Kepler’s first law therefore pro-
vides extremely poor evidence for the conclusion in the sense that it relies on
a particular assumption holding precisely when the best evidence available
only indicates that the assumption holds approximately.

This case provides an exemplar of a safety failure in a number of respects.
Recall that safety failures arise because the quality of the evidence varies dra-
matically with small changes in background assumptions. Here the changes to
background assumptions are small not because the two equations are nearby in
any mathematical sense but because the evidence makes both assumptions
relatively likely. And the difference in the quality of the evidence is dramatic
because of our particular choice of how to divide up the hypothesis space:
what matters is that d and d22 make for extremely different theories of grav-
itation. If our hypothesis was simply that there is some relationship between
distance and acceleration, there would not be a safety failure to be found. It is
also exemplary with regard to effects: the safety failuremakes it likely on our
evidence that if we accept the hypothesis, we are going to do so erroneously—
which is just to say that when the hypothesis fails to be safe, the evidence
does not give us much reason to believe it. (Although, as evidenced by this
example, other evidence might; see n. 6.)

The definition of safety given in this section provides a notion of sensitivity
that is appropriately dependent on human interests. The class of objects that
there is sensitivity to is defined or identified according to our epistemic abili-
ties: in the modeling context, it is the class of assumptions that are empirically
adequate by our standards. Similarly, whether there is sensitivity to the differ-
ences between these representations depends on our interests and concerns
insofar as those affect how precise we want or need our hypotheses to be.
There is a rough analogy to SDIC here in that a safety failure involves a
“growth” in “distances” in an interest-dependent sense: the initial distance
is small relative to our ability to distinguish between different scenarios and
the latter one large relative to our desire for precision. But this connection is
not mathematically precise. In particular, safety failures are not analogous to
SDIC in the ways that the USF group argues present problems for the LSE
group.7 There is no interest-independent distance measure to be placed on
either the different starting characterizations of the system or the resulting
equations. The different distance equations are similar just in the sense that
they are both empirically adequate in the given situation. The different rela-
tionships between acceleration and distance are dissimilar in the sense that
7. There are other disanalogies as well. For instance, neither initial conditions nor time
has any role in this case, although both are essential to the understanding of SDIC.
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their broader fit in the theory is dramatically different. Further, we have not
shown that any nearby deviation from Kepler’s laws (or even Kepler’s first
law) will lead to an arbitrarily different relation between acceleration and dis-
tance. All we have shown is that there is a particularly salient alternative that
has this effect.

This section has provided an appropriate notion of sensitivity to employ
in getting clearer about the debate over chaos. In the next section, I argue for
a reinterpretation of the LSE group’s arguments in terms of safety failures.

5. Reinterpreting the LSE Group. I think that the arguments presented by
the LSE group are important, but they do not show that the possibility of small
dynamical errors should cause us to lower our confidence in various claims
supported by climate models. Instead, they should be interpreted as offering
an explanation of (empirically ascertained) levels of model precision in terms
of small dynamical errors—an explanation that, if true, has important implica-
tions for which projects in climate science are likely to be successful.

The main motivation behind this interpretation of the LSE group is that
the arguments that they offer are neither necessary nor sufficient to establish
that we should be less confident in the claims supported by climate models
in general. They are not sufficient because they would need to show that cli-
mate scientists have generally been overconfident in modeling results—but
climate scientists are well aware that climate models can be highly mislead-
ing, even in the aggregate (Knutti et al. 2010). They are not necessary because
general considerations about safety failures provide much less powerful (and
precise) evidence for caution about specific climate hypotheses than is pro-
vided by the empirical evaluation of climate models. Evaluation studies pro-
vide evidence not just about the degree of confidence licensed by a given
model but also about where the models excel, where they struggle, and what
assumptions account for these struggles. Any general considerations about
safety failures are likely to simply be swamped by the empirical evidence
from this domain.

Of course, the LSE group is well aware of this empirical literature—as
evidenced by their prior work drawing out the implications of it for decision-
making (Stainforth et al. 2007; Oreskes, Stainforth, and Smith 2010). My
suggestion is that we should read their arguments concerning chaos through
the lens of this earlier work.8 Specifically, we should view the combination of
small dynamical errors and system complexity as providing an explanation
for why climate models are only able to achieve certain levels of precision
8. Here I am following a suggestion made by Greg Lusk and Mike Goldsby in their talk—
titled “TheDecision-Relevancy ofClimateModelResults: IdleArguments or IdleDreams?”—
at Models and Simulations 8.
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and accuracy. In giving this explanation, the LSE group is stressing that our
inability to draw conclusions about local policy from climate models is not
a temporary defect of these models. On the contrary, hypotheses about how
climate change is going to affect a town, region, or (small) country are simply
too sensitive to small changes in modeling assumptions, and we are not likely
to reach a point any time in the near future when we have the ability to deter-
minewhich of these assumptions is true. That is just the nature of the system—
a conclusion, I will note, that is widely shared among climate scientists
(see, e.g., Knutti and Sedláček 2013). In other words, hypotheses that we
know are unsafe on the basis of our empirical evaluations of the models are
likely to remain unsafe. And thus, as the LSE group explicitly suggests, we
need methods for determining how to make decisions under conditions in
which the quality of our evidence is uncertain in precisely this way.

If this is the correct interpretation and the arguments given in prior sec-
tions are correct, then the analogy to SDIC is largely irrelevant to whether
the present and future levels of uncertainty about the dynamics are likely to
undermine the evidence for future climate hypotheses. Insofar as the LSE
group puts forward this analogy, therefore, their arguments are misleading—
a point the USF group has stressed, arguing that the presentation and rhet-
oric of the arguments does not always align with the more limited conclu-
sions that the LSE group wants to draw (see Goodwin and Winsberg 2016;
Winsberg and Goodwin 2016). As we have just seen, however, whatever
the disconnect between the rhetoric and the arguments in the LSE group’s
papers, there is not a genuine worry that their arguments might—even if
successful—undermine much more than they intend. On this interpretation,
the arguments simply do not motivate changing our confidence in any par-
ticular results of the models; they motivate “only” changing our confidence
that we will be able to get well-justified decision-relevant predictions out of
the models any time soon.

To be clear, I am not stating that the argument just sketched is correct.
Nevertheless, the conclusion is interesting and the argument itself has the
advantages of fitting nicely with the prior work of the LSE group, not relying
onmistakes concerning the relationship between chaos and error and not—if
successful—implicating far more of climate science than can plausibly be
justified on the evidence appealed to. We thus have good reason to interpret
the LSE group in this manner, even if the argument ends up being unsound.
6. Conclusion. In this article, I argued that the details of dynamical ana-
logues of chaos are largely irrelevant to the epistemological questions raised
in the recent debate over them. Mathematically interesting as the alleged
analogy may be, a tight analogy to chaos is neither necessary nor sufficient for
the kinds of epistemic error that motivate the debate. The type of epistemic
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sensitivity relevant to error is better captured by the failure of a kind of safety
condition: what is worrying about dynamical misrepresentations is that they
undermine the evidence provided by the model. Once the irrelevance of chaos
is recognized, it becomes clear that the upshot of the debate is not whether
models are likely to be erroneous but an explanation for why models are not
more precise than they in fact are.
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