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Abstract We prove that the class of reflexive asymptotic-c0 Banach spaces is coarsely rigid, meaning
that if a Banach space X coarsely embeds into a reflexive asymptotic-c0 space Y , then X is also reflexive
and asymptotic-c0. In order to achieve this result, we provide a purely metric characterization of this

class of Banach spaces. This metric characterization takes the form of a concentration inequality for
Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a

quasi-reflexive asymptotic-c0 space, we show that this concentration inequality is not equivalent to the

non-equi-coarse embeddability of the Hamming graphs.
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1. Introduction

The concept of rigidity for a class of mathematical objects has permeated mathematical

fields. A prime example of a rigidity problem arose in geometric group theory. Take a

finitely generated group 0 which is an algebraic object. One can apprehend 0 in the

category of metric spaces by looking at its Cayley graph. Then, a fundamental aspect

of Gromov’s geometric group theory program [10] is to understand how much of the
algebraic properties of a group one can recover knowing solely the large-scale shape of

its Cayley graph. A class G of groups is said to be quasi-isometrically rigid if every group

that is quasi-isometric to a group in G is actually virtually isomorphic to a group in G. A

quasi-isometric embedding is what we call a coarse-Lipschitz embedding in this paper (see

all the relevant definitions of non-linear embeddings in § 2.3). It is quite remarkable that
many classes of groups are known to be quasi-isometrically rigid: free groups, hyperbolic

groups and amenable groups, and we refer to [15] for a detailed list.

In this work, we provide a Banach space analogue of this type of results. A class

C of Banach spaces is called coarsely rigid if it follows from Y being a member of

C and X being coarsely embedded into Y , that X is also in C. Let us insist on the

fact that coarse embeddings are very weak embeddings. Indeed, it is classical that L1
coarsely embeds into `2 (while it does not coarse-Lipschitz embed). On the other hand,

Nowak [20] showed that for any p ∈ [1,∞), `2 coarsely embeds into `p. This was extended

by Ostrovskii [22] who proved that `2 coarsely embeds into any Banach space with an

unconditional basis and of non-trivial cotype. On a more elementary level, note that
R coarse-Lipschitz embeds into Z. Therefore, coarsely rigid classes are rare. The class

of spaces that coarsely embeds into a fixed metric space (M, d) or the class of spaces

in which a fixed (M, d) does not coarsely embed is clearly coarsely rigid. It is, for

instance, rather simple to see that a Banach space X has dimension less than n ∈ N
if and only if the integer grid Zn equipped with the `1 metric does not coarsely embed

into X . Besides such simple coarsely rigid classes, very few rigidity results have been

obtained so far. Let us describe three important examples. Randrianarivony showed

in [23] that a quasi-Banach space X coarsely embeds into a Hilbert space if and only

if there is a probability space (�, B, µ) such that X is linearly isomorphic to a subspace

of L0(�, B, µ). This clearly describes a class of quasi-Banach spaces that is coarsely

rigid. Then, a major achievement by Mendel and Naor [19] was a purely metric extension
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of the linear notion of Rademacher cotype. Using that notion of metric cotype, they

were able to show that within the class of Banach spaces with non-trivial type, the class

{X : inf{q ′ > 2 : X has Rademacher cotype q ′} 6 q} is coarsely rigid. It is still unclear and

important to understand whether the non-trivial type restriction is necessary. Another

important rigidity result was obtained by Kalton [14]. Indeed, he showed that, within the

class of Banach spaces that do not have `1-spreading models (or, equivalently, spaces with

the alternating Banach–Saks property), the class of reflexive Banach spaces is coarsely

rigid. It then follows from an ultraproduct argument that, within the class of Banach

spaces with non-trivial type, the class of super-reflexive Banach spaces is coarsely rigid.

Since `1 coarsely embeds into `2, we need at least to exclude spaces which contain `1 to
obtain both conclusions. The last papers of N. Kalton ([14] among others, and see also the

survey [9] and references therein) show that asymptotic structures of Banach spaces often

provide linear properties that are invariant under coarse or coarse-Lipschitz embeddings.

Our work follows this program, studying the links between asymptotic structures and

large-scale geometry of Banach spaces.

In this article, we exhibit a new example of an unrestricted class of infinite-dimensional
Banach spaces which is coarsely rigid. The notion of an asymptotic-c0 space will be

recalled in § 3.

Theorem A. Let Y be a reflexive asymptotic-c0 Banach space. If X is a Banach space

that coarsely embeds into Y , then X is also reflexive and asymptotic-c0.

Since there are reflexive asymptotic-c0 spaces, like Tsirelson’s original space T ∗ [24],

which will be recalled later, Theorem A immediately implies the main result from [3],

where the existence of an infinite-dimensional Banach space that does not coarsely contain

`2 is proved. Our proof of Theorem A, which is carried out in § 4, follows from the following

purely metric characterization of the linear property of being ‘reflexive and asymptotic-c0’

in terms of a concentration inequality for Lipschitz maps on the Hamming graphs (see

the definition and notation in § 2.2).

Theorem B. A Banach space X is reflexive and asymptotic-c0 if and only if there exists

C > 1 such that for every k ∈ N and every Lipschitz map f : ([N]k, d(k)H )→ X , there exists
M ∈ [N]ω so that

diam( f ([M]k)) 6 C Lip( f ).
This concentration inequality was introduced in [3] where it was shown to hold for

maps taking values into Tsirelson’s original space T ∗. The space T ∗ is the prototypical

example of a separable reflexive asymptotic-c0 Banach space, and the proof from [3] can

be generalized to show that the same concentration inequality holds for maps with values
into any reflexive asymptotic-c0 Banach space. The more conceptual approach undertaken

in this article to prove that any reflexive asymptotic-c0 Banach space satisfies the above

metric concentration inequality and requires the central notion of asymptotic structure

from [18] which is described in § 3. In order to prove the converse, the crucial step is to

show that if a Banach space X satisfies the metric concentration inequality, then all its

asymptotic models generated by weakly null arrays are isomorphic to c0. The notion of

asymptotic models was introduced by Halbeisen and Odell in [11]. Then the conclusion
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follows from an unexpected link between the notions asymptotic structure and asymptotic

models (see § 3). Indeed, it was proved by Freeman et al. [8] that a separable Banach space

which does not contain a copy of `1 is asymptotic-c0 whenever all its asymptotic models

generated by weakly null arrays are isomorphic to c0.

The concentration inequality in Theorem B clearly prevents the equi-coarse

embeddability of the sequence of Hamming graphs. We show in § 5 that the converse

is not true. More precisely, we provide an example of a non-reflexive Banach space in

which the Hamming graphs do not equi-coarsely embed.

2. Preliminaries

2.1. Trees

For k ∈ N, we put [N]6k
= {S ⊂ N : |S| 6 k}, [N]k = {S ⊂ N : |S| = k}, [N]<ω =⋃

k∈N[N]6k , [N]ω = {S ⊂ N : S infinite} and [N] = {S : S ⊂ N}. We always list the

elements of some m̄ ∈ [N]<ω or in [N]ω in increasing order, i.e., if we write m̄ =
{m1,m2, . . . ,ml} or m̄ = {m1,m2,m3, . . .}, we tacitly assume that m1 < m2 < · · · . For m̄ =
{m1,m2, . . . ,mr } ∈ [N]6k and n̄ = {n1, n2, . . . , ns} ∈ [N]6k , we write m̄ ≺ n̄, if r < s 6 k
and mi = ni , for i = 1, 2, . . . , r , and we write m̄ � n̄ if m̄ ≺ n̄ or m̄ = n̄. Note that [N]6k ,

k ∈ N with ≺, are rooted trees, i.e., partial orders with a unique minimal element, namely

∅, and the property that for each n̄ ∈ [N]6k , the set of predecessors of n̄ {m̄ : m̄ ≺ n̄} is

finite and linearly ordered.

In this paper, we will only consider trees of finite height. For a set X , we will call a

family (xn̄ : n̄ ∈ [N]6k), for k ∈ N, a tree of height k. Sometimes we are also considering

unrooted trees of height k, which are families of the form (xn̄ : n̄ ∈ [N]6k
\ ∅). We call

for n̄ ∈ [N]k a sequence of the form (xm̄ : m̄ � n̄) = (x{n1,n2,...,nl })
k
l=0 a branch of the tree

(xn̄ : n̄ ∈ [N]6k), and (xm̄ : ∅ ≺ m̄ � n̄) = (x{n1,n2,...,nl })
k
l=1 a branch of the unrooted tree

(xn̄ : n̄ ∈ [N]6k
\ {∅}). Sequences of the form (xn̄∪{i})i>max(n̄), where n̄ ∈ [N]6k−1 (for a

tree of height k), are called nodes of the tree (xn̄ : n̄ ∈ [N]6k).

If (xn̄ : n̄ ∈ [N]6k) is a tree in X and M = {m1,m2, . . .} ∈ [N]ω, we call (xm̄ : m̄ ∈ [M]6k)

a refinement of (xn̄ : n̄ ∈ [N]6k). By relabeling x̃n̄ = x{mi :i∈n̄}, for n̄ ∈ [N]6k , the family

(x̃n̄ : n̄ ∈ [N]6k) is a tree which we also call a refinement of (xn̄ : n̄ ∈ [N]6k).

If X is a Banach space, we call a tree (xn̄ : n̄ ∈ [N]6k) in X normalized if xn̄ ∈ SX , for

all n̄ ∈ [N]6k , and weakly convergent or weakly null if all its nodes are weakly converging

or weakly null, respectively. Here SX denotes the unit sphere in X , while BX denotes the
closed unit ball.

2.2. Hamming graph on [N]k

For k ∈ N and m̄ = {m1,m2, . . . ,mk} and n̄ = {n1, n2, . . . , nk} in [N]k , we define the

Hamming distance by

d(k)H (m̄, n̄) = |{i ∈ {1, 2, . . . , k} : mi 6= ni }| (1)

and put Hωk = ([N]
k, d(k)H ).
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2.3. Embeddings

Let (X, dX ) and (Y, dY ) be two metric spaces and f : X → Y . One defines

ρ f (t) = inf{dY ( f (x), f (y)) : dX (x, y) > t}

and

ω f (t) = sup{dY ( f (x), f (y)) : dX (x, y) 6 t}.

Note that for every x, y ∈ X ,

ρ f (dX (x, y)) 6 dY ( f (x), f (y)) 6 ω f (dX (x, y)). (2)

The moduli ρ f and ω f will be called the compression modulus and the expansion

modulus of the map f , respectively. We adopt the convention sup(∅) = 0 and inf(∅) =
+∞. The map f is a coarse embedding if limt→∞ ρ f (t) = ∞ and ω f (t) <∞ for all t > 0.

A map f : X → Y is said to be a uniform embedding if limt→0 ω f (t) = 0 and ρ f (t) > 0
for all t > 0, i.e., f is an injective uniformly continuous map whose inverse is uniformly

continuous.

If one is given a family of metric spaces (X i )i∈I , one says that (X i )i∈I equi-coarsely (resp.

equi-uniformly) embeds into Y if there exist non-decreasing functions ρ, ω : [0,∞)→
[0,∞) and for all i ∈ I , maps fi : X i → Y such that ρ 6 ρ fi , ω fi 6 ω, and limt→∞ ρ(t) =
∞ and ω(t) <∞ for all t > 0 (resp. limt→0 ω(t) = 0 and ρ(t) > 0 for all t > 0).

We call a map f : X → Y Lipschitz continuous if

Lip( f ) = sup
{

d( f (x), f (y))
d(x, y)

: x, y ∈ X, d(x, y) > 0
}
<∞,

and we call it a bi-Lipschitz embedding if it is injective and if f and f −1 are both Lipschitz

continuous.

A coarse-Lipschitz embedding is a map f : X → Y , for which there are numbers θ > 0,

and 0 < c1 < c2, so that

c1dX (x, y) 6 dY ( f (x), f (y)) 6 c2dX (x, y), whenever x, y ∈ X and d(x, y) > θ. (3)

3. Asymptotic properties of Banach spaces and their interplay

For two basic sequences (xi ) and (yi ) in some Banach spaces X and Y , respectively, and

C > 1, we say that (xi ) and (yi ) are C-equivalent, and we write (xi ) ∼C (yi ) if there are

positive numbers A and B, with C = A · B, so that for all (a j ) ∈ c00, the vector space of

all sequences x = (ξ j ) in R for which the support supp(x) = { j : ξ j 6= 0} is finite, we have

1
A

∥∥∥∥ ∞∑
i=1

ai xi

∥∥∥∥ 6

∥∥∥∥ ∞∑
i=1

ai yi

∥∥∥∥ 6 B
∥∥∥∥ ∞∑

i=1

ai xi

∥∥∥∥.
In that case, we say that 1

A is the lower estimate and B the upper estimate of (yi ) with

respect to (xi ). Note that (xi ) and (yi ) are C-equivalent if and only C > ‖T ‖ · ‖T−1
‖,

where the linear operator T : span(xi : i ∈ N)→ span(yi : i ∈ N) is defined by T (xi ) = yi ,

i ∈ N.
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If (ei ) is a Schauder basis of a Banach space X , we recall that (xn) is a block sequence

in X with respect to the basis (ei ) if max(supp(x1)) < min(supp(x2)) 6 max(supp(x2)) <

· · · 6 max(supp(xn−1)) < min(supp(xn)) 6 · · · .
For k ∈ N, we denote by Ek the set of all norms on Rk , for which the unit vector basis

(ei )
k
i=1 is a normalized monotone basis. With an easily understood abuse of terminology,

this can also be referred to as the set of all pairs (E, (e j )
k
j=1), where E is a k-dimensional

Banach space and (e j )
k
j=1 is a monotone basis of E .

We define a metric δk on Ek as follows: for two spaces E = (Rk, ‖ · ‖E ) and F = (Rk, ‖ ·

‖F ), we let δk(E, F) = log(‖IE,F‖ · ‖I−1
E,F‖), IE,F : E → F , be the formal identity. It is

also well known and easy to show that (Ek, δk) is a compact metric space. The following

definition is due to Maurey et al. [18].

Definition 3.1 (The kth asymptotic structure of X [18]). Let X be a Banach space. For

k ∈ N, we define the kth asymptotic structure of X to be the set, denoted by {X}k , of

spaces E = (Rk, ‖ · ‖) ∈ Ek for which the following is true:

∀ε > 0∀X1 ∈ cof(X) ∃x1 ∈ SX1 ∀X2 ∈ cof(X) ∃x2 ∈ SX2 · · · ∀Xk ∈ cof(X) ∃xk ∈ SXk (4)

(x j )
k
j=1 ∼1+ε (e j )

k
j=1.

For 1 6 p 6∞ and c > 1, we say that X is c-asymptotically `p, if for all k ∈ N and all

spaces E ∈ {X}k , with monotone normalized basis (e j )
k
j=1, (e j )

k
j=1 is c-equivalent to the

`k
p unit vector basis. We say that X is asymptotically `p, if it is c-asymptotically `p

for some c > 1. In case that p = ∞, we say that the space X is c-asymptotically c0 or
asymptotically c0.

We denote by T ∗ the Banach space originally constructed by Tsirelson in [24]. It was

the first example of a Banach space that does not contain any isomorphic copies of `p
nor c0. Since it is the archetype of a reflexive asymptotic-c0 space, we explain shortly its

construction (we will also use it at the end of § 5). Soon after, in [7], it became clear that

the more natural space to define is T , the dual of T ∗, because the norm of this space

is more conveniently described. It has since become common to refer to T as Tsirelson
space instead of T ∗. Figiel and Johnson in [7] gave an implicit formula that describes the

norm of T as follows. For E, F ∈ [N]<ω and n ∈ N, we mean by n 6 E that n 6 min E
and by E < F that max(E) < min(F). We call a sequence (E j )

n
j=1 of finite subsets of N

admissible if n 6 E1 < E2 < · · · < En . For x =
∑
∞

j=1 λ j e j ∈ c00 and E ∈ [N]<ω, we write

Ex =
∑

j∈E λ j e j . As it was observed in [7], if ‖ · ‖T denotes the norm of T , then for every

x ∈ c00,

‖x‖T = max
{
‖x‖∞,

1
2

sup
n∑

j=1

‖E j x‖T

}
, (5)

where the supremum is taken over all n ∈ N and admissible sequences (E j )
n
j=1. The space

T is the completion of c00 with this norm and the unit vector basis is a 1-unconditional

basis. Then it was proven in [7] that T does not contain a subspace isomorphic to `1,

which, together with the easy observation that T certainly does not contain a subspace

isomorphic to c0, yields by James’ theorem [12, Theorem 2] that T must be reflexive.

https://doi.org/10.1017/S1474748019000732 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000732


A new coarsely rigid class of Banach spaces 1735

The following property of T ∗ (see [24, Lemma 4]) is essential:∥∥∥∥ n∑
j=1

x j

∥∥∥∥
T ∗

6 2 max
16 j6n

‖x j‖T ∗ if (x j )
n
j=1 is a block sequence, with n 6 supp(x1). (6)

The fact that T ∗ is 2-asymptotic-c0 is an easy consequence of the above estimate. This

well-known fact is hard to track down in the literature and follows from the fact that

every weakly null tree admits a refinement for which all branches are arbitrary small
perturbations of blocks.

Remarks 3.2. Let us recall some easy facts about the asymptotic structure of a Banach

space which can be found in [16, 18] or [21].

(a) Let E = (Rk, ‖ · ‖), with ‖ · ‖ being a norm on Rk , for which (e j ) is a normalized basis

(but not necessarily monotone). If (e j ) satisfies (4) for some infinite-dimensional
Banach space X , then (e j )

k
j=1 is automatically a monotone basis of E (by using

the ideas of Mazur’s proof that normalized weakly null sequences have basic

subsequences with a basis constant which is arbitrarily close to 1). Therefore, the

above-introduced definition of asymptotic structure coincides with the original one

given in [18].

(b) For any infinite-dimensional Banach space X and k ∈ N, {X}k is a closed and thus

compact subset of Ek with respect to the above-introduced metric δk on Ek .

(c) For a k-dimensional space E with a monotone normalized basis (e j )
k
j=1 to be in the

k-asymptotic structure can be equivalently described by having a winning strategy

in the following game between two players: We fix ε > 0. Player I (the ‘space

chooser’) chooses a space X1 ∈ cof(X), then player II (the ‘vector chooser’) chooses

a vector x1 ∈ SX1 , and then player I and player II repeat these moves to obtain

spaces X1, X2, . . . , Xk in cof(X) and vectors x1, x2, . . . , xk , with xi ∈ SX i . The space

E being in {X}k means that for every ε > 0, player II has a winning strategy, if his

or her goal is to obtain a sequence (x j )
k
j=1 which is (1+ ε)-equivalent to (e j )

k
j=1.

For E ∈ Ek with monotone basis (e j )
k
j=1 and ε > 0, a winning strategy for the vector

chooser can then be defined to be a tree family

F = (x(X1, X2, . . . , Xl) : 1 6 l 6 k, X1, X2, . . . , Xl ∈ cof(X)) ⊂ SX

with the property that for any choice of X1, X2, . . . , Xk ∈ cof(X), and any l 6
k, x(X1, X2, . . . , Xl) ∈ SXl so that the sequence (x(X1, X2, . . . , Xl))

k
l=1 is (1+

ε)-equivalent to (e j )
k
j=1.

Since the game has finitely many steps, it is determined, meaning that either the

vector chooser or the space chooser has a winning strategy. Using the language of

the game and its determinacy, it is then easy to see that the set {X}k is the smallest

compact subset for which the space chooser has a winning strategy if for a given

ε > 0, his or her goal is the resulting sequence (x j )
k
j=1 at a distance at most ε to

{X}k (with respect to the metric δk). In particular, a Banach space is asymptotically

`p, 1 6 p <∞ or asymptotically c0 if and only if there is a c > 0 so that for each
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k ∈ N, the space chooser has a winning strategy to get a sequence (x j )
k
j=1 which is

c-equivalent to the unit vector basis in `k
p or `k

∞, respectively.

(d) Assume that X is a space with a separable dual. Then we can replace in the

definition of {X}k the set cof(X) by a countable subset of cof(X), namely by the set

{F⊥ : F ⊂ {x∗j : j ∈ N} finite}, where {x∗j : j ∈ N} ⊂ SX∗ is dense.

In that case, normalized weakly null trees in X indexed by [N]6k can be used to

describe the kth asymptotic structure: if X∗ is separable and k ∈ N, a space E ∈ Ek
with monotone basis (e j )

k
j=1 is in {X}k if and only if for every ε > 0, there is an

unrooted weakly null tree T = (xn̄ : n̄ ∈ [N]6k
\ {∅}) in SX for which all branches

are (1+ ε)-equivalent to (e j )
k
j=1.

It follows, therefore, from (c) and Ramsey’s theorem that X is asymptotically `p,
for 1 6 p <∞, or asymptotically c0 if there is a C > 1 so that for every k ∈ N, every

unrooted normalized weakly null tree of height k has a refinement (as introduced

in § 2.1) all of whose branches are C-equivalent to the `k
p-unit vector basis.

The following observation will reduce the proof of the main results to the separable

case.

Proposition 3.3. Let X be a reflexive Banach space. Then there exists a separable subspace

Y of X so that for all k ∈ N, we have {X}k = {Y }k .

We will need the following two lemmas first.

Lemma 3.4. Let X be an infinite-dimensional Banach space and let E be a k-dimensional

Banach space with a normalized monotone Schauder basis (ei )
k
i=1. If for every ε > 0, there

exists a weakly null tree {xn̄ : n̄ ∈ [N]6k
\ {∅}} ⊂ SX so that for every m̄ = {m1, . . . ,mk} ∈

[N]k , the sequence (x{m1,...,mi })
k
i=1 is (1+ ε)-equivalent to (ei )

k
i=1. Then (ei )

k
i=1 is in {X}k .

Proof. Recall that if Y ∈ cof(X) and (zi )
∞

i=1 is a normalized weakly null sequence, then

limi dist(zi , SY ) = 0. Fixing ε > 0 and k ∈ N, we will show that the vector player can
choose a sequence that is (1+ ε)-equivalent to (ei )

k
i=1. Take a weakly null tree (xm̄ :

m̄ ∈ [N]6k) ⊂ SX so that for all m̄ = {m1, . . . ,mk}, the sequence is (x{m1,...,mi })
k
i=1 is (1+

δ)-equivalent to (ei )
k
i=1, where we will choose δ > 0 later. For each turn 1 6 i 6 k of the

game when the subspace player chooses Yi ∈ cof(X), the vector player picks mi > mi−1
(where m0 = 0) so that there is xi ∈ SYi with ‖xi − x{m1,...,mi }‖ 6 δ. For δ sufficiently small,

this strategy for choosing xi in SYi ensures that the sequence (xi )
k
i=1 is (1+ ε)-equivalent

to (ei )
k
i=1.

Lemma 3.5. Let X be a reflexive Banach space, k ∈ N, (ei )
k
i=1 ∈ {X}k , and let ε > 0.

Then there exists a countably branching weakly null tree {xn̄ : n̄ ∈ [N]6k
\ {∅}} in SX , all

of whose branches are (1+ ε)-equivalent to (ei )
k
i=1.

Proof. We recall that the Eberlein–Šmulyan theorem ensures that if W is a relatively

weakly compact set in a Banach space and x0 ∈ W
w

, then there exists a sequence (xi )
∞

i=1
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in W with xi
w
→ x0. Let ε > 0 and let (x(Y1, Y2, . . . , Yi ) : i = 1, 2, . . . , k, Y1, Y2, . . . , Yi ∈

cof(X)) be a normalized tree with x(Y1, Y2, . . . , Yi ) ∈ SYi and whose branches approximate

(e j )
k
j=1 up to (1+ ε)-equivalence (see Remarks 3.2 (c)). By reflexivity, the set {x(Y ) :

Y ∈ cof(X)} (the first level of the tree) is relatively weakly compact. Also, 0 ∈
{x(Y ) : Y ∈ cof(X)}

w
. Indeed, if f1, . . . , fd are in X∗, then Y =

⋂d
j=1 ker( f j ) is in cof(X)

and, hence, f j (x(Y )) = 0 for 1 6 j 6 d. We may thus pick a sequence (Yl)l in cof(X) with

x(Yl)
w
→ 0.

Assume that for some i ∈ N, we have assigned for each {m1, . . . ,mi } ∈ [N]i , a vector

x{m1,...,mi } of the form x(Ym1 , Ym2 , . . . , Ymi ). As before, we may pick a sequence (Y (i+1)
l )l

so that x(Ym1 , Ym2 , . . . , Ymi , Y (i+1)
l )

w
→ 0. For j > mi , we define

x{m1,...,mi , j} = x(Ym1 , Ym2 , . . . , Ymi , Y (i+1)
l ),

for some large enough l. Thus, every (x{m1,...,mi })
k
i=1 is of the form (x(Y1, . . . , Yi ))

k
i=1, and,

thus, (1+ ε)-equivalent to (e j )
k
j=1.

Proof of Proposition 3.3. Since for every k ∈ N, the k-asymptotic structure {X}k is
separable (with respect to the metric introduced in § 3 (b)), we can find a countable

set {(e(l)j )
k
j=1 : l ∈ N} ⊂ {X}k which is dense in {X}k and, using Lemma 3.5, a countable

collection of weakly null trees {(x (r)n̄ : n̄ ∈ [N]
6k) : r ∈ N} in SX so that for each ε > 0

and each l ∈ N, there is a r ∈ N, so that for all n̄ ∈ [N]k , the sequence (x (r)m̄ : m̄ � n̄) is

(1+ ε)-equivalent to (e(l)j )
k
j=1. We define Yk to be the closed linear span of {x (r)n̄ : r ∈ N, n̄ ∈

[N]6k
}. Since {Yk}k and {X}k are compact (see (b) in § 3), it follows that {Yk}k = {X}k .

Finally, we conclude our proof by setting Y to be the closed linear span of
⋃

k∈N Yk and

deduce our claim.

We now turn to ‘sequential asymptotic properties’ of Banach spaces. These are

properties which involve sequences and their subsequences, as opposed to trees and their

refinements.

Let X be a Banach space and k ∈ N. A family (x (i)j : i = 1, 2, . . . , k, j ∈ N) ⊂ X is called

an array of height k in X . An array of infinite height in X is a family (x (i)j : i, j ∈ N) ⊂ X .

For (finite or infinite) arrays (x (i)j : i = 1, 2, . . . , k, j ∈ N), or (x (i)j : i, j ∈ N),
respectively, we call the sequence (x (i)j ) j∈N the ith row of the array. We call an array

weakly null if all rows are weakly null. A subarray of a finite array (x (i)j : i = 1, 2, . . . , k, j ∈

N) ⊂ X , or an infinite array (x (i)j : i ∈ N, j ∈ N) ⊂ X , is an array of the form (x (i)js : i =

1, 2, . . . , k, s ∈ N) or (x (i)js : i ∈ N, s ∈ N), respectively, where ( js) ⊂ N is a subsequence.

Thus, for a subarray, we are taking the same subsequence in each row.

The following notion was introduced by Halbeisen and Odell [11].

Definition 3.6 [11]. A basic sequence (ei ) is called an asymptotic model of a Banach space

X if there exist an infinite array (x (i)j : i, j ∈ N) ⊂ SX and a null sequence (εn) ⊂ (0, 1) so
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that for all n, all (ai )
n
i=1 ⊂ [−1, 1] and n 6 k1 < k2 < · · · < kn , it follows that∣∣∣∣∥∥∥∥ n∑

i=1

ai x (i)ki

∥∥∥∥− ∥∥∥∥ n∑
i=1

ai ei

∥∥∥∥∣∣∣∣ < εn .

In [11], the following was shown.

Proposition 3.7 [11, Proposition 4.1 and Remark 4.7.5]. Assume that (x (i)j : i, j ∈ N) ⊂ SX
is an infinite array, all of whose rows are normalized and weakly null. Then there is a

subarray of (x (i)j : i, j ∈ N) which has a 1-suppression unconditional asymptotic model

(ei ).

We call a basic sequence (ei ) c-suppression unconditional, for some c > 1, if for any

(ai ) ⊂ c00 and any A ⊂ N, ∥∥∥∥∑
i∈A

ai ei

∥∥∥∥ 6 c
∥∥∥∥ ∞∑

i=1

ai ei

∥∥∥∥.
We call (ei ) c-unconditional if for any (ai ) ⊂ c00 and any (σi ) ∈ {±1}N,∥∥∥∥ ∞∑

i=1

ai ei

∥∥∥∥ 6 c
∥∥∥∥ ∞∑

i=1

σi ai ei

∥∥∥∥.
Note that a c-unconditional basic sequence is c-suppression unconditional.

The following important result was shown in [8] and it is an integral ingredient of the

proof of Theorem B.

Theorem 3.8 [8, Theorem 4.6]. If a separable Banach space X does not contain any

isomorphic copy of `1 and all the asymptotic models generated by normalized weakly null

arrays are equivalent to the c0 unit vector basis, then X is asymptotically c0.

Asymptotic models can be seen as a generalization of spreading models, a notion
which was introduced much earlier by Brunel and Sucheston [6]. Spreading models are

asymptotic models for arrays with identical rows.

Definition 3.9 [6]. Let E be a Banach space with a normalized basis (ei ) and let (xi ) be

a basic sequence in a Banach space X . We say that E with its basis (ei ) is a spreading

model of (xi ) if there is a null sequence (εn) ⊂ (0, 1) so that for all n, all (ai )
n
i=1 ⊂ [−1, 1]

and n 6 k1 < k2 < · · · < kn , it follows that∣∣∣∣∥∥∥∥ n∑
i=1

ai xki

∥∥∥∥
X
−

∥∥∥∥ n∑
i=1

ai ei

∥∥∥∥
E

∣∣∣∣ < εn

or, in other words, if

lim
k1→∞

lim
k2→∞

· · · lim
kn→∞

∥∥∥∥ n∑
j=1

a j xk j

∥∥∥∥
X
=

∥∥∥∥ n∑
j=1

a j e j

∥∥∥∥
E
.
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Using Ramsey’s theorem, it is easy to see that every normalized basic sequence has

a subsequence which admits a spreading model, which, of course, also follows form the

above cited result in [11]. A spreading model E with basis (ei ) generated by a normalized

weakly null sequence is 1-suppression unconditional [4, Proposition 1, p. 24].

Let k ∈ N and let (x (i)j : i = 1, 2, . . . , k, j ∈ N) ⊂ SX be a normalized weakly null array

of height k. We extend this array to an infinite array (x (i)j : i ∈ N, j ∈ N) by letting

x (sk+i)
j = x (i)j , for s ∈ N and i = 1, 2, . . . , k.

By Proposition 3.7, we can pass to a subarray (z(i)j : i ∈ N, j ∈ N) of (x (i)j : i ∈ N, j ∈ N)
which admits an asymptotic model (e j ). Now letting e(i)j = e( j−1)k+i , for i = 1, 2, . . . , k

and j ∈ N, we observe that the array (e(i)j )i, j∈N is the joint spreading model of (z(i)j :

i ∈ N, j ∈ N), a notion introduced and discussed in [1]. We recall the definition of joint

spreading models and will first recall the definition of plegmas.

Definition 3.10 [2, Definition 3]. Let k,m ∈ N and si = (s
(i)
1 , s(i)2 , . . . , s(i)m ) ⊂ N for i =

1, . . . , k. The family (si )
k
i=1 is called a plegma if

s(1)1 < s(2)1 < · · · < s(k)1 < s(1)2 < s(2)2 < · · · < s(k)2 < · · · < s(1)m < s(2)m < · · · < s(k)m .

Definition 3.11 [1, Definition 3.1]. Let (x (i)j : 1 6 i 6 k, j ∈ N) and (e(i)j : 1 6 i 6 k, j ∈ N)
be two normalized arrays in the Banach spaces X and E , respectively, whose rows are

normalized and basic. We say that (x (i)j : 1 6 i 6 k, j ∈ N) generates (e(i)j : 1 6 i 6 k, j ∈
N) as a joint spreading model if there exists a null sequence of positive real numbers

(εm)
∞

m=1 so that for every m ∈ N, every plegma (si )
k
i=1, si = (s

(i)
j : j = 1, 2, . . . ,m) for

1 6 i 6 k, with min(s1) = s(1)1 > m, and scalars ((a(i)j )
m
j=1)

k
i=1 in [−1, 1], we have

∣∣∣∣∥∥∥∥ m∑
j=1

k∑
i=1

a(i)j x (i)
s(i)j

∥∥∥∥
X
−

∥∥∥∥ m∑
j=1

k∑
i=1

a(i)j e(i)j

∥∥∥∥
E

∣∣∣∣ < εm .

Remark 3.12. Note that if (x (i)j : 1 6 i 6 k, j ∈ N) generates (e(i)j : 1 6 i 6 k, j ∈ N) as a

joint spreading model, then (e(i)j )
∞

j=1 is a spreading model of (x (i)j )
∞

j=1, for i = 1, 2, . . . , k.

In the next remark, we discuss the differences between asymptotic and sequential

asymptotic properties.

Remark 3.13. Assume that X is a separable reflexive space. Then, by observation (d) in

Remarks 3.2, the property that X is asymptotically `p, for some 1 6 p 6∞ (as usual

replace `∞ by c0 if p = ∞), is equivalent to the property that there is a C > 1 so that for

every k ∈ N, every weakly null tree (xn̄ : n̄ ∈ [N]6k) of height k can be refined (as defined

in § 2.1) to a tree (xm̄ : m̄ ∈ [M]6k), M ∈ [N]ω, which has the property that each branch

is C-equivalent to the `k
p unit vector basis.
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Second, we consider the property of a Banach space X that every asymptotic model

generated by a weakly null array is C-equivalent to the `p-unit vector basis, for some

1 6 p <∞, or the c0-unit vector basis. For a normalized weakly null array (x (i)j : i, j ∈ N),
we put xm̄ = x (i)max(m̄) for m̄ ∈ [N]i and call for k ∈ N, the tree (xn̄ : n̄ ∈ [N]6k), the tree

of height k generated by the array (x (i)j : i, j ∈ N). Note that xn̄ for n̄ ∈ [N]6k only

depends on max(n̄) and the cardinality of n̄ but not on the predecessors of n̄. Then,

by a straightforward diagonalization argument, one shows that the property that every

asymptotic model generated by a weakly null array is C-equivalent to the `p-unit

vector basis for some C > 1 is equivalent with the property that every tree of height

k, generated by a normalized weakly null array, has a refinement, all of whose branches
are C-equivalent to the `k

p-unit vector basis, for some C > 1.

Thus, the property that the asymptotic models generated by normalized weakly null

arrays are C-equivalent to the `p-unit vector basis is a property of specific weakly null

trees. Theorem 3.8 is, therefore, a surprising result, and its proof relies on the fact

that the c0-norm is somewhat extremal. Usually, it is not possible to deduce from a

sequentially asymptotic property of a Banach space an asymptotic property. For example,

in a forthcoming paper, we build a reflexive space X , all of whose asymptotic models are

isometrically equivalent to the `2-unit vector basis, but for a given 1 6 p 6∞, p 6= 2, X
has `n

p in its nth asymptotic structure.

4. Proof of Theorems A and B

This section is devoted to proving Theorem B and then obtaining Theorem A as a

corollary. The proof is based on the main argument of [3] and on the above cited result

in [8] (see Theorem 3.8 in our paper) that connects asymptotic properties with properties

of arrays.

The following lemma includes a well-known refinement argument which is crucial for

the proof of the main result. For completeness, we include a proof.

Lemma 4.1. Let X be a reflexive Banach space, k ∈ N, and f : [N]k → X have a bounded

image. Then there exist M ∈ [N]ω and a weakly null tree (ym̄ : m̄ ∈ [M]6k) so that f (m̄) =
y∅+

∑k
i=1 y{m1,...,mi }, for all m̄ ∈ [M]k .

Moreover, if we equip [N]k with d(k)H , then for all m̄ ∈ [M]6k
\ {∅}, we have ‖ym̄‖ 6

Lip( f ).

Proof. We prove the claim by induction for all k ∈ N. If k = 1, we can take a subsequence

(xn) of ( f ({n}))n∈N which converges to some y∅ ∈ X . Then put y{n} = xn − y∅.
Assume our claim to be true for k− 1, with k ∈ N, and let f : [N]k → X have a bounded

image. We put li = i , for i = 1, 2, . . . , k− 1, and choose Lk−1 ∈ [{k, k+ 1, . . .}]ω so that

x{1,2,...,k−1} = w− liml→∞,l∈Lk−1 f ({1, 2, . . . , k− 1} ∪ {l}) exists. Then we can recursively

choose for each n > k, ln ∈ N, Ln ∈ [Ln−1]
ω, with ln ∈ Ln−1 and ln < min(Ln), so that

for each m̄ ⊂ {l1, l2, . . . , ln}, with #m̄ = k− 1, xm̄ = w− liml→∞,l∈Ln f (m̄ ∪ {l}) exists. Let

L = {l j : j ∈ N} and put ym̄ = f (m̄)− x{m1,m2,...,mk−1} for m̄ = {m1,m2, . . . ,mk} ∈ [L]k .

Finally, we apply the induction hypothesis to f ′ : [L]k−1
→ X , m̄ 7→ xm̄ , which provides
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us with an infinite M ⊂ L and a weakly null tree (ym̄ : m̄ ∈ [M]k−1) so that xm̄ =∑k
i=0 y{m1,m2,...,mi } for all m̄ = {m1,m2, . . . ,mk−1} ∈ [M]k−1, and, thus,

f (m̄) = ym̄ + x{m1,m2,...,mk−1} =

k∑
i=0

y{m1,m2,...,mi } for all m̄ = {m1,m2, . . . ,mk} ∈ [M]k .

To prove the second part of the statement, let m̄ = {m1,m2, . . . ,mi } in [M]k \ {∅} and

put m̄′ = {m1,m2, . . . ,mi−1}. It follows from the lower semicontinuity of the norm with

respect to the weak topology that

‖ym̄‖ =

∥∥∥w - lim
ni→∞

lim
ni+1→∞

· · · lim
nk→∞

( f (m̄ ∪ {ni+1, . . . , nk})− f (m̄′ ∪ {ni , ni+1, . . . , nk}))

∥∥∥
6 lim sup

ni→∞
lim sup
ni+1→∞

· · · lim sup
nk→∞

‖ f (m̄ ∪ {ni+1, . . . , nk})− f (m̄′ ∪ {ni , ni+1, . . . , nk})‖

6 lim sup
ni→∞

lim sup
ni+1→∞

· · · lim sup
nk→∞

Lip( f )d(k)H (m̄ ∪ {ni+1, . . . , nk}, m̄′ ∪ {ni , ni+1, . . . , nk})

= Lip( f ).

For the proof of Theorem B, a slightly weaker version of the next result would be

sufficient, but its proof would not be significantly easier.

Lemma 4.2. Let X be a C-asymptotic-c0 Banach space for some C > 1, k ∈ N, and let

also (xn̄ : n̄ ∈ [N]6k) be a bounded weakly null tree. Then for every ε > 0, there exists

L ∈ [N]ω so that for every m̄ = {m1, . . . ,mk} ∈ [L]k and every F ⊂ {1, . . . , k}, we have∥∥∥∑
i∈F

x{m1,...,mi }

∥∥∥ 6 (C + 1+ ε)max
i∈F
‖x{m1,...,mi }‖.

Proof. We will just find one such m̄. This is sufficient by Ramsey’s theorem since such

a set m̄ could be found in each infinite subset of N. Let us play a k-round vector game

in which the subspace player follows a winning strategy to force the vector player to

choose a sequence (C + ε)-equivalent to the unit vector basis of `k
∞. In each step i , the

subspace player picks a subspace Yi of finite codimension according to his or her winning

strategy. The vector player picks yi ∈ Yi according to the following scheme: recursively

pick m1 < · · · < mk so that one of the following holds:

(a) If lim supn ‖x{m1,...,mi−1,n}‖ > 0, pick mi (with mi > mi−1 if i > 1) and yi in the unit

sphere of Yi so that ∥∥∥∥yi −
x{m1,...,mi }

‖x{m1,...,mi }‖

∥∥∥∥ < ε2−i .

In the above argument, we have used the following corollary of the Hahn–Banach

Theorem. If Y ∈ cof(X) and (zi )
∞

i=1 is a weakly null sequence, then limi dist(zi , Y ) =
0. If, in particular, (zi )i is normalized, then limi dist(zi , SY ) = 0.

(b) If limn ‖x{m1,...,mi−1,n}‖ = 0, we distinguish between the following subcases:

(b1) if i = 1 or x{m1,...,m j } = 0, for all 1 6 j < i , pick arbitrary mi so that mi > mi−1
if i > 1 and arbitrary yi in the unit sphere of Yi , and
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(b2) if i > 1 and x{m1,...,m j } 6= 0, for some 1 6 j < i , pick mi > mi−1 so that

‖x{m1,...,mi }‖ < (ε2−i )min{‖x{m1,...,m j }‖ : 1 6 j < i with x{m1,...,m j } 6= 0}

and pick an arbitrary yi in the unit sphere of Yi .

It follows that the sequence (yi )
k
i=1 is (C + ε)-equivalent to the unit vector basis of `k

∞.

Let now F ⊂ {1, 2, . . . , k}. Set

F1 = {i ∈ F : (a) is satisfied} and F̄2 = {i ∈ F : (b) is satisfied and x{m1,...,mi } 6= 0}.

Set i0 = min(F̄2) and F2 = F̄2 \ {i0} if F̄2 is non-empty, otherwise, let F2 = ∅. We now

calculate∥∥∥∥∑
i∈F

x{m1,...,mi }

∥∥∥∥ 6

∥∥∥∥∑
i∈F1

x{m1,...,mi }

∥∥∥∥+‖x{m1,...,mi0 }
‖+

∥∥∥∥∑
i∈F2

x{m1,...,mi }

∥∥∥∥
6

∥∥∥∥∑
i∈F1

‖x{m1,...,mi }‖yi

∥∥∥∥+ ∥∥∥∥∑
i∈F1

x{m1,...,mi }−‖x{m1,...,mi }‖yi

∥∥∥∥
+‖x{m1,...,mi0 }

‖+

∑
i∈F2

ε

2i ‖x{m1,...,mi0 }
‖

6 (C + ε)max
i∈F1
‖x{m1,...,mi }‖+

∑
i∈F1

ε

2i ‖x{m1,...,mi }‖+ (1+ ε)‖x{m1,...,mi0 }
‖

6 (C + 1+ 3ε)max
i∈F
‖x{m1,...,mi }‖.

An adjustment of ε yields the desired estimate.

The following is one of the main statements presented in this paper.

Theorem 4.3 (Theorem B). A Banach space X is reflexive and asymptotic-c0 if and

only if there exists C > 1 satisfying the following: for every k ∈ N and Lipschitz map

f : ([N]k, d(k)H )→ X , there exists L ∈ [N]ω so that

diam( f ([L]k)) 6 C Lip( f ). (7)

Proof. We first assume that X is reflexive and B-asymptotically c0. Let k ∈ N and let f :
([N]k, d(k)H )→ X be a Lipschitz map. By Lemma 4.1, there exist M ∈ [N]ω and a weakly

null tree (ym̄ : m̄ ∈ [M]6k) so that f (m̄) =
∑

l̄�m̄ yl̄ , for all m̄ ∈ [M]k , and ‖ym̄‖ 6 Lip( f ),
for all m̄ ∈ [M]6k

\ {∅}. By Lemma 4.2, we find L ∈ [M]ω so that∥∥∥∥∑
i∈F

y{m1,...,mi }

∥∥∥∥ 6 (B+ 2)max
i∈F
‖y{m1,...,mi }‖,

for all m̄ = {m1,m2, . . . ,mk} ∈ [L]k and F ⊂ {1, . . . , k}. Thus, for m̄, n̄ in [L]k , we have

‖ f (m̄)− f (n̄)‖ =
∥∥∥∥∑

ū�m̄

yū −
∑
v̄�n̄

yv̄

∥∥∥∥ 6

∥∥∥∥ ∑
∅≺ū�m̄

yū

∥∥∥∥+ ∥∥∥∥ ∑
∅≺v̄�n̄

yv̄

∥∥∥∥ 6 2(B+ 2)Lip( f )

and so for C = 2(B+ 2), the conclusion is satisfied.
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To prove the converse, we show that if either X is not reflexive or X is reflexive and

not asymptotic-c0, then there exists a sequence ( fk), fk : ([N]k, d(k)H )→ X , Lip( fk) 6 1,

for k ∈ N, and

inf
M∈[N]ω

diam( fk([M]k))↗∞, if k ↗∞. (8)

Assume first that X is non-reflexive. By James’ characterization of reflexive spaces [13],

there exists a sequence (xn) ⊂ BX such that for all k > 1 and m̄ = {m1,m2, . . . ,m2k} ∈

[N]2k , ∥∥∥∥ k∑
i=1

xmi −

2k∑
i=k+1

xmi

∥∥∥∥ >
k
2
. (9)

Define fk(m̄) = 1
2
∑k

i=1 xmi , for m̄ = {m1, . . . ,mk} in [N]k . This map is 1-Lipschitz with

respect to d(k)H and (9) implies (8).

Second, assume that X is reflexive and not asymptotically-c0. By Proposition 3.3, there

is a separable subspace of X that is not asymptotically-c0, so we can assume that X is
separable. By Theorem 3.8, there exists a 1-suppression unconditional sequence (ei )i that

is not equivalent to the unit vector basis of c0, and, hence, λk = ‖
∑k

i=1 ei‖ ↗ ∞ if k ↗∞,

and that is generated as an asymptotic model of a normalized weakly null array (x (i)j :

i, j ∈ N) in X . Fixing k ∈ N and δ > 0 and after passing to appropriate subsequences of

the array, we may assume that for any k 6 j1 < · · · < jk and any a1, . . . , ak in [−1, 1],
we have ∣∣∣∣∥∥∥∥ k∑

i=1

ai x (i)ji

∥∥∥∥− ∥∥∥∥ k∑
i=1

ai ei

∥∥∥∥∣∣∣∣ < δ. (10)

Define now fk(m̄) = 1
2
∑k

i=1 x (i)mi for m̄ = {m1, . . . ,mk} ∈ [N]k . Note that f is 1-Lipschitz

for the metric d(k)H .

Then, if m̄ = {m1, . . . ,mk}, n̄ = {n1, . . . , nk} and F = {i : mi 6= ni }, we have

fk(m̄)− fk(n̄) =
1
2

∑
i∈F

x (i)mi
−

1
2

∑
i∈F

x (i)ni
.

Using the fact that the array is weakly null and the Hahn–Banach theorem, for all

M ∈ [N]ω, all m̄ in [M]k , we can find x∗ ∈ SX∗ and n̄ ∈ [M]k such that

x∗
(∑

i∈F

x (i)mi
−

∑
i∈F

x (i)ni

)
>

∥∥∥∥∑
i∈F

x (i)mi

∥∥∥∥− δ.
Using equation (10), we deduce that

‖ fk(m̄)− fk(n̄)‖ >
1
2
λk − δ.

If δ was chosen small enough, we obtain that for all M ∈ [N]ω, diam( fk([M]k)) > λk
4 , which

proves our claim.
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Corollary 4.4 (Theorem A). Let Y be a reflexive asymptotic-c0 Banach space. If X is a

Banach space that coarsely embeds into Y , then X is also reflexive and asymptotic-c0.

Proof. Let g : X → Y be a coarse embedding with moduli ρg, ωg : [0,∞)→ [0,∞). By

Theorem 4.3, the space Y satisfies (7), for some constant C > 1. It is enough to show

that the same is true for X and some D > 1 such that ρg(D) > Cωg(1).
Let f : [N]k → X be a non-constant Lipschitz map. Take h : [N]k → Y with h(m̄) =

g(Lip( f )−1 f (m̄)). Because d(k)H is an unweighted graph metric, it follows that

Lip(h) = ωh(1) 6 ωg(Lip( f )−1ω f (1)) = ωg(Lip( f )−1 Lip( f )) = ωg(1).

Pick L ∈ [N]ω so that for all m̄, n̄ ∈ [L]k , we have ‖h(m̄)− h(n̄)‖ 6 Cωg(1). On the other

hand,

Cωg(1) > ‖h(m̄)− h(n̄)‖ = ‖g(Lip( f )−1 f (m̄))− g(Lip( f )−1 f (n̄))‖

> ρg(Lip( f )−1
‖ f (m̄)− f (n̄)‖).

Thus, Lip( f )−1
‖ f (m̄)− f (n̄)‖ 6 D or ‖ f (m̄)− f (n̄)‖ 6 D Lip( f ), for any m̄, n̄ ∈

[L]k .

A simple re-scaling argument (see the end of [3, § 4]) allows us to adapt the above

proofs in order to show the following.

Corollary 4.5. Let Y be a reflexive asymptotic-c0 Banach space. If X is a Banach space

such that BX uniformly embeds into Y , then X is also reflexive and asymptotic-c0.

Remark 4.6. For k ∈ N, the Johnson graph of height k is the set [N]k equipped with the

metric defined by d(k)J (m̄, n̄) = 1
2](m̄1n̄) for m̄, n̄ ∈ [N]k . It is proved in [3] that there is a

constant C > 1 such that for any k ∈ N and f : ([N]k, d(k)J )→ T ∗ Lipschitz, there exists

M ∈ [N]ω so that diam( f ([M]k)) 6 C Lip( f ). It is easily seen that the same is true if T ∗

is replaced by any reflexive asymptotic-c0 space. It is also clear that this concentration

property for Lipschitz maps from the Johnson graphs implies the reflexivity of the target

space. We do not know if it implies that it is asymptotic-c0. We do not know either

whether the equi-coarse embeddability of the Johnson graphs and of the Hamming graphs

are equivalent conditions for a Banach space. The reason is that canonical embeddings of

the Johnson graphs are built on sequences and not arrays. This confirms the qualitative

difference between asymptotic models and spreading models.

5. Quasi-reflexive asymptotic-c0 spaces

Let us first recall that a Banach space is said to be quasi-reflexive if the image of its

canonical embedding into its bidual is of finite codimension in this bidual. For an infinite

subset M of N, we denote Ik(M) the set of strictly interlaced pairs in [M]k , namely

Ik(M) = {(m̄, n̄) ∈ [M]k ×[M]k,m1 < n1 < m2 < n2 < · · · < mk < nk}.

Note that for (m̄, n̄) ∈ Ik(M), d(k)H (m̄, n̄) = k. Our next result mixes arguments from

Lemma 4.2 of this paper and of [17, Theorem 2.2].
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Theorem 5.1. Let C > 1 and X be a quasi-reflexive C-asymptotic-c0 Banach space. Then,

for any Lipschitz map f : ([N]k, d(k)H )→ X , there exists M ∈ [N]ω such that

∀(m̄, n̄) ∈ Ik(M), ‖ f (m̄)− f (n̄)‖ 6 3(C + 1)Lip( f ).

In particular, the family ([N]k, d(k)H )k∈N does not equi-coarsely embed into X .

Proof. Let us write X∗∗ = X ⊕ E , where E is a finite dimensional space. Let f :
([N]k, d(k)H )→ X be a Lipschitz map. Since f is countably valued and X is quasi-reflexive,

we may as well assume that X and, therefore, all its iterated duals are separable. We

may also assume that Lip( f ) > 0. Then mimicking the proof of Lemma 4.1 and using

weak∗ compactness instead of weak compactness, we infer the existence of M ∈ [N]ω and

of a weak∗ null tree (zm̄ : m̄ ∈ [M]6k) in X∗∗ so that f (m̄) = z∅+
∑k

i=1 z{m1,...,mi }, for all

m̄ ∈ [M]k and ‖zm̄‖ 6 Lip( f ), for all m̄ ∈ [M]6k
\ {∅}. For any m̄ ∈ [M]6k

\ {∅}, we write

zm̄ = xm̄ + em̄ with xm̄ ∈ X and em̄ ∈ E .

Fix now η > 0. Since E is finite-dimensional, using Ramsey’s theorem, we may assume

after further extractions that

∀i ∈ {1, . . . , k} ∀m̄, n̄ ∈ [M]i , ‖em̄ − en̄‖ 6 η. (11)

It follows from another Ramsey argument that it is enough to construct one pair (m̄, n̄) ∈
Ik(M) such that ‖ f (m̄)− f (n̄)‖ 6 3(C + 1)Lip( f ). We shall build m1 < n1 < · · · < mi <

ni inductively as follows. Since X is C-asymptotic c0, we shall play our usual k-round

game. At each step i , the subspace player follows, as she may, a winning strategy to

force the vector player to build a sequence which is (C + 1)-equivalent to the canonical

basis of `k
∞. So she picks X i in cof(X) according to her winning strategy. Then the

vector player picks xi ∈ SX i , and ‘we’ choose mi < ni in M according to the following

scheme. The subspace player picks X1 according to her strategy, the vector player picks
x1 ∈ SX1 and we just pick m1 < n1 in M. Assume now that X1, . . . , X i−1; x1, . . . , xi−1 and

m1 < n1 < · · · < mi−1 < ni−1 have been chosen for 2 6 i 6 k. For n > ni−1, denote yn =

x{m1,...,mi−1,n}− x{n1,...,ni−1,n+1} and vn = z{m1,...,mi−1,n}− z{n1,...,ni−1,n+1}. The space player

picks X i ∈ cof(X) according to her strategy. Note that X⊥i is a finite-dimensional weak∗

closed subspace of X∗.
(a) Assume first that lim infn→∞ ‖yn‖ 6

1
4k Lip( f ).

Then we pick n > ni−1 such that ‖yn‖ 6
1

2k Lip( f ), the vector player picks any xi ∈ SX i

and we set mi = n and ni = n+ 1.

(b) Assume now that lim infn→∞ ‖yn‖ >
1

4k Lip( f ).

Since (vn) is weak∗-null, we have that (vn) tends uniformly to 0 on bounded subsets

of X⊥i . It follows from (11) and the standard identification of (X/X i )
∗ with X⊥i that

lim supn→∞ d(yn, X i ) 6 η. So we can pick n > ni−1 such that ‖yn‖ >
1

4k Lip( f ) and

d(yn, X i ) 6 2η, which implies the existence of xi ∈ SX i so that ‖ yn
‖yn‖
− xi‖ 6

16kη
Lip( f ) . We

set mi = n and ni = n+ 1.

This concludes the description of our procedure and we recall that it ensures that

(xi )
k
i=1 is (C + 1)-equivalent to the canonical basis of `k

∞. We now denote A as the set
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of i ’s such that procedure (a) has been followed and B as the complement of A. For

simplicity, denote ui = x{m1,...,mi }− x{n1,...,ni }. We clearly have∥∥∥∥∑
i∈A

ui

∥∥∥∥ 6
1
2

Lip( f ).

On the other hand, we have∥∥∥∥∑
i∈B

ui

∥∥∥∥ 6

∥∥∥∥∑
i∈B

‖ui‖xi

∥∥∥∥+ ∥∥∥∥∑
i∈B

‖ui‖

(
xi −

ui

‖ui‖

)∥∥∥∥
6 (C + 1)max

i∈B
‖ui‖+ k max

i∈B
‖ui‖

16kη
Lip( f )

6 (2Lip( f )+ η)
(

C + 1+
16k2η

Lip( f )

)
.

Note that since f takes values in X , we also have that f (m̄)− f (n̄) =
∑k

i=1 ui . Then,

combining the above estimates with an initial choice of a small enough η, we get that

‖ f (m̄)− f (n̄)‖ 6 3(C + 1)Lip( f ).

We deduce the following.

Corollary 5.2. There exists a Banach space X which is not reflexive but such that the

family ([N]k, d(k)H )k∈N does not equi-coarsely embed into X .

Proof. We only need to give an example of a quasi-reflexive, but not reflexive,

asymptotic-c0 Banach space. It is based on a construction due to Bellenot et al. [5].

For a given Schauder basis (ui ) of a Banach space X , the space J [(ui )] is defined to be

the completion of c00 (the space of finitely supported sequences (ai )
∞

i=1 of real numbers)
under the norm∥∥∥∥∑ ai ei

∥∥∥∥ = sup
{∥∥∥∥ n∑

i=1

(∑
j∈si

a j

)
u pi

∥∥∥∥
X
, n ∈ N, s1 < · · · < sn,min si = pi

}
,

where s1, . . . , sn are intervals in N and (ei )
∞

i=1 is the canonical basis of c00.
It is proved in [5] that if (ui ) is the basis of a reflexive space, then J [(ui )] is

quasi-reflexive of order one. Let now (ui ) be the unit vector basis of T ∗ (see the description

of T ∗ in § 3). Since T ∗ is reflexive, J [(ui )] is quasi-reflexive of order one and, therefore,

not reflexive. This particular space was first considered in [8] and estimates similar to

those given in the proof of [8, Proposition 3.2] show that J [(ui )] is asymptotic-c0.
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