
Probability in the Engineering and Informational Sciences, 27, 2013, 297–307.

doi:10.1017/S026996481300003X

SOME NODE DEGREE PROPERTIES OF
SERIES–PARALLEL GRAPHS EVOLVING UNDER

A STOCHASTIC GROWTH MODEL

HOSAM M. MAHMOUD

Department of Statistics
The George Washington University
Washington, D.C. 20052, U.S.A.

E-mail: hosam@gwu.edu

We introduce a natural growth model for directed series-parallel (SP) graphs and look
at some of the graph properties under this stochastic model. Specifically, we look at the
degrees of certain types of nodes in the random SP graph. We examine the degree of a
pole and will find its exact distribution, given by a probability formula with alternating
signs. We also prove that, for a fixed value s, the number of nodes of outdegree 1, . . . , s
asymptotically has a joint multivariate normal distribution. Pólya urns will systematically
provide a working tool.

1. INTRODUCTION

Series–parallel (SP) graphs are network models that can represent the flow of, for example,
commercial goods from a source to a market. To the best of our knowledge, these net-
works have been studied under two models of randomness: the uniform model, where all SP
networks of a certain size are equally likely [2,4], and the hierarchical lattice model [5].

Yet another natural stochastic model can be considered, and may cover a wide variety of
additional realistic applications. We introduce this model and study some of its properties
(specifically, the degree distribution of certain types of nodes in the network under this
growth model).

We use, as usual, the notation Kn for the complete graphs on n vertices. There are
a few definitions of families of SP graphs. One popular variant of the definitions views
SP graphs in an algorithmic constructive way. In this variant, the smallest SP graph is
K2. The two vertices are called poles. When drawn in a vertical position on a page, the
top pole is called the North Pole (N), and the bottom one is called the South Pole (S).
Larger SP graphs are obtained from smaller ones by one of two compositions: a series
composition, which identifies the South Pole of a graph with the North Pole of the other,
or a parallel composition, which identifies the two North Poles together, and the two South
Poles together. For the network flow application we have in mind, we think of SP graphs as
directed, with orientation assigned to the edges to allow the flow to move from the North
Pole to the South Pole. Figure 1 shows two directed SP graphs, and two directed SP graphs
that can be obtained from them by a series and a parallel composition.
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298 H.M. Mahmoud

Figure 1. Two directed series-parallel graphs on top, and a graph obtained by a series
composition (bottom left), and another graph obtained by their parallel composition
(bottom right).

We have already mentioned two models of randomness: the uniform model and the
hierarchical lattice model. We propose a rather natural growth model, which is different
from these two. Starting with a directed K2 (with its sole edge directed from the North to
the South Pole), we grow an SP graph in steps. At each step, we choose an edge from the
existing graph at random (all edges being equally likely). We subject that edge to either
a series extension with probability p, or a parallel doubling with probability q := 1 − p.
A series extension is performed as follows. If the edge chosen has u and v as end vertices
(and points from u to v), we create a new vertex, say x, remove the directed edge uv and
replace it with the two new directed edges ux (directed from u to x) and xv (directed from
x to v). A parallel doubling of an edge is performed as follows. If the edge chosen has u
and v as end vertices (and points from u to v), we just add another edge with these same
endpoints and directed in the same sense. Henceforth “random” will always mean the model
we have just introduced. Note that Sn, the size (number of nodes in the graph) after n edge
additions to K2, is 2 plus a binomial random variable on n trials, with rate of success p, and
thus (Sn − pn)/

√
pqn converges in distribution to the standard normal random variate.

In this orientation scheme, all the edges of the random SP graph are directed with
arrows pointing away from the North Pole toward the South Pole. We qualify the entire
orientation scheme with the phrase away from the North Pole. All the graphs in Figure 1
have an orientation away from the North Pole.

In this article we look at some properties of a random SP graph grown under the
randomness model just discussed. Specifically, we look at the degrees of certain types of
nodes in the random SP graph. We shall examine the degree of a pole. We find its exact
distribution, given by a probability formula with alternating signs. We also prove that, for
a fixed number s, the number of nodes of outdegree 1, . . . , s asymptotically has a joint
multivariate normal distribution. Pólya urns will systematically provide a working tool.

2. THE DEGREE OF A POLE

The number of edges coming out of the North Pole, or the number of trading routes ema-
nating out of the source of the market, is a measure of the volume of trading and and the
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amount of goods that can be shipped out of the source. This number is the North Pole’s
outdegree (it is also its degree).

Suppose we colored the edges coming out of the North Pole with white (W), and all
the other edges with blue (B). We think of the edges as balls in a Pólya urn. Let Wn

be the number of white balls in the urn after n edge additions to K2. As we start from
a directed K2, we have W0 = 1, and B0 = 0. At each stage we pick an edge at random
(a ball from the urn at random). We also generate Ber(p), a Bernoulli random variable
with success probability p. If Ber(p) = 1 (success), we extend the chosen edge, otherwise we
double the edge. If the edge is white, and the Bernoulli random variable indicates success,
we are extending an edge connected to the North Pole; this adds one blue directed edge
to the graph (one blue ball to the urn). If the edge is white, and the Bernoulli random
variable indicates failure, we only double the edge, adding another white edge to the graph
(a white ball to the urn). If, instead, we sample a blue edge (ball), we add a blue edge
(ball), because no matter what operation is performed on the edge, it does not change the
outdegree of the North Pole.

The dynamics of a two-color Pólya urn scheme are often represented with a replacement
matrix, the rows and columns of which are indexed with the two colors, and the entries are
the number of balls added. The replacement matrix associated with our urn is(

1 − Ber(p) Ber(p)
0 1

)
;

the entry at position (C1, C2) represents the number of balls of color C2 that we add upon
withdrawing a ball of color C1 from the urn, for C1, C2 ∈ {W,B}; the rows are indexed
with W and B from top to bottom, and the columns are indexed with W and B from left
to right.

It is shown in [6] how to get an exact distribution by solving a certain parametric
pair of differential equations underlying an urn in x(t) and y(t) for an urn of this type.
If X(t, x(0)) and Y (t, y(0)) are the solution, then XW0(t, (x(0))Y B0(t, y(0)) is a history
generating function. Specialized to our case, the differential equations are

x′(t) = px(t)y(t) + qx2(t),

y′(t) = y2(t).

We solve this system under the initial condition x(0) = u, and y(0) = v, and get

x(t) =
uv

u − uvt − (u − v)(1 − vt)p
,

y(t) =
v

1 − vt
.

Following [6], these solutions give rise to the history generating function

∑
0≤w,b,n<∞

Prob(Wn = w,Bn = b)uwvbzn =
(

uv

u − uvz − (u − v)(1 − vz)p

)W0

×
(

v

1 − vt

)B0

.

Recall that W0 = 1, and B0 = 0. By setting v = 1, we get
∞∑

n=0

∞∑
w=0

Prob(Wn = w)uwzn =
u

u − uz − (u − 1)(1 − z)p
. (1)
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Proposition 1: Let Wn be the outdegree of the North Pole1 in a random series-parallel
graph. We then have

E[Wn] =
(n + q)(n − 1 + q) . . . (1 + q)

n!
∼ 1

Γ(q + 1)
nq.

Proof: Differentiate (1) once with respect to u, and set u = 1 to get a generating function
of averages

∞∑
n=0

E[Wn] zn = (1 − z)p−2.

Extracting the nth coefficient, we get the exact average as stated.
Note that the average can be written in terms of Gamma functions:

E[Wn] =
Γ(n + q + 1)
n! Γ(q + 1)

.

The asymptotic equivalent follows from Stirling’s approximation of the Gamma function.
�

Theorem 1: Let Wn be the outdegree (indegree) of the North (South) Pole in a random
series-parallel graph. Then, it has the exact probability distribution

Prob(Wn = w) =
w−1∑
k=0

(−1)n+k

(
qk − p

n

)(
w − 1

k

)
.

Proof: Let [xiyj ] be the the operator that extracts the coefficient of xiyj from a bivariate
function of x and y. Extracting coefficients from (1), we have (for |u| < 9p−1/(8p−1 + 9p−1),
and |z| < 1

8 )

Prob(Wn = w) = [uwzn]
(

u

u − uz − (u − 1)(1 − z)p

)

= −[uwzn]

⎛
⎜⎝ u

(u − 1)(1 − z)p
× 1

1 − u

(u − 1)(1 − z)p−1

⎞
⎟⎠

= −[uwzn]
u

(u − 1)(1 − z)p

∞∑
k=0

(
u

(u − 1)(1 − z)p−1

)k

= −[uwzn]
∞∑

k=0

uk+1
∞∑

m=0

(−1)k+1+m

(−k − 1
m

)
um

×
∞∑

n=0

(−1)n

(−kp + k − p

n

)
zn

=
w−1∑
k=0

(−1)n+w+1

( −k − 1
w − k − 1

)(
qk − p

n

)
.

1 By symmetry, the South Pole has the same indegree distribution.
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Noting that ( −k − 1
w − k − 1

)
= (−1)w+k+1

(
w − 1

k

)
,

the result follows. �

Remark: Probability formulas with alternating signs are remarkable and not always intu-
itive. There are quite a few of them that appear in similar contexts, such as the classic
occupancy problem (see [3], a classic work of de Moivre). After all, probability is nonneg-
ative, and somehow cancellations in the formula with alternating signs always occur in a
way to produce a nonnegative answer.

3. NODES OF SMALL OUTDEGREE

The outdegree and indegree of a node in a trading network are indications of the local
importance of a trading center to its neighbors. They determine how many neighbors will
be affected, if the node becomes dysfunctional. The indegrees are symmetrical to the out-
degrees, for we can imagine the polarity of the graph reversed (the sense of edge orientation
leads away from the South Pole), and the indegrees with the old polarity will become out-
degrees in the reversed graph. Therefore, it is sufficient to study the outdegrees of the SP
graph under the original orientation.

In this section, we examine the distribution of the number of nodes of outdegree up to
some fixed number, say s. Let us utilize s + 1 colors to code the outdegrees. We color each
edge out of a node of outdegree i with color i = 1, . . . , s; color s + 1 is special: we color all the
other edges with color s + 1; these edges are pointing away from nodes of outdegree s + 1 or
higher. Again, think of the edges as balls in a Pólya urn. This urn evolves in the following
way. If at stage n we pick an edge of a nonspecial color i (pointing away from a node of
outdegree i), we either extend it (with probability p) into a path of two edges directed away
from the North Pole, or double it (with probability q), and a new edge pointing out of the
Northern end node is added. In the case of extending the chosen edge, we do not change
the outdegree of the Northern end of the edge being extended; we only add a new node of
outdegree 1 (a new edge of color 1). In the case of doubling, we change the degree of the
Northern end of the edge being doubled—it is increased by 1. Thus, we remove i edges of
color i, and add i + 1 edges of color i + 1. When we pick a special edge, we either increase
the outdegree of its northern end, or keep it the same. If the operation is an extension, the
number of special edges does not change, but we add one node of outdegree 1 (we add an
edge of color 1). If the operation is the doubling of the special edge, the outdegree of the
node at the Northern end of the edge goes up by 1 (we add an edge with the special color).

Let us represent the dynamics of this (s + 1)-Pólya urn scheme with a ball replacement
matrix, the rows and columns of which are indexed with the s + 1 colors, and the entries are
the number of balls added. Let B be a Bernoulli random variable with success probability p.
The replacement matrix associated with our urn is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2B − 1 2(1 − B) 0 · · · 0 0
B −2(1 − B) 3(1 − B) · · · 0 0
B 0 −3(1 − B) · · · 0 0
...

...
...

. . .
...

...
B 0 0 · · · −s(1 − B) (s + 1)(1 − B)
B 0 0 · · · 0 1 − B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

;
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the rows (from top to bottom) and columns (from right to left) of this matrix are indexed
with the numbers (colors) 1, . . . , s + 1. The entry in row i and column j represents the
number of balls of color j that we add upon withdrawing a ball of color i from the urn,
for i, j = 1, 2, . . . , s + 1. Note that the sum across any row of the replacement matrix is 1.
Pólya urn schemes satisfying such a condition are called balanced. They enjoy the property
that, regardless of the stochastic path followed, τn, the total number of balls in the urn
after n draws is deterministic; in our case it is

τn = n + 1.

Let X
(r)
n be the number of edges in the SP graph of color r after the random insertion of

n edges, and let Xn be the vector with the s + 1 components X
(1)
n ,X

(2)
n , . . . , X

(s+1)
n . Strong

limit laws and asymptotic distributions are known for this type of balanced urn (where all
the rows add up to the same constant, which is 1 in our case).

Assume the eigenvalues of E[A] are numbered according to the decreasing order of their
real parts:

�λ1 ≥ �λ2 ≥ · · · ≥ �λs+1.

The eigenvalue with largest real part, λ1, is called the principal eigenvalue, and the cor-
responding eigenvector is a principal eigenvector. It is shown in [1] that for urns of this
type

X
(r)
n

n

a.s.−→ λ1vr,

where λ1 is the principal eigenvalue of the average of the replacement matrix, and v =
(v1, v2, . . . , vs+1) is the corresponding principal left eigenvector of E[A]. Also, under the
condition that λ2, the eigenvalue with second largest real part satisfies �λ2 < 1

2λ1, it is
shown in [7] that

Xn − λ1v√
n

L−→ N (0,Σ),

for some covariance matrix Σ. Smythe [7] states that Σ is generally hard to compute. We
shall prove a multivariate central limit theorem of this type. In fact, we shall obtain an
exact form for the covariance matrix of Xn, for s = 2, and show how in principle we can
extend this to higher values of s.

To deal with the exact mean and covariances, we derive the recurrence equations from
the dynamics of the construction. Let Fn be the sigma field generated by the the first n

edge insertions. Let I
(r)
n be the indicator of the event that an edge of color r is picked at

the nth draw. For color 1, we write the conditional recurrence

E[X(1)
n | Fn−1] = X

(1)
n−1 + E[(2B − 1)I(1)

n | Fn−1]

+ E[BI(2)
n | Fn−1]

...

+ E[BI(s+1)
n | Fn−1].

Noting the independence of B and Fn−1, we write the latter equation as

E[X(1)
n | Fn−1] = X

(1)
n−1 + (2p − 1)E[I(1)

n | Fn−1]

+ pE[I(2)
n | Fn−1] + · · · + pE[I(s+1)

n | Fn−1].
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The indicator I
(r)
n is a Bernoulli random variable Ber(Xn−1/τn−1) that conditionally (given

Fn−1) has the expectation X
(r)
n−1/τn−1. The conditional expectation for the first color then

takes the form

E[X(1)
n | Fn−1] = X

(1)
n−1 + (2p − 1)

X
(1)
n−1

n

+ p
X

(2)
n−1

n
+ · · · + p

X
(s+1)
n−1

n
.

Note that the coefficients of the random variables come down spanning the entries of the
average of the first column of the replacement matrix.

Writing a similar equation for each color, and putting them in matrix form, we get

E[Xn | Fn−1] =
(
I +

1
n

E[AT ]
)

Xn−1,

where I is the (s + 1) × (s + 1) identity matrix, and AT is the transpose of A. We can take
expectations and write

E[Xn] =
(
I +

1
n

E[AT ]
)

E[Xn−1] := Rn E[Xn−1].

This form can be iterated, and we get

E[Xn] = RnRn−1 . . .R1E[X0]. (2)

Observe that the eigenvalues of E[A] are

λ1 = 1, and λr = −(r − 1)q, for r = 2, . . . , s + 1.

The eigenvalues are real and distinct, with λ2 = −q < 1
2 = 1

2λ1. As the eigenvalues are
distinct, they give rise to simple Jordan normal forms—the matrix Rj can be written as

MDj M−1 = M

⎛
⎜⎜⎜⎜⎜⎝

1 + 1
j 0 0 . . . 0 0

0 1 − q
j 0 . . . 0 0

...
...

. . .
...

...
0 0 0 . . . 0 1 − sq

j

⎞
⎟⎟⎟⎟⎟⎠M−1,

where M is the modal matrix2 of E[AT ], which is invertible, because the eigenvalues are
distinct. Eq. (2) can now be simplified to

E[Xn] = (MDn M−1)(MDn−1 M−1) · · · (MD1 M−1)E[X0]

= MDnDn−1 · · ·D1M−1

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠ . (3)

2 The modal matrix of a given matrix with distinct eigenvalues is the matrix formed by placing the jth
eigenvector as the jth column.
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We thus have the exact vector of means:

E[Xn] =
1
n!

M

⎛
⎜⎜⎜⎜⎜⎝

Γ(n + 1) 0 0 . . . 0 0

0 Γ(n+1−q)
Γ(1−q) 0 . . . 0 0

...
...

. . .
...

...

0 0 0 . . . 0 Γ(n+1−sq)
Γ(1−sq)

⎞
⎟⎟⎟⎟⎟⎠M−1

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠ .

We illustrate this program with the small instance s = 2.

Theorem 2: Let Y
(r)
n be the number of nodes of outdegree r ∈ {1, 2} in a random directed

series-parallel graph, and let Yn be the vector with these two components. We have

E[Y (1)
n ] =

p(n + 1)
q + 1

+
2q Γ(n + p)

(q + 1)Γ(p) Γ(n + 1)
,

E[Y (2)
n ] =

pq(n + 1)
(2q + 1)(q + 1)

+
4pq Γ(p − 1

2 ) Γ(n + p)
2
√

π(q + 1)Γ(−1 + 2p)Γ(n + 1)

− 3q Γ(n − 1 + 2p)
(2q + 1)Γ(−1 + 2p) Γ(n + 1)

.

Also, Yn converges in distribution to a bivariate normal vector:

Yn −
( p

q+1

pq
(2q+1)(q+1)

)
n

√
n

L−→N
⎛
⎝0,

⎛
⎝ 2pq(3−p)

(2−p)2(3−2p) − 2p2q
(4−3p)(3−2p)(2−p)2

− 2p2q
(4−3p)(3−2p)(2−p)2

pq(24p4−157p3+356p2−342p+120)
(5−4p)(4−3p)(3−2p)2(2−p)2

⎞
⎠
⎞
⎠ .

Proof: Note that Y
(1)
n = X

(1)
n , and Y

(2)
n = 1

2X
(2)
n . Therefor it suffices to get the results for

X
(1)
n and X

(2)
n .

Consider the 3 × 3 replacement matrix corresponding to s = 2. For this we have

M =

⎛
⎜⎝

p(3−2p)
6q2 − 1

3 0
p
3q − 2

3 −1

1 1 1.

⎞
⎟⎠

Multiplying out, as required in (3), the exact averages for the number of edges of colors 1
and 2 follow, after some lengthy simplification.

The exact second moments are given by rather lengthy expressions. Here, we only set
up the recurrence equations and indicate how to solve them. We shall show the derivation
in a bit of detail forX(1)

n , and will skip most of the details for the second moment of X
(2)
n

and for the covariance between the counts of the two colors.
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For exact second moment of X
(1)
n , we start with a recurrence obtained from the 3 × 3

replacement matrix:

X(1)
n = X

(1)
n−1 + B − (1 − B)Ber

(
X

(1)
n−1

n

)
. (4)

Squaring both sides, we get

(X(1)
n )2 = (X(1)

n−1)
2 + B + (1 − B)Ber

(
X

(1)
n−1

n

)
+ 2BX

(1)
n−1 − 2(1 − B)X(1)

n Ber

(
X

(1)
n−1

n

)
.

So, the conditional second moment for this color is

E[(X(1)
n )2 | Fn−1] = (X(1)

n−1)
2 + p + q

X
(1)
n−1

n
+ 2pX

(1)
n−1 − 2qX

(1)
n−1

X
(1)
n−1

n
.

This gives a recurrence for the (unconditional) second moment:

E[(X(1)
n )2] =

(
1 − 2q

n

)
E[
(
X

(1)
n−1

)2] +
(
2p +

q

n

)
E[X(1)

n−1] + p.

Plug in E[X(1)
n ], which we have developed. This recurrence, and several other in the sequel,

are of the general form

an =
(

1 − b

n

)
an−1 + h(n), (5)

for constant b and known asymptotically linear function h(n), with an asymptotically
quadratic solution. The solution to the recurrence for E[(X(1)

n )2] is

E[(X(1)
n )2] =

p(q2 + 3q + qp + 2qpn + 2 + pn − p)
(2 − p)(1 + 2q)(1 + q)

(n + 1)

+ (−p4 + 2p2 + 7p2q2 − 2qp − 4q3p − 5q2p − 4q2 + 4q4

+ 2q3 − p − 2q + 3p2q) Γ(n + 1 − 2q)

× ((1 + q)(1 + 2q)(p + 2q)(−1 + p + 2q)

× Γ(n + 1)Γ(1 − 2q))−1

+ (2(2p2n − 2pn + 4qpn + 5qp + 2q2)) Γ(n + p)

× ((−2 + p)(p + 2q)(−1 + p + 2q)Γ(n + 1)Γ(−1 + p))−1.

After subtracting off the square of the mean, and computing asymptotics, a linear
asymptotic variance ensues (as n → ∞):

Var[X(1)
n ] ∼ 2pq(3 − p)

(2 − p)2(3 − 2p)
n.

For the second moment of X
(2)
n and the covariance, we only sketch the key steps. We

start from a stochastic recurrence (again obtained from the dynamics of the construction):

X(2)
n = X

(2)
n−1 + 2(1 − B)

[
Ber

(
X

(1)
n−1

n

)
− Ber

(
X

(2)
n−1

n

)]
. (6)
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Multiply (4) and (6), and take expectation (handling the Bernoulli random variables via a

double expectation). Take into consideration that Ber(
X

(1)
n−1
n ) and Ber(

X
(2)
n−1
n ) are mutually

exclusive (if one of them is 1, the other must be 0). This gives an exact recurrence for the
mixed moment E[X(1)

n X
(2)
n ]. This recurrence involves E[(X(1)

n )2], which we already have.
Thus, the recurrence is in the form of (5). We solve the recurrence and obtain the exact
mixed moment E[X(1)

n X
(2)
n ]. Extracting leading asymptotics, we get a linear covariance

equivalence, as (n → ∞):

Cov[X(1)
n ,X(2)

n ] ∼ − 4p2q

(4 − 3p)(3 − 2p)(2 − p)2
n.

Finally, square (6), and take expectations. The resulting recurrence has the expectations
of X

(1)
n and X

(2)
n , as well as the expectation of their product. We already have all these

ingredients in exact form. We plug in the results we have and solve the recurrence (also
in the form of (5)) to get E[(X(2)

n )2]. Subtracting off the square of E[X(2)
n ], we get an

exact variance. The formula is so huge to be listed, and we only give its linear asymptotic
equivalent:

Var[E[X(2)
n ] =

4pq(24p4 − 157p3 + 356p2 − 342p + 120)
(5 − 4p)(4 − 3p)(3 − 2p)2(2 − p)2

n.

�

It is evident that we can extend this computation to higher s. Considering the rth
column of the replacement matrix, for colors r = 2, . . . , s, we have the recurrence

X(r)
n = X

(r)
n−1 + r(1 − B)

[
Ber

(
X

(r−1)
n−1

n

)
− Ber

(
X

(r)
n−1

n

)]
. (7)

with Ber
(

X
(r−1)
n−1
n

)
and Ber

(
X

(r)
n−1
n

)
being mutually exclusive (if one of them is 1, the

other must be 0). The averages of X
(r)
n , for r = 1, . . . , s, can be obtained by a bootstrapped

program: we obtain inductively the average number of edges of one color and plug it in
the recurrence for the average number of edges of the next color, with E[X(1)

n ] serving as
basis for the induction. Working with asymptotics, as n → ∞, drastically simplifies the
appearance of the average counts to

E[X(r)
n ] ∼ r! pqr−1

(rq + 1)((r − 1)q + 1) . . . (q + 1)
.

The average number of nodes of outdegree r is then 1
rE[X(r)

n ].
The variances and covariances are significantly more computationally intensive. Nev-

ertheless, the steps are clear. It is also a bootstrapped program in the fashion of dynamic
programming: obtain all the results up to color r − 1 (in addition to all first moments,
obtain all the mixed moments E[X(i)X(j)], for i, j = 1, . . . , r − 1). Now, write a recurrence
for E[X(1)

n X
(r)
n ], which we obtain by taking the product of (4) and (7), then averaging. This

mixed moment will involve some first moments and the mixed moment E[X(1)
n X

(r−1)
n ], so

it is in the form of (5). We then move on to a recurrence for E[X(2)
n X

(r)
n ], which beside the

recursive term will involve only moments computed so far, and so the recurrence is in the
form of (5). We can then proceed in a similar fashion via recurrences for E[X(r′)

n X
(r)
n ], for
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r′ ≤ r, and it will involve, beside the recursive term, only already computed moments, so
these recurrences are in the form of (5). Ultimately, for Xn being the vector with components
X

(1)
n , . . . , X

(s)
n , we have the strong law

X
(r)
n

n

a.s.−→ r! pqr−1

(rq + 1)(r − 1)q + 1) . . . (q + 1)
,

and with Smythe’s condition −q = �λ2 < 1
2λ1 = 1 being satisfied, we have the multivariate

central limit theorem

Xn −

⎛
⎜⎜⎜⎜⎜⎝

p
q+1

2pq
(2q+1)(q+1)

...
r! pqr−1

(rq+1)((r−1)q+1)...(q+1)

⎞
⎟⎟⎟⎟⎟⎠n

√
n

L−→ N (0,Σ),

for some effectively computable covariance matrix Σ.
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