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Abstract
We undertake a mathematical clarification of the QIS5 proposal for the calculation of the Motor

Third Party Liability (MTPL) man-made catastrophe risk capital in terms of two more general

models. The QIS5 model assumption implies that the total loss consists of a single catastrophe claim

in case it occurs during the next one-year insurance time period. However, the total loss should

instead be dynamically modelled by a sequence of claims of varying size that follow a compound

Poisson Pareto model, which is our first alternative model. A second possibility also takes into

account the effect of investments, whose financial return process follows a Black-Scholes-Merton

model. If one excludes limits of coverage, then asymptotically as the total loss increases without

limits the first model is equivalent to the model assumption obtained from the QIS5 assumption by

replacing a single catastrophe claim by the total loss. In other words, the QIS5 simple model is

justified as limiting asymptotic approximation to the classical compound Poisson Pareto model.

Conversely, an asymptotic approximation to the VaR economic capital from this model identifies

with a modified QIS5 CAT formula. The inclusion of limits of coverage is also analyzed. In this

situation we obtain new simple closed-form implementations of the economic capital formulas.

Keywords
economic capital; VaR; catastrophe risk; MTPL; compound Poisson Pareto; Black-Scholes-Merton
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1. Introduction

In the insurance theory of catastrophes it is important to distinguish between man-made catastrophes

(e.g. business interruption, industry fires, oil and gas explosions, aviation crashes, shipping and rail

disasters, power outages, terrorist acts, etc.) and natural catastrophes (e.g. hurricanes, typhoons,

earthquakes, floods, tsunamis, tornados, winter storms, hail, drought, etc.). The insurance risk of the

first category is dealt with by modelling, primarily, very large claims, possibly using extreme value

theory. The second category concerns the modelling of very large claims taking into account

accumulation risk (concentration of risks that might give rise to exceptionally large losses from a single

event) and global warming. Besides extreme value theory, other time series theories for occurrence,

and/or credit risk models for contagion or accumulation risk, might play a role (e.g. Charpentier

(2007a), and the thesis by Strassburger (2006), especially Chapter 3 on the history and structure of

natural catastrophe risks). The present contribution is devoted to some methods that can be used to

determine the solvency risk capital associated with man-made catastrophes only.
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Recall the main relevant actuarial documents of the Solvency II project. The general framework was

published by the European Commission (EC) in Directive 2009/138/EC (2009). The level 2

implementing measures have been tested by insurance companies during the course of several

Quantitative Impact Studies (QIS). A specification of the required MTPL man-made catastrophe

risk capital, the so-called QIS5 CAT formula, was given in QIS5 (2010), pp. 227–231 (including

QIS5 errata (2010), SCR 9.116, 9.126) (see also CEIOPS Calibration (2010), pp. 302–305, and

CEIOPS CTF Report (2010), pp. 21–22). However, without the underlying probabilistic actuarial

model, this proposal lacks explanation and can potentially be misunderstood. Therefore, it seems to

be necessary to explain the approach taken, from a stochastic modelling point of view. We offer in

Section 2 a mathematical clarification in terms of a more general model, and we also point out a

new simple closed-form implementation of this solution, which has been missed so far (e.g. CEA

CAT Risk (2011), p. 5). We also note that the QIS5 solution is not consistent with current economic

capital modelling. Indeed, the QIS5 CAT formula is the value-at-risk measure of the total

catastrophe loss to the confidence level, a ¼ 1 þ lnð1�200�1
Þ � 0:995, and not the value-at-risk

measure of the increase in total loss with respect to the mean. In Section 3 we modify the QIS5 CAT

formula to render it consistent with the accepted standard.

The crucial total loss probability model assumed in QIS5 is a simple, though not very satisfactory,

actuarial model. In the present paper, we consider three stochastic models which we denote by

(M1), (M2) and (M3). The QIS5 model (M1) implies that the total insurance loss consists of a single

catastrophe claim if it occurs during the next one-year insurance time period. However, since

Cramér-Lundberg, the total loss should instead be dynamically modelled by a sequence of claims of

varying size, where the claims occurrence follows a Poisson process. Therefore, a more appropriate

model (M2) of the total loss consists of a compound Poisson Pareto model of the aggregate

catastrophe claims. Furthermore, the effect of investment returns can also be taken into account. In

the alternative model to (M2) ((M3)) we additionally assume that the financial returns follow a

Black-Scholes-Merton model. Section 4 studies models (M2) and (M3) and compares them with the

QIS5 model (M1). If one excludes limits of coverage, then asymptotically, as the total loss increases

without limits, model (M2) is equivalent to the model obtained from (M1) by replacing a single

catastrophe claim by the total loss. In other words, the simple model (M1) is justified as a limiting

asymptotic approximation to the classical compound Poisson Pareto model (M2). Conversely, an

asymptotic approximation to the (M2) VaR economic capital is identical to the modified QIS5 CAT

formula presented in Section 3, as shown in Corollary 4.1. Using a previous result from the author, a

similar asymptotic approximation is derived for model (M3) according to Theorem 4.1. If one

includes limits of coverage, then the Poisson parameter is a random function of the total loss, and it

cannot a priori be stated that the asymptotic equivalence between (M2) and (M1) remains valid.

Nevertheless, to preserve the stated asymptotic similarity, the previous results can be extended for

both models (M2) and (M3). The similar results obtained are summarized in Corollary 4.2 and

Theorem 4.2. In the final Section 5, we provide a numerical illustration and a simulation study that

supports our findings.

2. The QIS5 probability model for the MTPL man-made catastrophe gross
risk capital

The QIS5 man-made catastrophe motor vehicle liability risk sub-module requires input data:

Vc : the number of vehicles insured (in Mio.) per country indexed by c

Lc : the highest sums insured (or limit of exposure) (in Mio.) per country indexed by c
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Any MTPL catastrophe model of the total loss is based on three assumptions about

(i) the frequency of catastrophe claims for single motor vehicles

(ii) the size of loss if a catastrophe claim occurs

(iii) the total loss that can occur

First, the frequency of the Europe-wide scenario per vehicle per annum in terms of the variable parameters

RP : return period of Europe-wide scenario

VY : total vehicle years (in Mio.) assumed in Europe-wide scenario

is described by the following function (usual actuarial letter lambda for claim frequencies)

lMTPLðRP;VYÞ ¼ �
lnð1�RP�1Þ

VY
: ð2:1Þ

The total expected claim frequency of the Europe-wide scenario is then defined by

lTOTALðRP;VYÞ ¼ lMTPLðRP;VYÞ �
X

c

Vc

 !
: ð2:2Þ

Second, the size S of loss given a catastrophe claim occurs, is described by a Pareto claim size

distribution with survival function

�FPARðS;GL; gÞ ¼
S

GL

� ��g
; S4GL4 0; g � 1; ð2:3Þ

with the variable parameters

GL : (minimum) gross loss of Europe-wide scenario

g : Pareto shape parameter of the extreme claim size distribution of Europe-wide scenario

Third, an assumption about the total loss across all countries or about the joint modelling of claim

frequency and claim size is made.

To punctuate the above, let us summarize the three basic assumptions:

(A1) The total expected claim frequency of a catastrophe event (2.2) is the product of the frequency

per vehicle per annum (2.1) by the total number of vehicles.

(A2) The size of a loss (given it occurs) is the Pareto distribution (2.3) with the minimum gross loss

as threshold.

(A3) The total loss is described by a probability joint model of claim frequency and claim size.

While we shall continue in the next Subsection with the QIS5 modelling choice for the main

assumption (A3), we will present in Section 3 some alternative classical and more recent risk

theoretical economic capital models of great importance in insurance business.

2.1. The QIS5 probability model excluding limits of coverage

Concerning the total loss that can occur, let us first make the following simple model assumption

(note that this is a bit more precise than QIS5 (2010), SCR 9.119, p. 129):

(M1) In a MTPL man-made catastrophe event, each motor vehicle is equally likely involved, and all

vehicles subject to a catastrophe event build a set of mutually exclusive events.
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Since the probability of a single catastrophe loss of size S . GL is described by (2.3), and through

application of the additive rule of probability, which holds under (M1), one sees that a man-

made catastrophe event of size S . GL occurs with the total probability (use (2.2) for the total

claim frequency)

�FTOTALðS;RP;VY;GL; gÞ ¼ lTOTALðRP;VYÞ �
S

GL

� ��g
¼ lMTPLðRP;VYÞ �

X
c

Vc

 !
�

S

GL

� ��g
:

ð2:4Þ

Now, if a man-made catastrophe event is allowed to occur with a return period of 1 in 200 years,

then the corresponding risk capital, denoted by CATec
m ¼ CATec

m ðRP;VY;GL; aÞ, is the unique

solution of the equation �FTOTALðS;RP;VY;GL; gÞ ¼ � lnð1�200�1
Þ � 0:005, i.e.

CATec
m ðRP;VY;GL; gÞ ¼

lnð1�RP�1Þ

lnð1�200�1Þ
�

P
c

Vc

VY

0
@

1
A

g�1

�GL: ð2:5Þ

As will be seen later in formula (2.10), this capital requirement corresponds to the full QIS5 model

(including limits of coverage) in case the insured limits are ignored. This is the reason why we

denote (2.5) with a superscript ‘‘ec’’ and call (by abuse of language) this simple model the ‘‘QIS5

model that excludes limits of coverage’’.

2.2. The QIS5 probability model including limits of coverage

According to QIS5 (2010), SCR 9.122 and 9.123, limits of coverage provided by undertakings in

different countries must be taken into account, and allowance must also be made for losses caused

outside the ‘‘home’’ country of insurance. This is done by including a ‘‘limit failure factor’’ for each

country, which represents a proportion of the extreme losses that are considered to occur in such a

way that the cover under the original policy is unlimited. The used value of this factor is 6% for

each country except Iceland, Cyprus and Malta, where it is 0%. Note that this parameter has no

effect for countries with unlimited risk exposures.

Then, under the model assumption (M1) and similarly to (2.4), the probability of a total loss of size

S . GL ignoring limits, which depends on the variable parameters and the fixed proportions of

‘‘limit failure losses’’ amongst extreme losses per country defined by

Uc ¼
6%; c 6¼ Iceland; Cyprus; Malta;

0%; c ¼ Iceland; Cyprus; Malta;

(
ð2:6Þ

is described by the following function

�Fun lim
TOTALðS;RP;VY;GL; gÞ ¼ lMTPLðRP;VYÞ �

X
c

Uc � Vc

 !
�

S

GL

� ��g
: ð2:7Þ

On the other hand, the probability of a total loss allowing for insured limits is described by

�Flim
TOTALðS;RP;VY;GL; gÞ ¼ lMTPLðRP;VYÞ �

X
cjSoLc

ð1�UcÞ � Vc

 !
�

S

GL

� ��g
: ð2:8Þ
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Given parameter values for RP, VY, GL, g, the gross motor catastrophe capital requirement,

denoted by CATm 5 CATm (RP, VY, GL, g), is defined to be the (unique) solution S 5 CATm (if it

exists) of the equation (cf. QIS5 errata (2010), SCR 9.116, 9.126)

�Fun lim
TOTALðS;RP;VY;GL; gÞ þ �Flim

TOTALðS;RP;VY;GL; gÞ þ lnð1�200�1
Þ ¼ 0: ð2:9Þ

It is not difficult to see that the unique solution to (2.9), in case insured limits are ignored, coincides

with the capital requirement (2.5) excluding limits of coverage, i.e.

CATun lim
m ðRP;VY;GL; gÞ ¼ CATec

m ðRP;VY;GL; gÞ: ð2:10Þ

In general, for a fixed pattern of insured limits (Lc), such that CATun lim
m 4Lc for at least one

country, and a fixed choice of RP, VY, GL, g, the solution to (2.9) is denoted by

CATic
mðRP;VY;GL; gÞ (model including limits of coverage). In this situation, the strict inequality

CATic
m ðRP;VY;GL; gÞoCATec

m ðRP;VY;GL; gÞ ð2:11Þ

holds because limits restrict the total expected claim frequency and capital requirement is decreased

accordingly. It remains to discuss the existence question and the computational evaluation

of the solvency risk equation (2.9). Solving this equation is equivalent to finding the zero of

the function

f ðS;RP;VY;GL; gÞ ¼
X

c

Uc � Vc þ
X

cjSoLc

ð1�UcÞ � Vc

 !
� S�g�

lnð1�200�1Þ

lnð1�RP�1Þ
� VY �GL�g: ð2:12Þ

For ease of notation we write f (S) instead of f (S, RP, VY, GL, g) in the following. The graph of this

function shows that it is a decreasing piecewise continuous function with discontinuities at the

insured limits (Lc). Since at a discontinuity the function is not defined, and it can happen that

f ðL�c Þ40 while f ðLþc Þo0 for some particular choice of insured limit and parameter values (the

entries in italic print in Tables 2 and 4 are of this kind), the catastrophe risk capital must in general

be defined by

CATic
m ðRP;VY;GL; gÞ ¼ inf S f ðS;RP;VY;GL; gÞ � 0

��� �
: ð2:13Þ

The QIS5 parameters are RP 5 20, VY 5 300, GL 5 275, g 5 2. In this situation (2.13) tells us that

CATic
m is the smallest value of S satisfying the inequality (note that the right-hand side figure in

(2.11) is not correct in EC-Draft L2 IM (2010), pp. 91–92)

X
c

Uc � Vc þ
X

cjSoLc

ð1�UcÞ � Vc

 !
�

1

S2

� �
� 3:877 � 10�4 ð2:14Þ

It has been felt that the implementation of a catastrophe risk capital formula like (2.14) is not simple

enough, and the requirement of a closed-form solution has been expressed (e.g. CEA CAT Risk

(2011), p. 5). However, the decreasing piecewise continuous property of the function (2.12) can be

used to derive a closed-form formula for (2.13), and a fortiori for (2.14). First of all, rewrite the

relevant sum in the bracket of (2.12) as

X
c

Uc � Vc þ
X

cjSoLc

ð1�UcÞ � Vc ¼
X

cjS�Lc

Uc � Vc þ
X

cjSoLc

Vc: ð2:15Þ
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Then, renumber the insured limits in increasing order such that L1 , L2 ,y, LN, where N is the

number of involved countries, and consider the following quantities

CATk ¼ CATkðRP;VY;GL; gÞ ¼
lnð1�RP�1

Þ

lnð1�200�1
Þ
�

Pk
i¼1

Ui �Vi þ
PN

i¼kþ1

Vi

VY

0
BBB@

1
CCCA

g�1

�GL; k ¼ 0; . . . ;N:

ð2:16Þ

Note that CAT0 ¼ CATec
m is (2.10) and CATj 4CATjþ1; j ¼ 0; . . . ;N�1. We obtain the

following result.

Theorem 2.1. (QIS5 MTPL man-made catastrophe risk capital) The QIS5 risk capital associated

to the catastrophe risk model (M1) including limits of coverage, with individual motor claim

frequency (2.1) and Pareto claim size distribution (2.3), is given by the closed-form formula

CATic
m ðRP;VY;GL; gÞ ¼

CAT0; f ðL�1 Þo0;

Lj; f ðL�j Þ � 0 ^ f ðLþj Þo0; j ¼ 1; . . . ;N;

CATj; f ðLþj Þ � 0 ^ f ðLþjþ1Þo 0; j ¼ 1; . . . ;N � 1;

CATN ; f ðLþNÞ � 0:

8>>>>><
>>>>>:

ð2:17Þ

Proof. The proof is simple and makes use of the decreasing piecewise continuous property of the

function (2.12). B

3. The modified QIS5 economic capital model

The QIS5 CAT formula is not consistent with current economic capital modelling within risk

management. We observe that (2.13)–(2.14) is the value-at-risk measure of the total loss to the

confidence level a ¼ 1 þ lnð1�200�1Þ � 0:995, and not the value-at-risk measure of the increase

of the total loss with respect to the mean, also called total insurance risk, which is the accepted

standard (see Hürlimann (2011), formula (2.9), for a recent general justification of the latter

concept). In this respect, the current solution even contradicts the QIS5 principle used to measure

the non-life risk capital, which is specified according to the accepted standard (e.g. Hürlimann,

2010). However, it is not difficult to modify the QIS5 formula to render it consistent with the

accepted standard economic capital approach. For this, we must subtract the expected total loss

(calculated according to model assumption (M1)) from the corresponding value-at-risk measure.

3.1. Economic capital for model (M1) excluding limits of coverage

Using (2.5) and the formula for the mean of a Pareto distribution with shape parameter g . 1 (we

assume here a finite mean), we obtain the modified VaR QIS5 economic capital formula

ECec
ðM1Þ ðRP;VY;GL; gÞ ¼

lnð1�RP�1Þ

lnð1�200�1
Þ
�

P
c

Vc

VY

0
@

1
A

g�1

þ lnð1�RP�1
Þ �

g
g�1
�

P
c

Vc

VY

8><
>:

9>=
>; �GL: ð3:1Þ
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3.2. Economic capital for model (M1) including limits of coverage

Similarly, using (2.7)–(2.8), we see that the economic capital is defined to be the (unique) zero

S ¼ ECic
ðM1Þ (if it exists) of the function (modified version of (2.12))

f ðSÞ ¼

lnð1�RP�1
Þ

lnð1�200�1
Þ
�

P
c

Uc � Vc þ
P

c SoLcj

ð1�UcÞ � Vc

VY

0
B@

1
CA

g�1

þ lnð1�RP�1
Þ �

g
g�1
�

P
c

Uc � Vc þ
P

c SoLcj

ð1�UcÞ � Vc

VY

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
�
GL

S
�1: ð3:2Þ

Again, we note that this function is a decreasing piecewise continuous function with discontinuities

at the insured limits (Lc). To solve it in closed-form we proceed as in Subsection 2.2. Renumber the

insured limits such that L1 , L2 ,y, LN, and consider the quantities

ECk ¼ ECkðRP;VY;GL; gÞ ¼

lnð1�RP�1
Þ

lnð1�200�1Þ
�

Pk
i¼1

Ui �Vi þ
PN

i¼kþ1

Vi

VY

0
BBB@

1
CCCA

g�1

þ lnð1�RP�1
Þ �

g
g�1
�

Pk
i¼1

Ui �Vi þ
PN

i¼kþ1

Vi

VY

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

�GL; k ¼ 0; . . . ;N:

ð3:3Þ

Note that EC0 ¼ ECec
ðM1Þ and ECj 4ECjþ1; j ¼ 0; . . . ;N�1. We obtain the following modified

QIS5 MTPL man-made catastrophe risk capital formula.

Theorem 3.1. The modified QIS5 economic capital associated to the catastrophe risk model (M1)

including limits of coverage, with individual motor claim frequency (2.1) and Pareto claim size

distribution (2.3) with shape parameter g . 1, is given by the closed-form formula

ECic
ðM1ÞðRP;VY;GL; gÞ ¼

EC0; f ðL�1 Þo0;

Lj; f ðL�j Þ � 0 ^ f ðLþj Þo0; j ¼ 1; . . . ;N;

ECj; f ðLþj Þ � 0 ^ f ðLþjþ1Þo0; j ¼ 1; . . . ;N�1;

ECN; f ðLþNÞ � 0: :

8>>>><
>>>>:

ð3:4Þ

Proof. This is similar to the proof of Theorem 2.1. B

4. Risk theoretical economic capital models for man-made catastrophe risks

The crucial total loss probability model assumed in QIS5 is a simple though not very satisfactory

model from an actuarial viewpoint. The model assumption (M1) implicitly implies that the total

loss is made of a single catastrophe claim in case it occurs over a one-year time period. However,

since Cramér-Lundberg, the total loss should rather be dynamically modelled by a sequence of

claims of varying size, where claims occur over time according to a Poisson process. For this reason,

we alternatively model the total loss using a compound Poisson Pareto model of the aggregate

extreme losses, i.e. a Poisson distributed frequency driven by the return period and the number of
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vehicle years as in (2.2) or (2.7)–(2.8), and a Pareto distribution for the extreme loss size driven by a

Pareto shape g . 1 as in (2.3) (in contrast to (2.3) we assume a finite mean).

In the Subsections 3.1 and 3.2, we propose two alternatives to the current and modified QIS5

man-made catastrophe risk approach. Recall the basic relevant facts taken from Hürlimann (2011),

Section 2. The one-year total loss is described by one of the two models:

(M2) The total loss follows a compound Poisson Pareto aggregate claims model defined by

TL ¼
XN
i¼ 1

Si; ð4:1Þ

where the number of claims N is Poisson (l) distributed, the catastrophe claim sizes S1,y,SN are

independent and identically distributed and follow a Pareto distribution of the type (2.3) with g . 1,

and N is independent of the sequence S1,y ,SN.

(M3) The total loss follows a compound Poisson Pareto aggregate claims model with Black-

Scholes-Merton returns, defined by

TL ¼
XN
k¼ 1

RMk
� Sk; ð4:2Þ

where the number of claims N is Poisson (l) distributed, Mk is the exponentially distributed moment

of time at which the k-th claim occurs (arrival time associated to the number of claims), S1,y,SN

are independent and identically Pareto (2.3) distributed catastrophe claim sizes occurring at the

times M1,y,MN, Rs ¼ exp Y1�Ysð Þ; 0o so1, represents the random accumulation factor over

the time period [s,1) for a geometric Brownian return process {Ys, sZ0} with drift and Lévy

exponent cðzÞ ¼ 1
2s

2 � z2 þ d � z, and the sources of randomness N, {S1,y,SN} and {Ys, sZ0} are

mutually independent.

The models (M2) and (M3) are two of the most important special instances of the more general

Sparre Andersen model with geometric Lévy returns (see Hürlimann (2011), Examples 3.1). The

Poisson parameter of these models will be either the deterministic quantity

l ¼ lMTPL ðRP;VYÞ �
X

c

Vc

 !
; ð4:3Þ

defined in (2.2), for the models excluding limits of coverage, or the piecewise continuous random

function of the (unknown) total loss TL

l ¼ lðTLÞ ¼ lMTPLðRP;VYÞ �
X

c

Uc � Vc þ
X

c TLoLcj

ð1�UcÞ � Vc

 !
; ð4:4Þ

defined similarly to the quantities in (2.7)–(2.8), for the models including limits of coverage. Finally,

the end-of-year VaR economic capital to the confidence level a associated to the total insurance risk

TLI ¼ TL�E TL½ � is defined by (see Hürlimann (2011), formula (2.9), for a justification)

ECI
a ¼ VaRa½TLI�: ð4:5Þ

Economic capital modelling for the MTPL man-made catastrophe risk

53

https://doi.org/10.1017/S1748499512000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000164


Clearly, the evaluation of the economic capital (4.5) requires the knowledge of the distribution of

the total loss random variables defined in (4.1) and (4.2). A direct computational evaluation of this

distribution relies on advanced numerical methods (see Sundt & Vernic (2009) for a survey of this

topic). In particular, the stochastic specification (4.4) should perhaps require new methods. Since in

catastrophe risk modelling one is only interested in the right tail of the distribution, some

asymptotic analytical approximations might suffice for practical purposes.

4.1. The risk theoretical economic capital models excluding limits of coverage

For a homogeneous Poisson claim number process with parameter (4.3) the survival distribution of

the total loss satisfies the following asymptotic equivalence (see Hürlimann (2011), Theorem 3.1

and Examples 3.1, special case of a unit time period):

P TL4 Sð Þ � l � �FPARðSÞ �
1; ðM2Þ;

ðecðgÞ � 1Þ=cðgÞ; ðM3Þ;

�
ð4:6Þ

where in model (M3) the function cðzÞ ¼ ln E ezY1
� 	

¼ dz þ 1
2s

2z2; z 2 �1;1ð Þ, is the Lévy

exponent of the Black-Scholes-Merton return model (a geometric Brownian process). It is interesting to

observe that the right-hand side of (4.6) for model (M2) coincides with the survival distribution (2.4)

obtained for model (M1). Therefore, we conclude that asymptotically as the total loss increases without

limits the model assumption (M2) is equivalent to the model assumption obtained from (M1) by

replacing a single catastrophe claim by the total loss. In other words, the QIS5 simple model (M1) is

justified as limiting asymptotic approximation to the classical compound Poisson Pareto model (M2).

Conversely, we obtain the following asymptotic approximation to the (M2) VaR economic capital.

Corollary 4.1. The end-of-year VaR economic capital associated to the catastrophe risk model

(M2) excluding limits of coverage, with Poisson parameter (4.3) and Pareto shape parameter g . 1,

is asymptotically determined by the formula (3.1), i.e.

ECec
ðM2ÞðRP;VY;GL; gÞ � ECec

ðM1ÞðRP;VY;GL; gÞ: ð4:7Þ

Proof. This is the special case n 5 1 of (3.12) in the Examples 3.1 illustrating Theorem 3.2 in

Hürlimann (2011). B

A similar result holds for the model (M3).

Theorem 4.1. The end-of-year VaR economic capital associated to the compound Poisson Pareto Black-

Scholes-Merton model (M3) excluding limits of coverage, with Poisson parameter (4.3), Pareto shape

parameter g . 1, and Lévy exponent cðzÞ ¼ dz þ 1
2s

2z2, is asymptotically determined by the formula

ECec
ðM3ÞðRP;VY;GL; gÞ �

ecðgÞ�1

cðgÞ
�

lnð1�RP�1
Þ

lnð1�200�1
Þ
�

P
c

Vc

VY

0
@

1
A

g�1

þ
ecð1Þ�1

cð1Þ
� lnð1�RP�1Þ �

g
g�1
�

P
c

Vc

VY

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
�GL: ð4:8Þ

Proof. Use the formulas (3.5)–(3.6) of Theorem 3.2 in Hürlimann (2011) as explained in the

Examples 3.1 there. B
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4.2. The risk theoretical economic capital models including limits of coverage

Since the Poisson parameter (4.4) is a random function of the total loss, it cannot a priori be stated

that the asymptotic equivalence (4.6) remains valid in this situation, a point left open for future

research. Nevertheless, it is very intuitive to preserve the asymptotic similarity between model (M2)

and (M1) stated in Subsection 4.1. Therefore, we will approximate the survival distribution of the

total loss by (4.6) with Poisson parameter (4.4) for the models including limits of coverage. Then,

the above results can be extended accordingly.

Corollary 4.2. The end-of-year VaR economic capital associated to the catastrophe risk model (M2)

including limits of coverage, with random Poisson parameter (4.4) and Pareto shape parameter g . 1,

is asymptotically approximately determined by Theorem 3.1, i.e.

ECic
ðM2Þ ðRP;VY;GL; gÞ � ECic

ðM1Þ ðRP;VY;GL; gÞ: ð4:9Þ

The model (M3) can be handled in the manner of Subsection 3.2. The asymptotic approximation to

the economic capital is defined to be the (unique) zero S ¼ ECic
ðM3Þ (if it exists) of the function

(modify the function (3.2) using (4.8))

f ðSÞ ¼

ecðgÞ�1

cðgÞ
�

lnð1�RP�1Þ

lnð1�200�1Þ
�

P
c

Uc � Vc þ
P

c SoLcj

ð1�UcÞ � Vc

VY

0
B@

1
CA

g�1

þ
ecð1Þ�1

cð1Þ
� lnð1�RP�1Þ �

g
g�1
�

P
c

Uc � Vc þ
P

c SoLcj

ð1�UcÞ � Vc

VY

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
�
GL

S
�1 ð4:10Þ

This function is again a decreasing piecewise continuous function with discontinuities at the insured

limits. To solve it, renumber the latter such that L1 , L2 ,y, LN, and consider the quantities

ECk ¼ECk ðRP;VY;GL;gÞ ¼

ecðgÞ�1

cðgÞ
�
lnð1�RP�1

Þ

lnð1�200�1
Þ
�

Pk
i¼1

Ui �Viþ
PN

i¼kþ1

Vi

VY

0
BBB@

1
CCCA

g�1

þ
ecð1Þ�1

cð1Þ
� lnð1�RP�1

Þ �
g

g�1
�

Pk
i¼1

Ui �Viþ
PN

i¼kþ1

Vi

VY

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

�GL; k¼ 0;... ;N:

ð4:11Þ

Note that EC0 equals the right-hand side in (4.8) and ECj4ECjþ1; j¼ 0;... ;N�1. We obtain the

following result.

Theorem 4.2. The end-of-year VaR economic capital associated to the catastrophe risk model

(M3) including limits of coverage, with random Poisson parameter (4.4) and Pareto shape para-

meter g . 1, is asymptotically approximately determined by the closed-form formula

ECic
ðM3ÞðRP;VY;GL; gÞ �

EC0; f ðL�1 Þo0;

Lj; f ðL�j Þ � 0 ^ f ðLþj Þo0; j ¼ 1; . . . ;N;

ECj; f ðLþj Þ � 0 ^ f ðLþjþ1Þo 0; j ¼ 1; . . . ;N�1;

ECN; f ðLþNÞ � 0:

8>>>><
>>>>:

ð4:12Þ

Proof. This is similar to the proof of Theorems 2.1 and 3.1. B

Economic capital modelling for the MTPL man-made catastrophe risk

55

https://doi.org/10.1017/S1748499512000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000164


5. Numerical illustration, simulation study and further comments

The calibration of the parameters VY, GL is related to the market size of the MTPL Europe-wide

insurance business. QIS5 has specified their values (in Mio. EUR) as VY 5 300, GL 5 275. The level

of CATm strongly depends upon the remaining model parameters RP, g. QIS5 calibration assumes

that RP 5 20, g 5 2. Actuarial research, internal models and OSRA (own solvency risk assessment)

are likely to provide very different figures varying in a wide range of possible values gA [1,3]. The

choice g 5 1 (with no finite moment of the claim size) has been suggested by Zajdenweber (1996)

for business interruption (e.g. the 9/11 terrorist attacks represented a business interruption claim of

11 billion USD) (see also Charpentier (2007b) and Berliner (1985) on the limits of insurability). It is

also possible to argue that the relatively safe QIS5 choice g 5 2 (without finite variance) might be

too conservative for the MTPL insurance business. Typical statistical parameter estimation yields a

value gE2.5 (e.g. Hürlimann (2010), Table 5.3, and Hürlimann (2007), Table 4.1, for the Swiss

MTPL market). Even g 5 2.9 has been suggested in the CEIOPS consultation paper CP71 (2010),

Section 5, 5.26, p. 109. Further research is urgently needed to clarify which Pareto shape parameter

should be appropriate for man-made catastrophe risk capital calculation. On the other hand,

statistical estimation studies about the return period have only rarely been published in actuarial

circles (e.g. Hürlimann, 2006) and should also been encouraged.

For the sake of illustration, we have computed the different capital requirements by fixed VY 5 300,

GL 5 275 for the portfolio Vc 5 (30,50,20), Lc 5 (400,600,800). The CAT values under the QIS5

model (M1) are calculated according to the formulas (2.5)–(2.10) and (2.17) as listed in Tables 1

and 2 (the bold entry is the current QIS5 value). These two tables also contain the expected values

of the total loss under this model. The (M1) asymptotic approximations to the economic

capital models (M2) and (M3) are given in Tables 3 and 4 (the bold entry compares with the

Table 1. QIS5 CAT model ignoring insured limits

CATec
m E TLec

ðM1Þ

h i
g 1.5 2 2.5 2.9 1.5 2 2.5 2.9

RP

50 334.826 318.748 309.474 304.474 5.556 3.704 3.087 2.827

40 389.192 356.826 338.713 329.116 6.962 4.642 3.868 3.542

30 472.817 412.908 380.670 363.974 9.323 6.215 5.179 4.743

20 623.142 507.894 449.247 419.841 14.106 9.404 7.836 7.177

Table 2. QIS5 CAT model for a fixed pattern of insured limits

CATic
m E TLic

ðM1Þ

h i
g 1.5 2 2.5 2.9 1.5 2 2.5 2.9

RP

50 334.826 318.748 309.474 304.474 5.556 3.704 3.087 2.827

40 389.192 356.826 338.713 329.116 6.962 4.642 3.868 3.542

30 400.000 400.000 380.670 363.974 6.694 4.463 5.179 4.743

20 499.655 430.364 400.000 400.000 10.128 6.752 5.627 5.153
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current QIS5 value in Table 2). Table entries are stated in Mio. EUR. The drift and volatility of the

Black-Scholes-Merton return model are set equal to d ¼ r�1
2s

2; r ¼ 5%; s ¼ 20%. We note that

the (M2) asymptotic economic capital approximations from the modified QIS5 approach differ

from the QIS5 CAT values by the total loss means (except when these values coincide with insured

limits due to the discontinuities). A comparison of (2.5)–(2.10) with (3.1), respectively (2.16)–(2.17)

with (3.3)–(3.4), shows that this is always true.

Since the results corresponding to models (M2) and (M3) are based on asymptotic approximations,

it is necessary to investigate whether they lead to appropriate results. To support the made

asymptotic approximations, a Monte Carlo simulation study will do. For simplicity we restrict

ourselves to the models ignoring insured limits. For each set of parameter values, we have generated

a sample of n 5 1 Mio. total loss random variables in the usual way. To each simulated

exponentially distributed inter claim time within a one year time horizon we associate a simulated

Pareto claim size. For model (M2) we simply sum them over the possible inter claim times, and for

model (M3) we multiply the claims with the corresponding simulated accumulation factors before

summing. In this way we obtain two simulated samples of the random variables TLec
ðM2Þ;TLec

ðM3Þ in

(4.1) and (4.2), whose order statistics are denoted by

TLM2
ð1Þ � TLM2

ð2Þ � . . . � TLM2
ðnÞ ;TLM3

ð1Þ � TLM3
ð2Þ � . . . � TLM3

ðnÞ : ð5:1Þ

Estimates of the value-at-risk measure of the total losses to the confidence level a5 0.995 are

simply given by

VaR
^

a TLec
ðM2Þ

h i
¼ TLM2

ð an½ �Þ;VaR
^

a TLec
ðM3Þ

h i
¼ TLM3

ð an½ �Þ: ð5:2Þ

Table 3. (M1) approximations to EC models (M2) and (M3) ignoring insured limits

ECec
ðM2ÞðRP;VY;GL; gÞ ECec

ðM3ÞðRP;VY;GL; gÞ

g 1.5 2 2.5 2.9 1.5 2 2.5 2.9

RP

50 329.271 315.044 306.388 301.647 339.404 326.439 319.154 315.569

40 382.230 352.184 334.845 325.574 393.996 364.927 348.804 340.610

30 463.494 406.692 375.491 359.231 477.766 421.417 391.159 375.839

20 609.036 498.491 441.411 412.664 627.800 516.557 459.857 431.778

Table 4. (M1) approximations to EC models (M2) and (M3) for fixed insured limits

ECic
ðM2ÞðRP;VY;GL; gÞ ECic

ðM3ÞðRP;VY;GL; gÞ

g 1.5 2 2.5 2.9 1.5 2 2.5 2.9

RP

50 329.271 315.044 306.388 301.647 339.404 326.439 319.154 315.569

40 382.230 352.184 334.845 325.574 393.996 364.927 348.804 340.610

30 400.000 400.000 375.491 359.231 400.000 400.000 391.159 375.839

20 489.527 423.612 400.000 400.000 504.602 438.952 404.053 400.000
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Table 5, which lists the results of our simulation study for this, should be compared with Tables 1

and 3 (the latter adjusted for the means). It confirms that the (M1) asymptotic approximations for

our Poisson Pareto risk models can be used. The approximations are close to the simulated values

and often on the safe side.

We observe that the conditional value-at-risk measure (CVaR), which is a coherent risk measure, can

also be used instead of value-at-risk (see Hürlimann, 2011). In this situation we have used the estimates

CVaR
^

a TLec
ðM2Þ

h i
¼

1

ð1�aÞn

Xn

i¼ an½ �

TLM2
ðiÞ ;CVaR

^

a TLec
ðM3Þ

h i
¼

1

ð1�aÞn

Xn

i¼ an½ �

TLM3
ðiÞ : ð5:3Þ

To obtain them, consider the representation CVaRa X½ � ¼ ð1�aÞ�1
� E X½ ��La X½ �
� �

, where

La X½ � ¼
R a

0 QðuÞdu, Q(u) a quantile function, denotes the Lorenz transform of X (e.g. Hürlimann

(2003), Proposition 2.1, equation (2.8)). Then (5.3) follows by inserting the usual estimate for the mean

and the following estimate for the Lorenz transform (given the order statistics X(1)ryrX(n) of a

random sample X 5 (X1,y,Xn) of size n):

L̂a X½ � ¼ n�1 �
Xan½ � þ 1

i¼ 1

XðiÞ: ð5:4Þ

We note that the CVaR values in Table 6 exceed considerably the VaR values in Table 5, a fact which is

related to the well-known dangerousness property of the Pareto distribution.

Some further comments can be made. The required man-made catastrophe MTPL risk capital is

sensitive to the assumed parameter values RP, g, and illustrates clearly the need to understand better

Table 5. Monte Carlo VaR estimates of models (M2) and (M3) ignoring insured limits

VaR
^

a TLec
ðM2Þ

h i
VaRa

^

TLec
ðM3Þ

h i
g 1.5 2 2.5 2.9 1.5 2 2.5 2.9

RP

50 333.439 315.072 310.281 308.280 344.901 324.681 313.575 308.802

40 391.418 357.788 342.235 331.384 399.035 368.532 347.414 338.428

30 474.818 413.969 383.332 360.901 491.349 426.485 397.259 383.284

20 616.729 514.002 451.460 423.198 646.031 529.477 473.953 440.054

Table 6. Monte Carlo CVaR estimates of models (M2) and (M3) ignoring insured limits

CVaRa

^

TLec
ðM2Þ

h i
CVaR
^

a TLec
ðM3Þ

h i
g 1.5 2 2.5 2.9 1.5 2 2.5 2.9

RP

50 1002.74 648.057 522.144 473.872 1192.77 659.354 534.096 497.094

40 1106.30 714.181 584.330 508.987 1153.52 720.113 573.845 519.475

30 1335.44 838.401 644.089 546.804 1394.74 840.839 662.291 592.711

20 2463.02 1026.25 755.810 661.728 2050.30 1037.36 788.235 680.438
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the role of these parameters. We note that the Pareto distribution is more dangerous by decreasing

shape parameter and that this property is preserved for the capital requirements, at least in our

numerical and simulation examples. The integration of returns in model (M3) has the effect to

increase moderately the economic capital.
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