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Rayleigh–Bénard convection in water is studied by means of direct numerical
simulations, taking into account the variation of properties. The simulations considered
a three-dimensional (3-D) cavity with a square cross-section and its two-dimensional
(2-D) equivalent, covering a Rayleigh number range of 106 6 Ra 6 109 and using
temperature differences up to 60 K. The main objectives of this study are (i) to
investigate and report differences obtained by 2-D and 3-D simulations and (ii)
to provide a first appreciation of the non-Oberbeck–Boussinesq (NOB) effects on
the near-wall time-averaged and root-mean-squared (r.m.s.) temperature fields. The
Nusselt number and the thermal boundary layer thickness exhibit the most pronounced
differences when calculated in two dimensions and three dimensions, even though
the Ra scaling exponents are similar. These differences are closely related to the
modification of the large-scale circulation pattern and become less pronounced when
the NOB values are normalised with the respective Oberbeck–Boussinesq (OB)
values. It is also demonstrated that NOB effects modify the near-wall temperature
statistics, promoting the breaking of the top–bottom symmetry which characterises
the OB approximation. The most prominent NOB effect in the near-wall region is
the modification of the maximum r.m.s. values of temperature, which are found to
increase at the top and decrease at the bottom of the cavity.

Key words: Bénard convection, convection in cavities, turbulent convection

1. Introduction
Natural thermal convection is fuelled by the variation of the fluid density, that

is caused by temperature and pressure variations. The most established model for
natural convection flows is the Oberbeck–Boussinesq (OB) approximation (Oberbeck
1879; Boussinesq 1903). This approximation assumes constant properties, except
for the density in the gravitational term which varies linearly with temperature and
produces the buoyancy effect. This substantial simplification provided the basis for
important advancements in the field, such as the emergence of theories and scaling
laws of significant engineering value (e.g. Grossmann & Lohse (2000)). The limits
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of applicability of the OB approximation for Rayleigh–Bénard convection, i.e. a fluid
layer that is heated from the bottom and cooled from the top, were quantified by Gray
& Giorgini (1976). They reported restrictive conditions for the temperature difference,
height and Rayleigh number. These conditions are considerably limiting; for example
the temperature difference for the case of water must be less than 1.25 K so that
the OB approximation is applicable. Despite its notable impact, the range of validity
of the OB approximation is too narrow for most thermally driven flows of practical
interest.

Inevitably, temperature and pressure variations also affect all other fluid properties
in a specific way for each fluid. Therefore, natural thermal convection is manifested
in a unique way in different fluids since the effects of property variations are
not ‘universal’. The consideration of the property variations gives rise to non-
Oberbeck–Boussinesq (NOB) effects, which constitute a deviation from the OB
convection (Ahlers 1980). Common NOB effects in heated cavities are the increase
or decrease of the centre temperature and the overall breaking of the symmetry
that characterises the OB convection. A number of studies were devoted in the
investigation of NOB effects in fluids such as helium (Castaing et al. 1989),
air (Fröhlich, Laure & Peyret 1992), corn syrup (Manga & Weeraratne 1999), sulphur
hexafluoride (Roy & Steinberg 2002), glycol (Xia, Lam & Zhou 2002), water (Ahlers
et al. 2006), glycerol (Sugiyama et al. 2007) and ethane (Ahlers et al. 2008). Several
models were also constructed to predict the temperature at the central region of the
cavity and other important output parameters for any fluid, given its specific property
variations (Wu & Libchaber 1991; Ahlers et al. 2006; Weiss et al. 2018).

The fluid under investigation in the present study is water. For the range
of parameters used here (presented in § 2.3) water properties solely depend on
temperature and are insensitive to pressure variations. In their experimental study,
Ahlers et al. (2006) presented a systematic investigation of the NOB effects on
the Rayleigh–Bénard convection inside cylindrical containers filled with water.
After identifying the source of the NOB effects on the Nusselt number (Nu), the
Reynolds number (Re) and the centre temperature, they extended the Prandtl–Blasius
boundary layer theory for temperature-dependent viscosity and thermal diffusivity.
Additional experimental studies were carried out by Brown & Ahlers (2007) who
reported temperature measurements outside the boundary layers (BLs) and by Valori
et al. (2017) who focused on the characterisation of the velocity field in a cubical
Rayleigh–Bénard cell.

NOB flows in heated cavities were also studied in terms of direct numerical
simulations (DNS). Sugiyama et al. (2009) conducted two-dimensional (2-D) DNS in
a closed square Rayleigh–Bénard cell, using temperature-dependent polynomials to
model the variation of the water properties. They focused on the flow organisation
and investigated the NOB effects on the different velocity scales that can be defined
in association with the large-scale circulation (LSC). Moreover, 2-D DNS were also
utilised by Kizildag et al. (2014) to study the limits of the OB approximation in a
water-filled differentially heated cavity, i.e. a closed rectangular cavity heated and
cooled by the side walls. They reported that up to a temperature difference of 30 K,
Nu differs by only approximately 1 % between the OB and the NOB cases. For
larger temperature differences, the BLs behave in a qualitatively different way and
the inclusion of NOB effects is necessary to accurately capture the flow dynamics.
Additionally, Horn & Shishkina (2014) conducted 3-D DNS to study the NOB effects
in a cylindrical Rayleigh–Bénard domain, with and without the effects of rotation
and Demou, Frantzis & Grigoriadis (2018) conducted 2-D and 3-D DNS inside a
cuboid cavity.
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From a numerical standpoint, thermally driven flows with variable properties
constitute a challenging problem. More specifically, the Poisson equation for the
pressure that emerges during the numerical solution of the Navier–Stokes equations
has variable coefficients, in contrast to OB flows that require the solution of a
Poisson equation with constant coefficients. This characteristic drastically increases
the computational cost and prohibits the use of efficient fast direct solvers. An
indication of this challenge is the very limited number of 3-D DNS studies on this
subject. In fact, to the best of the authors’ knowledge, the only 3-D studies on NOB
effects available in the literature are those of Horn & Shishkina (2014) and Demou
et al. (2018) for water, Horn, Shishkina & Wagner (2013) for glycerol and Wang et al.
(2017), Liu et al. (2018) and Demou, Frantzis & Grigoriadis (2019) for air. Therefore,
the validity of 2-D solutions for the characterisation of the NOB effects becomes
an important issue which is relatively unexplored. Within the OB approximation, the
differences between 2-D and 3-D simulations were studied by van der Poel, Stevens &
Lohse (2013). For Prandtl number Pr= 4.38 (similar to water) and over a wide range
of Rayleigh numbers, they reported that although the Nu(Ra) scaling is very similar,
the temperature profiles and Nusselt numbers are significantly different between 2-D
and 3-D solutions. A similar trend was found in the NOB simulations of Demou
et al. (2018) who reported a deviation in Nusselt number values of 15–20 % between
2-D and 3-D. The difference in other important physical parameters when predicted
by 2-D and 3-D NOB simulations is presently unquantified.

Another gap in the NOB literature is the investigation of the modification of the
temperature statistics in the near-wall region due to strong property variations. This
subject is of significant interest for two main reasons. First of all, almost all of
the temperature drop and property variations take place within this narrow near-wall
region. Secondly, most of the existing thermal convection theories rely on assumptions
for the BL region, such as the extended Prandtl–Blasius boundary layer theory
of Ahlers et al. (2006). When the predictions of this theory were compared against
the detailed DNS results of Sugiyama et al. (2009), the mean temperature profiles
in the thermal BLs were found to disagree as early as Ra = 108. This disagreement
was attributed to the plume activity and the dynamics of the BLs which are not
accounted for in the theory. In general, the near-wall distribution of temperature can
be divided into three distinct regions, namely the linear, the transitional and the bulk
regions (Castaing et al. 1989; Wang & Xia 2003; Zhu et al. 2018). The linear region
corresponds to a viscous sublayer, where heat is transferred mainly by conduction.
The bulk region exhibits no temperature gradient and it is dominated by convection.
The transitional region extends between the linear and the bulk regions and contains
the location of maximum temperature root mean square (r.m.s.) as well as the edge of
the thermal BL. Even though the mean and r.m.s. temperature distributions in these
regions were extensively studied for OB flows, it is unclear how they are influenced
by strong property variations.

The present manuscript is focused on the study of Rayleigh–Bénard convection in
a rectangular cavity filled with water, taking into account the variation of properties.
NOB effects are quantified by evaluating relevant flow parameters such as the
Nusselt number, centre temperature, temperature drop inside the boundary layers and
boundary layer thickness. More specifically, the main questions to be addressed are
the following: (i) what are the differences in the key parameters when predicted
by 2-D and 3-D simulations and (ii) how are near-wall distributions of temperature
statistics affected by the property variations. The paper is organised as follows: in § 2
the solution methodology is briefly described along with all the necessary definitions
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and a justification of the numerical parameters adopted. The presentation of the
results begins in § 3, where the flow fields are briefly reviewed to visualise the flow
and provide the basis of the understanding of some of the differences between the
2-D and 3-D results. The discussion focuses mainly on the LSC which exhibits
a qualitatively different behaviour when the third dimension is considered. This is
followed by a characterisation of the NOB effects on important output parameters
in two dimensions and three dimensions, in § 4. Furthermore, the NOB effects on
the near-wall distributions of temperature statistics are presented and discussed in § 5.
Finally, the main findings of this study are summarised in § 6.

2. Numerical methodology, definitions and simulation parameters
2.1. Governing equations and numerical implementation

When the OB approximation is applied, the continuity (2.1), Navier–Stokes (2.2) and
energy (2.3) equations take the following non-dimensional form:

∂uj

∂xj
= 0, (2.1)

∂ui

∂τ
+
∂uiuj

∂xj
=−

∂P
∂xi
+

Pr
√

Ra

∂2ui

∂xj∂xj
+ PrΘδi3, (2.2)

∂Θ

∂τ
+
∂ujΘ

∂xj
=

1
√

Ra

∂2Θ

∂xjxj
, (2.3)

where i = 1, 2, 3; xi is the non-dimensional Cartesian position vector, also denoted
as (x, y, z); ui represents the non-dimensional velocity vector, also denoted as
(u, v,w). The gravitational acceleration g acts along the z-direction. Moreover, τ is the
non-dimensional time, P the non-dimensional pressure and Θ the non-dimensional
temperature. The scales used to non-dimensionalise these variables are the height
of the cavity L0 = L as the length scale, V0 = ᾱ

√
Ra/L0 as the velocity scale,

τ0 = L0/V0 as the time scale and P0 = ρ̄V0
2 as the pressure scale. Temperature

is made non-dimensional as Θ = (T − T0)/1T , where 1T = Tb − Tt is the
temperature difference between the heated (Tb) and cooled (Tt) boundaries of the
domain. The reference temperature is denoted by T0 = (Tb + Tt)/2. Using these
scales, the characteristic dimensionless groups emerging are the Rayleigh number
Ra= gβ̄L0

31T/(ν̄ᾱ) and the Prandtl number Pr= ν̄/ᾱ. The dimensional form of the
fluid density, thermal expansion coefficient, kinematic viscosity and thermal diffusivity
are denoted as ρ̄, β̄, ν̄ and ᾱ respectively.

Outside the limits of applicability of the OB approximation and in the presence of
temperature-dependent properties, the governing equations become,

∂uj

∂xj
= 0, (2.4)

∂ui

∂τ
+
∂uiuj

∂xj
=−

1
ρ

∂P
∂xi
+

1
ρ

Pr
√

Ra

∂

∂xj

[
µ

(
∂ui

∂xj
+
∂uj

∂xi

)]
+

1
Fr2

δi3, (2.5)

∂Θ

∂τ
+
∂ujΘ

∂xj
=

1
ρcp

1
√

Ra

∂

∂xj

(
k
∂Θ

∂xj

)
, (2.6)

where the new non-dimensional group emerging is the Froude number Fr=V0/
√

gL0.
The non-dimensional forms of density, dynamic viscosity, thermal conductivity and
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X X0 a1(10−4 K−1) a2(10−6 K−2) a3(10−8 K−3)

ρ̄/103 (kg m−3) 0.9922 −3.736 −3.98 —
c̄p/103 (J kg−1 K−1) 4.1690 0.084 4.60 —
k̄ (W m−1 K−1) 0.6297 21.99 −17.8 —
ν̄/10−6 (m2 s−1) 0.6690 −175.9 295.8 −460

TABLE 1. Coefficients an of the polynomials (X − X0)/X0 =
∑3

n=1 an(T − T0)
n describing

the temperature dependence of a property X of water. The reference temperature is T0 =

313 K and the polynomials are accurate over the range 283 < T < 343 K (Ahlers et al.
2006).

specific heat of the fluid are denoted as ρ, µ, k, and cp. Since the medium under
investigation is water, its fluid properties are effectively independent of pressure
and can be approximated by temperature-dependent polynomials. The polynomial
expressions that were used in the present study are listed in table 1. These fluid
properties were non-dimensionalised using the value of each property at the reference
temperature, e.g. k(T)= k̄(T)/k̄(T0).

Both the OB set of equations (2.1)–(2.3) and the NOB set of equations (2.4)–(2.6)
were used in this study. The numerical solution followed the fractional-step method,
using second-order central differences for space discretisation and a fully explicit,
second-order Adams–Bashforth scheme to advance the solution in time. Specifically
for the NOB cases, a pressure-splitting technique was utilised for the transformation
of the derived variable coefficients Poisson equation for the pressure into a constant
coefficients equation. The Poisson equation for both cases was solved by performing
a parallel forward and inverse fast Fourier transform along a homogeneous direction.
A comprehensive presentation of the numerical methodology along with details about
the numerical implementation and its validation can be found in the study of Demou
et al. (2018).

2.2. Definitions
This section presents the definitions of the main parameters that are evaluated
for the characterisation of the NOB effects. The bracket notation 〈φ〉a,b,... denotes
the averaging of a variable φ with respect to variables a, b, etc. Therefore, the
mean and r.m.s. values of a variable φ are denoted as 〈φ〉τ and φrms where
φrms = (〈φ2

〉τ − 〈φ〉
2
τ )

1/2. Following this notation, the time-varying, area-averaged
Nusselt numbers along the bottom Nub(τ ) and top Nut(τ ) walls are defined as,

Nub(τ )=−kb
∂〈Θ〉x,y

∂z

∣∣∣∣
z=0

, Nut(τ )=−kt
∂〈Θ〉x,y

∂z

∣∣∣∣
z=1

, (2.7a,b)

where it is assumed that the bottom wall is located at z = 0 and the top wall at
z = 1. The time- and area-averaged Nusselt numbers are simply denoted as Nub =

〈Nub(τ )〉τ for the bottom wall and Nut = 〈Nut(τ )〉τ for the top wall. Moreover, the
centre temperature of the cavity Θc is defined as,

Θc = 〈Θ〉τ ,x,y|z=0.5. (2.8)

In OB flows the mean temperature field is symmetric around the centre of the cavity,
therefore Θc = 0. Because of the property variations, in NOB flows this symmetry
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FIGURE 1. (Colour online) Cuboid cavity used for the 3-D simulations, with Lx = Lz.

is lost and Θc 6= 0. One can also define an additional associated parameter which
quantifies the temperature drop across the bottom and top BLs, denoted as ∆b and
∆t respectively. Since there is no significant temperature drop across the bulk of the
cavity, these temperature drops can be approximated as,

∆b = 〈Θ〉τ ,x,y|z=0 −Θc, ∆t =Θc − 〈Θ〉τ ,x,y|z=1, (2.9a,b)

where in this study, 〈Θ〉τ ,x,y|z=0 and 〈Θ〉τ ,x,y|z=1 coincide with the imposed boundary
conditions along the bottom and the top walls respectively. From these definitions, one
can easily obtain the relation ∆b +∆t = 1.0. Finally, the thermal BL thickness λθ is
evaluated using the temperature slope along each horizontal wall, i.e.

λθb =
∆b

−
∂〈Θ〉τ ,x,y

∂z

∣∣∣∣
z=0

, λθt =
∆t

−
∂〈Θ〉τ ,x,y

∂z

∣∣∣∣
z=1

. (2.10a,b)

2.3. Simulation parameters
To address the underlying questions posed in the present study, a series of 2-D and
3-D DNS were conducted for Rayleigh–Bénard convection in a cavity filled with
water, as shown in figure 1. The physical and numerical parameters used for
all simulated cases are listed in table 2 and the justification for the selection of
each parameter is discussed below. The Rayleigh number varied in the range of
106 6 Ra 6 109. The temperature difference 1T between the two horizontal walls
varied up to 60 K, around a reference temperature of T0 = 313 K, where Pr = 4.38.
Since 1T is a control parameter in the simulations, it is assumed that the variation
of Ra is achieved with a corresponding increase/decrease of the cavity dimensions,
without altering its aspect ratio. For cases with 1T ≈ 0, the OB approximation was
applied (equations (2.1)–(2.3)). For all other cases, the NOB set of equations were
used (equations (2.4)–(2.6)) and the fluid properties were allowed to vary according
to the temperature polynomials presented in table 1.

Both the 2-D and 3-D geometries are confined by solid walls in the x- and
z-direction, while a periodic spanwise y-direction is present only in the 3-D cases.
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Case Ra 1T (K) Ly Resolution hBL/hth
BL max(h/ηB) 1τ s

Nx ×Ny ×Nz

A40 106 40 π 62 × 96 × 62 0.382 1.135 1000
B40 107 40 π 114 × 144 × 114 0.442 1.607 500
C40 108 40 π 286 × 192 × 286 0.369 0.964 500
D20 109 20 π 604 × 576 × 604 0.501 0.865 200
D40 109 40 π 604 × 576 × 604 0.508 0.863 200
D60 109 60 π 604 × 576 × 604 0.500 0.860 200

A40-2D 106 40 — 62 × 1 × 62 0.294 1.074 2000
B40-2D 107 40 — 114 × 1 × 114 0.331 1.520 2000
C40-2D 108 40 — 286 × 1 × 286 0.297 0.922 1000
D20-2D 109 20 — 604 × 1 × 604 0.396 0.823 400
D40-2D 109 40 — 604 × 1 × 604 0.404 0.822 400
D60-2D 109 60 — 604 × 1 × 604 0.399 0.820 400

AOB 106
≈ 0 π 62 × 96 × 62 0.392 1.140 1000

BOB 107
≈ 0 π 114 × 144 × 114 0.447 1.607 500

COB 108
≈ 0 π 286 × 192 × 286 0.381 0.969 500

DOB 109
≈ 0 π 604 × 576 × 604 0.510 0.867 200

AOB-2D 106
≈ 0 — 62 × 1 × 62 0.305 1.082 2000

BOB-2D 107
≈ 0 — 114 × 1 × 114 0.343 1.530 2000

COB-2D 108
≈ 0 — 286 × 1 × 286 0.302 0.924 1000

DOB-2D 109
≈ 0 — 604 × 1 × 604 0.404 0.826 400

TABLE 2. Physical and numerical parameters used for each simulation. Cases with 1T≈ 0
were computed using the OB approximation. h denotes the local grid spacing and hBL the
maximum grid spacing inside the thermal BLs. hth

BL denotes a theoretical estimate for the
maximum grid spacing inside the thermal BLs as suggested by Shishkina et al. (2010). ηB
denotes the Batchelor length scale. 1τ s represents the time interval used for statistical
sampling.

The absence of side walls along the y-direction for the 3-D cases provides an
appropriate basis for the comparison between the 2-D and 3-D solutions because the
3-D character of the flow is not induced or affected by the presence of side walls
along the y-direction. The cavity has a square cross-section (Lx = Lz = 1) while the
size of the computational box along the periodic direction Ly was chosen so that the
structures of the flow were not suppressed due to the imposed periodicity. Similar
to the studies of Trias et al. (2007) and Sebilleau et al. (2018), the selection of
a sufficient length for Ly was guided by the calculation of the spanwise two-point
correlations of the wall-normal velocity components,

Ruu(x, y, z)=
〈u′(x, 0, z)u′(x, y, z)〉τ

〈u′2〉τ
, Rww(x, y, z)=

〈w′(x, 0, z)w′(x, y, z)〉τ
〈w′2〉τ

,

(2.11a,b)

where u′ and w′ are the wall-normal fluctuating velocity components, defined as u′ =
u − 〈u〉τ and w′ = w − 〈w〉τ respectively. The spanwise length of the domain can
be considered as adequate when these fluctuating components become uncorrelated
and two-point correlations are significantly reduced. In general, since the turbulent
structures in the flow become finer as Ra increases, simulations at lower Ra are more
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1

0

-1
0 π/8 π/4

y
3π/8 π/2

R u
i,u

i

Rw,w

Ru,u

FIGURE 2. Two-point correlations of the wall-normal velocity components Ruu and Rww for
case A40. The calculations were carried out at the locations of the maximum temperature
r.m.s., in the vicinity of the top and bottom walls: dashed line, (x, z)= (0.5, 0.934); solid
line, (x, z)= (0.5, 0.053).

demanding in terms of length for the periodic direction. Figure 2 presents the two-
point correlations for the two wall-normal velocity components at the locations of the
maximum temperature r.m.s. in the vicinity of the top and bottom walls, for the lowest
Rayleigh number considered, Ra= 106. For both velocity components, the two-point
correlations reduce significantly within a distance smaller than Ly/2 and uncorrelated
turbulent fluctuations are obtained within this length. Therefore, a spanwise extend of
Ly = π can be justified as adequate for cases at Ra= 106. This was also verified by
performing an additional simulation with a twice-as-long spanwise extent (not shown
here), which revealed that the values of the Nusselt number and volume-averaged
temperature changed by less than 0.08 %. A similar two-point correlation analysis
for cases at higher Ra revealed that the appropriate length could not be substantially
reduced. Therefore, the same periodic length Ly=π was used for all 3-D cases up to
Ra= 109.

A structured Cartesian grid was used in all cases. More specifically, the grid was
equidistant along the periodic y-direction and stretched in the x–z planes following
a linear expansion to allow the clustering of computational grid points next to the
solid walls. The resolution along the y-direction and in each x–z plane was determined
after a set of preliminary simulations, where successively finer grids were used up
to the point where the calculated output parameters were almost independent of the
grid resolution. Also, the quality of the adopted grid was tested a posteriori following
the criteria suggested by Shishkina et al. (2010) for OB flows. The first criterion sets
maximum-bound estimates for the grid spacing hth

BL inside the thermal BL which, for
the case of water, is thinner than the velocity BL. For Pr= 4.38, the criterion suggests
hth

BL = 2−1.5α−1E−1.5Nu−1.5, where α = 0.482 and E = 0.982. As shown in table 2, the
maximum grid spacing hBL used here to resolve the thermal BLs was less than half of
hth

BL for all the simulations presented. Due to the variation of the water properties in
the NOB simulations, the bottom thermal BL is expected to be thinner than the top
one, increasing the resolution requirements in the vicinity of the bottom wall. However,
since part of this study focuses on the differences between the top and bottom parts
of the cavity, the finer grid spacing was used for both the bottom and the top, so
that any reported asymmetries are not attributed to the computational grid. The second
criterion sets the resolution requirements in the bulk of the cavity where the largest
grid spacing should be comparable to the global Batchelor length scale ηB which, for
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the present set of parameters, is smaller compared to the global Kolmogorov length
scale. The global Batchelor length scale is defined as ηB= 〈(να

2/εu)
0.25
〉τ ,V , where εu

is the local kinetic energy dissipation rate per mass and V the volume of the domain.
The maximum ratio between the local grid spacings used in the simulations h and the
global Batchelor length scale is shown in table 2, where h is less than or comparable
to ηB in the entire domain.

For 2-D simulations, a stagnant flow condition was used as the initial condition.
For 3-D simulations, the initial field consisted of a statistically stationary solution
of the corresponding 2-D case. Random perturbations with a Gaussian distribution
and an intensity of 5 % based on the local velocity magnitude were superimposed to
trigger transition to a 3-D turbulent regime. The simulations advanced in time using
a dynamically adjusted time step 1τ which was restricted according to the Courant–
Friedrichs–Lewy condition (CFL) and the viscous stability limit (VSL), namely,

CFL=
ui1τ

hi
<CFLmax and VSL=

ν1τ

u2
i
< VSLmax, (2.12a,b)

where ui and hi are the local velocity and grid spacing along the ith direction and
(CFLmax, VSLmax)= (0.2, 0.05).

Each simulation was allowed to develop for an initial period so that a statistically
stationary state was reached before commencing statistical sampling. The determination
of the appropriate development period was guided by examining the time evolution
of the instantaneous Nusselt number. A typical time evolution of Nub(τ ) is shown in
figure 3(a) for case D40-2D. Statistical stationarity was identified at time τ = τs using
the ratio of the temporally averaged Nusselt numbers at the top and bottom walls,

〈Nut(τ )〉τ

〈Nub(τ )〉τ
=

∫ τ

0
Nut(τ̂ ) dτ̂∫ τ

0
Nub(τ̂ ) dτ̂

. (2.13)

Under a statistically stationary condition, the heat transferred in the cavity from the
heated wall is balanced by the heat leaving the system from the cooled wall, therefore
the ratio defined in equation (2.13) approaches unity for both the OB and NOB
cases. Figure 3(b) shows that for case D40-2D, statistical stationarity was identified
at τs ≈ 300. Once statistical stationarity was reached, an appropriate sampling period
1τ s was defined for each case (last column of table 2). This was determined by
increasing the statistical sample so that the statistics were independent of the sample
size. In practice, statistics were collected until the maximum r.m.s. values of the
temperature field deviated by less than 2 % compared to values obtained with 1τ s/2.
An a posteriori verification of this procedure can be obtained by calculating the
ratio,

〈Nub,t(τ )〉τ

〈Nub,t(τ )〉1τs

=

∫ τs+τ

τs

Nub,t(τ̂ ) dτ̂∫ τs+1τs

τs

Nub,t(τ̂ ) dτ̂
. (2.14)

This ratio is plotted for the bottom wall in the inset of figure 3(b) for case D40-2D,
where 1τ s = 400. The statistical errors on the Nusselt number (δNu) were calculated
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FIGURE 3. Case D40-2D. (a) Temporal variation of the Nusselt number at the bottom
wall and (b) ratios of temporally averaged Nusselt number, described by (2.13) and (2.14)
(inset). For this case, the flow reaches a statistically steady state at τs≈ 300, and a sample
period of 1τs ≈ 400 is sufficient for statistical sampling.

using the relation δNu = Nurms(2τI/1τs)
1/2, where τI is the integral time obtained

from the autocorrelation coefficient of Nu. The largest statistical error on the Nusselt
number was calculated 0.33 % for case D60-2D. The statistical error on the other
reported output parameters is much smaller due to low r.m.s. values.

3. Flow organisation

Even though the instantaneous fields cannot be used to quantify the NOB effects,
they are helpful in obtaining a first appreciation of the main differences between the
2-D and 3-D solutions. Figure 4 illustrates instantaneous temperature contours along
with velocity vectors at the x–z plane for the 2-D and 3-D simulations with 1T =
40 K. In both the 2-D and 3-D cases, hot and cold plumes were found to eject from
the bottom and top boundary layers respectively. As expected, the structure of these
plumes became finer as Ra increased and by Ra= 109 most of the cavity was nearly
isothermal.

In the 2-D cases, the plumes fed the LSC that covered the central area of the
cavity for the whole Ra range. The LSC was accompanied by two counter-rotating
vortices that were located at two opposite corners of the cavity. The vortex in
the vicinity of the heated wall exhibited stronger rotation due to lower viscosity,
compared to the vortex at the vicinity of the cooled wall, something that was first
reported by Sugiyama et al. (2009). Interestingly, as shown in figure 4, there were no
indications of a LSC in the x–z planes of the 3-D solutions. The absence of the LSC
in the x–z planes modified the locations where plumes were ejected from the top
and the bottom BLs. More specifically, in 3-D cases, plumes were captured to eject
from any x-location, while the presence of an LSC in the 2-D solutions favoured the
ejection of plumes closer to the side walls. Counter to what was observed in the x–z
planes of the 3-D solutions, the visualisation of the flow in the y–z planes provides
clear evidence of LSC structures. The time-averaged velocity vectors in three different
y–z planes for cases A40 and D40 are shown in figure 5. In both cases, a strong
3-D character is revealed with significant variations along the spanwise direction.
More specifically, the flow appears to be well organised with two similar but clearly
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

0.3

Œ
0.2
0.1
0
-0.1
-0.2
-0.3

FIGURE 4. (Colour online) Instantaneous temperature contours with velocity vectors at
the x–z plane for 2-D (a,c,e,g) and 3-D (b,d, f,h) simulations with 1T = 40 K, at Ra =
106 (a,b), Ra = 107 (c,d), Ra = 108 (e, f ) and Ra = 109 (g,h). These instantaneous fields
are snapshots of the flow after statistical stationarity was reached. For the 3-D cases, the
snapshots were taken at y= 0. The range [−0.3, 0.3] is used in the colour bars instead
of the full normalised temperature range [−0.5, 0.5] so that the structures of the flow are
better illustrated. For clarity, the velocity vectors are only shown every second, sixth and
twelfth grid node in each direction for (c,d), (e, f ) and (g,h) respectively.

distinguishable LSC structures along the y–z planes. The location of the interaction
of two LSC structures was typically accompanied by long plumes ejected from the
BLs.
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y
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z

z

(a) (b)

(c) (d)

(e) (f)

y

FIGURE 5. Time-averaged velocity vectors in the y–z planes located at (a,b) x= 0.1, (c,d)
x= 0.5 and (e, f ) x= 0.9, for the 3-D cases with 1T = 40 K, at Ra= 106 (a,c,e), Ra= 109

(b,d, f ). For clarity, the presented results were interpolated on a coarser grid of Ny×Nz=

60× 20.

With respect to the dynamic features of the flow, the LSC in the 2-D cases
exhibited random reversals, caused by the increase in size of the corner vortices to
the point where the LSC ceases and restarts in a reversed rotation state. For Ra= 106

the reversals were so frequent that the system spent more time in the cessation and
reversal process than in a LSC mode, which appeared only sparingly. As Ra increased,
the LSC was found to be more stable and the cessation-reversal process happened
more and more rarely. This is in line with the OB study of Sugiyama et al. (2010)
who used a fluid with a similar Prandtl number and concluded that, for 2-D systems
at Ra = 109, the mean time interval between two successive reversals increases by
three orders of magnitude compared to Ra = 108. For NOB conditions, Sugiyama
et al. (2009) studied in detail the LSC characteristics in a 2-D square cavity adopting
a conditional time-averaging procedure. More specifically, the sign of the vorticity at
the centre of the cavity was used to identify the reversals of the LSC structure. At
the event of a reversal, the velocity field was mirrored along the vertical centreline
and the time-averaging procedure continued. This approach helps in the visualisation
of the time-averaged LSC structure which otherwise would vanish due to nearly zero
time-averaged velocities everywhere. Unlike the 2-D cases, the LSC structures in
the 3-D solutions did not exhibit any reversals, despite the large sampling periods
considered here. Consequently the visualisation of the 3-D LSC structures does not
require a conditional time-averaging approach.

Considering these flow features, instead of adopting a conditional time-averaging
procedure in the present study, the findings of Sugiyama et al. (2009) for the 2-D
square cavity are used to compare the most important LSC characteristics in the 3-D
cuboid cavity considered here. The following differences were revealed:

(i) Size and shape: the 2-D LSC structures were found to be suppressed due to
the presence of the small counter-rotating vortices, adopting a slightly elongated
shape along one of the cavity’s diagonal. On the other hand, the LSC structures
in three dimensions appeared elongated along the y-direction, with an aspect ratio
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FIGURE 6. Time- and space-averaged velocity distributions for 1T = 40 K and (a) Ra=
106, (b) Ra= 107, (c) Ra= 108 and (d) Ra= 109. Solid lines: present 3-D results of 〈v〉t,x,y
within one LSC structure. Since there are two counter-rotating LSC structures along the
spanwise direction, one of these structures was mirrored across the z-axis and a mean
distribution for both LSCs is presented. Dashed lines: 2-D results of 〈u〉t,x,y presented
by Sugiyama et al. (2009) who followed a conditional time-averaging procedure to address
the random reversals of the LSC structure in two dimensions.

of π/2 in all cases. The 3-D structures extend along the x-direction and the LSC
breaks down only very close to the vertical side walls.

(ii) Velocity distributions: Sugiyama et al. (2009) reported vertical distributions of the
horizontally averaged and conditional time-averaged x-velocity component 〈u〉t,x
for a 2-D cavity. Since the LSC in the 3-D geometry considered here was found
aligned with the y–z plane, the 3-D equivalent should be the horizontally and
time-averaged y-velocity component 〈v〉t,x,y within one LSC structure. Figure 6
shows these distributions for Ra= 106–109 and 1T = 40 K, including the results
by Sugiyama et al. (2009) which are available for Ra=106 and 108. It is revealed
that the maxima of the 3-D distributions are located closer to the top and bottom
walls, compared to the 2-D distributions. Consequently, the near-wall regions at
the top and at the bottom of the cavity experience significantly larger velocities
in three dimensions than two dimensions.

This brief investigation of the flow organisation revealed significant qualitative and
quantitative differences between the 2-D and the 3-D flow fields. The effects of these
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FIGURE 7. (a) Reduced Nusselt number values, scaled with Ra1/3 and (b) Nusselt number
values normalised with the respective OB values, as a function of Ra for 1T=40 K: open
squares, present 2-D results; solid squares, present 3-D results; open circles, 2-D numerical
results reported by Sugiyama et al. (2009); diamonds, numerical results in a cylindrical
domain reported by Horn & Shishkina (2014).

differences on the NOB characteristics of the flow are quantified by the statistical
analysis presented in the following sections. The presence of LSC structures in a
different plane (y–z in three dimensions and x–z in two dimensions) and the chaotic
nature of the LSC reversals in the 2-D cases complicates the comparison of the time-
averaged velocity fields between the 2-D and 3-D cases. For these reasons, the present
work only focuses on the statistics of the temperature field and other derived quantities.
To perform a fair comparison between the 2-D and the 3-D cases, x–y-plane-averaged
temperature statistics from 3-D cases are compared against the corresponding x-line-
averaged statistics from 2-D cases.

4. Output parameters
4.1. Nusselt number

Values of the reduced Nusselt number Nu/Ra1/3 from 2-D and 3-D simulations for
1T = 40 K are shown in figure 7(a). Throughout the Ra range, the 3-D predictions
of Nu are higher than the corresponding 2-D predictions. The numerical results
of Horn & Shishkina (2014) are also shown in figure 7(a) and, even though this
study considered cylindrical geometries, the absolute values and the overall trend
are similar to the 3-D simulations of the present study. Nevertheless, the deviation
percentage (Nu3D − Nu2D)/Nu3D exhibits no systematic change, ranging between
15 % and 20 %. This can be rationalised by referencing the space-averaged velocity
distributions shown in figure 6. The part of the LSC structure that is located closer
to the top and bottom walls exhibits larger horizontal velocities in three dimensions
than in two dimensions. This characteristic leads to stronger interaction between the
LSC and the boundary layers, and consequently affects the near-wall temperature
gradients, shown in table 3. The 3-D cases exhibit sharper temperature gradients on
both the bottom and the top walls, resulting in enhanced heat transfer rates compared
to the 2-D cases. A similar finding was reported by van der Poel et al. (2013) who
carried out a comparison of two dimensions versus three dimensions within the OB
approximation and attributed the differences in Nusselt number to the qualitatively
different characteristics of the 2-D and 3-D LSC structures.
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2-D 3-D

Ra Top Bottom Top Bottom

106
−7.04 −6.47 −8.49 −7.79

107
−13.41 −12.29 −16.52 −15.15

108
−26.74 −24.48 −31.74 −29.09

109
−52.54 −48.17 −63.54 −58.51

TABLE 3. Time- and space-averaged temperature gradients along the top (∂〈Θ〉x,y/∂z|z=1)
and bottom ((∂〈Θ〉x,y/∂z)|z=0) walls, for 1T = 40 K.

Moreover, the prefactor a and the exponent γ in the Nu = aRaγ power law
were calculated using a least-squares fit on a single power law. These parameters
were predicted to be a = 0.118 and γ = 0.292 for the 2-D set of simulations and
a = 0.145 and γ = 0.291 for the 3-D set. The values for the scaling exponent γ
are similar to those obtained by earlier experimental studies of thermal convection
in water using lower 1T (within the OB approximation) and different geometries.
For example, Garon & Goldstein (1973) reported γ = 0.293 using a cylindrical cell
and Hiroaki & Hiroshi (1980) reported γ = 0.290 using a cuboid cell.

To identify how the NOB effects modify the Nusselt number, the calculated Nu
values from NOB simulations with 1T = 40 K are normalised with the respective
OB values and presented in figure 7(b) as a function of Ra. Focusing first on
the 3-D results, the NuNOB/NuOB ratio is nearly constant, close to a value of 0.98
throughout the Ra range considered. This is not the case for the 2-D results, where
this ratio changes abruptly with a clearly noticeable peak at Ra = 108. A similar
peak was present in the 2-D numerical results of Sugiyama et al. (2009), also shown
in figure 7(b), although these results reveal slightly weaker NOB effects compared
to the 2-D results of the present study. This is attributed to the fact that Sugiyama
et al. (2009) used a different set of equations compared to equations (2.4)–(2.6).
More specifically, they considered constant values for C̄p and ρ̄ everywhere except
in the buoyancy term, where ρ̄ followed a similar temperature polynomial as the one
used here. Since the governing equations used in the present study consider variable
properties in all terms, the slightly stronger NOB effects are justified.

A more systematic investigation of the Nu variation with 1T is shown in figure 8(a)
for Ra = 109. A weak gradual decrease of Nu as 1T increases is revealed for both
the 2-D and 3-D cases. Even though the decreasing trend looks similar for the two
different sets of simulations, the normalised NuNOB/NuOB results, shown in figure 8(b),
reveal a slightly more rapid strengthening of the NOB effects in three dimensions
compared to the 2-D results. For comparison purposes, figure 8(b) also shows the 2-D
numerical results of Sugiyama et al. (2009) and the 3-D numerical results of Horn &
Shishkina (2014). Although differences between the present 2-D and 3-D results and
other geometries are visible, overall, the NOB effects on the Nusselt number are very
weak, in line with the extended BL theory developed by Ahlers et al. (2006).

4.2. Centre temperature
For Rayleigh–Bénard convection within the limits of the OB approximation, the
time-averaged temperature field is symmetric around the centre of the cavity.
Consequently, the temperature at the centre of the cavity is equal to the mean
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FIGURE 8. (a) Nusselt number values and (b) Nusselt number values normalised with
the respective OB values as a function of 1T for Ra = 109: open squares, present 2-D
results; solid squares, present 3-D results; open circles, 2-D numerical results reported
by Sugiyama et al. (2009) at Ra= 108; diamonds, 3-D numerical results in a cylindrical
domain reported by Horn & Shishkina (2014).

temperature between the heated and cooled walls. For NOB convection with variable
properties, the temperature at the cavity core deviates from the mean wall temperature.
To quantify this effect, figure 9 shows the centre temperature Θc (defined by
equation (2.8)) plotted against 1T and Ra. First, figure 9(a) reveals the weak
dependence of Θc on Ra, with Θc varying in the range 0.04–0.05. The results
of the 2-D and 3-D simulations performed here exhibit some minor but noticeable
differences. For instance, the calculation of Θc in two dimensions reveals a maximum
value at Ra= 107, while in three dimensions Θc reaches its minimum at the same Ra.
On the other hand, Θc exhibits a linear dependence on 1T as shown in figure 9(b).
Both 2-D and 3-D results are in agreement with the reference data and with the
extended BL theory for variable property flows, developed by Ahlers et al. (2006).

From the definitions of the temperature drops across the top (∆t) and bottom (∆b)
thermal BLs in equation (2.9), it is clear that these depend only on Θc. Since Θc is
almost identical in two dimensions and three dimensions, similar values are expected
for the 2-D and 3-D predictions of ∆t and ∆b. This is verified in figure 10, where ∆t
and ∆b are plotted against 1T , at Ra= 109. In this figure and also in figures 11–13,
the upward and downward pointing triangles have an intuitive reference to quantities
that are calculated on the top and bottom horizontal walls. A linear relation is
observed, albeit in an opposite manner with ∆t increasing and ∆b decreasing for
larger 1T . This illustrates the increasing asymmetry of the temperature drop, with
∆t being approximately 32 % larger than ∆b for 1T = 60 K.

4.3. Thermal BL thicknesses

The thicknesses of the thermal BLs at the top (λθt ) and bottom (λθb) walls are expected
to become thinner as Ra increases. This is clearly shown in figure 11(a), where λθt
and λθb are found to decrease by almost an order of magnitude from Ra= 106 to 109.
Moreover, the 2-D predictions are substantially larger than the 3-D ones, an effect that
is attributed to the larger temperature gradients on the walls for the 3-D cases, shown
in table 3. The variation of λθ2D/λ

θ
3D as a function of Ra is shown in figure 11(b) and

reveals that this ratio is almost insensitive to the increase of Ra, for both BLs. The
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FIGURE 9. Variation of centre temperature Θc with (a) Ra for 1T = 40 K and (b)
1T for Ra = 109: open squares, present 2-D results; solid squares, present 3-D results;
open circles, 2-D numerical results reported by Sugiyama et al. (2009); diamonds, 3-D
numerical results in a cylindrical domain reported by Horn & Shishkina (2014); dashed
line, extended BL theory for variable property flows, developed by Ahlers et al. (2006).
In panel (b) the 2-D numerical results of Sugiyama et al. (2009) correspond to Ra= 108.

20
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0.50

0.45

0.40

Î

FIGURE 10. Temperature drop ∆ across the thermal BLs at Ra = 109: open upward
pointing triangles, ∆t – two dimensions; open downward pointing triangles, ∆b – two
dimensions; solid upward pointing triangles, ∆t – three dimensions; solid downward
pointing triangles, ∆b – three dimensions.

scaling relations of the thermal BL thicknesses were calculated using a least-squares
fit on a classic power law and are listed in table 4. Since the results do not exhibit
a top–bottom symmetry, a distinction is made between the top and the bottom BLs.
The scaling exponent remains almost unaffected for the 2-D and 3-D cases and also
for the top and the bottom BLs. Additionally, the scaling exponent is very similar to
the OB results reported by Wang & Xia (2003). This finding suggests that the scaling
exponents are only weakly affected by the NOB character of the flow, similar to the
Nusselt number scaling.

Figure 12 presents the influence of 1T on λθt and λθb for Ra=109. As 1T increases,
the top thermal BL thickens while the bottom one becomes thinner, in both the 2-D
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FIGURE 11. (a) Variation of thermal BL thickness λθ with Ra for 1T = 40 K: open
upward pointing triangles, λθt – two dimensions; open downward pointing triangles, λθb –
two dimensions; solid upward pointing triangles, λθt – three dimensions; solid downward
pointing triangles, λθb – three dimensions. (b) Variation of λθ2D/λ

θ
3D with Ra for 1T=40 K:

downward pointing triangles, bottom BL; upward pointing triangles, top BL.

2-D top λθ = 4.45× Ra−0.292

2-D bottom λθ = 3.94× Ra−0.291

3-D top λθ = 3.56× Ra−0.290

3-D bottom λθ = 3.28× Ra−0.291

TABLE 4. Scaling of thermal BL thickness λθ at the top and the bottom of the cavity for
both the 2-D and the 3-D cases, at 1T = 40 K. The power laws were calculated using
the least-squares method.

and 3-D cases. Additionally, λθt is consistently larger than λθb for both the 2-D and
3-D sets of simulations. This can be rationalised following the definition of λθ in
(2.10). More specifically, even though both the average temperature gradient along the
top wall (table 3) and ∆t (figure 10) are increased, ∆ exhibits a stronger temperature
dependence which leads to the thicker thermal BLs at the top of the cavity, compared
to the bottom. The ratio of the thermal BL thicknesses predicted by 2-D and 3-D
simulations λθ2D/λ

θ
3D is presented in figure 12(b). This ratio exhibits only a weak

dependence on 1T , acquiring an almost constant value of approximately 1.20.
The NOB effects on the thermal BLs can be better quantified using the ratio
λθNOB/λ

θ
OB. Figure 13 shows that this ratio depends mainly on 1T and is almost

unaffected by the variation of Ra. Additionally, some differences between 2-D and
3-D simulations are visible, more prominently for the top BL. The 2-D predictions
fluctuate more intensely with Ra, compared to the 3-D predictions that remain
relatively unaffected. As a function of 1T , the 2-D ratio at the top BL exhibits a
weaker increase compared to the 3-D cases. For both the 2-D and 3-D predictions,
the ratio at the bottom BL exhibits a steeper descent than the ascent at the top BL.

5. Profiles of the near-wall temperature statistics
In this section, the near-wall vertical distributions of the space-averaged mean and

r.m.s. values of temperature are presented to investigate the modifications stemming
from the property variations. Since the objective is to reveal previously unexplored
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FIGURE 12. Variation of (a) thermal BL thickness λθ and (b) λθ2D/λ
θ
3D with 1T for

Ra= 109. The notation is the same as in figure 11.
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FIGURE 13. Variation of λθNOB/λ
θ
OB as a function of (a) Ra for 1T = 40 K and (b) 1T

for Ra= 109: open upward pointing triangles, top BL – two dimensions; open downward
pointing triangles, bottom BL – two dimensions; solid upward pointing triangles, top BL
– three dimensions; solid downward pointing triangles, bottom BL – three dimensions;
diamonds, 3-D numerical results in a cylindrical domain at Ra = 109 reported by Horn
& Shishkina (2014).

NOB effects and not to compare the 2-D and 3-D solutions, this section focuses
exclusively on 3-D results. Figure 14(a,b) shows the near-wall vertical distributions
of 〈Θ〉t,x,y for various Ra values, at 1T = 40 K. As expected, the increase of Ra
is accompanied by sharper temperature gradients close to the walls. Moreover, the
temperature gradient on the top wall is consistently larger than the corresponding one
at the bottom wall. The actual values of the temperature gradients are listed in table 3,
where the values on the top wall are approximately 9 % increased compared to the
values on the bottom wall in every 3-D case. This asymmetry can be attributed to
the variation of the thermal conductivity of water which increases with temperature.
Further away from the walls, the averaged temperature reaches a plateau value which
varies only weakly with Ra, as demonstrated by the values of the centre temperature
Θc in figure 9(a).

The effect of Ra on the near-wall vertical distributions of 〈Θrms〉x,y is shown
in figure 14(c,d), for 1T = 40 K. All profiles exhibit a sharp increase near the
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FIGURE 14. Effect of Ra on the vertical distribution of the plane-averaged mean
temperature 〈Θ〉t,x,y (a,b) and r.m.s. values of temperature 〈Θrms〉x,y (c,d) in the vicinity
of the bottom (a,c) and the top (b,d) walls: solid line, Ra= 106; dashed line, Ra= 107;
dashed-dotted line, Ra= 108; dashed-dotted-dotted line, Ra= 109. In all cases 1T = 40 K.

walls, before reaching a maximum and decrease towards the core of the cavity. The
maximum r.m.s. values decrease weakly and monotonically with Ra, something that
was also observed in the OB study of Du Puits et al. (2007), albeit for a lower
Prandtl number. At the top of the cavity, the maximum values are consistently
larger compared to the bottom of the cavity, owing to the smaller thermal diffusivity
of water at the top (colder) part of the cavity. More specifically, larger thermal
diffusivity values redistribute temperature inhomogeneities more effectively, reducing
the fluctuations of the temperature field in this region.

Figure 15(a,b) shows the effect of 1T on the near-wall vertical distributions of
〈Θ〉t,x,y, at Ra = 109. In all cases, a linear region is detected next to the horizontal
walls which corresponds to the viscous sublayer. The thickness of this linear layer is
affected by 1T , although the temperature gradient in this layer is almost unaffected.
More specifically, as 1T increases this linear region shrinks at the bottom and expands
at the top of the cavity. Additionally, the temperature plateau outside the thermal BLs
is shifted to higher values, in accordance to the Θc variation with 1T , shown in
figure 9(b).

Figure 15(c,d) reveals the effects of 1T on the near-wall vertical distributions of
〈Θrms〉x,y. As 1T increases, the value of the maximum in the vicinity of the top wall
increases and its location moves away from the wall. The opposite effect is observed
at the bottom of the cavity, i.e. the maximum decreases and moves closer to the
bottom wall. More specifically, the comparison of the NOB results with 1T = 60 K
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FIGURE 15. Effect of 1T on the vertical distribution of the plane-averaged mean
temperature 〈Θ〉t,x,y (a,b) and r.m.s. values of temperature 〈Θrms〉x,y (c,d) in the vicinity
of the bottom (a,c) and the top (b,d) walls: solid line, OB; dashed line, 1T = 20 K;
dashed-dotted line, 1T = 40 K; dashed-dotted-dotted line, 1T = 60 K. In all cases
Ra= 109.

against the OB results reveals an increase of the maximum r.m.s. value at the top of
the cavity by 11.7 % and a decrease at the bottom of the cavity by 8.5 %. The distance
from the wall to the location where the r.m.s. values reach their maximum (λrms),
can be considered as an alternative definition of the thermal BL thickness (Tilgner,
Belmonte & Libchaber 1993). Moreover, higher statistical moments were shown to
exhibit different properties below and above this thickness, suggesting that λrms should
be preferred over λΘ as a natural length scale for the thermal BLs (Zhou & Xia 2013).
Table 5 presents the ratio λrms/λΘ at Ra= 109 for different values of 1T . In all cases
λrms/λΘ < 1, meaning that the position of the r.m.s. maximum is located inside the
thermal BL. This ratio exhibits similar values at the top and at the bottom of the
cavity, with no systematic dependence on 1T .

6. Summary and conclusions
Rayleigh–Bénard convection in water was studied by means of DNS, taking into

account the variation of properties with temperature. The simulations were carried out
in a cavity with a rectangular cross-section, for Rayleigh numbers in the range of
106 6 Ra 6 109 with temperature differences up to 60 K.

One of the main objectives of the present work was to quantify NOB effects using
2-D and 3-D simulations and perform comparisons. A reasonable agreement was
observed between 2-D and 3-D results for the centre temperature and temperature
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λrms/λΘ

1T Top Bottom

OB 0.86 0.86
20 K 0.83 0.87
40 K 0.90 0.90
60 K 0.88 0.83

TABLE 5. Ratio λrms/λΘ at Ra= 109, for different values of 1T .

drop inside the thermal BLs. On the other hand, the predicted Nusselt numbers
and thermal BL thicknesses exhibited significant deviations. More specifically, these
parameters were found to deviate by as much as 20 % when computed using 2-D and
3-D simulations. Nonetheless, when these output parameters were normalised with
the respective OB values, the agreement improved. Moreover, the LSC roll was found
to shift its orientation from the x–z plane in the 2-D cases to the y–z plane in the
3-D cases. The quantification of the LSC shape and structure also revealed significant
differences which were linked to the differences in the predicted output parameters.

Another focus of this study was to identify how the NOB effects modify the mean
and r.m.s. distributions of the temperature field, leading to the breaking of the top–
bottom symmetry. As 1T increased, the near-wall linear part of the mean temperature
distribution expanded at the top and contracted at the bottom of the cavity, while the
value of the mean temperature in the bulk region increased. Moreover, the near-wall
maximum values of the temperature r.m.s. increased in the vicinity of the top wall and
decreased next to the bottom wall. Likewise, the locations of the near-wall maxima
were found to shift away from the top wall and move closer to the bottom wall.

Up to Ra = 109, the NOB effects were found to depend only weakly on Ra. The
extrapolation of these results to higher Ra values needs further justification because
of the expected transition to turbulence of the boundary layers at around Ra > 1013,
signalling the transition to the ultimate regime (Grossmann & Lohse 2000, 2001). An
interesting future extension of the present study would be to simulate flows at even
higher Rayleigh numbers, as close to the ultimate regime as possible. At such high
Rayleigh numbers, it would be possible to distinguish the BL modifications that are
induced by the NOB effects and those that emerge from the ultimate regime.
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