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Abstract For a characteristic-p> 0 variety X with controlled F-singularities, we state conditions which

imply that a divisorial sheaf is Cohen–Macaulay or at least has depth >3 at certain points. This mirrors

results of Kollár for varieties in characteristic 0. As an application, we show that relative canonical
sheaves are compatible with arbitrary base change for certain families with sharply F-pure fibers.
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1. Introduction

In the paper [25], Kollár proved that sheaves OX(−D) satisfy strong depth conditions
if D is locally Q-linearly equivalent to a divisor ∆ such that (X,∆) is SLC or KLT.
These results generalized [2, Lemma 3.2], [13] and [28, Corollary 5.25]. Because depth
conditions can be interpreted as vanishing of local cohomology, these results were
described as a local version of the Kawamata–Viehweg vanishing theorem.

In this paper, we obtain characteristic-p> 0 analogues of the main results of [25]. This
is particularly interesting because the (global) Kawamata–Viehweg vanishing theorem
is false in positive characteristic [33]. We replace the KLT and SLC conditions by
strongly F-regular and sharply F-pure singularities respectively (such characteristic-p >
0 singularity classes are known as F-singularities). For the convenience of the reader, we
recall that by [17, 31]

• KLT pairs correspond philosophically to strongly F-regular pairs, and

• SLC pairs correspond philosophically to sharply F-pure pairs.

Like the authors of [25] did, we can apply our results on depth to prove base change
for relative canonical sheaves.
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(A special case of) Corollary 4.12 (cf. [25, 4.3]). Let f : X −→ Y be a flat morphism of
finite type with S2, G1 equidimensional fibers to a smooth variety and let ∆ > 0 be a
Q-divisor on X avoiding all the codimension- 0 and the singular codimension-1 points of
the fibers. Further suppose that KX + ∆ is Q-Cartier, p 6 | ind(KX + ∆) and (Xy,∆y) is
sharply F-pure for every y ∈ Y. Then ωX/Y is flat over Y and compatible with arbitrary
base change.

It is hoped that Corollary 4.13 will prove useful in constructing a moduli space for
varieties of general type in positive characteristic. See [32] for further explanation, and
also for examples for which the above compatibility does not hold. We also remark here
that ωX/Y behaves surprisingly well with respect to base change. It obeys base change
for example when the fibers are Cohen–Macaulay [9, Theorem 3.6.1]. In particular, this
pertains to families of normal surfaces. In contrast, the higher reflexive powers, ω[m]X/Y
for m > 1, are not compatible with base change in the surface case [16, ğ 14.A]. Similar
differences between canonical and pluricanonical sheaves have been observed earlier
[22, page 2], [23, Remark 4.4].

The technical result on depth used to prove Corollary 4.13 is as follows. It is a
characteristic-p > 0 version of [25, Theorem 3(1)]; also compare with [2, Lemma 3.2],
[13, Theorem 4.21], [3, Theorem 1.5] and [29, Theorem 1.2, 1.5].

Theorem 3.8 (cf. [25, Theorem 3(1)]). Suppose that R is local, S2 and G1 and that
06∆ is an R-divisor on X = Spec R with no common components with the singular locus
of X and such that (X,∆) is sharply F-pure. Set x ∈ X to be the closed point and assume
that x is not an F-pure center of (X,∆). Suppose that 0 6 ∆′ 6 ∆ is another R-divisor
and that r∆′ is integral for some r > 0 relatively prime to p. Further assume that M is
any rank-1 reflexive subsheaf of K(X) such that M(−r) ∼= OX(r∆′) (here (·) denotes the
reflexive power). Then

depthx M >min{3, codimX x}.
Another interesting depth statement, again completely analogous to a theorem of

Kollár, is given below. In the introduction we phrase it in the language of Frobenius
splittings [7], but in the text it is phrased slightly more generally.

Theorem 3.6, Remark 3.7 (cf. [25, Theorem 3(2)]). Suppose that (R,m) is an S2

local ring with Frobenius splitting ϕ : Fe∗R −→ R which is not compatibly split with m.
Additionally suppose that Z is any union of compatibly ϕ-split subvarieties of X = Spec R
such that no irreducible component of Z coincides with an irreducible component of X.
Suppose that IZ ⊆ R is the ideal defining Z; then

depthm IZ >min{3, 1+ codimZ x}.
The other main statement on depth that we obtain, Theorem 3.1, asserts that if

(X,∆) is strongly F-regular and (pe − 1)D is an integral divisor linearly equivalent to
(pe − 1)∆, then OX(−D) is Cohen–Macaulay. Compare with [25, Theorem 2].
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Remark 1.1. One should also compare the above results on depth, as well as the
related characteristic-0 results, to [1, Theorem 4.8(vi)] where Aberbach and Enescu
showed that the depth of an F-pure ring R is always > than the dimension of the
minimal F-pure center (i.e., of the dimension of R modulo the splitting prime, which we
know is equal to the s-dimension of [1] by [6]).

2. Preliminaries on F-singularities

Notation 2.1. Throughout this paper, all schemes are Noetherian, separated, of equal
characteristic p > 0 and F-finite.3 Note that any such scheme X is automatically locally
excellent by [30] and also has a dualizing complex by [14]. In particular, we are implicitly
assuming that all schemes are locally excellent and possess dualizing complexes. Little
will be lost to the reader if he or she considers only schemes that are essentially of finite
type over a perfect field.

We remind the reader of some special divisors on non-normal schemes.

Definition 2.2 (divisors on non-normal schemes). We follow the notation of [26, ğ 16].
For an S2 reduced local ring R, set X = Spec R. We define a W-divisor (or Weil divisor)
to be a formal sum of codimension-1 subsets of X whose generic points are not singular
points of X. This has the same data as divisors on the regular locus of X or as rank-1 S2

submodules M of K(R) (the total ring of fractions of R) such that Mη = Rη as a subset
of K(R), for every codimension-1 singular point η of X. Later in the paper, we will need
to instead work with the more general notion of Weil divisorial sheaves WSh(X), rank-1
reflexive subsheaves of K(X) that are invertible in codimension 1.

In the non-local setting, such divisors are simply formal sums of irreducible
subschemes that satisfy this definition locally. We now set WDivQ(X) :=WDiv(X)⊗ZQ
and WDivR(X) :=WDiv(X)⊗ZR. Note that we have the containments

WDiv(X)⊆WDivQ(X)⊆WDivR(X).

One can also form WShQ(X) := WSh(X)⊗ZQ and WShZ(p)(X) := WShZ(p)(X)⊗ZZ(p)
similarly, but the natural maps WSh(X) −→WShZ(p)(X) −→WShQ(X) are not necessarily
injective [26, ğ 16]. Given

∑
i aiDi = ∆ ∈WDivR(X), we use d∆e to denote

∑
idaieDi

(such roundings are not necessarily well defined for WShZ(p)(X) or WShQ(x)). Finally,
given D ∈WDiv(X), we use OX(D) (or R(D)) to denote the corresponding subsheaf of
K (X) (or of K(R)) in the usual way. Note that D is effective if and only if OX(D)⊇OX .

Now we move away from divisors. Suppose that R is a ring of characteristic p > 0.
Following [36, 5], we say that a Cartier subalgebra C is a graded subring of the graded
ring ⊕

e>0

HomR (F
e∗R,R)= : C R

3 Meaning that the Frobenius morphism is a finite morphism.
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where multiplication is done by Frobenius twisted composition4 such that the zeroth
graded piece [C ]0 = HomR (R,R) ∼= R. We note that even though we call C a Cartier
subalgebra, it is not an R-algebra because R∼= [C ]0 is not necessarily central.

Example 2.3 (Cartier subalgebra associated with a divisor). Given an S2 and G1 ring
R, set X = Spec R and assume that 06∆ ∈WDivR(X) on X (for example, if R is normal,
∆ is simply an R-divisor). We can form the Cartier subalgebra C∆ where

[C∆]e :=HomR (F
e∗R(d(pe − 1)∆e),R)⊆HomR (F

e∗R,R).

Example 2.4 (Cartier subalgebra generated by a map). Suppose that C R is as above
and ϕ ∈ [C R]e for some e > 0. Then we can form the Cartier subalgebra R〈ϕ〉 generated
by R= [C ]0 and ϕ. Explicitly, this is the direct sum R⊕ (ϕ · (Fe∗R))⊕ (ϕ2 · (F2e∗ R))⊕ · · · .

Now we define sharply F-pure pairs and F-pure centers.

Definition 2.5 (sharply F-pure pairs). If C is a Cartier subalgebra on R, then we say
that the pair (R,C ) is sharply F-pure if there exists some ϕ ∈ [C ]e for some e > 1 such
that ϕ(Fe∗R)= R.

In particular, if (R,∆) is a pair as in Example 2.3, then we say that (R,∆) is sharply
F-pure if the associated (R,C∆) is sharply F-pure.

If (R,C R) is sharply F-pure, then we simply say that R is F-pure.

Definition 2.6 (compatible ideals and F-pure centers). If (R,C ) is a pair as above, then
an ideal I ⊆ R is called C -compatible if ϕ(Fe∗I) ⊆ I for all ϕ ∈ [C ]e and all e > 0. For the
case where C = R〈ϕ〉, we will sometimes simply say that I is ϕ-compatible.

An irreducible closed set W = V(Q) ⊆ Spec R = X, for some Q ∈ Spec R, is called an
F-pure center if the following two conditions hold:

(a) The localization (RQ,C Q) is sharply F-pure.
(b) For every for e > 0 and ϕ ∈ [C ]e, we have ϕ(Fe∗Q) ⊆ Q (in other words, Q is

C -compatible).

Likewise we say that W is an F-pure center of (R,∆) if it is an F-pure center of
(R,C∆) where C∆ is associated with ∆ as in Example 2.3.

We also define strongly F-regular pairs.

Definition 2.7 (strongly F-regular pairs). If R is a local ring, a pair (R,C ) is called
strongly F-regular if the only proper C -compatible ideals of R are 0 and R itself. If R is
not local, then we say that (R,C ) is strongly F-regular if every localization is.

A pair (R,∆) is strongly F-regular if (R,C∆) is strongly F-regular.

Remark 2.8. Given a pair (X,∆), all of the above definitions generalize to the
non-affine setting on requiring them to hold at each stalk. The notion of Cartier
subalgebras is somewhat more subtle in the non-affine setting however (but we will
not need such generalities).

4 If ϕ ∈ [C R]e and ψ ∈ [C R]d, then ϕ · ψ = ϕ ◦ (Fe∗ψ). See the aforementioned sources for more details.
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We recall some facts about compatible ideals and F-pure centers.

Lemma 2.9. Suppose that (R,C ) is a pair and I ⊆ J ⊆ R are ideals.

(i) The set of C -compatible ideals is closed under sum and intersection.
(ii) A prime ideal Q is C -compatible if and only if QRQ is CQ-compatible.
(iii) If C ′ ⊆ C are Cartier subalgebras and I is C -compatible, then I is C ′-compatible.
(iv) Given ϕ ∈HomR (Fe∗R,R), we have ϕ(Fe∗J)⊆ J if and only if J is R〈ϕ〉-compatible.
(v) Suppose that ϕ : Fe∗R−→ R is surjective. Some Q ∈ Spec R is ϕ-compatible if and only

if it is ϕn-compatible where

ϕn := ϕ ◦ (Fe∗ϕ) ◦ · · · ◦ (F(n−1)e∗ ϕ)︸ ︷︷ ︸
n times

(vi) If I is ϕ-compatible, then there exists a map ϕ/I : Fe∗(R/I) −→ (R/I) such that the
following diagram commutes:

Fe∗R
φ //

��

R

��
Fe∗(R/I) φ/I

// (R/I).

Furthermore, J ⊇ I is ϕ-compatible if and only if J/I is ϕ/I-compatible. (This
statement can also be given using Cartier subalgebras, but we will not need this
form.)

(vii) (R,C ) is strongly F-regular if and only if for every c ∈ R \ {minimal primes}, there
exists a ϕ ∈ [C ]e for e> 0; in fact one may take e to be any larger multiple such that
ϕ(Fe∗c)= 1.

Proof. (v) follows from the argument of [35, Proposition 4.1]. (vii) can be found in this
generality in [36, Proposition 3.23]. The rest are obvious. �

Our next goal is to give an example of a ϕ-compatible ideal that will be crucial
in later sections. The main idea is that Frobenius maps and Frobenius splittings
induce maps on local cohomology. Those induced maps can then be thought of as
acting directly and explicitly on Čech classes. For the convenience of the reader not
already familiar with this construction, recall that if X = Spec R and U = Spec R \ {m},
then for any coherent OX-module M, we have Hi

m(M) = Hi−1(U,M) for i > 1 and
also that H1

m(M) = H0(U,M)/image(H0(X,M)). We can then use the Čech cohomology
description of sheaf cohomology to define Hi

m(M). For a more thorough description of
local cohomology using the Čech complex, see for example [8, ğ 3.5].

We now consider Frobenius action on local cohomology. The Frobenius map R −→ F∗R
yields Ψ : Hi

m(R) −→ Hi
m(F∗R) ∼= Hi

m(R). Given a Čech class [z] = [. . . , zj, . . .] ∈ Hi
m(R), we

have Ψ ([z]) ∈ Hi
m(F∗R). But certainly Ψ ([z])= Fe∗[z]p

e = Fe∗[. . . , zpe

j , . . .] is identified with
raising the entries of [z] to the peth power.
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Now we do the same computation with a Frobenius splitting. Suppose that
ϕ : Fe∗R−→ R is an R-linear Frobenius splitting, and so we have a map Hi

m(F
e∗R)

ϕ−→ Hi
m(R)

induced by ϕ. Certainly ϕ(Fe∗[. . . , yj, . . .]) = [. . . , ϕ(Fe∗yj), . . .]. But now observe that for
any [z] ∈ Hi

m(R) and r ∈ R we have that

ϕ(Fe∗(r · [z]p
e
))= ϕ(Fe∗[. . . , rzpe

j , . . .])= [. . . , ϕ(Fe∗r)zj, . . .] = ϕ(Fe∗r)[z].

Lemma 2.10 (cf. [11, Theorem 4.1]). Suppose that (R,m) is a local ring. Then
AnnR Hi

m(R) is compatible with every splitting5ϕ : Fe∗R−→ R of Frobenius R−→ Fe∗R.

Proof. We have the following composition

R // Fe∗R
φ // R

1 � // Fe∗1
� // 1.

Now suppose that r ∈ AnnR Hi
m(R). Then choose [z] ∈ Hi

m(R). We want to show
that ϕ(Fe∗r).[z] = 0. Now, it follows from the Čech cohomology description of local
cohomology, and ϕ’s action on it, that

0= ϕ(Fe∗0)= ϕ(Fe∗(r · [z]p
e
))= ϕ(Fe∗r) · [z]

which completes the proof. �

We also recall the following fact. We include the proof because the method will be
generalized later.

Lemma 2.11. If (R,C ) is strongly F-regular, then R is normal and Cohen–Macaulay.

Proof. We first note that by Lemma 2.9(vii), the strong F-regularity hypothesis implies

that there exists a Frobenius splitting ψ such that R −→ Fe∗R
ψ−→ R is an isomorphism for

some e> 0. It then easily follows that R must be reduced since if not, the map R−→ Fe∗R
is not injective. Normality follows since the conductor ideal is compatible with every
ϕ∈ C R by the argument of [7, Proposition 1.2.5]. For the Cohen–Macaulay condition, by
working locally we assume that (R,m) is a local domain. By local duality [18, Chapter
V, Theorem 6.2], each Hi

m(R) is Matlis dual to hi−dim Rω·
R for some normalized dualizing

complex ω·
R. Since an element c ∈ R annihilates a finitely generated R-module if and only

if c annihilates the Matlis dual of a module, it follows that there exists 0 6= c ∈ R such
that c·Hi

m(R)= 0 for all i< dim R. Lemma 2.9(vii) then implies that there exists ϕ ∈ [C ]e
such that the composition

R−→ Fe∗R
Fe∗(·c)−−−→ Fe∗R−→ R

is an isomorphism. Taking local cohomology for i< dim R gives us an isomorphism:

Hi
m(R)−→ Hi

m(F
e∗R)

Fe∗(·c)−−−→ Hi
m(F

e∗R)−→ Hi
m(R)

where the middle map is the zero-map. Thus Hi
m(R)= 0 which completes the proof. �

5 A splitting is simply a map ϕ : Fe∗R−→ R that sends Fe∗1 to 1. Splittings are necessarily surjective.
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We also state a generalization of [37, Theorem 4.3]; similar computations were done in
[31].

Lemma 2.12. Suppose that X = Spec R is S2 and G1 and sharply F-pure. Then there
exists an element 06∆ ∈WDivQ(X) such that (pe − 1)(KX +∆) is Q-Cartier and (X,∆)
is sharply F-pure.

Proof. A surjective map ϕ ∈ HomR (Fe∗R,R) ∼= H0(X,Fe∗OX((1 − pe)KX)) induces an
effective Weil divisorial sheaf6Γϕ by [19, Proposition 2.9] such that (pe − 1)KX + Γϕ ∼ 0.
We would like to show that Γϕ can be identified with an element of WDiv(X). At the
singular height-1 points η of X, OX,η is already Gorenstein. Thus we can consider the
map Φη which generates HomOX,η (F

e∗OX,η,OX,η) as an Fe∗OX,η-module. Set m to be the
maximal ideal of OX,η and notice that m is the conductor ideal since F-pure rings are
seminormal [21] and in particular the conductor is radical. But then Φ(Fe∗m) ⊆ m by
the proof of [7, Proposition 1.2.5]. Now, we know that ϕη : Fe∗OX,η −→ OX,η is equal to
Φ(Fe∗(r · )) for some r ∈ OX,η. We want to show that r is a unit, which would prove
that Γϕ is trivial at η. Since ϕη is surjective, we see that r 6∈ m and thus r is a unit. This
implies that the Weil divisorial sheaf (Γϕ)η coincides with OX,η and thus Γϕ ∈WDiv(X)
as desired. Finally, set ∆= 1

pe−1Γϕ . �

We conclude by recalling a well known lemma on the height of annihilators of local
cohomology modules. However, because we lack a reference, we provide a proof.

Lemma 2.13. Suppose that (R,m) is a local ring and suppose that M is a finitely
generated R-module which is Sn in the sense7of [8]. Set Yi = V

(
AnnR (Hi

m(M))
) ⊆

Spec R = X. Suppose that d is the minimum over the dimensions of the components
of Supp M. Then dim Yi 6 i− n for i< d.

Remark 2.14. Note that Yi may not be the same as Supp Hi
m(M) since Hi

m(M) is not
finitely generated.

Proof. Set ω·
X to be a normalized dualizing complex on X (recall that all our rings are

excellent and possess dualizing complexes). By local duality in the form of [18, Chapter
V, Theorem 6.2], it is equivalent to prove that dim Supp h−iRHomR (M, ω·

R) 6 i − n.
Suppose that this is false, and thus that W ⊆ Supp h−iRHomR (M, ω·

R) is an irreducible
component of dimension t > i − n for some i < d. Set γ to be the generic point of W
(which we also view as a prime ideal). Localizing at γ , we see that

(h−iRHomR (M, ω
·
R))γ = (h−iRHomRγ (Mγ , ω

·
Rγ [t]))= (h−i+tRHomRγ (Mγ , ω

·
Rγ ))

is supported at a point. The shift by [t] is necessary to keep the dualizing complexes
normalized. Thus Hi−t

γ (Mγ ) 6= 0 by local duality again. Now, i − t < n. Also observe that
dim Mγ > d − t (this is why the d is necessary since we do not know what component

6 This is in the terminology of [26, § 16].
7 In other words, depthz M >min(n,dim Mz) for all z ∈ Spec R. Note that here we use dim Mz not dim Rz.
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of Supp M we will be restricting to). Since Mγ is still Sn, we see that Hj
γ (Mγ ) = 0 for

j<min(n,dim Mγ ). But then

min(n,dim Mγ )>min(n, d − t) > i− t

since n> i− t and d > i. Setting j= i− t we obtain a contradiction. �

3. Depth and F-singularities

Our goal in this section is to prove several results on the depths of sheaves on schemes
with controlled F-singularities. First we prove our result for pairs (R,∆) which are
strongly F-regular; this is the simplest case.

Theorem 3.1 (cf. [25, Theorem 2]). Suppose that (R,m) is local and that (X =
Spec R,∆) is strongly F-regular. Further suppose that 0 6 ∆′ 6 ∆ is such that rD ∼ r∆′
for some integral divisor D and some integer r > 0 relatively prime to p. Then OX(−D) is
Cohen–Macaulay.

Proof. Possibly multiplying r with an integer, we may assume that r = pe − 1. Choose,
using Lemma 2.13, 0 6= c ∈ R \ {minimal primes} such that c · Hi

m(OX(−D)) = 0 for all
i < dim R. Note that since ∆′ 6 ∆, C∆⊆ C∆′ , and thus (X,∆′) is strongly F-regular
as well by Lemma 2.9(iii). Therefore, by Lemma 2.9(vii) there exists an e > 0 and a
splitting ϕ such that the composition

OX −→ Fe∗OX −→ Fe∗OX((p
e − 1)∆′)

Fe∗(·c)−−−→ Fe∗OX((p
e − 1)∆′) ϕ−→OX

is an isomorphism. Replacing e by a multiple if necessary, we may assume that this e> 0
also satisfies the condition from the hypothesis.

Twisting by OX(−D), reflexifying, and applying Hi
m( ) we obtain the following

composition which is also an isomorphism:

Hi
m(OX(−D))

−→ Hi
m(F

e∗OX((p
e − 1)(∆′ − D)− D))

Fe∗(·c)−−−→ Hi
m(F

e∗OX((p
e − 1)(∆′ − D)− D))

ϕ−→ Hi
m(OX(−D))

However, the map labeled Fe∗(·c) is the zero-map for i< dim X since

Hi
m(F

e∗OX((p
e − 1)(∆′ − D)− D))= Hi

m(F
e∗OX(−D)).

Thus Hi
m(OX(−D))= 0 as desired. �

Remark 3.2. If one assumes that (X,∆) is purely F-regular (an analogue of being
purely log terminal [38]), the same result holds by the same proof. The point is that
we may take c annihilating Hi

m(R) and which simultaneously does not vanish along the
support of any component of ∆′.
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Corollary 3.3 (cf. [28, Corollary 5.25]). If (R,m) is local and (X = Spec R,∆) is strongly
F-regular, then for every Q-Cartier integral divisor D, OX(−D) is Cohen–Macaulay.

Proof. If the index of D is not divisible by p, then the statement is a special case of
Theorem 3.1 by setting ∆′ := 0. Hence assume that the index m of D is divisible by p.
Choose then an effective divisor E linearly equivalent to D and set r := ms + 1, ∆′ := 1

r E
for some integer s� 0. In this situation r is relatively prime to p and

rD= (ms+ 1)D∼ D∼ E = r

(
1
r

E

)
= r∆′.

Furthermore, for s � 0,
(

X,∆+ 1
r E
)

is strongly F-regular. Hence, we may apply

Theorem 3.1 for ∆ replaced by ∆ + 1
r E and the above choices of r, D and ∆′. This

concludes our proof. �

Before moving on to the sharply F-pure pairs, we need a lemma on the existence of
certain Frobenius splittings.

Lemma 3.4. Suppose that (R,C ) is any pair where C is a Cartier subalgebra on a local
ring (R,m). Suppose m is not C -compatible. Then there exists some Frobenius splitting
ϕ : Fe∗R−→ R such that ϕ(Fe∗m)= R ) m.

Proof. There obviously exists a map in [C ]e, ψ : Fe∗R −→ R, such that ψ(Fe∗m) 6⊆ m. It
follows that ψ(Fe∗m)= R. We have two cases:
Case 1: Suppose that there is a unit d ∈ R \ m such that ψ(Fe∗d) = u 6∈ m. Thus

ψ(Fe∗(u−pe
d)) = 1. Consider the map ϕ(Fe∗ ) = ψ(Fe∗((u−pe

d) · )) and notice that
ϕ(Fe∗1) = 1 which shows that ϕ is a splitting. Also notice that m is not ϕ-compatible
since ϕ is a unit multiple of ψ . Thus we have found our ϕ.
Case 2: Since we have already handled Case 1, we may assume that ψ(Fe∗d) ∈ m for all

units d ∈ R. Choose c ∈ m such that ψ(Fe∗c) = 1. We then have ψ(Fe∗1) ∈ m since 1 is a
unit. Thus

ψ(Fe∗(c+ 1))= ψ(Fe∗c)+ ψ(Fe∗1) ∈ 1+m 6⊆m

is a unit. But this is a contradiction since c is assumed to not be a unit and so c + 1 is a
unit. �

Remark 3.5. If, in addition to the hypotheses of Lemma 3.4, R is S2 and G1, then by
applying the argument of Lemma 2.12 to the splitting ϕ constructed in the proof of
Lemma 3.4, we obtain a Q-divisor ∆ on X = Spec R such that:

• (pe − 1)(KX +∆) is Cartier.

• (X,∆) is sharply F-pure.

• x= V(m) is not an F-pure center of (X,∆).

The second two statements follow since ϕ ∈ [C∆]e.
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Theorem 3.6 (cf. [25, Theorem 3(2)]). Suppose that (R,m) is a local S2-ring, and C
is a Cartier subalgebra on R such that (R,C ) is sharply F-pure and V(m) is not an
F-pure center. Additionally suppose that Z ( X = Spec R is any union of F-pure centers
of (R,C ). We also assume that Z and X have no common irreducible components. If IZ

is the (radical) ideal defining Z, then

depthm IZ >min{3, 1+ codimZ x}.
Proof. Since shrinking C is harmless, we set C = R〈ϕ〉 for some splitting ϕ : Fe∗R −→ R
which by Lemma 3.4 is not compatible with the origin V(m). Indeed, by Lemma 2.9(iii)
we can only increase the number of centers when restricting a Cartier subalgebra.

We have the long exact sequence:

· · ·H1
m(IZ)−→ H1

m(R)−→ H1
m(R/IZ)−→ H2

m(IZ)−→ H2
m(R)−→ H2

m(R/IZ)

−→ H3
m(IZ)−→ · · ·

and recall that we are trying to show that Hi
m(IZ)= 0 for i<min{3, 1 + codimZ x}. Since

R is S2, H1
m(R) = H0

m(R) = 0. Since Z 6= V(m) and Z is reduced, H0
m(OZ) = 0 and so

H1
m(IZ)= 0. Thus depthm IZ > 2. It is now sufficient to prove the case when codimZ x> 2.

This implies that dim X > 3 (since Z and X have no common components).
Furthermore, we can assume that every component of Z has dimension at least 2.

Indeed, suppose that Z1 is an irreducible component of Z such that dim Z1 = 1. If Z2

is the union of the other components of Z and Z2 6= ∅, then Z1 ∩ Z2 = x (for dimension
reasons and since we working in a local ring). But this implies that x is an F-pure center
since intersections of F-pure centers are unions of F-pure centers by Lemma 2.9(i). Thus
we can assume that Z1 = Z is one dimensional. But then codimZ x= 1, which contradicts
our assumption.

By Lemma 2.10, we know that AnnR (H2
m(R)) is compatible with (R,C ) = (R,R〈ϕ〉).

However, if H2
m(R) 6= 0, then since R is S2 and of dimension >3,

√
AnnR (H2

m(R)) = m by
Lemma 2.13. But AnnR (H2

m(R)) is radical (since C is sharply F-pure) so AnnR (H2
m(R))=

m. But V(m) is not an F-pure center; this is a contradiction. We conclude that
H2

m(R)= 0.
Now we come to H1

m(R/IZ). Again, since R/IZ is reduced, R/IZ is S1. Furthermore,
since Z has no one-dimensional components we can apply Lemma 2.13 to conclude that
AnnR H1

m(R/IZ) can either be m-primary or R. Suppose it is m-primary. Since ϕ|Z is
still a splitting, it follows that AnnR/IZ H1

m(R/IZ) is ϕ|Z-compatible and also radical and
so equal to m/IZ . But then m is ϕ-compatible by basic facts about Frobenius splitting
or by Lemma 2.9(vi). We conclude that H1

m(R/IZ) = 0. This forces H2
m(IZ) to be 0 and

completes the proof. �

Remark 3.7. Another way to state a special case of Theorem 3.6 using the language of
Frobenius splittings is as follows:

Suppose that (R,m) is an S2 local ring with Frobenius splitting ϕ : Fe∗R −→ R which is
not compatibly split with m. Additionally suppose that Z is any union of compatibly split
subvarieties of X = Spec R such that no irreducible component of Z coincides with an
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irreducible component of X. Suppose that IZ ⊆ R is the ideal defining Z; then

depthm IZ >min{3, 1+ codimZ x}.
Now we come to our main technical result on depth. It is a characteristic-p > 0

version of [25, Theorem 3(1)] but also compare with [2, Lemma 3.2], [13, Theorem 4.21],
[3, Theorem 1.5] and [29, Theorem 1.2, 1.5].

Theorem 3.8 (cf. [25, Theorem 3(1)]). Suppose that R is local, S2 and G1, X = Spec R
and that 0 6 ∆ ∈WDivR(X) is such that (R,∆) is sharply F-pure. Set x ∈ X to be
the closed point and assume that x is not an F-pure center of (R,∆). Suppose that
0 6 ∆′ 6 ∆ is another element of WDivR(X) and that r∆′ is integral for some r > 0
relatively prime to p. Further assume that M is any rank-1 (along each component of
X) reflexive coherent subsheaf of K(X) such that M(−r) ∼=OX(r∆′) (here (·) denotes the
reflexive power).8Then

depthx M >min{3, codimX x} =min{3,dim R}.
Proof. First observe that it is harmless to assume that dim R > 3, since otherwise the
statement is trivial since M is reflexive and thus S2 by [19, Theorem 1.9]. We may also
assume that M ⊆ OX is an ideal sheaf since we are working locally. We thus identify M
with an ideal of R also denoted by M. Finally, replacing r by a power if necessary, we
may assume that r = pe − 1 for some e> 0.

Using Lemma 3.4, we can find ϕ a splitting, not compatible with m, making the
following composition an isomorphism:

OX −→ Fe∗OX ↪→ Fe∗OX((p
e − 1)∆′) ↪→ Fe∗OX(d(pe − 1)∆e) ϕ−→OX .

Twisting by M and reflexifying (which we denote by ∗∗), we obtain

M

−→ Fe∗(M(pe−1) ⊗M)∗∗

↪→ Fe∗(OX((p
e − 1)∆′)⊗M(pe−1) ⊗M)∗∗

↪→ Fe∗(OX(d(pe − 1)∆e)⊗M(pe−1) ⊗M)∗∗
ϕM−→ M.

Using the fact that (OX((pe − 1)∆′)⊗M(pe−1))∗∗ ∼=OX , we have a composition

M −→ Fe∗M −→M

that is an isomorphism (note that the first map is not the usual inclusion of ideal sheaves
via Frobenius).

Certainly H1
m(M) = 0 since M is reflexive and thus S2 by [19, Theorem 1.9]. We now

study H2
m(M). Since M is S2, it follows that either AnnR H2

m(M) is equal to R or it is
m-primary by Lemma 2.13. Since we have an injection H2

m(M) −→ H2
m(F

e∗M), it follows

8 Note that it is also common to use the notation [·]. We do not use that notation since it might be
confused with the Frobenius power.
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that AnnR H2
m(M) is at the very least radical (since if rpe

kills H2
m(M), so does r). In

particular, if AnnR H2
m(M) 6= R, then it must be m.

Fix [z] ∈ H2
m(M), and recall that we are considering M as an ideal. If zj ∈ Γ (U,M),9

then since ∆′ > 0 we have

zpe

j ∈ Γ (U,M(pe))⊆ Γ (U, (OX((p
e − 1)∆′)⊗M(pe−1) ⊗M)∗∗

)
.

Thus we have a class

[Fe∗zpe ] ∈ H2
m

(
Fe∗(OX((p

e − 1)∆′)⊗M(pe−1) ⊗M)∗∗
)
.

Now, when we apply ϕM to this class, it is just applied componentwise. Thus
ϕM([Fe∗zpe ]) = [z]. For any r ∈ m, it follows that ϕM((Fe∗r) · [Fe∗zpe ]) = ϕ(Fe∗r) · [z]. In
particular, if an arbitrary Fe∗r ∈ Fe∗m annihilates all classes [y] ∈ H2

m(F
e∗(OX((pe − 1)∆′)⊗

M(pe−1) ⊗M)∗∗)∼= H2
m(F

e∗M), then ϕ(Fe∗r) also annihilates all such [z] ∈ H2
m(M).

This proves that m is ϕ-compatible, a contradiction. �

4. Applications

Here we list the most important corollaries of the results of ğ 3. The characteristic-0
analogues of many of them are already mentioned in [25]. We still state them here
for the sake of completeness and we give a full proof of our main motivation, the
compatibility of the relative canonical sheaf with base change. In ğ 4.1 some lemmas are
gathered, while in ğ 4.2 the promised corollaries are presented.

4.1. Auxiliary results

In this section, we prove a series of lemmas culminating in a base change statement for
relative canonical sheaves for families with sharply F-pure fibers: Lemma 4.7.

4.1.1. Basic lemmas on depth and relative canonical sheaves. We begin with a
short section where we make note of some simple results on depth and relative canonical
sheaves that we will use.

Fact 4.1 ([8, Theorem 1.2.5]). Let F be a coherent sheaf on a Noetherian scheme X,
and H a Cartier divisor on X containing a point P such that the local equation of H at P
is not a zero-divisor of FP (in other words, it is a regular element for Fp). Then

(a) depth FP > d ⇔ depth (F |H)P > d − 1,

(b) depth FP >min{d,dim FP} ⇔ depth (F |H)P >min{d − 1,dim(F |H)P}.

Lemma 4.2. If f : X −→ Y is a morphism of Noetherian schemes, F 6= 0 is a coherent
sheaf on X flat over Y such that F |Xy is Sd for every y ∈ Y (i.e., F is relatively Sd over
Y) and G 6= 0 is an Sd coherent sheaf on Y, then F ⊗ f ∗G is Sd as well.

9 Here U = X \ {x}, and local cohomology classes are treated as Čech classes on U as explained earlier.
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Proof. Fix an arbitrary P ∈ X and set Q := f (P) and F := XQ. Then

depthOX,P
(F ⊗ f ∗G )P

= depthOF,P
(F |F)P + depthOY,Q

GQ︸ ︷︷ ︸
F is flat over Y & [15, Proposition 6.3.1]

> min
{

d,dimOF,P (F |F)P
}+ depthOY,Q G

Q︸ ︷︷ ︸
F |F is Sd

= min
{

d + depthOY,Q
GQ,dimOF,P (F |F)P + depthOY,Q G

Q

}
> min

{
d + depthOY,Q

GQ,dimOF,P (F |F)P +min{d,dimOY,Q GQ}
}︸ ︷︷ ︸

G is Sd

= min
{

d + depthOY,Q
GQ,min{dimOF,P (F |F)P + d,dimOF,P (F |F)P + dimOY,Q GQ}

}
= min

{
d + depthOY,Q

GQ,min{dimOF,P (F |F)P + d,dimOX,P(F ⊗ f ∗G )P}
}︸ ︷︷ ︸

F is flat over Y and [15, Corollaire 6.1.2]

> min
{

d + depthOY,Q
GQ,min{d,dimOX,P(F ⊗ f ∗G )P}

}
> min

{
d,dimOX,P(F ⊗ f ∗G )P

}
. �

Lemma 4.3. If f : X −→ Y is a flat morphism of finite type to a Gorenstein scheme, then
ω·

X/Y and ω·
X[−dim Y] are locally isomorphic. In particular if X is relatively Gorenstein

over Y, then it is Gorenstein, and ωX/Y and ωX are locally isomorphic over Y.

Proof. Locally on Y the following isomorphisms hold:

ω·
X/Y = f !OY ∼= f !ωY ∼= f !ω·

Y [−dim Y] ∼= ω·
X[−dim Y]. �

Before continuing, let us remind ourselves of how F-adjunction works and how it can
allow us to restrict divisors.

4.1.2. Restricting divisors by F-adjunction: the F-different. Suppose that ∆ > 0
is a Q-divisor on an S2 and G1 variety X and that (pe − 1)(KX + ∆) is Cartier. In fact,
everything that we say even holds more generally if ∆> 0 is a Z(p)-Weil divisorial sheaf,
which is intuitively something like a Weil divisor having components also in the singular
locus.10 Further suppose that D is a reduced Cartier divisor on X that is itself S2 and G1

and which has no common components with ∆. We now explain how we can construct
a canonical Z(p)-Weil divisorial sheaf (not necessarily a Z(p)-Weil divisor) which we call
DiffF,D∆ on D. Here the subindex F means that this is the F-singularity counterpart
of the usual different known from minimal model program theory. However, in contrast
to that of the usual different, the construction of DiffF,D∆ goes through without any
further assumption requiring that ∆ is Q-Cartier at certain points.

Without loss of generality we can assume that X = Spec R and that R is a local
ring, and also that D = V(f ). The fact that the divisor (pe − 1)(KX + ∆) is Cartier

10 See [26] and [31] for definitions; in the latter source these are called Z(p)-AC-divisors.
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implies that HomR (Fe∗R((pe − 1)∆),R) is a free Fe∗R-module. Choose a generator of this
module ϕ, which we can also view as an element of HomR (Fe∗R,R) since ∆ is effective.
Now define a new map ψ : Fe∗R −→ R by the rule ψ(Fe∗ ) = ϕ(Fe∗(f pe−1 · )). Certainly
ψ(Fe∗〈f 〉)= ϕ(Fe∗〈f pe〉)⊆ 〈f 〉 and thus ψ induces a map ψ ∈HomR/〈f 〉(Fe∗R/〈f 〉,R/〈f 〉).

Note that for every height-1 prime η containing f ∈ R, i.e., a minimal associated prime
of D, we have that ∆η = 0 (since ∆ and D have no common components). Furthermore,
Rη is regular (since Rη/〈f 〉 is reduced and zero dimensional and hence regular). It follows
from inspection that ψ is non-zero at every such η. By [31, Theorem 2.4], it follows that
ψ induces an effective Z(p)-Weil divisorial sheaf on D. It is straightforward to verify that
∆|D is independent of the choice of e and ϕ and so:

Definition 4.4. We use DiffF,D∆ to denote the effective Z(p)-Weil divisorial sheaf
described above which coincides with ψ .

We also observe:

Observation 4.5 (F-adjunction [34]). Notice now additionally that ψ (corresponding to
DiffF,D∆) is surjective if and only if ψ (corresponding to ∆ + D) is surjective. In other
words, (X,∆+ D) is sharply F-pure near D if and only if (D,DiffF,D∆) is sharply F-pure.

It will be useful for us to note that if (D,DiffF,D∆) is sharply F-pure, then DiffF,D∆

is in fact an honest Z(p)-Weil divisor and not just a Z(p)-divisorial sheaf. Suppose not,
then the Weil divisorial sheaf (pe − 1)(DiffF,D∆) must properly contain OD, even at some
generic point of the non-normal locus. A contradiction can then be obtained from the
fact that the conductor is already compatible with every ϕ∈ C R (this last fact follows
from the argument of [7, Proposition 1.2.5]).

The above introduced F-different DiffF,D∆ is equal to ∆|D in most cases when the
latter is defined.

Lemma 4.6. With the notation above, suppose additionally that ∆ is Z(p)-Cartier at
all of the height-2 primes of R containing f (the codimension-2 points of X that are
contained inside D). Then DiffF,D∆ coincides with the restriction ∆|D of ∆ to D.

Proof. At each of those codimension-2 points q ∈ Spec R, Rq is already Gorenstein (since
R/〈f 〉 is G1 and so Rq/〈f 〉 is Gorenstein). It is enough to prove the result at each such q,
so fix one such q. Further choose e > 0 as above and also sufficiently divisible such that
(pe − 1)D is Cartier at q. We can thus write (pe − 1)∆= divSpec Rq

(g) for some g ∈ Rq.
Since Rq is Gorenstein, we can choose Φ ∈ HomRq(F

e∗Rq,Rq) generating the set as
an Fe∗Rq-module. Consider the map Ψ : Fe∗Rq −→ Rq defined by the rule Ψ (Fe∗ ) =
Φ(Fe∗(f pe−1 · )). Certainly Ψ restricts to a map Ψ ∈ HomRq/〈f 〉(Fe∗(Rq/〈f 〉),Rq/〈f 〉) as
above. Furthermore, Ψ generates the Fe∗(Rq/〈f 〉)-module HomRq/〈f 〉(Fe∗(Rq/〈f 〉),Rq/〈f 〉) by
the diagrams in [34, Proof of Proposition 7.2]. It follows that ψ = (Fe∗g) · Ψ restricts
to ϕ = (Fe∗g) · Ψ and hence corresponds to the naive restriction ∆|W . This proves the
lemma. �

4.1.3. The relative canonical sheaf. We apply the above ideas on the F-different to
the following. It is the inductional step in the proof of Corollary 4.13.
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Lemma 4.7. Let f : X −→ Y be a flat morphism of finite type with S2, G1 equidimensional
fibers to a smooth variety11Y and ∆ ∈WDivQ(X) such that KX + ∆ is Q-Cartier and
p 6 | ind(KX + ∆). Assume also that Z ⊆ Y is a smooth Cartier divisor such that for
W := X×YZ, ∆ does not contain any component of W and (W,DiffF,W∆) is sharply
F-pure.12Then ωX/Y |W ∼= ωW/Z.

Proof. By Lemma 4.2, both X and W are S2. Similarly, both are G1 by Lemma 4.3.
By F-adjunction (Observation 4.5; cf. [34, Main Theorem, Proposition 7.2, Remark 7.3]),
(X,∆+W) is sharply F-pure in a neighborhood of W. Hence, so is (X,∆). We now claim:

Claim 4.8. No F-pure center of (X,∆) is contained in W.

Proof of claim. Suppose that Z ⊆ X is an F-pure center of (X,∆) contained in W.
Let η denote the generic point of Z and now we work in R = OX,η with maximal
ideal m corresponding to η. For any element ϕ : Fe∗OX,η ⊆ Fe∗OX,η(d(pe − 1)∆e) −→ OX,η

of [C∆]e, we notice that ϕ(Fe∗m) ⊆ m since Z is an F-pure center. Choose f ∈ m to
be the defining equation of the Cartier divisor W in OX,η. It follows by construction
that (Fe∗f pe−1) · [C∆]e = [C∆+W ]e. In other words, for any ψ ∈ [C∆+W ]e, we can write
ψ(Fe∗ ) = ϕ(Fe∗(f pe−1 · )) for some ϕ ∈ [C∆]e. With this notation, for any r ∈ R we
have ψ(Fe∗r) = ϕ(Fe∗(f pe−1r)) ∈ ϕ(Fe∗m) ⊆ m. This proves that (X,∆ + W) is not sharply
F-pure at η, the generic point of Z. But we assumed that (X,∆+W) was sharply F-pure,
a contradiction which proves the claim. �

We return to the proof of Lemma 4.7. By Theorem 3.8 then, for every x ∈W,

depthx ωX >min{3, codimX x} =min{3,dimωX,x}.
However, by Lemma 4.3, ωX and ωX/Y are isomorphic locally, and then in the above
inequality ωX can be replaced by ωX/Y . Then by Fact 4.1, ωX/Y |W is S2. To be precise,
to apply Fact 4.1, one needs to prove a priori that the local equation of W is not a
zero-divisor of ωX/Y . For this it is enough to show that ωX/Y is S1, which follows using
again that locally ωX/Y and ωX are isomorphic and that ωX is S2 by [28, Corollary 5.69].
Therefore ωX/Y |W is indeed S2. However, so is ωW/Z by using [28, Corollary 5.69] again.
Furthermore, ωX/Y |W and ωW/Z are isomorphic on the relative Gorenstein locus, since
the relative canonical sheaf is compatible with base change for Gorenstein morphisms
[9, Theorem 3.6.1]. Therefore from [19, Theorems 1.9 and 1.12] we have the statement of
the lemma. �

The next lemma is used in Corollary 4.15. It is taken from [24].

Lemma 4.9. Suppose that Y is a scheme of finite type over an algebraically closed field.
If f : X −→ Y is a projective, flat, relatively S2 and G1, equidimensional morphism, then
ωX/Y is reflexive.

11 Variety here means a separated, integral scheme of finite type over an algebraically closed base-field.
12 The fact that (W,DiffF,W∆) is sharply F-pure implies that DiffF,W∆ is a Z(p)-divisor and not simply
a Z(p)-Weil divisorial sheaf.
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Proof. According to [20, Corollary 3.7], it is enough to exhibit an open set U contained
in the relative Gorenstein locus, such that

(a) for Z := X \ U, codimXy Zy > 2 for every y ∈ Y and

(b) for the inclusion of open set j : U ↪→ X, the natural homomorphism ωX/Y −→
j∗(ωX/Y |U) is an isomorphism.

Let W be the non-relatively Gorenstein locus. Fix a finite surjective morphism
π : X −→ Pn

Y over Y, after possibly shrinking Y (cf. [25, proof of Corollary 24]). Set
then Z := π−1(π(W)), V := Pn

Y \ π(W). Let q : V −→ Pn
Y be the natural inclusion. With

the above choices, codimXy Zy > 2 is satisfied for all y ∈ Y. For the other condition, notice
that it is enough to prove that the natural homomorphism π∗ωX/Y −→ π∗j∗(ωX/Y |U) is an
isomorphism. However

π∗j∗(ωX/Y |U) ∼= q∗((π∗ωX/Y)|V)∼= q∗HomV((π∗OX)|V , ωV/Y)︸ ︷︷ ︸
Grothendieck duality

∼= HomX(π∗OX, q∗ωV/Y)︸ ︷︷ ︸
adjoint functors

∼= HomX(π∗OX, ωPn
Y/Y)︸ ︷︷ ︸

[20, Proposition 3.5] using that
ωPn

Y /Y
is flat and relatively S2

∼= π∗ωX/Y ,

and the composition of the above isomorphisms is the natural homomorphism π∗ωX/Y −→
π∗j∗(ωX/Y |U). �

4.2. Consequences

We begin with a simple consequence on the depth of OX and ωX .

Corollary 4.10 (cf. [2, Lemma 3.2], [13, Theorem 4.21], [25, 4.1, 4.2, 4.3], [3, Theorem
1.5], [29, Theorem 1.2, 1.5]). Suppose that X = Spec R is S2 and G1. If X is F-pure and
x ∈ X is not an F-pure center of X, then

depthx OX > {3, codimX x} and depthx ωX >min{3, codimX x}.
Proof. We may assume that X = Spec R for a local ring (R,m) with x= V(m). Since X is
S2 and G1, by using Remark 3.5, we can assume that there exists some ∆ > 0 such that
(pe − 1)(KX +∆) is Cartier, such that (X,∆) is sharply F-pure and such that x is not an
F-pure center of (X,∆). Now the second statement follows from Theorem 3.8 on setting
M = OX(KX) and setting ∆′ = ∆. The first statement also follows from Theorem 3.8 by
setting M =OX and ∆′ = 0. �

Question 4.11. Suppose that (R,m) is F-injective. If m is not an annihilator of any
F-stable submodule of Hi

m(R), does that imply any depth conditions on R or ωR?

To prove our main corollary, we need to introduce a generalization of DiffF,D∆ to the
case where D has higher codimension. We focus only on our case of interest, that is,
when D is the fiber over a smooth base.

https://doi.org/10.1017/S1474748013000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000066


Depth of F-singularities and base change of relative canonical sheaves 59

Definition 4.12. Let f : X −→ Y be a flat morphism of finite type with S2, G1

equidimensional fibers. Further suppose that Y is a smooth variety, and ∆ ∈WDivQ(X)
is such that ∆ does not contain any component of any fiber. Fix a point y ∈ Y.
Working locally, we may assume that Y = Spec A and X = Spec R for local rings (A, n)
and (R,m). Further assume that n = 〈f1, . . . , fn〉 is a regular system of generators with
Yi = V(f1, . . . , fi) regular. Then, let ∆i :=DiffF,Yi∆i−1 and define then DiffF,Xy∆ :=∆n.

The only question is whether this construction of DiffF,Xy∆ is independent of the
choice of fi. Following the method of F-adjunction, multiplying by each fi successively, we
take a map corresponding to ∆ and ϕ : Fe∗R −→ R and obtain another map ψf : Fe∗R −→ R
defined by the rule ψf (Fe∗ ) = ϕ(Fe∗((f1 · · · fn)p

e−1 · )). We then restrict this map to Xy

by modding out by n and so obtain ψ f .
Choosing different schemes Yi is simply choosing a different set of generators
{g1, . . . , gn} for n which yields ψg. To complete the proof of the claim, it is sufficient
to show that these maps differ only by multiplication by a unit. We use n[pe]
to denote the ideal generated by the peth powers of the generators of n. Since
n[pe] : n= 〈(f1 · · · fn)pe−1〉+n[pe] = 〈(g1 · · · gn)

pe−1〉+n[pe] (see for example [12, Proposition
2.1]), it follows that (f1 · · · fn)pe−1 = u(g1 · · · gn)

pe−1 +∑ vih
pe

i for some unit u ∈ A, and
elements vi ∈ A and hi ∈ n. But now we see that ψ f = (Fe∗u) · ψg since any multiple of hpe

i
will be sent into nR. This completes the proof.

Corollary 4.13 (cf. [25, 4.3]). Let f : X −→ Y be a flat morphism of finite type with S2,
G1 equidimensional fibers to a smooth variety and let ∆ ∈WDivQ(X) be such that it does
not contain any component of any fiber. Additionally assume that KX + ∆ is Q-Cartier,
p 6 | ind(KX + ∆) and (Xy,DiffF,Xy∆) is sharply F-pure for every y ∈ Y. Then ωX/Y is flat
over Y and compatible with arbitrary base change.

Proof. We claim that ωX/Y is flat over Y and relatively S2. By [4, Lemma 2.13], flatness
follows as soon as we prove that the restriction of ωX/Y to every fiber is S1. On the
other hand, being relatively S2 means obeying the stronger condition that the above
restrictions are S2. Therefore to show the claim, it is enough to prove that ωX/Y |Xy

is S2 for every y ∈ Y. By [28, Corollary 5.69], ωXy is S2 and, hence, it is enough to
show that ωX/Y |Xy

∼= ωXy locally around every point x ∈ Xy. We thus replace X and Y
by Spec OX,x and Spec OY,y, respectively. Therefore, we may assume that there is a
sequence of smooth subvarieties: Y = Y0 ⊇ Y1 ⊇ · · · ⊇ Ym−1 ⊇ Ym = {y}, such that Yi−1 is
a Cartier divisor in Yi. Set Xi := XYi and ∆i := DiffF,Xi∆i−1 with ∆0 =∆. Note that then
∆m =DiffF,Xy∆.

Applying Observation 4.5 (backwards) inductively and possibly further restricting X
around x, one obtains that (Xi,∆i + Xi−1) and hence (Xi,∆i) is sharply F-pure for all i
(in fact, this also implies that all the Z(p)-Weil divisorial sheaves ∆i are honest divisors).
Finally, applying Lemma 4.7 inductively again yields that ωXi/Yi |Xi−1

∼= ωXi−1/Yi−1 for all i,
and consequently ωX/Y |Xy

∼= ωXy . This finishes the proof of our claim.
By our claim and [20, Corollary 3.8], ωX/Y and all its pullbacks are reflexive. Hence, by

restricting to the relatively Cohen–Macaulay locus (whose complement has codimension
>2) and using [20, Proposition 3.6], for any morphism Z −→ Y, ωXZ/Z

∼= (ωX/Y)Z . �
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Remark 4.14. By Lemma 4.6, the appearance of DiffF,Xy∆ can be replaced by an
actual ‘geometric’ restriction, if we assume the following:

for each y ∈ Y, there is some r > 0 relatively prime to p such that r∆

is Cartier at the codimension-1 points of the fiber Xy ⊆ X.
(1)

In particular, this is satisfied if Supp∆ does not contain the singular codimension-1
points of the fibers. Indeed, let ξ be a codimension-1 point of a fiber Xy. If ξ is in
the singular locus of Xy, then ξ 6∈ Supp∆ and hence ∆ is Cartier at ξ . Otherwise, X is
smooth around ξ , and hence KX is Cartier at ξ . In particular then, by p 6 | ind(KX + ∆),
we obtain that ∆ is Z(p) Cartier at ξ . In either case, ∆ satisfies (1), and therefore in
the special case of Corollary 4.13 stated in § 1, the use of ordinary restriction of ∆ was
legitimate.

When f is projective, the compatibility of Corollary 4.13 follows for arbitrary reduced
base by an important result of Kollár [24].

Corollary 4.15. Let f : X −→ Y be a flat projective morphism with S2, G1

equidimensional fibers. Further suppose that Y is a reduced, separated scheme of finite
type over an algebraically closed field, and ∆ a Q-Weil divisor that avoids all the
codimension- 0 and the singular codimension- 1 points of the fibers. Additionally assume
that there is a p 6 | N > 0 such that N∆ is Cartier in relative codimension 1 and
ω
[N]
X/Y(N∆)

13is a line bundle and that (Xy,∆y) is sharply F-pure for every y ∈ Y. Then
ωX/Y is flat and compatible with arbitrary base change.

Proof. First, we need some preparation as regards pulling back ∆. Suppose τ : Y ′ −→ Y
is a morphism and set X′ := X×YY ′, π : X′ −→ X, and f ′ : X′ −→ Y ′ the induced morphisms.
Then a natural pullback ∆′ of ∆ can be defined as follows. Let U ⊆ X be the open set
where f is Gorenstein and ∆ is Q-Cartier. Then, pull ∆|U back to π−1U, and finally
extend it uniquely over X′. This extension is unique, since codimX′ X′ \ π−1U > 2. We
claim that

π∗ω[N]X/Y(N∆)∼= ω[N]X′/Y ′(N∆
′). (2)

Indeed, notice that by construction π∗ω[N]X/Y(N∆) and ω[N]X′/Y ′(N∆
′) agree over π−1U, that

is, in relative codimension 1. Notice also that since ω[N]X/Y(N∆) is assumed to be a line

bundle, so is π∗ω[N]X/Y(N∆), and therefore π∗ω[N]X/Y(N∆) is reflexive. On the other hand,

since ω[N]X′/Y ′(N∆
′) is defined as a pushforward of a line bundle from relative codimension

1, it is reflexive by [20, Corollary 3.7]. Therefore by [20, Proposition 3.6], (2) holds. In
particular, ω[N]X′/Y ′(N∆

′) is a line bundle.

13 Let U be the intersection of the relative Gorenstein locus and the locus where N∆ is Cartier. Set
ι : U −→ X for the natural inclusion. The sheaf ω

[N]
X/Y (N∆) is the reflexive hull of ωN

U/Y (N∆|U), i.e. the

unique reflexive sheaf that restricts on U to the above sheaf. It can be obtained as ι∗(ωN
U/Y (N∆|U)).

Indeed, ι∗(ωN
U/Y (N∆|U)) is reflexive by [20, Corollary 3.7] and it is unique by [20, Proposition 3.6].

https://doi.org/10.1017/S1474748013000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000066


Depth of F-singularities and base change of relative canonical sheaves 61

The main consequence of the previous paragraph is that the conditions of the
corollary are invariant under pullback to another reduced, separated scheme Y ′ of finite
type over k. That is, X′, f ′ and ∆′ defined above satisfy all the assumptions of the
corollary. Let us turn now to the actual proof of the corollary. First, we may assume that
Y is connected. Second, according to [24, Corollary 24] and Lemma 4.9, there is a locally
closed decomposition qYi −→ Y such that if T −→ Y, then ωXT/T is flat and commutes
with base change if and only if T −→ Y factors through some Yi −→ Y. Now, for every
irreducible component Y ′ of Y, there is a regular alteration S −→ Y ′ [10, Theorem 4.1]. By
the above discussion, XS −→ S satisfies the assumptions of the corollary, and hence also
of Corollary 4.13. Therefore, ωXS/S is flat and compatible with arbitrary base change.
Hence S −→ Y factors through one of the Yi. In particular, since the image of S −→ Y is the
component Y ′, Y ′ ⊆ Yi. That is, every irreducible component of Y is contained in one Yi.
However, Y is connected, and therefore all irreducible components of Y are contained in
the same Yi, and hence by the reducedness of Y, Yi = Y. �

Remark 4.16. In the case of dim Y = 1, if instead of assuming that Xy is sharply
F-pure, one assumes that (X,Xy) is F-pure for all y ∈ Y, the p 6 | ind(KX + ∆) assumption
can be dropped from the above corollaries using the trick of Lemma 2.12.

Question 4.17. Does the compatibility of the relative canonical sheaf with base change
stated in Corollary 4.13 hold for singular Y (with the adequate modification in the setup
as in Corollary 4.15)? From the modular point of view, the case of non-reduced Y would
be especially interesting. This case is open even in the projective case.

Remark 4.18. It should be noted that the characteristic-0 analogue of Corollary 4.13 is
known if f is projective and Y is arbitrary [27, Theorem 7.9]. That is, the answer to the
characteristic-0 analogue of Question 4.17 is positive when f is projective.

Question 4.19. Can one replace sharply F-pure by log-canonical (still assuming
positive characteristic) in the statement of Corollary 4.13? This would also be important
from the modular point of view, since sharply F-pure varieties can be deformed to
log-canonical but not sharply F-pure varieties.

Question 4.20. Can one remove the divisibility by p condition from the statement of
Corollary 4.13?

Remark 4.21 ([25, 4.10]). The sheaf OX(−D) in Theorem 3.1 and Theorem 3.8 cannot
be replaced by OX(D), as shown in [25]. We refer the reader to [25] for the actual
example.
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