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We consider the two-dimensional Rayleigh–Taylor problem for the dynamics of the free

interface Γ between two layers of immiscible viscous liquids. For a slow flow model (which

corresponds to the case of a small relative jump of density) and under sufficiently wide

assumptions on the geometry of Γ , we analyze the time dynamics of Γ . In particular,

we prove that its increase in time t is bounded by an exponential function with exponent

independent of Γ .

1 Introduction

The problem of studying the Rayleigh–Taylor instability has drawn the attention of many

researchers. The properties of gravity flows in which a light (low-density) liquid is overlain

by a heavier liquid have been well studied experimentally [13]. Theoretical results are

mainly obtained for the asymptotic stage of instability evolution (at which bubbles of the

light liquid and narrow jets of the heavier liquid are formed) by using both stationary [5,

15, 29] and nonstationary [7, 17–19] approaches.

In the present paper, we study the dynamics of the interface between two liquids taking

into account dissipation effects. Our main assumption is that the relative jump of densities

is small. For example, such a situation occurs in seismology problems when flows in the

uppermost mantle are studied [20–22, 25]. Since in this case the flows are slow, we use

the Stokes model. We restrict ourselves to the two-dimensional case and use the method

of asymptotic expansion with respect to smoothness. As a direct result, we derive the

equations

ζ̇± = −(ρ2 − ρ1)

∫
Γt

G(ζ − ζ±, ξ − ξ±)
∂φ

∂ξ
ω, (1.1)

which describe the motion of the maximal (ζ+) and minimal (ζ−) vertical coordinate of the

interface Γt = {φ(ζ, ξ, t) = 0} between the liquids under sufficiently general assumptions

on the geometry of the curve Γt (see Figures 1 and 4). Here ρ2 and ρ1 are normed densities

of the upper and lower liquids, ξ± are the horizontal coordinates of the maximum and

minimum points, G(ζ, ξ) is the derivative with respect to ξ of the Green’s function for the

biharmonic operator in a strip that is periodic in ξ and decreases as ζ → ±∞, ω is the

Leray measure on Γt, i.e. a 1-form satisfying the equation dφ ∧ ω = dξ ∧ dζ.

https://doi.org/10.1017/S0956792502004862 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792502004862


498 V. G. Danilov and G. A. Omel’yanov

Figure 1. Admissible forms of the free interface between liquids with different densities.

In particular, a qualitative analysis of (1.1) shows that in the equation

σ̇ = (ρ2 − ρ1)f(σ, t)

for the width σ = ζ+ − ζ− of the intermediate (fingering) zone, the right-hand side f can

be estimated as

0 < f(σ, t) < cσ, (1.2)

where the constant c is independent of the geometry of the curve Γt.

Note that Otto obtained a similar result for the two-fluid case of Hele–Shaw flow in a

weak formulation [27].

Now let us derive the basic mathematical model. Consider the Navier–Stokes equations

ρ
du

dt
+ ∇p+ ρ~g = η∆u, div u = 0, (1.3)

which describes flows in two-layered liquids under the action of a gravity force ρ~g,~g = g~e3.

We assume that the liquids separated by the surface Γt = {φ(x, t) = 0} are immiscible and

of constant density. The density is ρ2 in the upper layer (φ > 0) and ρ1 in the lower layer

(φ < 0). As usual, (1.3) is supplemented with the kinematic condition

dX

dt
= u,

d

dt
=

∂

∂t
+ 〈u,∇〉, (1.4)

where X = X(x, t) are points on the surface Γt.

We denote the mean density by ρ0 = (ρ1 + ρ2)/2, write the pressure p in the form

p = const−gρ0x3 + P ,

and pass to the dimensionless coordinates

x = L0x
′, t = Tt′

and the dimensionless functions

u = Uu′, ρ = ρ0(1 + ∆0ρ
′), P = p0p

′,

where ∆0 = (ρ2 − ρ1)/ρ0 is the relative jump in the density and the characteristic scales

U = L0/T and p0 correspond to the motion driven by gravity. Let

p0 = gρ0L0 Fr,

where Fr = U0/
√
L0g is the Froude number, and assume that ∆0 = Fr. Then the equation
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of motion can be rewritten as

Fr(1 + ∆0ρ
′)
du′

dt′
+ ∇p′ + e3ρ

′ =
Fr

Re
∆x′u

′, (1.3′)

where, as usual, Re = ρ0UL0/η is the Reynolds number. We assume that

Fr� 1. (1.5)

Then we see that the coefficient Fr of the inertial terms in (1.3′) is small, while the

coefficient ε2 = Fr /Re characterizing the viscous stress is, in general, not small. Thus

assumption (1.5) allows us to pass from (1.3′) to the Stokes model. Next, note that for a

medium formed by two layers of liquids with constant densities, which we study here, the

kinematic condition (1.4) can be written in the following equivalent form:

∂ρ

∂t
+ div(ρu) = 0, (1.4′)

which is more convenient for us, since it allows us to pass to the global problem of finding

a weak solution of a Stokes type system.

Restricting ourselves to the two-dimensional case, we write ξ = x′1/ε (the horizontal

variable), ζ = x′3/ε (the vertical variable), p′′ = p′/ε, t′′ = t′/ε, and preserve the notation

ρ2 and ρ1 for the normed density in the upper and lower layers. Then, omitting the

superscripts on the new variables and functions, we obtain the following basic system of

equations:

∂p
∂ξ

= ∆ξ,ζu, (1.6)

∂p
∂ζ

+ ρ = ∆ξ,ζv, (1.7)

∂u
∂ξ

+ ∂v
∂ζ

= 0, (1.8)

∂ρ
∂t

+ ∂
∂ξ

(ρu) + ∂
∂ζ

(ρv) = 0, (1.9)

for the scalar functions u (the horizontal velocity), v (the vertical velocity), the pressure

correction p, and the function φ = φ(ζ, ξ, t) describing the position of the interface

Γt = {φ = 0} between the layers.

Note that (1.6)–(1.9) (and equations close to them) are used in seismology problems

in modeling sedimentary basin formation [20, 21] and magma migration [22, 25]. The

solvability of the initial boundary value problem for (1.6)–(1.9) was established elsewhere

[1, 2].

Assume that the initial position of the interface Γ0 is described by the function

φ0(ζ, ξ) that is L-periodic in ξ, i.e. Γ0 = {φ0 = 0}. Then, in view of the obvious

translational properties of (1.6)–(1.9), it suffices to study these equations in the strip

Π = {(ξ, ζ), 0 < ξ < L, ζ ∈ R1} supplementing them with the boundary and initial

conditions

u

∣∣∣∣
ζ→±∞

→ 0, ∂ku
∂ξk

∣∣∣∣
Σ1

= ∂ku
∂ξk

∣∣∣∣
Σ2

, k = 0, 1, (1.10)

ρ
∣∣
t=0

= ρ1 + (ρ2 − ρ1)H
(
φ0(ζ, ξ)

)
, (1.11)

where Σ1 and Σ2 are the lateral sides of the strip Π (for ξ = 0 and ξ = L), u = (u, v),
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Figure 2. Free interface in the case of a unique minimum point and the corresponding Green’s

functions.

and H(τ) is the Heaviside function: H(τ) = 0 for τ < 0 and H(τ) = 1 for τ > 0. In what

follows, we omit the indices ξ, ζ of the Laplace operator in the variables ξ and ζ.

We shall study the above problem by using an asymptotic expansion of the solution

with regard to smoothness. For linear equations, the idea to expand the solution with

respect to smoothness is well known. The development of this idea applied to quasilinear

equations and special solutions lying in D′ and admitting multiplication was performed by

many authors [9, 10, 28], starting from Maslov’s paper [24]. A possibility to study a more

general class of nonsmooth solutions of quasilinear equations [3, 4, 6, 8, 14, 26] appeared

after the construction of algebras of generalized function, which include distributions

from D′.
The paper is organized as follows. In § 1 we rewrite (1.6)–(1.9) in a more convenient

form and introduce the basic equation (1.1) for the dynamics of critical points of the free

interface Γt = {(ζ, ξ) : φ(ζ, ξ, t) = 0}.
In § 2, we assume that, uniformly in t, the curve Γt has only one minimum point
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(ζ−(t), ξ−(t)), ξ− ∈ (0, L), (that is, ∂φ(ζ−, ξ−, t)/∂ξ = 0) and prove the estimate (1.2). This

means that the relation (1.2) obtained earlier [11] for symmetric curves (see plot 1 in

Figure 1 and Figure 4) continues to hold under the perturbations shown in Figure 1,

plot 2, and in Figure 2.

In § 3 we perform a similar study under the assumption that the function φ differs

from that in Section 2 by small additional localized perturbations (see Figure 1, plot 3,

and Figure 3).

In § 4 we consider the possibilities of a more detailed analysis for special shapes of Γt
and the possibility of further development of the method proposed here.

Finally, in the Appendix, we prove some auxiliary formulas which we need for averaging

the Heaviside functionH(φ(ζ, ξ, t)) with respect to ξ and for establishing the basic equation

for the dynamics of critical points.

2 Derivation of the basic model equations

We write

ρ = ρ1 + (ρ2 − ρ1)H
(
φ(ζ, ξ, t)

)
, (2.1)

and assume that the following assumption is satisfied.

Assumption A Let the function φ be L-periodic with respect to ξ, and let φ(ζ, ξ, t) ∈
C1(0, T ;C2+ν(Π)), where ν > 0 is an arbitrary number. Suppose that Γt = {(ζ, ξ) ∈
Π,φ(ζ, ξ, t) = 0)} is a nondegenerate curve with finitely many critical points of the first

order. Let φ > 0 for all points (ξ, ζ) lying over the curve Γt, and φ < 0 for all points

lying under the curve Γt. We assume that the maximum value of the ζ-coordinate of the

points (ξ, ζ) ∈ Γt for ξ ∈ [0, L] is attained only at ξ = 0 and ξ = L (we denote such

points by (0, ζ+) and (L, ζ+)), while the minimum value is attained only at the point (ξ−, ζ−),

ξ− ∈ (0, L).

We now note that (1.6)–(1.9) are invariant with respect to the change of variables

ξ → ξ∗ − ξ, u(ζ, ξ, t)→ −u(ζ, ξ∗ − ξ, t), v(ζ, ξ, t)→ v(ζ, ξ∗ − ξ, t), ρ(ζ, ξ, t)→ ρ(ζ, ξ∗ − ξ, t),
and p(ζ, ξ, t) → p(ζ, ξ∗ − ξ, t), where ξ∗ is an arbitrary constant. If the function φ0(ζ, ξ)

is even with respect to ξ∗, then the initial value ρ
∣∣
t=0

defined in (1.11) is also an even

function. This fact implies the following statement.

Lemma 1 Suppose that u, ρ, and p form the solution of problem (1.6)–(1.11) and ρ has the

form (2.1). Suppose also that the L-periodic C2+ν-function φ0(ξ) is even with respect to the

point ξ = 0. Then u is an odd function and ϕ, v, ρ and p are even functions with respect to

this point.

It follows from this lemma that the curve Γt = {(ξ, ζ), φ(ζ, ξ, t) = 0} attains its maximum

at ξ = 0 if the curve Γ0 = {(ξ, ζ), φ0(ζ, ξ) = 0} has the same property.

To simplify the notation, we omit the argument t in all functions.

Let us transform (1.6)–(1.9). To this end, we introduce the stream function F , v = ∂F/∂ξ,

u = −∂F/∂ζ such that F = F(ζ, ξ) is L-periodic with respect to ξ, has zero average, and
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satisfies the problem

∆2F =
∂ρ

∂ξ
, F

∣∣∣∣
ζ→±∞

→ 0. (2.2)

It follows from the general theory of elliptic equations (e.g. see Lions & Magenes [23])

that if φ is a sufficiently smooth function, then F ∈ H3−ν
p (Π) uniformly in t, where ν > 0

is any number and Hs
p is the Sobolev–Slobodetskii space of functions L-periodic in ξ.

Hence, in view of the embedding theorems, we have F ∈ C2−ν(Π).

Obviously, by taking into account representation (2.1), we immediately arrive at the

following equation for φ:

∂φ

∂t
− ∂F

∂ζ

∣∣∣∣
Γ

∂φ

∂ξ
+
∂F

∂ξ

∣∣∣∣
Γ

∂φ

∂ζ
= 0. (2.3)

Theoretically, the solution of the quasilinear equation (2.3) can be constructed by the

method of characteristics. Furthermore, with the help of the Fourier expansion, we can

explicitly calculate the function F as a series. However, the formulas obtained in this way

are very complicated and do not allow an effective analysis of the free interface dynamics.

We restrict our analysis to the consideration of the dynamics of critical points (ξi, ζi) ∈ Γ
such that ∂φ(ζi, ξi)/∂ξ = 0. It will be proved in the Appendix that the dynamics of ζi is

described by the equation

dζi

dt
=
∂F(ζi, ξ)

∂ξ

∣∣∣∣
ξ=ξi

. (2.4)

Remark 1 Equation (2.4) can be derived from the system of equations of characteristics

∂ζ

∂t
(ζ0, ξ0, t) = v(ζ, ξ, ζ, t) ζ

∣∣
t=0

= ϕ(ξ0, 0)

∂ξ

∂t
(ζ0, ξ0, t) = u(ζ, ξ, t) ξ

∣∣
t=0

= ξ0

only in the case in which the maximum (minimum) of the profile of the free boundary (the

function ϕ(ξ, t)) moves along the characteristics. This means that if at t = 0 the extremum

was at the point ζ∗0 , ξ∗0 , then for t > 0, it will be at the point ξ(ζ∗0 , ξ∗0 , t), ζ(ζ∗0 , ξ∗0 , t). If the

assumptions on the free boundary are more rigid than those considered in this paper, e.g.

if the initial function φ0(ζ, ξ) is even in ξ with respect to the minima and maxima, then

this property is obvious.

We do not study this problem in the general case but present a simple derivation of

(2.4) which is based on the method of asymptotic expansions with respect to smoothness.

For a further reduction, we introduce an auxiliary function G(ζ, ξ) such that G is

L-periodic with respect to ξ, has zero average, decreases as ζ → ±∞, and satisfies the

equation

∆2G(ζ, ξ) = δ′(ξ)δ(ζ).

Obviously, G ∈ H2−ν
p (Π). We shall also use Green’s formula

(∆2g, f) = (g, ∆2f). (2.5)
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For smooth functions g, f that are L-periodic with respect to ξ and decrease as ζ → ±∞,

formula (1.5) can be readily obtained by integrating by parts. We can continuously extend

this formula to the case where g ∈ H2−ν
p (Π) and f ∈ H3−ν

p (Π). Therefore, we have

∂F

∂ξ
(ζi, ξi) = −(δ(ζ − ζi)δ′(ξ − ξi), F(ζ, ξ)

)
= −(G(ζ − ζi, ξ − ξi), ∆2F(ζ, ξ)

)
.

Since F = ∆−2∂ρ/∂ξ and (2.1) holds, we obtain the formula

∂F

∂ξ
(ζi, ξi) = −(ρ2 − ρ1)

(
G(ζ − ζi, ξ − ξi), ∂φ

∂ξ
δ(φ)

)
,

where δ(φ) is the δ-function on the curve Γ [16], i.e. the distribution such that(
ϕ(ζ, ξ), δ(φ)

)
=

∫
Γ

ϕω (2.6)

for all ϕ ∈ D(Π), and the 1-form ω satisfies the equation dφ ∧ ω = dξ ∧ dζ.
Hence we arrive at our basic equation

dζi

dt
= −(ρ2 − ρ1)

∫
Γ

G(ζ − ζi, ξ − ξi)∂φ
∂ξ
ω. (2.7)

It is easy to prove (e.g. see Danilov & Omel’yanov [11, 12]) that, uniformly in ζ, the

function G(ζ, ξ) is odd with respect to the point ξ = L/2 and negative for ξ ∈ (0, L/2).

Moreover, G is even with respect to ζ and |G(ζ, ξ)| decreases with increasing |ζ| (for a

fixed ξ). These properties are decisive in the analysis of the right-hand side in (2.7).

3 Estimates for the width of the intermediate (fingering) zone

Suppose that the curve Γ satisfies Assumption A and there exists only one minimum

point (ξ−, ζ−). Then Γ can be divided into two parts (Γ− from (L, ζ+) to (ξ−, ζ−) and Γ+

from (ξ−, ζ−) to (0, ζ+)), each of which can be uniquely projected on the ζ (see plot 2 in

Figures 1 and 2). By taking into account the local representation of the form ω, in view

of (2.7), we obtain

dζ+

dt
= −(ρ2 − ρ1)

∫ ζ+

ζ−

(
G(ζ − ζ+, ξ

+(ζ))− G(ζ − ζ+, ξ
−(ζ))

)
dζ, (3.1)

dζ−
dt

= −(ρ2 − ρ1)

∫ ζ+

ζ−

(
G(ζ − ζ−, ξ+(ζ)− ξ−)

−G(ζ − ζ−, ξ−(ζ)− ξ−)
)
dζ, (3.2)

where ξ± = ξ±(ζ) is the solution of the equation φ(ζ, ξ) = 0, which corresponds to Γ±.

We write σ = ζ+ − ζ−. Then, after this change of variable, we obtain the following

equation for the width σ:

dσ

dt
= (ρ2 − ρ1)

∫ σ

0

{− G(z − σ, ξ+(z + ζ−)) + G(z − σ, ξ−(z + ζ−))

+G(z, ξ+(z + ζ−)− ξ−)− G(z, ξ−(z + ζ−)− ξ−)
}
dz. (3.3)
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To analyze the expression on the right-hand side in (3.3) in the simplest way, we need

the following additional assumption.

Assumption B Let Γ have only one minimum point, and let the following condition be sat-

isfied at all critical points (ξk, ζk) such that ∂φ(ξk, ζk)/∂ζ = 0:

0 6 ξk 6
L

2
if (ξk, ζk) ∈ Γ+,

L

2
6 ξk 6 L if (ξk, ζk) ∈ Γ−. (3.4)

Now we show that under this assumption the sign of the right-hand side in (3.1)

coincides with the sign of (ρ2 − ρ1), while the sign of the right-hand side in (3.2) is

opposite to the sigh of (ρ2 − ρ1). Obviously, this implies that the width σ of the mushy

region increases with time for ρ2 > ρ1 (the heavy liquid is over the light liquid) and

decreases for ρ2 < ρ1.

First, we discuss a special case of the curve Γ in which ξ− = L/2. We have G( ·, ξ) < 0

for ξ ∈ (0, L/2) and G( ·, ξ) > 0 for ξ ∈ (L/2, L). In this special case ξ+(ζ) ∈ (0, L/2) and

ξ−(ζ) ∈ (L/2, L) for all ζ ∈ (ζ−, ζ+). Hence we have

G(ζ − ζ+, ξ
+(ζ)) < 0, G(ζ − ζ+, ξ

−(ζ)) > 0,

and hence the sign of the right-hand side in (3.1) coincides with the sign of ρ2 − ρ1. In a

similar way, it readily follows from the inequalities

G( ·, ξ − L/2) > 0 for ξ ∈ (0, L/2) and G( ·, ξ − L/2) < 0 for ξ ∈ (L/2, L)

in this special case that the sign of the right-hand side in (3.2) is opposite to the sign of

(ρ2 − ρ1).

Let us consider the general case.

For definiteness, we assume that ξ− > L/2. Then, in view of Assumption A and the

properties of the function G(ζ, ξ)) mentioned in § 1, we have∫ ζ+

ζ−
G(ζ − ζ+, ξ

−(ζ)) dζ > 0, −
∫ ζ+

ζ0

G(ζ − ζ+, ξ
+(ζ)) dζ > 0. (3.5)

However,

−
∫ ζ0

ζ−
G(ζ − ζ+, ξ

+(ζ)) dζ < 0. (3.6)

Here ζ0 satisfies the condition ξ+(ζ0) = L/2 (see Figure 2).

We write ξ0
1 = ξ−(ζ0) and note that in the integrals of G(ζ−ζ+, ξ

−(ζ)) and G(ζ−ζ+, ξ
+(ζ))

from ζ− to ζ0 the first arguments of these functions coincide, while the second arguments

satisfy the conditions: ξ−(ζ) ∈ (ξ−, ξ0
1) and ξ+(ζ) ∈ (L/2, ξ−). Thus the difference between

these integrals is equivalent to the difference |S ′1| − |S−2 | between the areas of figures S ′1
and S−2 shown in the second plot in Figure 2. In the general case the difference |S ′1|−|S−2 | is
not necessarily positive. However, we note that for ζ ∈ [ζ0, ζ+] we have |G(ζ−ζ+, ξ

±(ζ))| >
|G(ζ̃− ζ+, ξ

±(ζ))|, where ζ̃ is any number lying in the interval [ζ−, ζ0]. Thus we can use the

areas |S+
2 |, |S ′′1 | of figures S+

2 and S ′′1 as lower estimates of the integrals of the functions

G(ζ−ζ+, ξ
−(ζ)) and G(ζ−ζ+, ξ

+(ζ)) from ζ0 to ζ+ (see Figure 2). Since ξ− < L, obviously,

we have |S+
2 | + |S ′1| + |S ′′1 | > |S−2 |. This readily implies that the sum of integrals (3.5)

and (3.6) is positive. Now it is clear that sign(dζ+/dt) = sign(ρ2 − ρ1).
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In the study of (3.2) it is necessary to take into account that the second argument of the

function G is shifted by ξ− and the inequality |G(ζ− ζ−, ξ±(ζ))| > |G(ζ̃1− ζ−, ξ±(ζ))| holds

for all ζ ∈ [ζ−, ζ ′0] and ζ̃1 ∈ [ζ ′0, ζ+]. Here ζ ′0 satisfies the condition ξ+(ζ ′0) = ξ′−
def
= ξ−−L/2.

One can readily see that the sign of the right-hand side in (3.2) is determined by the

balance of the areas |S+
4 |, |S ′3|, |S ′′3 |, and |S−4 | of the corresponding figures shown in the

lowest plot in Figure 2 (here ξ′′− = ξ−(ζ ′0)). Since necessarily |S+
4 |+ |S ′′3 |+ |S ′3| > |S−4 |, we

have sign(dζ−/dt) = − sign(ρ2 − ρ1).

It remains to note that G ∈ C1−ν(Π), and hence G is uniformly bounded. Thus, we

arrive at the following statement.

Theorem 1 Suppose that Assumptions A and B are satisfied. Then the width σ of the mushy

region satisfies the equation

dσ

dt
= (ρ2 − ρ1)f(σ, t), (3.7)

where the function f whose explicit form is given in (3.3) satisfies the estimates

0 < f(σ, t) < cσ, c = 4 max
ξ
|G(0, ξ)|. (3.8)

Remark 2 Condition (3.4) becomes weaker if we assume that −µ 6 ξk 6
L
2

+ µ for

(ξk, ζk) ∈ Γ+ and L
2
− µ 6 ξk 6 L + µ for (ξk, ζk) ∈ Γ−, where µ > 0 is a sufficiently

small number. In this case the right-hand sides in (3.1), (3.2), besides of terms ∼ |S−2 |
and ∼ |S−4 |, contain another ‘irregular’ terms arising when we integrate over the parts

Γ+ lying to the right of the line ξ = L/2 and to the left of the line ξ = 0 and over the

parts Γ− lying to the left of the line ξ = L/2 and to the right of the line ξ = L. Since

the number of critical points is finite, the contribution of all these terms is negative and

of O(µ) as µ → 0. One can easily see that the statement of Theorem 1 remains valid for

sufficiently small µ.

4 ‘Stability’ of motion of a free boundary

In this case ‘stability’ means that the qualitative description of the motion of Γ obtained

in § 2 remains the same under the action of small localized perturbations (similar to those

shown in Figure 1, plot 3, and Figure 3).

Assumption C Suppose that Assumption A is satisfied and

φ = φ0(ζ, ξ) + µφ1(ζ/µ, ξ/µ), (4.1)

where φ0 satisfies Assumption B and φ1(ζ/µ, ξ/µ)) has the same smoothness as φ0 and is

localized in a µ-neighbourhood of N points (ξi, ζi), where N � 1/µ and µ > 0 is a sufficiently

small number.

It follows from the above that it suffices to consider only the critical points (ξ±,i, ζ±,i)
of the curve Γ = {(ξ, ζ), φ(ζ, ξ, µ) = 0}, where ∂φ/∂ξ = 0. By (ξ+,i, ζ+,i) and (ξ−,i, ζ−,i) we

denote the coordinates of local maxima and minima of Γ and by (ξ+, ζ+), where ξ+ = 0
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Figure 3. Small localized perturbations of the free interface.

or ξ+ = L, and (ξ−, ζ−) we denote the coordinates of the global maximum and the global

minimum (see Figure 3).

Let us study the right-hand side of (2.7) for ζi = ζ+ in the situation of Assumption C.

A distinction between this problem and that studied in § 2 (see (3.1)) is that each part Γ±
of the curve Γ now contains parts of ‘irregular’ orientation. We restrict our consideration

to Γ− and denote such irregular parts by Γ−,i. We choose a number i. Let ξG be the point

at which G(·, ξ) attains its maximum, and let ξ∗ = maxζ∈[ζ−,i ,ζ+,i] ξG(ζ). Suppose that the

projection of Γ−,i on the ξ-axis lies to the right of the point ξ∗. We consider the part of Γ

that follows Γ−,i (in accordance with the orientation of Γ ) and lies between the points

(ξ+,i, ζ+,i) and (ξ∗−,i, ζ−,i) (see Figure 3). We denote this part of Γ by Γ+,i. By ξ∗−,i we denote

the maximal point ξ such that ξ < ξ−,i and φ(ζ−,i, ξ, µ)
∣∣
ξ=ξ∗−,i

= 0. In addition, we assume

that ξ∗−,i > ξ∗. In the integral on the right-hand side of (2.7) we consider the part of the

integral that corresponds to Γ−,i ∪ Γ+,i. By using the local representation of the form ω,

we rewrite this integral in the form

Ji =

∫ ζ+,i

ζ−,i
G
(
ζ − ζ+, ξ+,i(ζ)

)− G(ζ − ζ+, ξ−,i(ζ)
)
dζ, (4.2)

where ξ±,i(ζ) are the solutions of the equation φ(ζ, ξ, µ) = 0 corresponding to the parts Γ±,i,
respectively.
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Since ξ∗ < ξ∗−,i(ζ) < ξ+,i(ζ) < ξ−,i(ζ) for all ζ� ζ+,i, we have G(·, ξ+,i(ζ)) > G(·, ξ−,i(ζ))
and hence Ji > 0. From the geometric viewpoint, this means that we can obtain the lower

bound for the integral in (2.7) by calculating the integral over a curve in which Γ−,i ∪Γ+,i

is replaced by the line connecting the points (ξ−,i, ζ−,i) and (ξ∗−,i, ζ−,i) (see Figure 3) and

by equating the integrand with zero on this line.

From another viewpoint, we compare the areas |S−i | and |S+
i | of the figures S−i and S+

i

shown in the lower plot in Figure 3. The above estimate means that we cut off the part

S+
i ∪ S−i from the figure bounded by G(·, ξ) and the ξ-axis.

In a similar way, we consider the parts Γ−,k whose projections on the ξ-axis lie to

the left from the maximum point of G. In this case, however, we assume that ξ∗ =

minζ∈[ζ−,k ,ζ+,k] ξG(ζ) and perform the compensation by using the part Γ+,k lying between

the points (ξ∗+,k , ζ+,k) and (ξ−,k , ζ−,k) (see Figure 3). Here ξ∗+,k is the minimal point ξ such

that ξ > ξ−,k and φ(ζ+,k , ξ, µ)
∣∣
ξ=ξ∗+,k

= 0. By setting ξ∗+,k < ξ∗, we obtain the lower bound

for the integral in (2.7) by calculating the integral over a curve in which Γ+,k ∪ Γ−,k is

replaced by the line connecting the points (ξ∗+,k , ζ+,k) and (ξ+,k , ζ+,k) and by equating the

integrand with zero on this line.

However, in the general case there also exist parts Γ−,j whose projection on the ξ-axis

either contains the maximum point of G or lies in the immediate neighbourhood of this

point so that the assumptions that ξ∗−,i > ξ∗ or ξ∗+,k < ξ∗ are not satisfied. In this case, in

general, the integrals over Γ ′′+,j (from (ξ′′j , ζ+,j), ξ
′′
j

def
= ξ′′+,j(ζ+,j), to (ξ−,j , ζ−,j)) and over Γ ′+,j

(from (ξ+,j , ζ+,j) to (ξ′j , ζ−,j), ξ′j
def
= ξ′+,j(ζ−,j)) do not compensate the integral over Γ−,j . In

other words, it is possible that |S+′
j |+ |S+′′

j | < |S−j | (see Fig. 3). However, we must take into

account that G(ζ−ζ+, ξ) > G(ζ+,j−ζ+, ξ) for ζ > ζ+,j . Thus the problem of finding the sign

of the right-hand side in (2.7) is reduced to comparing the area Σ− = |S−j |− (|S+′
j |+ |S+′′

j |)
with the area Σ+ of all unshaded parts of the figure bounded by the line ξ = ξ′′j , the

ξ-axis, and the curve G(·, ξ) (see Figure 3). Now we must take into account the fact that

all intervals [ξ∗−,i, ξ−,i] are of length O(µ). Thus the total area Σ ′− of all shaded parts is

small, Σ ′− ∼ N(|S+
i | + |S−i |) � 1. For the same reason, we have Σ− = O(µ) and hence

Σ+ − Σ− > 0 for sufficiently small µ.

In a similar way, considering the part Γ− and (2.7) with ζi = ζ−, we obtain

sign(dζ+/dt) = sign(ρ2 − ρ1), sign(dζ−/dt) = − sign(ρ2 − ρ1). (4.3)

Now we write the equation for σ in the form (3.7) with the right-hand side

f =

∫
Γ

{−G(ζ − ζ+, ξ) + G(ζ − ζ−, ξ − ξ−)}∂φ
∂ξ
ω, (4.4)

and see that f > 0. The second inequality in (3.8) can easily be proved by using a rough

estimate of G by the maximum of its absolute value. In this case it should be noted that

the lengths of the part Γ−,i and of the adjacent part Γ+,i or of the adjacent parts Γ ′+,i and

Γ ′′+,i are of the order of O(µ) and the total number of such parts is N � 1/µ. Thus we

arrive at the following generalization of the statement of Theorem 1.

Theorem 2 Suppose that Assumption C is satisfied and µ is a sufficiently small number.

Then the width σ satisfies (3.7) and the estimate (3.8) with the constant c =

(4 + O(µN)) maxξ |G(0, ξ)|.
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Now we present the following result on estimation of the rate of growth of the

perturbation amplitude σi = ζ+,i − ζ−,i in the unstable case.

Theorem 3 Suppose that Assumption C is satisfied and µ is a sufficiently small number.

Then σi satisfies an equation of the form (3.7) whose right-hand side satisfies the estimate

|f(σi, t)| 6 cσi + O(µ+ σ2
i ), c = const . (4.5)

Since σi
∣∣
t=0

= O(µ), inequality (4.5) means that σi(t) = O(µ) for all finite t.

Let us outline the proof of Theorem 3. By Γi we denote the part of the curve Γ on

which the ith perturbation is localized modO(µ2) and write Γ ′ = Γ \ Γi. By using (2.7)

we write the equation for σi and represent the right-hand side as the sum of integrals

over Γ ′ and Γi. In the first integral the functions G(ζ − ζ±,i, ξ − ξ±,i) are smooth, and we

can use the Taylor formula. Hence on Γ ′ we have

|G(ζ − ζ+,i, ξ − ξ+,i)− G(ζ − ζ−,i, ξ − ξ−,i)| 6 c1σi (4.6)

with a constant c1 independent of µ. Then we estimate the integral over Γi by using the

fact that G(ζ − ζ±,i, ξ − ξ±,i) satisfies the Hölder condition and the distance |ξ+,i − ξ−,i| is

small. Thus we again arrive at an estimate of the form (4.6). An accurate realization of

this scheme only slightly differs from the proof carried out in Danilov & Omel’yanov [11].

5 Conclusion

In this paper we propose a new method of investigation of the free boundary motion

by using asymptotic expansions with respect to smoothness and apply it for studying

flows arising due to the Rayleigh–Taylor instability. We restrict our considerations to

a comparatively simple two-dimensional case of a small relative jump of density (1.5),

which, nevertheless, corresponds to a concrete physical problem, and obtain (1.1) for

vertical velocities of the interface motion. These ‘explicit’ formulas allow us to carry out

a sufficiently detailed qualitative analysis without numerical simulation. In this case the

shape of the curve Γt is assumed to be sufficiently arbitrary, which, in fact, corresponds to

the initial and transient stages of instability evolution. Obviously, by specifying the shape

of the curve Γt, the results obtained above can be made more precise.

For example, suppose that Γt is of the shape that is typical of the late state of evolution

(see Figure 4). In this case the interface Γt can be considered as the union of curves

of the following three types: segments of the curve Γ 1 slowly varying w.r.t. ξ, which

correspond to the sides of large ‘bubbles’ of the light liquid, the fast varying curve Γ 3,

which corresponds to the bottom of the heavy liquid jet, and the curves Γ 2 slowly varying

w.r.t ζ which correspond to the jet sides. Let us compare the velocity ζ̇+ of bubble

floating and the velocity ζ̇− of jet falling. One can easily verify (e.g. by substituting

ω = (∂φ/∂ξ)−1 dζ and replacing Γ 2 by vertical lines) that the integral in (1.1) taken over

the curves Γ 2 provides approximately the same contribution to ζ̇+ and ζ̇−. Next, we can

assume that |∂φ/∂ξ| � 1 on Γ 1, while we have |∂φ/∂ξ| � 1 on Γ 3 (outside a small
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Figure 4. Bubble-type free interface.

neighbourhood of the point (ζ−, L/2)). Therefore, for the integrals∫
Γ 1

G(ζ − ζ+, ξ)
∂φ

∂ξ
ω and

∫
Γ 3

G(ζ − ζ+, ξ)
∂φ

∂ξ
ω

contained in ζ̇+, we can readily conclude that the first integral is small due to the fact

that ∂φ/∂ξ is small and the second integral is small due to the fact that G(ζ, ξ) is

(exponentially) small for ζ ∼ σ = ζ+− ζ− and sufficiently large σ. Conversely, to calculate

ζ̇−, we need to consider the integrals∫
Γ 1

G(ζ − ζ−, ξ − L/2)
∂φ

∂ξ
ω and

∫
Γ 3

G(ζ − ζ−, ξ − L/2)
∂φ

∂ξ
ω.

The first integral is small due to ∂φ/∂ξ and G, since we have ζ− ζ− ∼ σ on Γ 1. However,

the second integral gives an essential contribution to ζ̇−, since here we have |∂φ/∂ξ| � 1

and |G| ∼ 1. Thus, after a simple qualitative reasoning, we obtain the well-known result:

|ζ̇−| > |ζ̇+|.
At the same time, it should be noted that the ‘exact’ equation (1.1) can be used only

for a qualitative analysis of the dynamics of the free surface. For example, this follows

from the study of the simplest case in which Γt is a small symmetric perturbation of the

horizontal straight line Γt = {ζ = νψ(ξ, t), ν � 1, ψ′ξ < 0 for ξ ∈ (0, L/2) and ψ′ξ > 0 for

ξ ∈ (L/2, L)}.
It is easy to verify that in this case the linearization of the equation leads to the relation

∂σ

∂t
= 4(ρ2 − ρ1)ν

∫ L/2

0

G(0, ξ)ψ′ξ(ξ, t) dξ + O(ν2).

With precision up to O(ν2) the obtained expression is linear with respect to ψ but

implies only the estimate

ν

∫ L/2

0

G(0, ξ)ψ′ξ(ξ, t) dξ 6 max
ξ
|G(0, ξ)|σ,
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which is exactly the same as that in the general case. Of course, this fact shows that the

problem under study is essentially nonlocal.

In conclusion, we note that our simplifying assumptions (the two-dimensional case and

condition (1.5)) are not absolutely necessary. It is rather obvious that the results obtained

here can be transferred to the three-dimensional case provided that condition (1.5) is

satisfied. In this case a more detailed analysis of the derivative of the Green’s function in

the strip ξi ∈ (0, Li), i = 1, 2, is only required. If we abandon condition (1.5), the problem

becomes more complicated, since in this case one cannot exclude the velocity and pressure

as it was done in § 1. Nevertheless, progress in this problem is also possible if we expand

all the functions contained in (1.3), (1.4) simultaneously with respect to smoothness.
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Auxiliary formulas and derivation of (2.4)

We derive (2.4) without using the assumption that each critical point (ζi, ξi) of the free

interface Γ remains lying on the same characteristic for all t > 0.

To this end, we define the weighted average of ρ by the formula

ρf′ =
1

L

∫ L

0

∂f(ζ, ξ, t)

∂ξ
ρ(ζ, ξ, t) dξ, (A.1)

assuming that the kernel ∂f/∂ξ is a function uniformly continuous with respect to ξ, ζ,

and t.

To make the computations of the right-hand side of (A.1) for ρ of the form (1.1) more

constructive, we obtain the following simple formula.

Lemma 2 Suppose that Assumption A is satisfied. Then ρf′(ζ) is a continuous function of

the form

ρf′(ζ) =
1

L
{f(ζ, L)− f(ζ, 0)}ρ

∣∣∣∣
ξ=0

− ρ2 − ρ1

L

∫
fφ′ξδ(φ) dξ, (A.2)

where
∫
gδ(φ) dξ is a distribution such that the following relation holds for all test functions

ψ(ζ) ∈ D: (∫
gδ(φ) dξ, ψ

)
=

∫
Γ

gψω, (A.3)

where the 1-form ω satisfies the equation dφ ∧ ω = dξ ∧ dζ.

Here and in what follows, we use the notation φ′ξ = ∂φ
∂ξ

, φ′ζ = ∂φ
∂ζ

, φ′′ξ(ζ) = ∂2φ
∂ξ∂ζ

, and so

on. We also omit the argument t in all the functions.

By specifying the geometric properties of Γ , we rewrite the right-hand side in (A.2) in

a simpler form. In particular, we have the following assertion.
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Corollary 1 Suppose that only (0, ζ+), (L, ζ+), and (ξ−, ζ−) are critical points of Γ such that

φ′ξ
∣∣
Γ

= 0. Then

ρf′(ζ) =
ρ∗

L
{f(ζ, L)− f(ζ, 0)} for ζ ^ (ζ−, ζ+), (A.4)

ρf′(ζ) =
ρ1

L
{f(ζ, L)− f(ζ, 0)}

−ρ2 − ρ1

L
{f(ζ, ξ+(ζ))− f(ζ, ξ−(ζ))} for ζ ∈ (ζ−, ζ+).

Here ρ∗ = ρ1 for ζ 6 ζ− and ρ∗ = ρ2 for ζ > ζ+, ξ+(ζ) is a solution of the equation

φ(ζ, ξ) = 0 for ξ ∈ (0, ξ−) and ξ−(ζ) is a solution of this equation for ξ ∈ (ξ−, L).

Further, we show that at the critical points the average ρf′(ζ) has singularity of branch

point type.

Lemma 3 Suppose that Assumption A is satisfied and (ξj , ζj) are critical points such that

φ′ξ(ζj , ξj) = 0. Then ρf′ has first-order continuous derivatives for all ζ� ζj . In neighbour-

hoods of the general points ζj the following relations are satisfied:

ρf′(ζ) =
1

L
{f(ζj , L)− f(ζj , 0)}ρ(ζ, 0)

−2
ρ2 − ρ1

L
κjRj

∂f(ζj , ξj)

∂ξ
|ζ − ζj |1/2 + O

(|ζ − ζj |). (A.5)

Here κj = 1 if (ξj , ζj) is the minimum point on Γ and κj = −1 if (ξj , ζj) is the maximum

point. The value of Rj > 0 depends on φ′′ calculated at intermediate points.

Before we start proving these assertions, we show how (2.4) can be derived by using (A.5).

Let us consider (1.9). We average it over ξ and take into account the fact that v = ∂F/∂ξ.

We obtain
∂ρ

∂t
+
∂ρF ′

∂ζ
= 0, (A.6)

where we write ρ instead of ρ1 (i.e. f = ξ).

Suppose that (ξi, ζi) ∈ Γ is a critical point of the function φ such that φ′ξ(ζi, ξi) = 0.

By Lemma 3, in a neighbourhood of the point ζi we represent ρ and ρF ′ as asymptotic

expansions with respect to smoothness [9, 10, 28]:

ρ(ζ) = Ai|ζ − ζi|1/2 + Bi|ζ − ζi|+ O(|ζ − ζi|3/2),

ρF ′ (ζ) = Ai
∂F

∂ξ
(ζi, ξi)|ζ − ζi|1/2 + Ci|ζ − ζi|+ O(|ζ − ζi|3/2),

where Ai, Bi and Ci are some coefficients.

By substituting these expansions into (A.6) and equating the coefficients of |ζ − ζi|−1/2

with zero, we readily obtain (2.4).

Proof of Lemma 2

By ψ = ψ(ζ) we denote a test function from D(R1) and consider the inner product (ρf′ , ψ).
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Taking into account (A.1) and integrating by parts, we obtain

(ρf′ , ψ) =
1

L

({f(ζ, L)− f(ζ, 0)}ρ(ζ, 0), ψ(ζ)
)

−ρ2 − ρ1

L

(
f(ζ, ξ)φ′ξ(ζ, ξ)ψ(ζ), δ(φ)

)
. (A.7)

Here the inner product in the second term is calculated over Π = R1
ζ × (0, L) and δ(φ) is

the δ-function on the curve Γ [16]. This implies formula (A.2).

We show how to calculate the functional
∫
gδ(φ) dξ in the general case and, in particular,

we prove Corollary 1.

We divide the curve Γ into the parts Γi,j , i = 1, . . . , I , j = 0, 1, so that

Γ =

I⋃
i=1

(Γ i,0 ∪ Γ i,1), φ′ξ� 0 on Γi,0, φ′ζ� 0 on Γi,1.

Then we have the following local representation for the form ω:

ω =
1

φ′ξ
dζ on Γi,0 and ω = − 1

φ′ζ
dξ on Γi,1. (A.8)

By {(ξ±,i± , ζ±,i± )} we denote the set of points on the curve Γ , at which the derivative φ′ξ = 0.

We assume that (ξ+,i+ , ζ+,i+), i+ = 1, . . . , I+, are the maximum points and (ξ−,i− , ζ−,i− ),

i− = 1, . . . , I−, are the minimum points. For definiteness, we set

0 = ξ+,1 < ξ−,1 < ξ+,2 < . . . < ξ−,I− < ξ+,I+ = L.

Since Γ is L-periodic, we have I+ = I− + 1 and ζ+,1 = ζ+,I+ .

For all critical points of finite order, the function 1/φ′ξ
∣∣
Γ

has an integrable singularity

(see below). Therefore, we can write∫
Γ

ϕω =

I−∑
i=1

{∫
Γ+
i

ϕω +

∫
Γ−i
ϕω

}
, (A.9)

where Γ+
i are the parts of the curve Γ from (ξ+,i, ζ+,i) to (ξ−,i, ζ−,i) where φ′ξ > 0 and Γ−i

are the parts from (ξ−,i, ζ−,i) to (ξ+,i+1, ζ+,i+1) where φ′ξ < 0.

By taking into account the orientation of the curve Γ (see Figure 5 and the upper plot

in Figure 2, which corresponds to the case I− = 1), we have∫
Γ+
i

ϕω =

∫ ζ+,i

ζ−,i
ϕ(φ′ξ)−1

∣∣∣∣
ξ=ξ+

i (ζ)

dζ, (A.10)

∫
Γ−i
ϕω = −

∫ ζ+,i+1

ζ−,i
ϕ(φ′ξ)−1

∣∣∣∣
ξ=ξ−i (ζ)

dζ,

where ξ±i (ζ) are solutions of the equation φ(ζ, ξ) = 0 for the corresponding values of ξ.

If there is only one minimum point, i.e. if I− = 1, then, writing ζ± = ζ±,1 and

ξ±(ζ) = ξ±1 (ζ), we derive the following relation from (A.9) and (A.10):(
ϕ(ζ, ξ), δ(φ)

)
=

∫ ζ+

ζ−

{
ϕ

φ′ξ

∣∣∣∣
ξ=ξ+(ζ)

− ϕ

φ′ξ

∣∣∣∣
ξ=ξ−(ζ)

}
dζ. (A.11)
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If I− > 1, then the integral in the right-hand side in (A.11) is taken from ζ− = mini− ζ−,i−
to ζ+ = maxi+ ζ+,i+ , and the integrand is the sum of the expressions

ϕ

φ′ξ

∣∣∣∣
ξ=ξ+

i (ζ)

H(ζ − ζ−,i)H(ζ+,i − ζ) and − ϕ

φ′ξ

∣∣∣∣
ξ=ξ−i (ζ)

H(ζ − ζ−,i)H(ζ+,i+1 − ζ).

By setting ϕ = f(ζ, ξ)φ′ξ(ζ, ξ)ψ(ζ), we obtain a constructive formula for calculating∫
fφ′ξδ(φ) dξ. In the general case this formula is rather cumbersome (see Danilov &

Omel’yanov [11] and formula (A.13) below). In the special case studied in Corollary 1,

this formula becomes easier and takes the form (A.4).

To prove that ρf′ is continuous, it suffices to consider neighbourhoods of the points ζ±.

We assume that ζ = ζ− − µ, where µ > 0. Since ρ(ζ− − µ, 0) = ρ1, we readily obtain the

first formula in (A.4) for ζ < ζ−. Next, for sufficiently small µ, we have

ρf′(ζ− + µ) =

(
ρ1

L
{f(ζ, L)− f(ζ, 0)}

−ρ2 − ρ1

L
{f(ζ, ξ+

i′ (ζ))− f(ζ, ξ−i′ (ζ))}
)∣∣∣∣

ζ=ζ−+µ

,

where i′ is the number of the critical point at which the absolute minimum is attained.

Since ξ±i′ (ζ) → ξ− as µ → 0, we again arrive at the first formula in (A.4) calculated for

ζ = ζ− + 0.

In a similar way, we have

ρf′(ζ+ − µ) =

(
ρ1

L
{f(ζ, L)− f(ζ, 0)}

−ρ2 − ρ1

L
{f(ζ, ξ+

1 (ζ))− f(ζ, ξ−1 (ζ))}
)∣∣∣∣

ζ=ζ+−µ
.

However, ξ+
1 (ζ+ − µ) → 0 and ξ−1 (ζ+ − µ) → L as µ → 0. Hence we again arrive at the

first expression in formula (A.4), which was calculated for ζ > ζ+. Lemma 2 is thereby

proved. 2

Note that if the global maximum is attained at the point (ξ+,i′′ , ζ+,i′′) and ξ+,i′′� 0, then

we have the following relations as µ → 0: ρ(ζ+,i′′ − µ, 0) → ρ2 and ξ±i′′ (ζ+,i′′ − µ) → ξ+,i′′ .

These relations also imply that ρf′ is continuous at the point ζ+,i′′ .

Proof of Lemma 3

Using the Taylor formula, we obtain

φ(ζ, ξ) = φ′ζ(ζj , ξj)(ζ − ζj) +
1

2
φ′′ξξ(ζ∗1 , ξ∗1)(ξ − ξj)2

+φ′′ζξ(ζ∗2 , ξ∗2)(ζ − ζj)(ξ − ξj) + O
(
(ζ − ζj)2

)
,

where ζ∗1,2 and ξ∗1,2 are intermediate points. Considering this relation on the curve Γ and

taking into account the fact that ∇φ∣∣
Γ
� 0, we obtain the relation

ζ − ζj = −1

2

φ′′ξξ(ζ∗1 , ξ∗1)

φ′ζ(ζj , ξj)
(ξ − ξj)2 + O

(
(ξ − ξj)3

)
,
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Figure 5. Calculation of ρf′ (ζ) in the general situation.

which implies the following local formulas for the inverse functions:

ξ±j (ζ) = ξj ± Rj |ζ − ζj |1/2 + O
(|ζ − ζj |). (A.12)

Assume that (ξj , ζj) ∈ Γ is the maximum point. By setting ζ ∼ ζj − 0 and using

Lemma 2, we obtain the formula

ρf′(ζ) =
1

L
{f(ζj , L)− f(ζj , 0)}ρ(ζ, 0)− ρ2 − ρ1

L

Ij∑
i=1

∑
+,−

(−1)κ
±
ji f(ζj , ξ

±
ji

(ζ)), (A.13)

where Ij is the number of points (ξji , ζj) ∈ Γ that can be projected at the point ζ = ζj .

We choose κ±ji = 2 if the orientation of the corresponding piece of Γ coincides with the

orientation of the ζ-axis and κ±ji = 1 in the opposite case (see Figure 5).

The general situation means that there is only one critical point (ξj , ζj) among all

points (ξji , ζj). In this case, for ji� j the inverse functions ξ±ji (ζ) are smooth, while for

ξ±j (ζ) we have formulas (A.12). Thus (A.13) can be rewritten in the following form:

ρf′(ζ) =
1

L
{f(ζj , L)− f(ζj , 0)}ρ(ζ, 0)

−ρ2 − ρ1

L
{f(ζj , ξ

+
j (ζ))− f(ζj , ξ

−
j (ζ))}

+smooth functions. (A.14)

By using (A.12) and the Taylor formula, one can easily see that

f(ζj , ξ
+
j (ζ))− f(ζj , ξ

−
j (ζ)) = 2Rj

∂f

∂ξ
(ζj , ξj)|ζ − ζj |1/2 + O(|ζ − ζj |). (A.15)

This fact readily implies formula (A.5) corresponding to the maximum point. Repeating

these calculations in the case in which (ξj , ζj) is the minimum point and taking into

account the fact that for ζ� ζj the differentiability of ρf′ follows from the smoothness of

the inverse functions ξ±ji (ζ), we arrive at the statement of the lemma. 2

In specific cases, for instance, in the case in which Γ is even with respect to the point

ξ = L/2 and there are other critical points (ξj , ζj) with ξj�L/2 and ξj�L, formula (A.5)
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preserves its structure but becomes more cumbersome. For instance, let the set {(ξj , ζj)}
contain, among other critical points, two maximum points (ξj , ζj) and (ξj1 , ζj). Then the

right-hand side in (A.14) must contain the following additional expression:

−ρ2 − ρ1

L
{f(ζj , ξ

+
j1

(ζ))− f(ζj , ξ
−
j1

(ζ))}.
Applying a formula of the form (A.15) to this expression, we obtain an analog of

formula (A.5), where the coefficient of |ζ − ζj |1/2 is equal to the sum Rjf
′
ξ(ζj , ξj) +

Rj1f
′
ξ(ζj , ξj1 ).
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