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In this paper, we consider the penalty method to solve the unilateral contact with friction

between an electro-elastic body and a conductive foundation. Mathematical properties, such

as the existence of a solution to the penalty problem and its convergence to the solution of

the original problem, are reported. Then, we present a finite elements approximation for the

penalised problem and prove its convergence. Finally, we propose an iterative method to

solve the resulting finite element system and establish its convergence.
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1 Introduction

Penalty methods have recently obtained popularity to be applied in the field of numerical

methods to solve constrained problems in mechanics such as unilateral contact problems

and problems with Dirichlet boundary conditions. It is also widely admitted that inexact

integration must be performed for evaluation of the penalty term in finite element

approximation to get physically meaningful solution. The advantage of this approach is

that standard methods can be used to solve the resulting nonlinear algebraic equations

(see, e.g., [10, 20]). In a recent paper, Chouly and Hild [3] proved a convergence of the

penalty method for unilateral contact problem in elasticity under the regularity hypotheses

on the solution
(
u belongs to (H

3
2 +ν)d with ν ∈ (0, 1/2]

)
.

In this work, we study a frictional contact problem for a piezoelectric body, when the

foundation is electrically conductive. Unlike the models considered in [3], in the present

paper we use both the electro-elastic constitutive law, the electrical contact conditions

and we assume that the contact is modelled with Signorini condition, and the associated

version of Coulomb’s law of dry friction; as a consequence, the resulting variational

formulation of the problem is different from that in [3] which is in the form of a coupled
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system involving as unknowns the displacement field and the electric potential. The static

frictional contact problems for electro-elastic materials were studied in [12–14, 17], under

the assumption that the foundation is insulated, and in [7, 15] under the assumption

that the foundation is electrically conductive. Recent modelling, analysis and numerical

simulations of static contact with or without friction for piezoelectric materials can be

found in [1, 2, 9, 12] and references therein.

The main purpose of this work is to present a convergence analysis of the penalty

method applied to unilateral contact with Coulomb’s friction problem studied in [7]. The

weak formulation of the problem consists of a variational inequality for the displacement

field coupled with a nonlinear variational equation for the electric potential. It is very

difficult to perform direct numerical solution of this problem, to overcome this difficulty

we introduce the penalized problem by using a simultaneous penalization of unilateral

conditions for imposition of contact constraint combined with a regularization of the

frictional term [5, 6]. The approximate problem is formulated as a coupled system of

nonlinear variational equations (depending on a penalization parameter). We prove the

existence and uniqueness of the weak penalized solution by using fixed point arguments

and establish its convergence to the solution of the initial problem. We then study the

discrete problem and prove the convergence of its solution towards the solution of the

penalized problem. Moreover, we describe an iterative method for the numerical solutions

and obtain its convergence.

The paper is organized as follows. In Section 2, we present the classical and variational

formulations of the mathematical model, we state the assumptions on the problem data

and we recall the existence and uniqueness theorem obtained in [7]. Also in this section,

we introduce the penalized problem and state our main results. The proofs are established

in Section 3. Finally, in Section 4 we present a finite elements approximation for the

penalized problem and prove its convergence [8]. Moreover, we propose an iterative

method to solve the resulting finite element system and establish its convergence.

2 Formulation and main results

2.1 The physical setting and known Rresult

Let Ω ⊂ Rd, d = 2, 3, be the reference domain occupied by the electro-elastic body which

is supposed to be open, bounded, with a sufficiently regular boundary ∂Ω = Γ . In the

sequel, we decompose Γ into three open disjoint parts Γ1, Γ2 and Γ3, on the one hand,

and a partition of Γ1 ∪ Γ2 into two open parts Γa and Γb, on the other hand, such that

meas(Γ1) > 0 and meas(Γa) > 0. We assume that the body is fixed on Γ1 where the

displacement field vanishes. The body is acted upon by a volume force of density f0 and

volume electric charges of density q0 in Ω and a surface traction of density f2 on Γ2.

We also assume that the electrical potential vanishes on Γa and a surface electric charge

of density q2 is prescribed on Γb. On Γ3 the body is in unilateral contact with friction

with a conductive obstacle, the so-called foundation. We model the contact with the

Signorini condition and friction. The indices i, j, k, l run between 1 and d. The summation

convention over repeated indices is adopted and the index that follows a comma indicates

a partial derivative with respect to the corresponding component of the spatial variable,
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e.g., ui,j = ∂ui/∂xj . Everywhere below we use Sd to denote the space of second order

symmetric tensors on Rd while “ · ” and ‖ · ‖ will represent the inner product and the

Euclidean norm on Rd and Sd, that is for all u, v ∈ Rd and σ, τ ∈ Sd,

u · v = ui · vi, ‖v‖ = (v · v) 1
2 , and σ · τ = σij · τij , ‖τ‖ = (τ · τ) 1

2 .

We shall adopt the usual notations for normal and tangential components of displacement

vector and stress : vν = v ·ν, vτ = v−vνν, σν = (σν)·ν, στ = σν−σνν, where ν denotes

the outward normal vector on Γ . Moreover, let ε(u) = (εij(u)) denote the linearized strain

tensor given by εij(u) = 1
2
(ui,j+uj,i), and “Div ”, “ div ” denote, respectively, the divergence

operators for tensor and vector valued functions, i.e., Div σ = (σij,j), divD = (Dj,j).

Under these conditions, the classical formulation of the mechanical problem is as follows

Problem P . Find a displacement field u : Ω → Rd, a stress field σ : Ω → Sd, an electric

potential ϕ : Ω → R and an electric displacement field D : Ω → Rd such that

σ = Fε(u) − E∗E(ϕ) in Ω, (2.1)

D = Eε(u) + βE(ϕ) in Ω, (2.2)

Divσ + f0 = 0 in Ω, (2.3)

divD = q0 in Ω, (2.4)

u = 0 on Γ1, (2.5)

σν = f2 on Γ2, (2.6)

σν(u, ϕ) � 0, uν � 0, σν(u, ϕ)uν = 0 on Γ3, (2.7)

‖στ‖ � μ(‖uτ‖)|Rσν(u, ϕ)|

‖στ‖ < μ(‖uτ‖)|Rσν(u, ϕ)| ⇒ uτ = 0

στ = −μ(‖uτ‖)|Rσν(u, ϕ)| uτ
‖uτ‖ ⇒ uτ � 0

⎫⎪⎪⎬
⎪⎪⎭ on Γ3, (2.8)

ϕ = 0 on Γa, (2.9)

D · ν = q2 on Γb, (2.10)

D · ν = ψ(uν)φL(ϕ− ϕ0) on Γ3. (2.11)

Here and below, in order to simplify the notation, we do not indicate explicitly the

dependence of various functions on the spatial variable x ∈ Ω. Equations (2.1) and

(2.2) represent the electro-elastic constitutive law of the material in which F denotes

the elasticity operator, assumed to be nonlinear, E(ϕ) = −∇ϕ is the electric field, E
represents the third order piezoelectric tensor, E∗ is its transpose and β denotes the

electric permittivity tensor. Equations (2.3) and (2.4) represent the equilibrium equations

for the stress and electric displacement fields, respectively. Relations (2.5) and (2.6) are the

displacement and traction boundary conditions, respectively, and (2.9), (2.10) represent

the electric boundary conditions. The unilateral boundary conditions (2.7) represent the

Signorini law and (2.8) represent the Coulomb’s friction law in which μ is the coefficient

of friction and R is a regularisation operator. Finally, (2.11) represent the regularised

electrical contact condition on Γ3, which was considered in [11], where ψ and φ are a
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regularisation function and the truncation function, respectively, such that

φL(s) =

⎧⎨
⎩

−L if s < −L,
s if − L � s � L,

L if s > L,

ψ(r) =

⎧⎨
⎩

0 if r < 0,

kδr if 0 � r � 1/δ,

k if r > 1/δ,

in which L is a large positive constant, δ > 0 denotes a small parameter and k � 0 is the

electrical conductivity coefficient. Note also that when ψ ≡ 0, then (2.11) leads to

D · ν = 0 on Γ3. (2.12)

The condition (2.12) models the case when the obstacle is a perfect insulator.

Next, we introduce the notation and recall some definitions needed in the sequel. First,

we introduce the following functional spaces:

H = L2(Ω)d, H1 = H1(Ω)d,

H = {τ = (τij) | τij = τji ∈ L2(Ω)}, H1 = {σ ∈ H | Div σ ∈ H}.

These are real Hilbert spaces endowed with the inner products

(u, v)H =

∫
Ω

uivi dx, (u, v)H1
= (u, v)H + (ε(u), ε(v))H,

(σ, τ)H =

∫
Ω

σijτij dx, (σ, τ)H1
= (σ, τ)H + (Div σ,Div τ)H,

and the associated norms ‖ · ‖H , ‖ · ‖H1
, ‖ · ‖H and ‖ · ‖H1

, respectively.

Let HΓ = H1/2(Γ )d and let γ : H1 → HΓ be the trace map. For every element v ∈ H1,

we also use the notation v to denote the trace γv of v on Γ .

Let H
′

Γ be the dual of HΓ and let 〈·, ·〉 denote the duality pairing between H
′

Γ and HΓ .

For every σ ∈ H1, σν can be defined as the element in H
′

Γ which satisfies

〈σν, γv〉 = (σ, ε(v))H + (Div σ, v)H, ∀v ∈ H1. (2.13)

Moreover, if σ is continuously differentiable on Ω, then

〈σν, γv〉 =

∫
Γ

σν · v da, (2.14)

for all v ∈ H1, where da is the surface measure element. Keeping in mind the boundary

condition (2.5), we introduce the closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on Γ1},

and let K be the set of admissible displacements

K = {v ∈ V | vν � 0 on Γ3}.

Since meas(Γ1) > 0 and Korn’s inequality (see, e.g., [16]) holds,

‖ε(v)‖H � ck‖v‖H1
, ∀v ∈ V , (2.15)

https://doi.org/10.1017/S0956792515000248 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000248


On convergence of the penalty method 5

where ck > 0 is a constant which depends only on Ω and Γ1. Over the space V , we

consider the inner product given by

(u, v)V = (ε(u), ε(v))H, ‖u‖V = (u, u)
1
2

V , (2.16)

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (2.15) that the

norms ‖ · ‖H1
and ‖ · ‖V are equivalent on V . Therefore (V , ‖ · ‖V ) is a Hilbert space.

Moreover, by the Sobolev trace theorem, (2.15) and (2.16) there exists a constant c0 > 0

which only depends on the domain Ω, Γ3 and Γ1 such that

‖v‖L2(Γ )d � c0‖v‖V , ∀v ∈ V . (2.17)

We also introduce the spaces

W = {ψ ∈ H1(Ω) |ψ = 0 on Γa},
W = {D = (Di) ∈ L2(Ω)d | divD ∈ L2(Ω)}.

The spaces W and W are real Hilbert spaces with the inner products

(ϕ,ψ)W = (ϕ,ψ)H1(Ω), (D,E)W = (D,E)L2(Ω)d + (divD, divE)L2(Ω).

The associated norms will be denoted by ‖ · ‖W and ‖ · ‖W, respectively. Notice also that,

since meas(Γa) > 0, the following Friedrichs–Poincaré inequality holds:

‖∇ψ‖W � cF‖ψ‖W , ∀ψ ∈ W, (2.18)

where cF > 0 is a constant which depends only on Ω and Γa. Moreover, by the Sobolev

trace theorem, there exists a constant c1, depending only on Ω, Γa and Γ3, such that

‖ξ‖L2(Γ3) � c1‖ξ‖W , ∀ξ ∈ W. (2.19)

When D ∈ W is a sufficiently regular function, the following Green’s type formula holds,

(D,∇ξ)L2(Ω)d + (divD, ξ)L2(Ω) =

∫
Γ

D · νξ da, ∀ξ ∈ H1(Ω). (2.20)

Recall also that the transposite E∗ is given by

E∗ = (e∗
ijk), where e∗

ijk = ekij ,

Eσ · v = σ · E∗v, ∀σ ∈ Sd, v ∈ Rd. (2.21)

In the study of mechanical problem (2.1)–(2.11), we assume that the elasticity operator F
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satisfies the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) F : Ω × Sd → Sd;

(b) there exists MF > 0 such that

‖F(x, ξ1) − F(x, ξ2)‖ � MF‖ξ1 − ξ2‖ ∀ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω;

(c) there exists mF > 0 such that

(F(x, ξ1) − F(x, ξ2))(ξ1 − ξ2) � mF‖ξ1 − ξ2‖2∀ξ1, ξ2 ∈ Sd, a.e.x ∈ Ω;

(d) the mapping x → F(x, ξ) is Lebesgue measurable on Ω, ∀ξ ∈ Sd;

(e) the mapping x → F(x, 0) belongs to H.

(2.22)

We note that condition (2.22) is satisfied in the case of the linear electro-elastic constitutive

law, σ = Fε(u) − E∗E(ϕ) in which Fξ = (fijklξkl) provided that fijkl ∈ L∞(Ω) and there

exists α > 0 such that fijkl(x)ξkξl � α‖ξ‖2, for all ξ ∈ Sd, a.e. x ∈ Ω. Examples of a

nonlinear operator F which satisfy condition (2.22) can be found in [17].

The piezoelectric tensor E and the electric permittivity tensor β satisfy

{
(a) E = (eijk) : Ω × Sd → Rd;

(b) eijk = eikj ∈ L∞(Ω).
(2.23)

⎧⎨
⎩

(a) β = (βij) : Ω × Rd → Rd;

(b) βij = βji ∈ L∞(Ω);

(c) ∃mβ > 0 such that βijEiEj � mβ‖E‖2, ∀E ∈ Rd, a.e. x ∈ Ω.

(2.24)

The surface electrical conductivity function ψ and the coefficient of friction μ satisfy:

⎧⎪⎪⎨
⎪⎪⎩

(a) ψ : Γ3 × R → R+;

(b) ∃Mψ > 0 such that |ψ(x, u)| � Mψ, ∀u ∈ R, a.e. x ∈ Γ3;

(c) x → ψ(x, u) is measurable on Γ3, for all u ∈ R;

(d) x → ψ(x, u) = 0 for all u � 0.

(2.25)

⎧⎨
⎩

(a) μ : Γ3 × �+ → �+;

(b) ∃ μ∗ > 0 such that μ(x, u) � μ∗, ∀u ∈ R+, a.e. x ∈ Γ3;

(c) The mapping x → μ(x, u) is measurable on Γ3, for all u ∈ R+.

(2.26)

Moreover, we assume that ψ and μ are Lipschitz continuous functions in the following

sense

∃Lψ > 0 such that |ψ(., u1) − ψ(., u2)| � Lψ|u1 − u2| ∀u1, u2 ∈ R, (2.27)

∃Lμ > 0 such that |μ(., u) − μ(., v)| � Lμ|u− v| ∀u, v ∈ �+. (2.28)

We assume that the body forces, the tractions, the volume and surface charge densities

satisfy

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ3)
d, (2.29)

q0 ∈ L2(Ω), q2 ∈ L2(Γb). (2.30)
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Also, the given potential is such that

ϕ0 ∈ L2(Γ3). (2.31)

Next, we use Riesz’s representation theorem to consider the elements f ∈ V , and q ∈ W

given by

(f, v)V =

∫
Ω

f0 · v dx+

∫
Γ2

f2 · v da, ∀v ∈ V , (2.32)

(q, ξ)W =

∫
Ω

q0ξ dx−
∫
Γb

q2ξ da, ∀ξ ∈ W, (2.33)

and, we define the mappings j : V × V → R and � : V ×W ×W → R, respectively, by

�(u, ϕ, ξ) =

∫
Γ3

ψ(uν)φL(ϕ− ϕ0)ξ da, ∀u ∈ V , ∀ϕ, ξ ∈ W, (2.34)

j(u, v) =

∫
Γ3

μ(‖uτ‖)|Rσν(u, ϕ)| ‖vτ‖ da, ∀u, v ∈ V . (2.35)

Keeping in mind assumptions (2.25)–(2.31) it follows that the integrals in (2.32)–(2.35) are

well defined. Finally, we assume that

R : H
′

Γ3
→ L∞(Γ3) is a linear and continuous mapping. (2.36)

Using Green’s formula (2.13), (2.14) and (2.20) it is straightforward to see that if (u, σ, ϕ,

D) are sufficiently regular functions which satisfy (2.3)–(2.11) then

(σ, ε(v) − ε(u))H + j(u, v) − j(u, u) � (f, v − u)V , ∀v ∈ K, (2.37)

(D,∇ξ)L2(Ω)d = �(u, ϕ, ξ) − (q, ξ)W , ∀ξ ∈ W. (2.38)

We plug (2.1) in (2.37), (2.2) in (2.38) and use the notation E = −∇ϕ to obtain the

following variational formulation of Problem P , in the terms of displacement field and

electric potential.

Problem PV Find a displacement field u ∈ K and an electric potential ϕ ∈ W such that:

(Fε(u), ε(v) − ε(u))H + (E∗∇ϕ, ε(v) − ε(u))L2(Ω)d + j(u, v) − j(u, u)

� (f, v − u)V , ∀v ∈ K,
(2.39)

(β∇ϕ,∇ξ)L2(Ω)d − (Eε(u),∇ξ)L2(Ω)d + �(u, ϕ, ξ) = (q, ξ)W , ∀ξ ∈ W. (2.40)

The following existence and uniqueness of solution to Problem PV has been established

in [7].

Theorem 2.1 Assume that (2.22)–(2.26) and (2.29)–(2.31) hold. Then

(1) The Problem PV has at least one solution (u, ϕ) ∈ K ×W .

(2) Under the assumptions (2.27) and (2.28), there exists L∗ > 0 such that if Lμ + μ∗ +

LψL+Mψ < L∗ then the Problem PV has a unique solution.
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2.2 The penalty formulation of the contact problem

Let ε > 0. We consider a penalised electro-elastic contact problem with a solution denoted

by (uε, ϕε) verifying the given equations in Ω (2.1)–(2.4) and the boundary conditions on

Γ (2.5)–(2.11) similar to the Problem (P ) except the fact that the contact condition (2.7)

on Γ3 was replaced by σν(u, ϕ) = − 1
ε
u+
ν , where r+ = max(r, 0), on one hand, and the

non-differentiable term j(u, ·) was approximated by a family of differentiable ones jε(u, ·)
(a regularisation method), on the other hand, where ε > 0 is small penalisation parameter.

Convergence of the method is obtained when ε → 0.

We consider the family of convex and differentiable function Ψε : Rd → R given by

Ψε(v) =
√

‖v‖2 + ε2, ∀v ∈ Rd, (2.41)

for all positive ε, we have

0 < Ψε(v) − ‖v‖ � ε. (2.42)

We approximate the functional j by jε : V × V → R, a family of regularised frictional

functionals depending on ε > 0,

jε(u, v) =

∫
Γ3

μ(‖uτ‖)|Rσν(u, ϕ)| Ψε(v) da, ∀u, v ∈ V . (2.43)

The functional jε is Gâteaux-differentiable and we denote by j
′
ε the derivative of jε given

by

〈j ′

ε(uε, v), w〉 =

∫
Γ3

μ(‖uετ‖)|Rσν(uε, ϕε)|
vτwτ√

ε2 + ‖vτ‖2
da, (2.44)

for all uε, v, w ∈ V . Let Φ : V × V → R

Φ(u, v) =

∫
Γ3

u+
ν vν da. (2.45)

We can introduce now the following variational problem.

Problem PVε Find uε ∈ V and ϕε ∈ W such that for all v ∈ V , ξ ∈ W

(Fε(uε), ε(v))H + (E∗∇ϕε, ε(v))L2(Ω)d +
1

ε
Φ(uε, v) + 〈j ′

ε(uε, uε), v〉 = (f, v)V , (2.46)

(β∇ϕε,∇ξ)L2(Ω)d − (Eε(uε),∇ξ)L2(Ω)d + �(uε, ϕε, ξ) = (q, ξ)W . (2.47)

We have the following results.

Theorem 2.2 Under the assumptions of Theorem 2.1 with the same value of L∗, the Problem

PVε has a unique solution such that xε = (uε, ϕε) ∈ V ×W .

Remark 1 Assume that (2.22)–(2.26) and (2.29)–(2.31) hold. Then, the Problem PVε has

at least one solution xε = (uε, ϕε) ∈ V ×W .
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We have the following convergence result.

Theorem 2.3 Under the assumptions of Theorem 2.2 the solutions (uε, ϕε) of penalised Prob-

lem PVε converge to a solution (u, ϕ) of Problem PV . i.e.,

uε ⇀ u weakly in V , ϕε ⇀ ϕ weakly in W as ε → 0.

3 Proof of results

We consider the product spaces X = V ×W and Y = L2(Γ3) × L2(Γ3) together with the

inner products

(x, y)X = (u, v)V + (ϕ, ξ)W , ∀x = (u, ϕ), y = (v, ξ) ∈ X, (3.1)

(η, θ)Y = (g, λ)L2(Γ3) + (z, ζ)L2(Γ3), ∀η = (g, z), θ = (λ, ζ) ∈ Y , (3.2)

and the associated norms ‖ · ‖X and ‖ · ‖Y , respectively. Let U = K ×W be a non-empty

closed convex subset of X. We define the operator A : X → X, the functions j̃, �̃ on

X ×X and the element f3 ∈ X by equalities:

(Ax, y)X = (Fε(u), ε(v))H + (β∇ϕ,∇ξ)L2(Ω)d + (E∗∇ϕ, ε(v))L2(Ω)d

−(Eε(u),∇ξ)L2(Ω)d , ∀x = (u, ϕ), y = (v, ξ) ∈ X, (3.3)

j̃(x, y) = j(u, v), ∀x = (u, ϕ), y = (v, ξ) ∈ X, (3.4)

�̃(x, y) =

∫
Γ3

ψ(uν)φL(ϕ− ϕ0)ξ da, ∀x = (u, ϕ), y = (v, ξ) ∈ X, (3.5)

f3 = (f, q) ∈ X. (3.6)

We introduce the operator Aε : X → X defined by

(Aεx, y)X = (Ax, y)X +
1

ε
Φ(u, v), (3.7)

for all x = (u, ϕ), y = (v, ξ) ∈ X, where A given by (3.3), and we extend the functional jε
defined by (2.43) to functional j̃ε defined on X ×X, that is

j̃ε(x, y) = jε(u, v), ∀x = (u, ϕ), y = (v, ξ) ∈ X, (3.8)

with the notations above, and according (3.5)–(3.6), we have the following result.

Lemma 1 The couple xε = (uε, ϕε) is a solution to Problem PVε if and only if:

(Aεxε, y)X + 〈̃j ′
ε(xε, xε), y〉 + �̃(xε, y) = (f3, y)X, ∀y = (v, ξ) ∈ V ×W. (3.9)

Proof Let xε = (uε, ϕε) ∈ X be a solution to Problem PVε and let y = (v, ξ) ∈ X. We

add the equalities (2.46), (2.47) and use (3.1), (3.7) and (3.6) to obtain (3.9). Conversely, let

xε = (uε, ϕε) ∈ X be a solution to the elliptic variational equalities (3.9). We take y = (v, 0)
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in (3.9) where v is an arbitrary element of V and obtain (2.46). Then for any ξ ∈ W , we

take y = (0, ξ) in (3.9) to obtain (2.47), which concludes the proof of Lemma 1. �

3.1 Proof of Theorem 2.2

The proof of Theorem 2.2 will be carried out in several steps, based on a fixed point

argument. For this purpose, let η = (g, z) ∈ L2(Γ3) × L2(Γ3) be given, and we define

�z(ξ) =

∫
Γ3

z ξda, ∀ξ ∈ W, (3.10)

jg(v) =

∫
Γ3

g vτ da, ∀v ∈ V . (3.11)

We construct the following intermediate problem.

Problem PVη
ε . Let η ∈ L2(Γ3) × L2(Γ3) be given, find uεη ∈ V and ϕεη ∈ W such that

(Fε(uεη), ε(v))H − (E∗∇ϕεη, ε(v))L2(Ω)d +
1

ε
Φ(uεη, v) = (f, v)V − jg(v), (3.12)

(β∇ϕεη,∇ξ)L2(Ω)d − (Eε(uεη),∇ξ)L2(Ω)d = (q, ξ)W − �z(ξ), (3.13)

for all v ∈ V and ξ ∈ W .

We consider the element fη = (f1, q1) ∈ X such that

(f1, v)V = (f, v)V − jg(v), ∀v ∈ V , (3.14)

(q1, ξ)W = (q, ξ)W − �z(ξ), ∀ξ ∈ W. (3.15)

It is easy to see that xεη = (uεη, ϕεη) is a solution to Problem PVη
ε if and only if

(Aεxεη, y)X = (fη, y)X, ∀y = (v, ξ) ∈ X. (3.16)

We now use (3.16) to obtain the following existence and uniqueness result.

Lemma 2 For any η ∈ L2(Γ3) × L2(Γ3), assume that (2.22)–(2.24) hold. Then

(i) The Problem PVη
ε has a unique solution xεη = (uεη, ϕεη) ∈ X which depends Lipschitz

continuously on η ∈ L2(Γ3) × L2(Γ3).

(ii) There exists a constant c2 > 0 such that the solution to problem (3.16) satisfies

‖xεη‖X � c2‖fη‖X. (3.17)

Proof Consider two elements x1 = (u1, ϕ1), x2 = (u2, ϕ2) ∈ X. It follows from (3.7), (3.3)

and (2.45) that

(Aεx1 − Aεx2, x1 − x2)X

= (Ax1 − Ax2, x1 − x2)X +
1

ε

(
Φ(u1, u1 − u2) − Φ(u2, u1 − u2)

)
.

(3.18)
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We use now (2.21), (2.22), (2.24), (2.18) and (3.1), there exists c3 > 0 which depends only

on F, β, Ω and Γa such that

(Ax1 − Ax2, x1 − x2)X � c3‖x1 − x2‖2
X, (3.19)

and observe that

Φ(u1, u1 − u2) − Φ(u2, u1 − u2) � 0, ∀u1, u2 ∈ V . (3.20)

We find

(Aεx1 − Aεx2, x1 − x2)X � c3‖x1 − x2‖2
X. (3.21)

In the same way, using (2.22)–(2.24), (3.1) and (2.17), after some calculations it follows

that there exists c4 > 0 which depends only on F, β and E such that

(Aεx1 − Aεx2, y)X � 4c4‖x1 − x2‖X ‖y‖X +
1

ε
c20 ‖x1 − x2‖X ‖y‖X, ∀y ∈ X,

and, taking y = Aεx1 − Aεx2 ∈ X, we find

‖Aεx1 − Aεx2‖X � (4c4 +
1

ε
c20)‖x1 − x2‖X. (3.22)

Now for every fixed ε > 0, it follows from (3.21), (3.22), fη ∈ X and a standard result

on nonlinear variational equations that there exists a unique element xεη = (uεη, ϕεη) ∈ X

which satisfies (3.16).

We show next that this solution depends Lipschitz continuously on η ∈ L2(Γ3) × L2(Γ3).

Let η1 = (g1, z1), η2 = (g2, z2) ∈ L2(Γ3) × L2(Γ3) be given and denote the corresponding

solution of the problem (3.16) by xεη1
= (uεη1

, ϕεη1
) and xεη2

= (uεη2
, ϕεη2

). Then, we have

(Aεxεη1
, yη1

− xεη1
)X = (fη1

, yη1
− xεη1

)X, ∀yη1
∈ U,

(Aεxεη2
, yη2

− xεη2
)X = (fη2

, yη2
− xεη2

)X, ∀yη2
∈ U.

We take yη1
= xεη2

, yη2
= xεη1

and add the two equalities to obtain

(Aεxεη1
− Aεxεη2

, xεη1
− xεη2

) = (fη1
− fη2

, xεη1
− xεη2

)X,

from (3.14)–(3.15) and (3.10)–(3.11), we have

(Aεxεη1
− Aεxεη2

, xεη1
− xεη2

)

=
∫
Γ3

(g1 − g2)(uεη1τ − uεη2τ)da+
∫
Γ3

(z1 − z2)(ϕεη1
− ϕεη2

)da

� ‖g1 − g2‖L2(Γ3)‖uεη1
− uεη2

‖L2(Γ3)d + ‖z1 − z2‖L2(Γ3)‖ϕεη1
− ϕεη2

‖L2(Γ3).

Thus, using (2.17) and (2.19) we deduce

(Aεxεη1
− Aεxεη2

, xεη1
− xεη2

)X

� c0‖g1 − g2‖L2(Γ3)‖uεη1
− uεη2

‖V + c1‖z1 − z2‖L2(Γ3)‖ϕεη1
− ϕεη2

‖W ,

and, using (3.1), (3.21) and (3.2)

‖xεη1
− xεη2

‖X � max(c0 ,c1)
c3

√
2‖(g1, z1) − (g2, z2)‖L2(Γ3)×L2(Γ3).
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Thus, there exists a positive constant c5 = max(c0 ,c1)
c3

√
2 such that

‖xεη1
− xεη2

‖X � c5‖η1 − η2‖L2(Γ3)×L2(Γ3), (3.23)

hence (i) follows. We turn now to the proof of (ii). Let η = (g, z) ∈ L2(Γ3) × L2(Γ3), we

take y = xεη in the equality (3.16), we have

(Aεxεη, xεη)X = (fη, xεη)X, ∀xεη ∈ X.

Using (3.21), we deduce

‖xεη‖X �
1

c3
‖fη‖X.

�

We now consider the operator Λ : L2(Γ3) × L2(Γ3) → L2(Γ3) × L2(Γ3) such that for all

η ∈ L2(Γ3) × L2(Γ3), we have

Λη =
(
μ(‖uεητ‖)|Rσν(uεη, ϕεη)|

uεητ√
ε2 + ‖uεητ‖2

, ψ(uεην)φL(ϕεη − ϕ0)
)
, (3.24)

The operator Λ depends on ε, but in order to simplify the notation we will not make this

dependence explicit in the following.

It follows from assumptions (2.25)–(2.26) that the operator Λ is well defined. We have the

following result.

Lemma 3 There exists L∗ > 0 such that if Lμ+μ∗ +LψL+Mψ < L∗, then Λ has a unique

fixed point η∗.

Proof Since for g ∈ L2(Γ3), σν(ug, ϕg) is defined on Γ3 and belongs to the dual space

H
′

Γ3
and let η1 = (g1, z1), η2 = (g2, z2) ∈ L2(Γ3) × L2(Γ3), we have

‖Λη1 − Λη2‖L2(Γ3)×L2(Γ3) �
∥∥∥μ(‖uεη1τ‖)|Rσν(uεη1

, ϕεη1
)| uεη1τ√

ε2 + ‖uεη1τ‖2

−μ(‖uεη2τ‖)|Rσν(uεη2
, ϕεη2

)| uεη2τ√
ε2 + ‖uεη2τ‖2

∥∥∥
L2(Γ3)

+
∥∥∥ψ(uεη1ν)φL(ϕεη1

− ϕ0) − ψ(uεη2ν)φL(ϕεη2
− ϕ0)

∥∥∥
L2(Γ3)

,

‖Λη1 − Λη2‖L2(Γ3)×L2(Γ3) � J + G,

where

J =
∥∥∥(
μ(‖uεη1τ‖) − μ(‖uεη2τ‖)

)
|Rσν(uεη1

, ϕεη1
)|Π(uεη1

)
∥∥∥
L2(Γ3)

+
∥∥∥μ(‖uεη2τ‖)

(
|Rσν(uεη1

, ϕεη1
)| − |Rσν(uεη2

, ϕεη2
)|
)
Π(uεη1

)
∥∥∥
L2(Γ3)

+
∥∥∥μ(‖uεη2τ‖)|Rσν(uεη2

, ϕεη2
)|
(
Π(uεη1

) −Π(uεη2
)
)∥∥∥

L2(Γ3)
, (3.25)
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G =
∥∥∥(
ψ(uεη1ν) − ψ(uεη2ν)

)
φL(ϕεη1

− ϕ0)
∥∥∥
L2(Γ3)

+
∥∥∥ψ(uεη2ν)

(
φL(ϕεη1

− ϕ0) − φL(ϕεη2
− ϕ0)

)∥∥∥
L2(Γ3)

, (3.26)

Π(uεη) =
uεητ√

ε2 + ‖uεητ‖2
. (3.27)

Using (2.28), (2.26), (2.17), (3.1), the properties of R and the Lipschitz continuity of the

function Π , after some algebra we obtain

J �
(
Lμ c

2
0 ‖Rσν(uεη1

, ϕεη1
)‖L∞(Γ3) + μ∗ c∗ c

2
0

+ μ∗ ‖Rσν(uεη2
, ϕεη2

)‖L∞(Γ3) LΠ c
2
0

)
‖xε1 − xε2‖2

X, (3.28)

thus, by using (2.27), (2.25), the bounds |φL(ϕ− ϕ0)| � L, the Lipschitz continuity of the

function φL, (2.17), (2.19) and (3.1) we deduce

G � (Mψ c
2
1 + LLψ c0 c1)‖xε1 − xε2‖2

X. (3.29)

Hence, there exists a constant c6 > 0 such that

‖xε1 − xε2‖2
X � c6(Lμ + μ∗ + LψL+Mψ) ‖xεη1

− xεη2
‖2
X.

and using (3.23), we have

‖Λη1 − Λη2‖L2(Γ3)×L2(Γ3) � c5c6(Lμ + μ∗ + LψL+Mψ) ‖η1 − η2‖L2(Γ3)×W .

Let L∗ = 1
c5c6

, then if Lμ + μ∗ + LψL + Mψ < L∗ the mapping Λ is contraction of

L2(Γ3) × L2(Γ3). By the Banach fixed point theorem, the mapping Λ has a unique fixed

point η∗
ε on L2(Γ3) × L2(Γ3). �

Let Lμ + μ∗ + LψL+Mψ < L∗ and let η∗
ε be the fixed point of operator Λ. We denote

by (u∗, ϕ∗) the solution of the variational Problem PVη
ε for η = η∗

ε . Using (3.12)–(3.13)

and (3.24), it is easy to see that (u∗, ϕ∗) is a solution of PVε. This proves the existence

part of Theorem 2.2. The uniqueness of the solution results from the uniqueness of the

fixed point of the operator Λ.

3.2 Convergence result

Taking v = uε in (3.12) and ξ = ϕε in (3.13), we have

(Fε(uε), ε(uε))H + (E∗∇ϕε, ε(uε))L2(Ω)d +
1

ε
Φ(uε, uε) + 〈j ′

ε(uε, uε), uε〉 = (f, uε)V , (3.30)

(β∇ϕε,∇ϕε)L2(Ω)d − (Eε(uε),∇ϕε)L2(Ω)d + �(uε, ϕε, ϕε) = (q, ϕε)W , (3.31)
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we add equalities (3.30), (3.31) and use (2.21), to obtain

(Fε(uε), ε(uε))H + (β∇ϕε,∇ϕε)L2(Ω)d + 1
ε
Φ(uε, uε) + 〈j ′

ε(uε, uε), uε〉
+ �(uε, ϕε, ϕε) = (f, uε)V + (q, ϕε)W .

(3.32)

Since Φ(uε, uε) � 0 and 〈j ′
ε(uε, uε), uε〉) � 0, then

(Fε(uε), ε(uε))H + (β∇ϕε,∇ϕε)L2(Ω)d � (f, uε)V + (q, ϕε)W − �(uε, ϕε, ϕε). (3.33)

Now, we define the operator F : V → V by

(Fu, v)V = (Fε(u), ε(v))H ∀u, v ∈ V , (3.34)

by (3.34) and (2.22)(c), we find

(Fu− Fv, u− v)V � mF‖u− v‖2
V ∀u, v ∈ V , (3.35)

i.e, that F : V → V is a monotone operator. Choosing v = 0 in (3.35), we obtain

(Fu, u)V � mF‖u‖2
V − ‖F0V‖V‖u‖V ∀u ∈ V . (3.36)

Using (3.34), (3.36), (2.24), (2.25)(c), the bounds φL(ϕε − ϕ0) � L and (2.19) in (3.33), we

obtain

mF‖uε‖2
V + mβ‖ϕε‖2

W

� (‖f‖V + ‖F0V‖V )‖uε‖V +
(
‖q‖W +Mψ Lc1 meas(Γ3)

1
2

)
‖ϕε‖W ,

therefore

‖uε‖V + ‖ϕε‖W � c
(
‖f‖V + ‖F0V‖V + ‖q‖W +Mψ Lc1 meas(Γ3)

1
2

)
= C. (3.37)

Using again (3.32), (2.22), (2.24) and (3.37), we find that

1

ε

∫
Γ3

u+
ενuεν =

1

ε

∫
Γ3

u+2
εν =

1

ε
‖u+

εν‖2
L2(Γ3)

� 2C,

thus

‖u+
εν‖L2(Γ3) �

√
2C

√
ε, (3.38)

From (3.37), we deduce that there exist ũ ∈ V , ϕ̃ ∈ W and subsequences (uε), (ϕε), denoted

again by (uε), (ϕε), such that

uε ⇀ ũ weakly in V , ϕε ⇀ ϕ̃ weakly in W. (3.39)

Since the trace map γ : V ×W → L2(Γ3)
d ×L2(Γ3) is a compact operator, we deduce that

uε → ũ strongly in L2(Γ3)
d, ϕε → ϕ̃ strongly in L2(Γ3), (3.40)

and we have

lim
ε→0

‖u+
εν‖L2(Γ3) = ‖ũ+

ν ‖L2(Γ3).
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From (3.38), we deduce that

lim
ε→0

‖u+
εν‖L2(Γ3) = 0,

we find that ũ+
ν = 0 a.e. on Γ3; it follows that ũν � 0 a.e. on Γ3, which shows that ũ ∈ K .

Since Φ̃(xε, y − xε) � 0 for all y = (v, ξ) ∈ U = K × W , and (3.7), (3.9) and use the

inequality

j̃ε(x, y) − j̃ε(x, x) � 〈̃j ′
ε(x, x), y − x〉 ∀x, y ∈ X, (3.41)

for all y = (v, ξ) ∈ U, we obtain

(Axε, y − xε)X + j̃ε(xε, y) − j̃ε(xε, xε) + �̃(xε, y − xε) � (f3, y − xε)X, (3.42)

then from (3.40) and the properties of R, σ, ψ et φL we have

j̃(xε, y) − j̃(xε, xε) → j̃(x, y) − j̃(x, x), �̃(xε, y − xε) → �̃(x, y − x). (3.43)

From (2.42)–(2.43) and (3.4), we find

0 < j̃ε(xε, y) − j̃(xε, y) � c ε, ∀y ∈ X. (3.44)

Let x̃ = (ũ, ϕ̃). Using (3.39), (3.42), (3.43), (3.44) and a lower semicontinuity argument we

find that ε → 0

(Ax̃, y − x̃)X + j̃(x̃, y) − j̃(x̃, x̃) + �̃(x̃, y − x̃) � (f3, y − x̃)X, (3.45)

for any y = (v, ξ) ∈ U. We now use the Lemma 4.1 (p. 363) of [7] to show that x̃ = x.

We conclude that x = (u, ϕ) is the unique weak limit in X = V ×W of any subsequence

of the sequence xε = (uε, ϕε) and therefore, we find that the whole sequence xε = (uε, ϕε)

converges weakly to the element x = (u, ϕ) ∈ U = K ×W .

4 Finite element setting and discrete penalty problem

In this section, we introduce and study the finite element approximation of the variational

Problem PVε. Assume Ω is a polygonal domain, let τh be a regular family of triangular

finite element partitions of Ω that are compatible with the partition of the boundary

decompositions Γ = Γ1 ∪ Γ2 ∪ Γ3 and Γ = Γa ∪ Γb ∪ Γ3, that is, any point when the

boundary condition type changes is a vertex of the partitions, then the side lies entirely in

Γ 1 ∪Γ 2 ∪Γ 3, and Γa ∪Γb ∪Γ 3. Corresponding to each partition τh. We denote by P1(Ω
e)

the space of polynomials of global degree less or equal to one in Ωe. Let us consider two

finite-dimensional spaces Vh ⊂ V and Wh ⊂ W , approximating the spaces V and W ,

respectively, that is

Vh = {vh ∈ C(Ω)d, vh/Ωe ∈ P1(Ω
e)d, Ωe ∈ τh, vh = 0 on Γ 1},

Wh = {ψh ∈ C(Ω), ψh/Ωe ∈ P1(Ω
e), Ωe ∈ τh, ψh = 0 on Γa}.

Here h > 0 is a discretisation parameter. Moreover, c denotes a positive constant which

depends on the problem data, but is independent of the discretisation parameter h. We

consider the following discrete approximation of Problem PVh
ε :
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Problem PVh
ε Find uhε ∈ Vh and ϕhε ∈ Wh such that

(Fε(uhε), ε(v
h))H + (E∗∇ϕhε, ε(vh))L2(Ω)d +

1

ε
Φ(uhε, v

h) + 〈j ′

ε(u
h
ε, u

h
ε), v

h〉

= (f, vh)V , ∀vh ∈ Vh, (4.1)

(β∇ϕhε,∇ξh)L2(Ω)d − (Eε(uhε),∇ξh)L2(Ω)d + �(uhε, ϕ
h
ε, ξ

h) = (q, ξh)W , ∀ξh ∈ Wh. (4.2)

Applying Theorem 2.2, for the case when V and W are replaced by Vh and Wh,

respectively, we find that the Problem PVh
ε has a unique solution (uhε, ϕ

h
ε) ∈ Vh ×Wh. We

have the following convergence result.

Theorem 4.1 Let us denote by (uε, ϕε) and (uhε, ϕ
h
ε) the respective solutions to Problem PVε

and PVh
ε . Under the assumptions of Theorem 2.2 with the same value of L∗, we have

‖uhε − uε‖V → 0, ‖ϕhε − ϕε‖W → 0, as h → 0. (4.3)

Proof We consider

U1 = {v ∈ C∞(Ω)d/ vi = 0 in a neighbourhood of Γ1},

U2 = {ξ ∈ C∞(Ω)/ ξi = 0 in a neighbourhood of Γa},

then U1 = V and U2 = W (see [19]). We define rh1 : U1 → Vh and rh2 : U2 → Wh by{
rh1v ∈ Vh, ∀v ∈ U1,

(rh1v)(P ) = v(P ), P is a vertex of triangulation,

{
rh2ξ ∈ Wh, ∀ξ ∈ U2,

(rh2ξ)(P ) = ξ(P ), P is a vertex of triangulation.

Then since rh1v (resp. rh2ξ) is the “linear” interpolate of v (resp. ξ) on τh, under the

assumptions made on τh, we have (see [4, 18])

‖rh1v − v‖V � c h |v|H2(Ω)d , ∀v ∈ U1, (4.4)

‖rh2ξ − ξ‖W � c h |ξ|H2(Ω), ∀ξ ∈ U2, (4.5)

with c independent of h, v and ξ. This implies

rh1v → v strongly in V , rh2ξ → ξ strongly in W, as h → 0. (4.6)

We now prove the boundedness of the sequence {uhε}h in V and the sequence {ϕhε}h in W .

Taking vh = uhε in (4.1) and ξh = ϕhε in (4.2), we have

(Fε(uhε), ε(u
h
ε))H + (E∗∇ϕhε, ε(uhε))L2(Ω)d +

1

ε
Φ(uhε, u

h
ε) + 〈j ′

ε(u
h
ε, u

h
ε), u

h
ε〉 = (f, uhε)V ,

(β∇ϕhε,∇ϕhε)L2(Ω)d − (Eε(uhε),∇ϕhε)L2(Ω)d + �(uhε, ϕ
h
ε, ϕ

h
ε) = (q, ϕhε)W ,
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as Φ(uhε, u
h
ε) � 0 and 〈j ′

ε(u
h
ε, u

h
ε), u

h
ε〉 � 0, then

(Fε(uhε), ε(u
h
ε))H + (E∗∇ϕhε, ε(uhε))L2(Ω)d � (f, uhε)V , (4.7)

(β∇ϕhε,∇ϕhε)L2(Ω)d − (Eε(uhε),∇ϕhε)L2(Ω)d + �(uhε, ϕ
h
ε, ϕ

h
ε) = (q, ϕhε)W . (4.8)

Adding (4.7) and (4.8), from the bounds φL(ϕ
h
ηε − ϕ0) � L and using (2.21)–(2.22), (2.24),

(2.25)(c), (3.34), (3.36) and (2.19), we obtain

mF‖uhε‖2
V + mβ‖ϕhε‖2

W

� (‖f‖V + ‖F0V‖V )‖uhε‖V +
(
‖q‖W +Mψ Lc1 meas(Γ3)

1
2

)
‖ϕhε‖W ,

therefore

‖uhε‖V + ‖ϕhε‖W � c
(
‖f‖V + ‖F0V‖V + ‖q‖W +Mψ Lc1 meas(Γ3)

1
2

)
, (4.9)

the constant c is independent of uhε , ϕ
h
ε and h, thus, there exist u∗ ∈ V , ϕ∗ ∈ W and

subsequences of the sequences {uhε}h, {ϕhε}h denoted again by {uhε}h, {ϕhε}h such that

uhε ⇀ u∗ weakly in V , ϕhε ⇀ ϕ∗ weakly in W, as h → 0. (4.10)

Since the trace map γ : V × W → L2(Γ3)
d × L2(Γ3) is compact operator, it follows from

(4.10) that

uhε → u∗ strongly in L2(Γ3)
d, ϕhε → ϕ∗ strongly in L2(Γ3), as h → 0. (4.11)

In the next, we prove that (u∗, ϕ∗) is a solution to Problem PVε. Since (uhε, ϕ
h
ε) is a solution

to Problem PVh
ε and rh1v ∈ Vh, rh2ξ ∈ Wh, for all h, v ∈ U1 and ξ ∈ U2, we have

(Fε(uhε), ε(u
h
ε − rh1v))H + (E∗∇ϕhε, ε(uhε − rh1v))L2(Ω)d +

1

ε
Φ(uhε, u

h
ε − rh1v)

+〈j ′

ε(u
h
ε, u

h
ε), u

h
ε − rh1v〉 = (f, uhε − rh1v)V , (4.12)

(β∇ϕhε,∇(ϕhε − rh2ξ))L2(Ω)d − (Eε(uhε),∇(ϕhε − rh2ξ))L2(Ω)d + �(uhε, ϕ
h
ε, ϕ

h
ε − rh2ξ)

= (q, ϕhε − rh2ξ)W . (4.13)

From (4.6), (4.11) and the properties of R, σ, ψ and φL, we have

lim
h→0

〈j ′

ε(u
h
ε, u

h
ε), u

h
ε − rh1v〉 = 〈j ′

ε(u
∗, u∗), u∗ − v〉, ∀v ∈ U1, (4.14)

lim
h→0

Φ(uhε, u
h
ε − rh1v) = Φ(u∗, u∗ − v), ∀v ∈ U1, (4.15)

lim
h→0

�(uhε, ϕ
h
ε, ϕ

h
ε − rh2ξ) = �(u∗, ϕ∗, ϕ∗ − ξ), ∀(ξ, v) ∈ U2 × U1. (4.16)

Therefore, by (4.10), (4.13), (4.16) and a lower semicontinuity argument we find that

(β∇ϕ∗,∇(ϕ∗ − ξ))L2(Ω)d − (Eε(u∗),∇(ϕ∗ − ξ))L2(Ω)d + �(u∗, ϕ∗, ϕ∗ − ξ)

� (q, ϕ∗ − ξ)W , ∀ξ ∈ U2, ∀(u∗, ϕ∗) ∈ V ×W.
(4.17)
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Since U2 is dense in W and β, E, ψ, φL are continuous, from (4.17) we obtain

(β∇ϕ∗,∇(ϕ∗ − ξ))L2(Ω)d − (Eε(u∗),∇(ϕ∗ − ξ))L2(Ω)d + �(u∗, ϕ∗, ϕ∗ − ξ)

� (q, ϕ∗ − ξ)W , ∀ξ ∈ W, ∀(u∗, ϕ∗) ∈ V ×W,
(4.18)

by setting ξ = ϕ∗ ± ξ∗ in (4.18), where ξ∗ is an arbitrary element of W , we find

(β∇ϕ∗,∇ξ∗)L2(Ω)d − (Eε(u∗),∇ξ∗)L2(Ω)d + �(u∗, ϕ∗, ξ∗) = (q, ξ∗)W , (4.19)

for all ξ∗ ∈ W, (u∗, ϕ∗) ∈ V ×W . From (4.12), we have

(Fε(uhε), ε(u
h
ε − u∗))H = (Fε(uhε), ε(u

h
ε − rh1v))H + (Fε(uhε), ε(r

h
1v − u∗))H

� (E∗∇ϕhε, ε(rh1v − uhε))L2(Ω)d + 1
ε
Φ(uhε, r

h
1v − uhε) + 〈j ′

ε(u
h
ε, u

h
ε), r

h
1v − uhε〉

+(f, uhε − rh1v)V + ‖Fε(uhε)‖H‖ε(rh1v − u∗)‖H,

(4.20)

therefore, by (4.6), (4.10), (4.13) and (4.16), we find that

lim sup
h→0

(Fε(uhε), ε(u
h
ε − u∗))H

� (E∗∇ϕ∗, ε(v − u∗))L2(Ω)d +
1

ε
Φ(u∗, v − u∗) + 〈j ′

ε(u
∗, u∗), v − u∗〉

+ (f, u∗ − v)V + lim sup
h→0

‖Fε(uhε)‖H‖v − u∗‖V ,

for all v ∈ U1. Note that ‖Fε(uhε)‖H is bounded (according to (3.9)), we obtain

lim sup
h→0

(Fε(uhε), ε(u
h
ε − u∗))H

� (E∗∇ϕ∗, ε(v − u∗))L2(Ω)d +
1

ε
Φ(u∗, v − u∗) + 〈j ′

ε(u
∗, u∗), v − u∗〉

+ (f, u∗ − v)V + c‖v − u∗‖V ,

for all v ∈ U1, we may then substitute v = u∗ into the previous inequality to obtain

lim sup
h→0

(Fε(uhε), ε(u
h
ε − u∗))H � 0.

Therefore, by pseudo monotonicity of F, we get

(Fε(u∗), ε(u∗ − v))H � lim inf
h→0

(Fε(uhε), ε(u
h
ε − rh1v))H. (4.21)

Combining (4.12), (4.14), (4.15) and (4.21), one gets

(Fε(u∗), ε(u∗ − v))H + (E∗∇ϕ∗, ε(u∗ − v))L2(Ω)d + 1
ε
Φ(u∗, u∗ − v)

+ 〈j ′
ε(u

∗, u∗), u∗ − v〉 = (f, u∗ − v)V , ∀v ∈ U1, ∀(u∗, ϕ∗) ∈ V ×W.
(4.22)

Since U1 is dense in V and F, E, R, σ are continuous, from (4.22) we obtain

(Fε(u∗), ε(u∗ − v))H + (E∗∇ϕ∗, ε(u∗ − v))L2(Ω)d + 1
ε
Φ(u∗, u∗ − v)

+ 〈j ′
ε(u

∗, u∗), u∗ − v〉 � (f, u∗ − v)V , ∀v ∈ V , ∀(u∗, ϕ∗) ∈ V ×W,
(4.23)

https://doi.org/10.1017/S0956792515000248 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000248


On convergence of the penalty method 19

by setting v = u∗ ± v∗ in (4.23) where v∗ is an arbitrary element in V , we find

(Fε(u∗), ε(v∗))H + (E∗∇ϕ∗, ε(v∗))L2(Ω)d + 1
ε
Φ(u∗, v∗) + 〈j ′

ε(u
∗, u∗), v∗〉

= (f, v∗)V , ∀v∗ ∈ V , ∀(u∗, ϕ∗) ∈ V ×W.
(4.24)

By (4.19) and (4.24), we conclude that (u∗, ϕ∗) is a solution to Problem PVε. By Theorem

2.2, the solution of PVε is unique and hence (u∗, ϕ∗) = (uε, ϕε). Then, uε (resp. ϕε) is the

only cluster point of {uhε}h (resp. {ϕhε}h) in the weak topology of V (resp. W ). Hence, the

whole {uhε}h (resp. {ϕhε}h) converge to uε weakly (resp. ϕε weakly).

Using now the assumptions (2.22), (2.24) on F, β and (4.12)–(4.13), we deduce that

mF‖uhε − uε‖V + mβ‖ϕhε − ϕε‖W
� (Fε(uhε) − Fε(uε), ε(u

h
ε − uε))H + (β∇(ϕhε − ϕε),∇(ϕhε − ϕε))L2(Ω)d

� (Fε(uhε), ε(r
h
1v − uε))H + (E∗∇ϕhε, ε(uhε − rh1v))L2(Ω)d − 1

ε
Φ(uhε, u

h
ε − rh1v)

− 〈j ′
ε(u

h
ε, u

h
ε), u

h
ε − rh1v〉 + (f, uhε − rh1v)V − (Fε(uε), ε(u

h
ε − uε))H

+ (β∇ϕhε,∇(rh2ξ − ϕε))L2(Ω)d + (Eε(uhε),∇(ϕhε − rh2ξ))L2(Ω)d

− �(uhε, ϕ
h
ε, ϕ

h
ε − rh2ξ) + (q, ϕhε − rh2ξ)W − (β∇ϕε,∇(ϕhε − ϕε))L2(Ω)d ,

for all (v, ξ) ∈ U1 × U2. Taking into account the bounds ‖F‖H � c, (4.6), (4.14)–(4.16)

and the weak convergence of {uhε}h to uε and {ϕhε}h to ϕε, we obtain from the previous

inequality that

lim
h→0

(mF‖uhε − uε‖2
V + mβ‖ϕhε − ϕε‖2

W )

� c‖v − uε‖V + (E∗∇ϕε, ε(uε − v))L2(Ω)d − 1

ε
Φ(uε, uε − v)

− 〈j ′

ε(uε, uε), uε − v〉 + (f, uε − v)V − (Fε(uε), ε(uε − uε))H

+ (β∇ϕε,∇(ξ − ϕε))L2(Ω)d + (Eε(uε),∇(ϕε − ξ))L2(Ω)d

− �(uε, ϕε, ϕε − ξ) + (q, ϕε − ξ)W − (β∇ϕε,∇(ϕε − ϕε))L2(Ω)d , (4.25)

for all (v, ξ) ∈ U1 × U2. By the density of U1 and U2, (4.25) holds, (v, ξ) ∈ V × W .

Replacing (v, ξ) by (uε, ϕε) in (4.25), we obtain

lim
h→0

(‖uhε − uε‖V + ‖ϕhε − ϕε‖W ) = 0,

this proves the theorem. �

The finite element system (4.1)–(4.2) can be approximated by a fixed point iteration

method. This follows from a discrete analogue of the proof of Theorem 2.2. Given an

initial guess (uhε,0, ϕ
h
ε,0), we define a sequence (uhε,n, ϕ

h
ε,n) ∈ V ×W for all n ∈ N recursively

by

(Fε(uhε,(n+1)), ε(v
h))H + (E∗∇ϕhε,(n+1), ε(v

h))L2(Ω)d +
1

ε
Φ(uhε,(n+1), v

h)

+ 〈j ′

ε(u
h
ε,n, u

h
ε,n), v

h〉 = (f, vh)V , ∀vh ∈ Vh, (4.26)
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(β∇ϕhε,(n+1),∇ξh)L2(Ω)d − (Eε(uhε,(n+1)),∇ξh)L2(Ω)d + �(uhε,n, ϕ
h
ε,n, ξ

h)

= (q, ξh)W , ∀ξh ∈ Wh. (4.27)

We have the following convergence result.

Theorem 4.2 Under the assumptions of Theorem 2.2 with the same value of L∗, the iteration

method (4.26)–(4.27) converges:

‖uhε,n − uhε‖V → 0 as n → ∞, ‖ϕhε,n − ϕhε‖W → 0 as n → ∞.

Furthermore, for some constant 0 < k < 1 (which depends on data and ε), we have the

estimate

‖uhε,n − uhε‖V � ckn, ‖ϕhε,n − ϕhε‖W � ckn. (4.28)

Proof Using Lemma 1, it is easy to see that

(i) The couple xh = (uhε, ϕ
h
ε) is a solution to Problem PVh

ε if and only if:

(Aεx
h
ε, y

h)X + 〈̃j ′

ε(x
h
ε, x

h
ε), y

h〉 + �̃(xhε, y
h) = (f3, y

h)X, ∀yh = (vh, ξh) ∈ Vh ×Wh. (4.29)

(ii) The couple xhn = (uhn, ϕ
h
n) is a solution to Problem (4.26)–(4.27) if and only if

(Aεx
h
ε,(n+1), y

h)X + 〈̃j ′
ε(x

h
ε,n, x

h
ε,n), y

h〉 + �̃(xhε,n, y
h) = (f3, y

h)X,

∀yh = (vh, ξh) ∈ Vh ×Wh.
(4.30)

We subtract (4.29) from (4.30) and taking y = xhε − xhε,(n+1) in the resulting equalities, we

have

(Aεx
h
ε − Aεx

h
ε,(n+1), x

h − xhn+1)X

= 〈̃j ′
ε(x

h
ε,n, x

h
ε,n), y

h〉 − 〈̃j ′
ε(x

h
ε, x

h
ε), y

h〉 + �̃(xhε,n, y
h) − �̃(xhε, y

h),

and using the inequality (3.41), we find

(Aεx
h
ε − Aεx

h
ε,(n+1), x

h
ε − xhε,(n+1))X

� j̃ε(x
h
ε, x

h
ε,(n+1)) − j̃ε(x

h
ε, x

h
ε) + j̃ε(x

h
ε,n, x

h
ε) − j̃ε(x

h
ε,n, x

h
ε,(n+1))

+ �̃(xhε,n, x
h
ε − xhε,(n+1))X − �̃(xhε, x

h
ε − xhε,(n+1))X.

Then, as in the proof of the uniqueness of Theorem 2.2, we can derive the estimate

‖xhε − xhε,(n+1)‖X � c6(Lμ + μ∗ + LψL+Mψ) ‖xhε − xhε,n‖X,

thus

‖xhε − xhε,(n+1)‖X � (Lμ+μ
∗+LψL+Mψ)

L∗ ‖xhε − xhε,n‖X.

Under the stated assumption, k ≡ (Lμ+μ
∗+LψL+Mψ)

L∗ < 1, and we have the estimate

(4.28). �
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5 Conclusion

In this work, we presented a penalisation method to solve the frictional contact problem

between a piezoelectric body and an electrically conductive foundation. The constitutive

relation of the material is assumed to be electro-elastic and involves a nonlinear elasticity

operator. The contact is described by the Signorini’s conditions and a version of Coulomb’s

law of dry friction in which the coefficient of friction depends on the slip, including the

electrical conductivity conditions. The existence and uniqueness of the solution for the

penalised problem as well as its convergence to the solution of the original problem

were established. The proofs were based on arguments for elliptic variational inequalities

followed by applying Banach’s fixed point theorem. Then, we study the discrete problem

and prove the convergence of its solution towards the solution of the penalised problem.

Moreover, we describe an iterative method for the numerical solutions and obtain its

convergence. A numerical validation of the convergence result included in this method

will be provided in a forthcoming paper.
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