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Abstract. The interaction of high-intensity laser pulses with overdense plasmas
is studied by three-dimensional particle-in-cell (PIC) simulations. Self-generated
magnetic fields are observed in the plasma target owing to Weibel-type instability.
The growth rates of the self-generated magnetic field in our simulation are in good
agreement with the results of our theoretical calculations.

1. Introduction
The recent progress in the development of ultraintense, short pulse lasers has
allowed for the exploration of many new regimes in the field of laser–plasma inter-
actions. A fast ignitor (FI) concept [1, 2] was proposed as the approach to efficiently
ignite the high-density fusion fuel plasmas with an ultraintense short pulse laser.
In the FI scheme, the intense laser pulse propagates through a coronal plasma
up to several times the critical density and delivers energy to fast electrons; these
highly energetic particles then transport the energy through the overdense plasma
to the center of the compressed core and ignite the fuel there. It is known that
the fast electrons are prevented by the self-generated magnetic field. There have
been many reports about Weibel-type instability [3–5] of self-generated magnetic
field. The Weibel-type instability breaks up the fast electron current into filaments.
Particle-in-cell (PIC) simulations have shown the break up of fast electron beams
into filaments guided by magnetic fields [6–8]. This paper is devoted to three-
dimensional (3D) PIC simulations of the Weibel-type instability in an overdense
plasma [9, 10].

2. 3D PIC simulation of Weibel-type instability in the intense
laser–plasma interaction

In order to simulate the time evolution of a plasma system, we performed an
electromagnetic PIC simulation. Our PIC code is fully 3D in both space (x, y, z)
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Figure 1. Target density profile.
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Figure 2. Themal velocity vz/c versus time.

and velocity space (vx, vy, vz) in the rectangular Cartesian coordinate system. It
also takes into consideration the relativistic correction. In this code, the particle
and the field quantities are derived from the time evolution of a closed differential
equation set which consists of equations of motion and Maxwell equations, and are
solved self-consistently in the given plasma system. Simulations were performed
for a p-polarized laser (Ey, Bz), laser wavelength of 1.06µm, laser pulse width 20 fs,
laser beam diameter 1.0µm and laser intensities 1019 and 1020Wcm−2. The initial
temperature of electrons and ions are 1 keV, 40 eV, respectively, and the electron–
ion mass ratio is 1/1837. The time step is chosen to be 0.1/ωL where ωL is the laser
frequency, spatial step 0.2c/ωL, cells 1000 × 30 × 30, electrons 2 × 106 and ions 2 ×
106. The maximum electron density is nc, where nc is the critical density. Figures 1,
2, 3 and 4 show target density profile, temporal profiles of thermal velocity (vz/c),
anisotropy parameter A and magnetic field energy, respectively. The laser pulse
interacts with the target at a time of ωLt = 100. From the linearlized Vlosov equa-
tion and linearized Maxwell’s equations, we obtain the maximum growth rate γT
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Figure 3. Anisotropy parameter A versus time.

Figure 4. Self-generated magnetic field energy versus time.

of the Weibel-type instability [3]

γT =

√
8

27π
vthz
c

A3/2

A + 1
ωL (2.1)

where vthz is the z component of the electron thermal velocity vth, c the velocity of
light, ωL the laser frequency and A the anisotropy parameter

A =
vthx

2 + vthDx
2

vthz
2 + vthDz

2 − 1 (2.2)

where vthDx, vthDz are the x component and z component of the drift velocity, re-
spectively. Self-generated magnetic fields are plotted in Fig. 4, from which we
can estimate that the maximum growth rates γS are about 1.14 × 10−1ωL for
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1019Wcm−2 and 1.27×10−1ωL for 1020Wcm−2 at maximum anisotropy parameter.
These growth rates are consistent with γT ≈ 1.16 × 10−1ωL for 1019Wcm−2 and
1.63 × 10−1ωL for 1020Wcm−2.

3. Conclusions
We have investigated the mechanism of self-generated magnetic fields in the in-
teraction of high-intensity laser pulses with overdense plasmas. The self-generated
magnetic fields have been obtained by 3D PIC simulation. The growth rates of
the magnetic fields in the simulation are in good agreement with the results of the
Weibel-type instability.
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