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We explore how the rheology of dense granular flows is affected by the presence of
sidewalls. The study is based on discrete element method simulations of plane-shear
flows between two rough walls, prescribing both the normal stress and the shear rate.
Results confirm previous observations for different systems: large layers near the walls
develop where the local viscosity is not constant, but decreases when approaching the
walls. The size of these layers can reach several dozen grain diameters, and is found
to increase when the flow decelerates, as a power law of the inertial number. Two
non-local models are found to adequately explain such features, namely the kinetic
elasto-plastic fluidity (KEP) model and the eddy viscosity model (EV). The analysis
of the internal kinematics further shows that the vorticity and its associated length
scale may be a key component of these non-local behaviours.
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1. Introduction

When subjected to sufficient stresses, dense granular materials flow. This property
is at the core of various industrial processes involving manufacturing and transport
of various kinds of powders and grains. It is also at the core of the dynamics of
geophysical flows such as landslides and snow avalanches. A robust and accurate
modelling of the flowing behaviour of dense granular materials is needed for these
applications.

Dense granular flows exhibit a non-Newtonian behaviour. They are characterised
by a visco-plastic constitutive law, that relates the local stresses to the local strain
rates (GDR MiDi 2004; da Cruz et al. 2005; Jop, Forterre & Pouliquen 2006;
Andreotti 2007; Forterre & Pouliquen 2008; Andreotti, Forterre & Pouliquen 2013).
This constitutive law is sufficient to describe dense granular flows far from walls in
various geometries. However, it generally fails to predict the flow close to walls.

The presence of walls in granular flows may induce two important effects. First,
with smooth walls some slip velocity may develop. This slip velocity vanishes for
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rough walls featuring asperities larger than the grain size (Goujon, Thomas & Dalloz-
Dubrujeaud 2003; Shojaaee et al. 2012a,b). Second, even without slip velocity, the
behaviour of the flowing granular materials appears to be strongly modified near walls.
Such effects were interpreted as resulting from the non-local behaviour of granular
materials: the ability to flow at a given location depends on the nature of the flow in
the surrounding region.

Various models have been developed and have successfully captured such
non-local effects. They are based on Cosserat-plasticity (Mohan, Rao & Nott
2002), visco-plasticity combined with non-local self-activated processes (NL model)
(Pouliquen & Forterre 2001, 2009) or non-local kinetic elasto-plastic fluidity (KEP
model) (Goyon et al. 2008; Kamrin & Koval 2012; Bouzid et al. 2013; Mansard
et al. 2013). These models involve some typical length characterising the extent
of the non-locality. This length was found to increase as the flows decelerate and
stop. These models successfully capture and rationalise non-trivial variations in local
viscosities and jamming conditions within flows featuring stresses and shear rate
gradients, such as cylindrical-Couette flows, plane-shear flows with or without gravity,
flows down a slope and flows in pipes. However, the predictions of these models
critically rely on the assumptions made regarding the role of bounding walls. With
the NL model, walls may be assumed either to absorb stress fluctuations coming
from the flowing materials or to reflect them back into the flow. Depending on which
of these two assumptions is considered, the model predicts an increase or a decrease
in local viscosity near walls. Similarly, the variation in viscosity near walls predicted
by the KEP model strongly depends on the value of the material’s fluidity at the wall,
which needs to be assumed or empirically determined for each flow configuration.

Another type of non-local model, inspired by the eddy viscosity (EV model)
concept developed in turbulence, was introduced to predict the variation in viscosity
near walls without relying on such assumptions. This model successfully captured
the variation in granular viscosity near walls measured numerically in flow down
a slope (Staron 2008; Staron et al. 2010), and experimentally in plane-shear flows
(Miller et al. 2013; Miller 2014). Nonetheless, the validity of the model was only
demonstrated for narrow systems in quasi-static flow regimes, and whether or not
it could capture similar non-local features in larger systems and faster flows is still
an open question. Further, this model is based on the existence of large granular
vortices, whose typical size would decrease near walls. However, the existence of
such a vorticity length scale has not been demonstrated, and there is no consensus
on how it should evolve near walls.

In this paper, we investigate the range and the nature of wall perturbations in dense
granular flows. To this end, we use a discrete element method to simulate the flow of
a two-dimensional granular material between two parallel walls, prescribing both the
shear rate and the normal stress. We analyse the stresses and strain rate near the walls
to demonstrate possible deviations from the constitutive law predictions. The goal is
to establish an empirical model describing these deviations, and discuss how they can
be rationalised by non-local models.

The simulated system will be presented in § 2. In § 3 we present the measurements
of the macroscopic friction and dilatancy laws as a function of the system size. In § 4,
we analyse the stresses and strain rates within the flows to demonstrate long-range
wall perturbations, and propose an empirical model capturing their observed features.
In § 5, we discuss how such wall effects can be captured by the KEP and EV non-
local models, and we analyse the internal flow kinematics to support the relevance of
these models, focusing on the local vorticity and its associated length scale.
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FIGURE 1. (Colour online) Plane-shear flow geometry. (a) Thousands of grains are
subjected to shear between two rough walls (black grains) imposing both shear rate Γ̇w=
Vw/H and normal stress σM . Periodic boundaries are applied in the x-direction. (b) Three
systems with different half-widths H are analysed.

2. Dense granular flows in the plane-shear geometry
In this section, we present the simulated system and define the measured quantities.

2.1. Plane-shear geometry
We consider flows in a plane-shear geometry as illustrated in figure 1(a). It comprises
two parallel walls shearing a two-dimensional assembly of grains, prescribing both
shear rate and normal stress. The wall separation distance is 2H. They are made out
of aligned grains having the same mechanical and physical properties as the flowing
grains. The wall velocity in the shear direction x, Vw, is controlled such that the
macroscopic shear rate,

Γ̇M = Vw

H
, (2.1)

is constant in time. The wall separation distance, 2H(t), is free to vary in time in
order to ensure that the external stress, σw, is balanced by the total force of the grains
contacting the wall, Fint. H(t) satisfies inertial dynamics, MḦ = Fint − σw Ld, with M
being the total mass of the walls.

2.2. Grain properties
The grains are disks of density ρ, mass m and diameter d. A polydispersity of
±20 % is introduced in the grain diameter to avoid crystallisation. Grains interact
with their neighbours through inelastic and frictional contacts. These interaction laws
are detailed in appendix A. They only depend on the elastic coefficient of the grains,
E (Pa), Newton’s coefficient of restitution, e, and the coefficient of friction between
two grains, µg. Unless otherwise specified, the grain-to-grain friction and restitution
coefficient are set to µg= 0.5 and e= 0.5, respectively. The value of the deformation
number, κ = σw/E = 10−3, is fixed to be in the rigid-grain limit, characterised by
small elastic deformations (see appendix A).

2.3. Numerical experiments
The numerical experiments comprise two steps: the preparation of a steady flow, and
the steady flow during which measurements are performed. The preparation of the
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steady flow consists of applying both normal stress, σw, and shear rate, Γ̇M, on a loose
configuration of grains, initially set randomly with no contact. The system width, H(t),
decreases and the solid fraction φM, the ratio of the grain surface area to the total
system area, increases. They both eventually reach steady-state values with small time
fluctuations.

In the following, the analysis will focus on steady flows in systems of varying width,
H/d= 10, 20, and 40 (see figure 1b), with different values of the macroscopic inertial
number IM,

IM = Γ̇Md
√
ρ

σw
, (2.2)

ranging from 10−3 to 10−1, which corresponds to flows in the dense regime (GDR
MiDi 2004; da Cruz et al. 2005).

2.4. Macroscopic quantities and profiles
In the following, the analysis will be based on quantities such as stresses, velocities,
velocity gradient and solid fraction in the steady regime. These quantities will be
averaged in time by considering a set of 100 snapshots, the system undergoing a
shear deformation of one between two consecutive snapshots. We will distinguish
the macroscopic quantities corresponding to a spatial average over the entire system,
denoted by a subscript M, from their profile along the transverse direction y, obtained
by averaging in the direction of shear, x, and in time, using the procedure described
in appendix B.

We denote as φM, τM, σM and Γ̇M the macroscopic solid fraction, shear and
normal stresses and shear rate; φ(y), τ(y), σ(y) and γ̇ (y) refers to their profiles. The
relationship between macroscopic quantities and their profile is, taking the example
of the solid fraction, φM = (1/2H)

∫ H
−H φ(y)dy.

3. Effect of system size on macroscopic friction and dilatancy laws
As a way to demonstrate possible wall effects in our systems, let us first analyse

the stresses and strain rate at a macroscopic level in our systems by comparing them
with the prediction of the visco-plastic constitutive law of dense granular flows.

3.1. Local friction and dilatancy laws
The local visco-plastic constitutive law describing dense granular flow can be
expressed by a friction law combined with a dilatancy law (GDR MiDi 2004; da
Cruz et al. 2005; Jop et al. 2006; Forterre & Pouliquen 2008; Andreotti et al. 2013).
These two laws specify how the effective friction coefficient, µ, the ratio of the shear
and normal stresses, and the solid fraction, φ, depend on the shear rate γ̇ . In the
dense regime, both laws are approximately linear functions of the local shear rate:

µ(y)= τ(y)
σ (y)
≈µs + aI(y), (3.1)

φ(y)≈ φ0 − bI(y), (3.2)

I(y)= γ̇ (y)d
√

ρ

σ(y)
. (3.3)

The coefficients µs, a, φ0 and b are positive numerical constants which depend on the
nature of the grains and of their interactions, such as friction, shape and adhesion (da
Cruz et al. 2005; Rognon et al. 2006, 2007, 2008).
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FIGURE 2. (Colour online) Macroscopic constitutive behaviour measured in systems of
differing sizes H/d= 10 (p), 20 (u) and 40 (q): (a) friction law and (b) dilatancy law.

3.2. Macroscopic friction and dilatancy laws
In steady sheared flows between two parallel plates, the momentum balance predicts
that there should be no stress gradient in the transverse direction y, σ(y)=σw=σM and
τ(y)= τM. According to (3.1) and (3.2), the local shear rate and solid fraction should
thus be constant: γ̇ (y)= Γ̇M and φ(y)=φM. Integrating the local friction and dilatancy
laws would thus lead to a macroscopic expression for the constitutive behaviour of the
form

µM = τM

σM
≈µs + aIM, (3.4)

φM ≈ φ0 − bIM. (3.5)

We measured such macroscopic laws in our systems (see figure 2). For a given
system width H, the macroscopic friction and dilatancy laws approximately exhibit
a linear dependence on the macroscopic inertial number IM (2.2), consistent with
(3.4) and (3.5). However, with the same inertial number IM different values of the
macroscopic coefficient of friction and solid fraction are obtained in systems of
differing width H. Larger systems leads to higher coefficient of friction µM and
lower solid fraction φM.

The local visco-plastic constitutive law as expressed in (3.4) and (3.5) does not
predict this system size effect. It suggests that walls may affect the material rheology,
and the next sections will focus on characterising and understanding such an effect.

4. Characterisation of long-range wall perturbations
In this section we analyse the profiles of stresses, solid fraction and shear rate to

characterise the effect of walls in the flowing behaviour of the materials.

4.1. Demonstrating wall effects

Let us first describe a particular flow obtained with IM = 10−2 and H/d = 20. We
observe that the local friction coefficient, µ(y)= τ(y)/σ (y), is constant (see figure 3a).
This is consistent with the momentum balance applied to this geometry, which predicts
no stress gradient in the y-direction. The solid fraction φ(y) is also mostly constant,
but slightly decreases in the wall vicinity. The important result is that, although

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.707


176 P. G. Rognon, T. Miller, B. Metzger and I. Einav

–20

–10

0

10

20

–20

–10

0

10

20

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0

–1.0 –0.5 0 0.5 1.0

0 0.5 1.0 1.5 2.0
(a) (b)

FIGURE 3. (Colour online) Time-averaged profiles along the y-direction within a steady
flow (H= 20d, IM= 0.01). (a) Friction coefficient, ratio of shear to normal stresses µ(y)=
τ(y)/σ (y) (bottom axis, dark grey curve, blue online) and solid fraction φ(y) (top axis,
light grey curve, red online). (b) Velocity profile vx(y) normalised by the wall velocity Vw
(bottom axis, dark grey curve, blue online) and the linear velocity profile Vwy/H is shown
for comparison (dashed line); and shear rate γ̇ (y) normalised by the nominal shear rate
Γ̇M = Vw/H (top axis, light grey curve, red online).

stresses are constant throughout the layer, the velocity profile vx(y) is not linear (see
figure 3b) but exhibits an S-shape. The corresponding shear rate profile,

γ̇ (y)= ∂vx(y)
∂y

, (4.1)

is thus not constant. It increases significantly when approaching the walls while
staying approximately constant in the central region of the flow. Similar S-shape
profiles in plane-shear flows were reported in da Cruz et al. (2004), GDR MiDi
(2004), Miller et al. (2013) and Miller (2014).

The fact that the shear rate γ̇ (y) varies near the wall while the stresses are constant
shows that the local friction and dilatancy laws in (3.1) and (3.2) fail to describe the
flow in these regions. An additional effect of the walls leads to an increase of the
local shear rate in the wall vicinity.

Flows were computed varying two grain contact parameters: their coefficient of
friction µg and the coefficient of restitution e. Figure 4 shows that similar non-constant
shear rate profiles are obtained when varying these parameters, even with frictionless
grains (µg = 0). This suggests that neither the friction nor restitution coefficient is
responsible for the curvature of the velocity profile.

4.2. Shear rate variation near walls
Figure 5(a) shows the variation in shear rate as a function of the distance to the wall
1y:

1y=H − |y|, (4.2)

for H = 40d and IM = 10−2. The shear rate is maximum near the wall and
approximately constant in a first layer of size δ ≈ 2d. For 1y > δ, the shear rate
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FIGURE 4. (Colour online) Shear rate profiles along the y-direction within steady flows
(H= 20d, Iw= 0.01) for (a) differing contact restitution coefficient e (0.1, dark grey, blue
online; 0.5, light grey, red online; 0.9, black) and (b) differing contact friction coefficient
µg (0, dark grey, blue online; 0.5, light grey, red online; 0.9, black).
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FIGURE 5. (Colour online) Shear rate γ̇ versus distance to the wall 1y for two
simulations with similar inertial number, IM= 10−2, but different widths: (a) H/d= 40 and
(b) H/d= 20. The wall is at 1y= 0 while the centre of the sheared layer is at 1y=H.
The shear rate, γ̇ , is expressed in inverse unit of inertial time, ti= d

√
ρg/σM. Thick grey

lines (red online) represent simulation results and thin black lines the empirical model
defined in (4.4).

decreases when the distance to the wall 1y increases. In this zone, the shear rate
decay can be represented by a power law:

γ̇ (y)∝ (1y)−1/2. (4.3)

For large distance to the wall, 1y> `, the shear rate seems again constant.
Figure 5(b) shows the shear rate profile γ̇ (1y) for a flow with the same inertial

number as in figure 5(a), but in a narrower system, H = 20d. The first layer of
constant shear rate for 1y< δ ≈ 2d and the second layer of decaying shear rate for
1y > δ ≈ 2d are still present. However, in this case the shear rate decays until the
middle of the flow and there is thus no central zone with a constant shear rate.

4.3. Empirical model capturing shear rate profiles
The profiles shown on figure 5 suggest how the shear rate can be modelled in each of
the three zones, I, II and III. Accounting for the fact that the shear rate is continuous,
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these profiles can be captured by the following empirical model:

γ̇ (1y)=



γ̇b

√
`

δ
:1y 6 δ (I)

γ̇b

√
`

1y
: δ 61y 6 ` (II)

γ̇b : `61y 6 H (III).

(4.4)

The numerical results shown in figures 5(a) and 5(b) are both captured by this
empirical model using δ = 2d, `= 20d and γ̇b = 0.75 Γ̇M, where γ̇b is the bulk shear
rate.

4.4. Range of wall perturbations
We denote as ` the range of the wall perturbations, the region comprising zones I
and II (0<1y< `) where the shear rate differs from the constant bulk value found
in zone III.

For the flow conditions of figure 5(a), the wall perturbation range is remarkably
large, `≈ 20d. Within the same conditions, IM = 10−2, but in a narrower system, H=
20d, zone III no longer exists (see figure 5b) which can be interpreted as an overlap
of the perturbations from each wall.

Figure 6 shows the velocity and shear rate profiles for flows with various inertial
numbers IM and various widths H. For large systems, the wall perturbation range
seems to increase as the inertial number decreases, and never exceeds the system
width. For narrow systems, the wall perturbation spans the entire system width.

In the largest system, H = 40d, the size ` of the wall perturbation is estimated for
flows of different internal number IM by adjusting the empirical model (4.4) to the
measured shear rate profiles. Figure 7(a) shows the best fit of the empirical model
to the measured shear rate profiles. All the shear rate profiles were captured by the
model using similar values of δ ranging between 1.5 and 2. Conversely, the range of
the wall perturbation, `, was found to vary from 6.5d to 25d.

Figure 7(b) shows the values of wall perturbation range ` thus estimated as a
function of the macroscopic inertial number IM. For macroscopic inertial number
ranging from 6 × 10−3 to 10−1, the size of the wall perturbation exhibits a power
law:

`

d
≈ 2I−1/2

M . (4.5)

For the lowest inertial numbers, ` could not be estimated since zone III did not
exist even in the largest systems.

5. Modelling wall perturbations

In the previous section, we have identified two empirical laws: one capturing the
increase in shear rate observed near walls (4.4) and the other capturing the range of
this perturbation (4.5). Let us now discuss the mechanisms and analytical models that
may explain these perturbations.
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FIGURE 6. (Colour online) Time-averaged velocity and shear rate profiles for flows with
various inertial numbers IM and widths H as indicated by arrows. Same colour code as
figure 3(b).
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5.1. Local constitutive law and viscosity length scale
The local constitutive laws, as expressed by the friction and dilatancy laws (3.1)
and (3.2), fail to capture the wall perturbations as they predict a constant shear
rate throughout the layer when the stresses are constant: γ̇ = (µ − µs)/ad

√
ρ/σ .

They nonetheless contain important information regarding the characteristic length
scale involved into the diffusion of momentum. This length scale appears when one
formulates these laws using the kinetic viscosity ν (m2 s−1), which is also referred
to as momentum diffusivity, defined as

ν = 1
ρ

∂γ̇

∂τ
. (5.1)

Using the kinetic viscosity, the friction law becomes

τ =µsσ + ρνγ̇ , (5.2)

which is equivalent to a Bingham constitutive law, with a yield stress µsσ increasing
with the normal stress, and a kinetic viscosity ν ∝ d

√
P/ρ = d2γ̇ /I. This kinetic

viscosity can be expressed as a function of a typical time scale, γ̇ −1, and a length
scale `ν as

ν ∝ `2
ν γ̇ , (5.3)

`ν ∝ d√
I
. (5.4)

Note that, considering the friction law (3.1), the typical length scale (5.4) can also be
expressed as function of the quantity µ−µs: `ν ∝ d/

√
µ−µs.

Equation (5.4) highlights an important feature of dense granular flows: at low
inertial number, the momentum diffuses on a typical length scale much larger than the
grain size d. Remarkably, the scaling of this length with I is identical to the scaling
of ‘cooperativity’ length with I, measured and predicted in different configurations
within the KEP non-local model framework (Kamrin & Koval 2012; Bouzid et al.
2013; Mansard et al. 2013).

Quantitative predictions of the viscosity in the zone affected by walls requires
identifying the long-range mechanisms underpinning the momentum diffusion.
Different analyses have been developed to address this question. Two non-local
models, namely the NL process and KEP models, were derived from an analysis of
the internal dynamics and the mode of stress propagation within the materials. By
contrast, the EV model was developed from the analysis of the internal kinematics and
the momentum transport within a non-affine displacement field. Let us now discuss
these models and their ability to capture the observed long-range wall perturbations.

5.2. Non-local self-activated process (NL model)
This model, introduced in Pouliquen & Forterre (2001, 2009), is based on the
following ideas: (i) the shear between two layers of grains leads to topologic
rearrangements, also called plastic events, that locally release the stresses; (ii) the
associated stress relaxation induces some stress fluctuations that propagate through the
network of contact with a typical length scale; (iii) the propagating stress fluctuations
contribute to triggering plastic rearrangements far from their origin. In this model, the
viscosity at a given point is derived from the sum of the stress fluctuations which have
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FIGURE 8. (Colour online) Snapshots of the contact network for various inertial numbers,
Iw, and system widths H, as indicated by the arrows. The lines connect the centre of each
pair of contacting grains. Their thickness is proportional to the normal contact force.

propagated to this point, originating from remote plastic events. As a consequence,
the local viscosity depends on the rate of plastic events in the surroundings, and is
lower when the shear rate in the surroundings is higher.

Consistent with Hartley & Behringer (2003), Majmudar & Behringer (2005), da
Cruz et al. (2005), Tordesillas, Zhang & Behringer (2009), Tordesillas et al. (2011),
Azéma & Radjaï (2014), figure 8 shows that contact force networks within the
flows exhibit long length scales, which mechanically connect remote grains to the
walls. Further, the contact network seems to be less connected for high values of the
inertial number. This supports the relevance of relating non-local behaviour to the
force network.

The NL model successfully predicts three observations that the local constitutive law
alone is unable to capture: the shear rate profiles within flow in pipes; the dependence
of the angle of arrest on the thickness of the granular layer in the inclined plane
geometry; more generally, the existence of some flow in zones where the stresses are
below the yield stress when there is some flow in the surroundings.

However, the role of the wall is not directly accounted for in the NL model
formulation. An additional hypothesis needs to be made regarding the ability of the
wall to reflect or absorb stress fluctuations. Considering that the wall absorbs the
stress fluctuations, the model predicts that a layer near the wall is subjected to less
fluctuation than a layer far from the wall, and its viscosity is higher. Accordingly,
the predicted shear rate is lower near the wall, which is not consistent with our
results. Assuming that the wall reflects stress fluctuations back into the flow, an
opposite trend is predicted that is consistent with our results. Unfortunately, there is
no clear rationale to determine whether or not and to what extent walls may reflect
stress fluctuations. While the NL model may be able to capture our results, further
understanding of the effect of the wall on stress propagation is needed to draw robust
conclusions.

5.3. Non-local KEP model
This model was introduced in Goyon et al. (2008) and Bocquet, Colin & Ajdari
(2009) to rationalise the flow of dense emulsions flowing in micro-channels, and was
then adapted to dense granular flows in Kamrin & Koval (2012) and Bouzid et al.
(2013). It is based on the same conceptual ideas as the NL model, considering that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.707


182 P. G. Rognon, T. Miller, B. Metzger and I. Einav

(i) the local viscosity is inversely proportional to the local rate of plastic events; (ii)
a plastic event at one location may trigger other plastic events at remote locations
through the propagation of stress fluctuations through the contact network.

This model successfully predicts shear rate profiles of soft glassy materials such as
emulsions and dry granular matter in geometries where the stresses are not spatially
constant, such as pipes, inclined plane and plane shear with gravity, including in zones
where the stresses are lower than the yield conditions predicted by their respective
local constitutive laws.

In Mansard et al. (2013), the non-local KEP model is able to capture wall effects
in plane-shear flows of a model dense emulsion. This system has some similarities
with the one discussed here: it comprises disks sheared between two rough walls in
the absence of gravity, a configuration where stresses are spatially constant. However,
it differs from our system in some important points: the disks are soft and interact
by strongly dissipative contacts, and the shear was performed at fixed volume and
the solid fraction investigated is large, ranging from 90 % to 110 %, which is made
possible by large overlaps of soft disks. As a result of these differences, the model
emulsion did not satisfy a visco-plastic constitutive law such as (3.1) and (3.2), but
instead a Herschel–Bulkley constitutive law typical of soft glassy materials such as
foams and emulsions. Nonetheless, in spite of these differences, the reported velocity
profiles exhibit an S-shape qualitatively similar to that obtained in our systems. The
KEP model, in the plane-shear configuration, can be expressed as

γ̇ (y)− γ̇b = ξ 2 ∂
2γ̇ (y)
∂y2

, (5.5)

where ξ is referred to as the ‘cooperativity’ length, and represents the spatial extent of
the non-locality; γ̇ (y) is the local shear rate, γ̇b the bulk shear rate, which corresponds
to the value of the shear rate in a flow with no heterogeneities, e.g. far from the
wall in plane-shear flows. To predict the shear rate profile γ̇ (y), (5.5) can be solved
by introducing a boundary condition, the value of the shear rate at the wall, γ̇w. The
predicted shear rate profile γ̇ (y) is then

γ̇ (y)= (γ̇w − γ̇b)
cosh(y/ξ)
cosh(H/ξ)

+ γ̇b. (5.6)

This prediction involves the bulk shear rate, γ̇b, the shear rate at the wall, γ̇w, and
the cooperativity length, ξ . In Mansard et al. (2013), this equation was shown to
predict S-shape velocity profiles matching the numerical results for a given value of
the imposed shear stress and different values of system width H, using a values of
ξ = 2.5d and γ̇w = 1.7γ̇b.

Figure 9 (ai–aiii) shows a comparison of the KEP model prediction with our
numerical results for three different flows. Equation (5.6) was plotted after measuring
γ̇b as the shear rate in the middle of the flow in the largest system, and γ̇w as the
maximum value of the shear rate near the walls. Numerical data are well represented
using ξ/d = 5.4 and γ̇w/γ̇b = 2.2 for flow (ai), ξ/d = 5.4 and γ̇w/γ̇b = 2.45 for flow
(aii), and ξ/d= 2.2 and γ̇w/γ̇b = 2 for flow (aiii).

A fundamental component of the non-local KEP model is identifying the inverse
relation between the viscosity and the rate of plastic rearrangement. This was verified
experimentally in Jop et al. (2012) and numerically in Mansard et al. (2013), by
showing that zones of low viscosity exhibit a higher rate of particle rearrangement.
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FIGURE 9. (Colour online) Comparison of shear rate profiles between numerical results
(grey lines, red online) and and model prediction (black lines). (a) The KEP model
prediction obtained from (5.6) is shown for three systems: (ai) H/d = 40, IM = 0.1;
(aii) H/d = 40, IM = 0.01; and (aiii) H/d = 20 IM = 0.01. (b) The EV model prediction
obtained from (5.14) is shown for the same three systems, and with values of β of (bi)
3.3, (bii) 2, and (biii) 1.85. Shear rates are expressed in units of inverse of inertial time.

Consistently, it was shown that zones of low viscosity exhibit higher level of velocity
fluctuations, thought to be due to the higher rate of rearrangement (Mansard et al.
2013).

Figure 10, column (ii), shows the profile of velocity fluctuations δv measured in
our systems, defined as the standard deviation of the grain velocity fluctuations v′i =
vi − v(yi). Results indicate that the velocity fluctuations are constant in the central
region of the flow where the shear rate is constant. Near the walls, where the shear
rate is higher and the apparent viscosity lower, the velocity fluctuations do not increase
but decrease. This result differs from the measurements reported in Mansard et al.
(2013), which may be due to the differences in the systems considered. While it does
not affect the validity of the KEP model, which relies on the relationship between
viscosity and rate of plastic rearrangement, this result suggests that there should exist
a mode of grain rearrangement that allows for a higher rate of rearrangement together
with lower velocity fluctuations when approaching the walls.

5.4. Vorticity and vorticity length scale
Let us now analyse the internal kinematics at the scale of the grains to seek a
mechanism consistent with these observations. We focus on the local velocity gradient
tensor defined as:

F αβ = ∂vα
∂xβ

, (5.7)

which can be measured locally around each grain following a method introduced by
Marmottant, Raufaste & Graner (2008) and detailed in appendix B. By definition, the
component F yx is equal to the shear rate γ̇ , and the anti-symmetric component of F αβ

is the vorticity w:
w= 1

2(F yx − F xy). (5.8)
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FIGURE 10. (Colour online) Vorticity and vorticity length scale in three flows: (a) H/d=
40, IM = 0.1; (b) H/d = 40, IM = 0.01; (c) H/d = 20, IM = 0.01. Profiles of shear rate γ̇ ,
vorticity w and F xy are shown in column (i). Profiles of velocity fluctuations δv are shown
in column (ii). Profiles of the deduced vorticity length scale `w are shown in column (iii),
measured according to (5.9) and normalised by the value at the centre of the flow, `b

w.

Figure 10, column (i), shows the profiles of F xy(y), γ̇ (y) and w(y) for three different
flows (H/d= 20 and 40, IM = 0.1 and 0.01). The component F xy appears to always be
much smaller than the shear rate γ̇ . As a consequence, there is a direct link between
the local shear rate and the vorticity: w(y)≈ γ̇ (y)/2. Accordingly, the vorticity w(y)
is higher near the wall and constant in the centre of the flow. This property was
consistently observed with all the flows investigated with different width H/d and
inertial number IM.

Figure 11 illustrates snapshots of the local vorticity fluctuation field w′i=wi− Γ̇M/2.
It shows layers of high vorticity near the wall (light grey, red online) and a lower
vorticity in the centre of the flow (dark grey, blue online). Further, figure 11 shows
that the local vorticity exhibits some spatially correlated patterns comprising large
zones with higher or lower vorticity than their surroundings. Note that previous
analyses focusing on velocity fluctuations instead of vorticity revealed similar patterns
(Blair & Kudrolli 2001; Radjaï & Roux 2002; Mueth 2003; Pouliquen 2004; Brito
& Wyart 2007; Behringer et al. 2008; Lechenault et al. 2008; Liu & Nagel 2010;
Abedi & Rechenmacher 2011; Rechenmacher & Abedi 2011; Abedi, Rechenmacher
& Orlando 2012; Richefeu, Combe & Viggiani 2012; Miller et al. 2013; Miller 2014).
Measuring the typical size of these correlated structures is challenging given their
seemingly complex shape and large size distribution. As a consequence, statistical
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FIGURE 11. (Colour online) Vorticity field snapshots for different system widths, H, and
different inertial numbers, Iw, as indicated by the arrows. The local vorticity around each
grain is measured according to the method detailed in appendix B.

indicators such as spatial correlations of the vorticity field were found not to be
conclusive to measure such a length scale.

Nonetheless, a typical vorticity length scale can be indirectly estimated from the
combined measurements of the velocity fluctuation profile and the vorticity profile.
The underlying idea is that a vortex of size `w rotating at a frequency w induces a
level of velocity fluctuations of the order of δv∝w`w. Thus, the typical length scale
associated with the vorticity can be estimated at any location y as

`w(y)= δv(y)w(y)
. (5.9)

Figure 10, column (iii), shows the corresponding profiles of vorticity length scale
`w(y). In the bulk of the flow, where the shear rate is constant, the vorticity length is
approximately constant: `w(y)≈ `b

w. By contrast, close to the walls, the vorticity length
scale decreases. Figure 12 shows the values of the bulk vorticity length `b

w measured
in the largest system (H/d= 40) as a function of the macroscopic inertial number IM.
It follows a power law:

`b
w ∝

d

I1/2
M

, (5.10)

which is remarkably similar to the wall perturbation range empirically determined in
(4.5), to the length scale of granular momentum diffusivity deduced from the local
friction law in (5.3), and to the cooperativity length scale measured and predicted
in the KEP framework (Kamrin & Koval 2012; Bouzid et al. 2013; Mansard et al.
2013).

To summarise, we extracted a vorticity length scale from the measurements of the
velocity fluctuations. When approaching the walls, where the shear rate of the material
increases, this length scale is found to decrease. This trend can be understood since,
close to the walls, the lack of space mean that the correlated structures cannot freely
develop: the presence of the wall tends to truncate the largest possible vortex in the
flow. Let us now present a non-local model based on vorticity that could quantitatively
capture the wall perturbations.
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FIGURE 12. (Colour online) Vorticity length scale in the bulk of the flow, `b
w, as a

function of the macroscopic inertial number, IM , measured in the largest systems, H/d=40.
The line represents the power law in (5.10).

5.5. EV model
The EV model was first developed in the context of turbulent flows of Newtonian
fluids to explain the increase in apparent viscosity observed between turbulent and
laminar flow regimes. The underlying ideas are (i) there is an intrinsic viscosity ν0
due to the transfer of momentum by molecular collisions in both regimes and (ii)
in turbulent regimes, vortices develop and lead to an additional mode of momentum
transfer and an associated viscosity νeddy. The effective viscosity νeff is thus expressed
as the sum of the two contributions:

νeff = ν0 + νeddy. (5.11)

Prandtl’s mixing length model provides an estimation of the typical momentum
diffusivity associated with a vortex of size `w rotating at a frequency w, as

νeddy ∝w`2
w. (5.12)

In Staron et al. (2010) and Miller et al. (2013), the EV model was adapted to dense
granular flows in the inclined-plane and plane-shear geometries. Both approaches
consist of considering two mechanisms of momentum transfer in granular materials:
pairwise grain collisions and large-scale vortex rotations. Accordingly, the apparent
granular viscosity (5.3) can be expressed by

ν = d2γ̇ + β`2
wγ̇ , (5.13)

where β denotes a numerical constant reflecting the actual contribution to momentum
transfer of vortices. The first term represents the diffusion of momentum by grain
collision and the second term that by rotation of vortices of size `w. Note that
the corresponding effective length scale of momentum diffusion would then be
`ν = d

√
1+ β(`w/d)2. Introducing this expression for viscosity into the friction law

(3.1) leads to the following prediction of the shear rate profile:

γ̇ (y)= A√
1+ β (`w(y)/d)2

, (5.14)

with A= (µ−µs/a)(1/d
√
ρ/σ).
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In Staron et al. (2010) and Miller et al. (2013), no vorticity length scale was
measured or estimated. This length scale was assumed to be given by some function
of the distance to the walls. Various functions of the distance to the wall were
introduced, so that the model (5.13) would predict the correct viscosity variation near
walls. However, there is no established rationale for the choice of this function, and
different choices may equally well represent the results.

In our systems, a typical vorticity length scale `w was estimated from the analysis of
the grain velocity fluctuations, and can thus directly be introduced in (5.14). Figure 9
(bi–biii) shows that the prediction of this model can successfully match the numerical
results. The parameter A was directly measured as the shear rate at the wall, γ̇ (y=H),
using the fact that the vortex size `w(H) tends to zero, as shown on figure 10; β is
thus the only fitting parameter, with values of the order of 2.

The empirical model (4.4) for wall perturbations can be interpreted within the
EV framework. Zone III corresponds to the region in the middle of the flow where
the vorticity length scale can fully develop: it is not affected by the walls. Zone
II corresponds to the region where the vorticity length scale is truncated by the
proximity of the walls, yet it still contributes significantly to the effective viscosity.
Zone I corresponds to the first layers of grains near the wall where the vorticity length
scale is so small that the grain collisions become the dominant mode of momentum
transfer. Given that the EV model, (5.14), correctly captures the shear rate profiles,
i.e. γ̇ ∝ 1y−1/2 in zone II, the vorticity length must scale as `w(y)/d ∝ (1y/d)1/2
when approaching the walls and not as `w(y) ∝ 1y as is usually assumed in EV
models.

6. Conclusion
The discrete element method simulations of plane-shear flow between walls

presented in this paper show that walls significantly affect the viscosity of dense
granular flows over large distances. Near walls, the viscosity is much lower than in
the bulk flow. The range of this perturbation can reach several dozens of grains and
increases for slower flows.

The practical implication of these results is to question a common way to measure
the constitutive law of granular materials. Often, both experimentally and numerically,
these laws are measured by averaging stresses or strain rate over the entire system
width. We observed on figure 2 that both the friction law and the dilatancy laws
measured by this method exhibit strong and non-trivial system size dependences,
which results from a combination of the material constitutive behaviour and wall
effects. We compare two different non-local models, namely the KEP and the EV
models, which are able to rationalise these wall effects.

Interestingly, the KEP and EV models arise from radically different analyses of
the mechanisms underpinning non-local effects. On one hand, the KEP model is
developed by considering the non-local dynamic of the system, namely the stress
propagation through the contact network. On the other hand, the EV model is
developed by considering the non-local kinematics of the system, namely the existence
of structures of grains rotating in a correlated fashion and their contribution to the
momentum transfer. The fact that both models are able to capture the long-range wall
perturbations suggests that force networks and vorticity may be intimately related
in granular flows. Establishing such a connection constitutes a promising research
avenue to further understand non-local behaviours.

The strength of the KEP model is its ability to capture many non-trivial behaviours
of dense granular flows in geometries with a stress gradient. However, it is
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comparatively weaker in predicting wall perturbations, given that it then critically
relies on a parameter, the fluidity at the wall. To date, there is no prediction of this
parameter, which must be determined empirically. Then, the KEP correctly captures
the shear increase measured close to the walls. This increase is associated with a
decrease of the viscosity which, in the KEP framework, arises from an increase of
the number of rearrangements. One could expect that a local increase of the shear
rate and of the number of rearrangements should lead to an increase of the velocity
fluctuations. However, we observe the opposite trend in our simulation results.

The EV model involves the length scale associated with the vorticity. When
approaching the walls, due to the lack of space, the largest possible vortex becomes
smaller and smaller. This trend was shown by measuring the vorticity length scale
from the local velocity fluctuations and the local vorticity, see (5.9). Using the EV
model, we can introduce this length scale in the local constitutive friction law. This
predicts the correct shear rate profiles and is also consistent with the decrease of the
velocity fluctuations observed near the walls.

This study suggests that the vorticity length scale can be a key parameter to further
understand the non-local behaviour of grains within dense granular flows. This length
scale was found to exhibits a striking correlation with the material viscosity, and to
significantly vary in the large zone affected by the walls. The EV model provides the
rationale between the material viscosity and its vorticity length scale. Finding a link
between the cooperativity length scale of the KEP and this vorticity length scale is a
promising question.

Similarly, the vorticity analysis developed here for dry granular flows could
help further understand non-local effects in other particulate fluids such as such
as suspensions (Bonnoit et al. 2010a,b; Nordstrom, Gollub & Durian 2011), flowing
blood cells (Freund 2014), foams (Sexton, Möbius & Hutzler 2011; Hagans & Feitosa
2013) and emulsions (Goyon et al. 2008).
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Appendix A. Discrete element simulation

Dense granular flows are simulated using discrete element method, such as
introduced by Cundall & Strack (1979). The motion of each grain, both translation and
rotation, is integrated over small time steps dt using a second-order predictor–corrector
scheme. The acceleration and angular acceleration of each grain is evaluated at each
time step as a function of the force and momentum balance, including contact forces
between pairs of grains. The contact forces involve a normal elastic repulsion Fela. A
small overlap between two grains i and j is possible, δn

ij =‖Xj−Xi‖− (Ri+ Rj), with
X denoting the position of the grain centre and R its radius.

The elastic force that grain i experiences is then proportional to that overlap,
Fela

ij = ERijδ
n
ijnij, where nij = (Xj −Xi)/(‖Xj −Xi‖) is the unit vector normal to the

surface of grain i at the contact point, Rij = (RiRj)/(Ri + Rj) is the effective radius of
the contact and E is an elastic constant of the order of Young’s modulus of the grains.
Note that the linear Hookean elastic model chosen here is consistent with the elastic
contact between two two-dimensional disks (or two cylinders). Hertzian nonlinear
elasticity would represent the elastic force between two spheres. The force would then
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be Fela
ij = ER2

ij(δ
n
ij/Rij)3/2nij. We consider here rather stiff grains, with small elastic

deformations. The typical overlap δn is of the order of κ = σw/E= 10−3. Then, both
the Hertzian and Hookean models are equivalent at the first order.

Normal collisions between two grains dissipate energy. This is represented by a
viscous-like normal force Fvis

ij , proportional to the grains relative normal velocity,
Fvis

ij = −ζ‖Vj − Vi‖nij. The coefficient ζ is related to Newton’s coefficient of
restitution e, the ratio of post- to pre-impact relative velocities in a binary collision:
ζ =√

mijERij(−2 log(e)/
√

π2 + log(e)2), with mij = (mi ∗mj)/(mi +mj) the effective
mass of the two colliding grains.

Grains are frictional, and a friction force Ffri is introduced, tangential to the contact.
Grains may deform elastically in the tangent direction. The tangential force evolution,
Ḟfri is driven by the tangential deformation evolution, Ḟfri = 1V t

ijdt ERij, with 1V t
ij

denoting the relative velocity at the contact point, including grain translation and
rotation. This tangential elastic force is limited by a Coulomb criterion involving
the grain-to-grain coefficient of friction µg. If ‖Ffri‖ = µg‖Fela‖, the grains slide
and ‖Ḟfri‖ can only decrease. Rolling resistance and twist torque, which could be
introduced as in Rognon, Einav & Gay (2010), are not included here. The friction
forces are then the only component of the contact interaction that induces torque and
grain rotation.

Appendix B. Averaging method

In this paper, various quantities are presented in the form of a profile in the y
direction, averaged in time. The method of averaging consists of considering a series
of snapshots, typically 100. For each snapshot, the system is divided into slices of
size d/10. The properties of each grain, such as its velocity, are collected in each slice
and weighted by the surface of the grains that belong to the slice, ws

i . The average
velocity in a slice at the position ys is thus v(ys) =

∑
i Viws

i/
∑

i ws
i , where the sum

runs over all the grains. The solid fraction in that slice is 〈φ(ys)〉 =
∑

i ws
i/(0.1dL).

The final time-averaged profile is obtained by averaging all these instantaneous
profiles.

The time-averaged velocity gradient profile, γ̇ (ys), can be deduced by differentiating
the velocity profile obtained with the method just described. However, this differentia-
tion induces a large level of noise. We preferred to evaluate, for each grain at each
time step, the local velocity gradient tensor F αβ following the method introduced in
Marmottant et al. (2008):

F αβ = 〈lij ⊗ lij〉−1
· 〈lij ⊗Vij〉. (B 1)

The symbols · and ⊗ denote the tensor product and the outer product, respectively.
The symbol 〈·〉 represents the average of pairs of neighbouring grains i and j, with
a centre-to-centre vector lij and a relative translation velocity Vij = Vj − Vi (see
figure 13). Note that these neighbouring grains may or may not be contacting. A
cutoff distance of 1.5d was chosen to ensure that the averaging is performed on a
zone as small as possible, with enough neighbours to evaluate the velocity gradient.
Different values of cutoff were tested with no significant change in the results. The
velocity gradient profile γ̇ (ys) is then obtained by averaging the relevant component
of the tensor F with the slice method described above.
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FIGURE 13. (Colour online) Local velocity gradient measurement. The local velocity
gradient tensor can be estimated for each grain by considering the neighbouring grains,
their relative position and relative velocity according to (B 1). Here, the velocity gradient
associated with the dark central grain (purple online) involves the lighter grains (green
online), but excludes the white grains, which are further away than the cutoff distance
represented by the dashed circle.
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