
480 Network Science 3 (4): 480–508, 2015. c© Cambridge University Press 2015

doi:10.1017/nws.2015.38

Triadic analysis of affiliation networks

JASON CORY BRUNSON

Center for Quantitative Medicine, UConn Health, Farmington, CT 06030, USA

(e-mail: brunson@uchc.edu)

Abstract

Triadic closure has been conceptualized and measured in a variety of ways, most famously

the clustering coefficient. Existing extensions to affiliation networks, however, are sensitive

to repeat group attendance, which does not reflect common interpersonal interpretations

of triadic closure. This paper proposes a measure of triadic closure in affiliation networks

designed to control for this factor, which manifests in bipartite models as biclique proliferation.

To avoid arbitrariness, the paper introduces a triadic framework for affiliation networks,

within which a range of measures can be defined; it then presents a set of basic axioms that

suffice to narrow this range to the one measure. An instrumental assessment compares the

proposed and two existing measures for reliability, validity, redundancy, and practicality. All

three measures then take part in an investigation of three empirical social networks, which

illustrates their differences.
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1 Introduction

Triadic analysis, which emphasizes the interactions within subsets of three nodes,

has long been central to network science. Meanwhile, affiliation (or co-occurrence)

data have long been a major source of empirical networks. In the presence of such

higher-order structure, most triadic analyses focus on relations among triples of

nodes, often of mixed type. This paper, building upon some recent contributions,

focuses instead on triples of actors, together with the non-actor structure that

establishes relations among them.

1.1 Background

1.1.1 Precursors

Previous triadic approaches in the social networks literature provide examples of

hypothesis formulation, measure design, and sociological interpretation that inspired

the present analysis. One thread begins with a series of studies designed to test socio-

structural predictions of cognitive balance theory (Davis, 1967). These predictions

apply at the level of triads, but could be analyzed statistically by aggregating over

an entire graph. For example, the transitive property, under which the directed

relations p → q → r imply the relation p → r, describes social graphs with a specific

hierarchical structure (Holland & Leinhardt, 1971). While this structure would be

hard to measure directly, the transitivity ratio (the global proportion of instances
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of p → q → r in which p → r) provides a simple measure of how closely a graph

respects this property (Harary & Kommel, 1979).

A separate thread concerns the “small world” property, a high concentration of ties

within communities yet counterintuitively low distances between actors in different

communities, observed in empirical social networks (de Sola Pool & Kochen, 1978).

The “strong triadic closure” (STC) hypothesis proposed to reconcile these properties

by ascribing a cohesion role to strong ties within communities and a bridging role

to weak ties between them (Granovetter, 1973). STC distinguishes two levels of tie

(strong and weak) and posits that strong ties lead to more closures. A reorientation

from triads to ego networks led to the “structural holes” framework, in which an

actor with many weak ties, hence a more disconnected neighborhood, has increased

potential as a broker. The local measure of constraint was introduced to quantify

how these neighborhood connections limit brokerage potential (Burt, 1992). A later,

independent study introduced the similar but simpler clustering coefficient to quantify

“cliquishness” across a family of small world models (Watts & Strogatz, 1998).

1.1.2 Conventions

The present study concerns social networks, but the concepts generalize to any

affiliation network (AN) setting. Most terminology and notation is taken from

standard references (Bondy & Murty, 2008; Wasserman & Faust, 1994). Additional

concepts will be defined as needed.

A graph G = (V , E) consists of a finite set V of nodes and a set E ⊆ V × V of

edges e = (v, w). Edges will be symmetric and will not include duplicates or loops.

A graph is bipartite if its nodes can be partitioned into subsets V1 and V2 in such

a way that E ⊆ V1 × V2. The degree of a node v is the number of edges containing

v. A subgraph of G is a graph G′ = (V ′, E ′) satisfying V ′ ⊆ V and E ′ ⊆ E, and a

subset W ⊆ V of nodes induces the subgraph (W,E ∩ (W ×W )).

Traditional social networks consist of actors having (here, symmetric) relations

among them, and are modeled as graphs with actors represented by nodes and

relations by edges. Three actors, together with the relations among them, form a

triad. The triads of a traditional network G take four types i = 0, 1, 2, 3, according

to the number of relations among their actors; the tallies si = si(G) of each type

constitute the triad census (s0, s1, s2, s3). The (classical) clustering coefficient, often

described as the proportion of connected triples that are closed (Newman, 2003), is

then the ratio C(G) = 3 × s3/(s2 + 3 × s3).

Relations among the actors of an AN are established through common attendance

at events; each event is attended by some subset of actors. ANs are modeled as

bipartite graphs, V1 consisting of the actors and V2 the events. Though actors are

only tied to events, in both settings the neighbors of an actor v shall be the actors

related to v. If actors who coattended events are assigned edges, then they (without

the events) form a traditional social network called the projection.

1.1.3 Organization

Section 1.2 proposes the new clustering coefficient. The main body of the paper

is split between theoretical (Section 2) and empirical (Section 3) assessments of
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this statistic, and begin with their own organizational outlines. In short, Section 2

explores triadic analysis in the abstract, while Section 3 performs triadic analyses on

empirical data. Section 4 summarizes the paper, its limitations, and future directions.

All analyses are performed, and images produced, using the open-source statistical

programming language R, with the igraph and ggplot2 packages in particular (R

Development Core Team, 2008; Csardi & Nepusz, 2006; Wickham, 2009). Full code

is available at https://github.com/corybrunson/triadic.

1.2 The exclusive clustering coefficient

1.2.1 Motivation

“Triadic closure” (TC) refers to the tendency for the relations (p, q) and (q, r) to entail

the relation (p, r). While this entailment need not be causal or even chronological,

interpersonal interpretations of TC posit that the common neighbor q facilitates, or

even initiates, the connection between p and r. Such interpretations, however, are at

odds with common measures of TC, especially in the AN setting.

The clustering coefficient, for example, is often evaluated on projections; this shall

be the meaning of the shorthand C(G) when G is an AN.1 A conspicuous feature

of these projections is the proliferation of clique graphs Kn, which consist of n

nodes and all
(
n
2

)
possible edges between them. n actors in G who attend any single

event produce a copy of Kn in the projection, which introduces
(
n
3

)
3-edge triads.

These can dramatically increase C(G), so that its values are often largely determined

by event size (Newman, 2001; Glänzel & Schubert, 2004). High event attendance,

however, does not guarantee TC: Individuals in distinct, pre-existing social groups

at a common event may interact primarily with others in their own groups, and

forge few if any inter-group relations.

Attempts to account for this inflation of C have taken both “conversion” (at the

projection level) and “direct” (at the AN level) approaches. Conversion approaches

have, for example, standardized the value of C by its values at a suitable null model

(Uzzi & Spiro, 2005), and applied clustering coefficients designed for weighted

networks to weighted projections (Saramäki et al., 2007). These methods help

discriminate levels of TC among ANs, but at some cost to interpretability.

Two recent direct approaches define new clustering coefficients in terms of AN

structure among triples of actors (Opsahl, 2013; Liebig & Rao, 2014). The Opsahl

clustering coefficient C∗, for example, restricts the notion of “connected triples” (of

actors) to those who are pairwise connected through distinct events. It can be defined

as the proportion of 4-paths that are closed: The graph Pd consisting of distinct

nodes v0, v1, . . . , vd and edges (vi, vi+1) is called the d-path; if, instead, v0 = vd, the

result is the d-cycle Cd.
2 (Both have d edges; see Figure 1(c), (d).) For a 4-path in

G to be “closed” means for it to be contained in a 6-cycle.3 In an empirical test,

C∗ took much smaller values than C , and the two statistics diverged most on the

network with the greatest mean event size (Opsahl, 2013).

1 C evaluates to zero on any bipartite graph.
2 The 4-paths involved in this calculation must begin and end at actor nodes.
3 Several other studies have proposed bipartite clustering coefficients that do not concern triples of

actors, so are not considered here (Opsahl, 2013).
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Fig. 1. Traditional and affiliation network conceptions of triadic closure: In traditional

networks, the 2-edge triad (a) is “open” while the 3-edge triad (b) is “closed”. The clustering

coefficient C is defined either as a ratio of the numbers of triads of these types (see Section 1.1)

or as the proportion of subgraphs of the form (a) that are contained in a subgraph of the

form (b). One extension of this idea to ANs uses the 4-path (c) and the 6-cycle (d) in place

of these triads. The Opsahl clustering coefficient C∗ is defined as the proportion of subgraphs

(c) that are contained in a subgraph (d). (Circular nodes denote actors; square nodes denote

events.) (Color online)

However, these measures may still be at odds with the popular interpretation

of TC: The same pre-existing groups that attend one event are likely to attend

others, though this no more entails TC than attendance at the first. Such repeat

group attendance manifests in bipartite AN models as the proliferation of biclique

graphs Kn,m, which consist of n actors who each attend each of m events (hence

n× m edges). Indeed, bicliques have been observed in empirical ANs at frequencies

greater than expected by chance (Borgatti & Everett, 1997; Carrino, 2006). Just as

C is sensitive to cliques, C∗ is sensitive to bicliques: If m � 3, then K3,m contains

6m(m − 1) 4-paths, each of which is closed; the effect grows geometrically with

n.4 Thus, empirical values of C∗ may be dominated by patterns of repeat group

attendance. The need for a measure of TC in ANs that also controls for this artifact

motivated the present study.

1.2.2 Proposal

The proposed graph statistic follows C∗ in restricting to pairwise connectivity

through separate events within a triad. It also addresses two concerns raised by

C∗: First, the 4-paths and 6-cycles in its calculation contain no intermediate edges—

each event is attended by only two of the three actors.5 This eliminates the direct

influence of repeat group attendance.

Another concern is how the population of actors (or of triads) should be weighted

in the calculation. C weights all actors equally, in that any ordered triple of actors

can have at most one 2-path through them in the projection. In contrast, many

4-paths may exist through a single ordered triple in an AN, due to a multiplicity of

shared events, so that more prolific actors will tend to have more influence on the

value of C∗. Because the present study takes an actor-centric approach, the proposed

statistic is designed to weight actors equally.

The statistic is denoted C◦. It asks, provided p and q attend some event without

r, and q and r attend some event without p, what is the probability that p and r

4 Though note that K3,2 contains 6 × 2 = 12 open (and no closed) 4-paths.
5 This choice, and some alternatives, have received their own treatment (Liebig & Rao, 2014).
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Fig. 2. Four ANs (a)–(d) having the same projection (e). (Color online)

attend some event without q? Since C◦ measures TC only through pairwise-exclusive

events, it shall be called the exclusive clustering coefficient.

Example 1.1

Figure 2 depicts four ANs that project to the same the “kite” graph. AN (a) exhibits

TC in the sense of interest, while (b) exhibits TC of the kind C∗ was designed to

ignore. C∗ evaluates to 3
5

at (a) and to 0 at (b), and C◦ agrees on both. C∗ evaluates

to 5
8

at (c), and to 3
4

at (d), due to additional copies of P4 and C6. For instance, six

copies of P4 in (d) proceed from i through j to k, and each is closed. In contrast,

C◦ takes the familiar values 3
5

at (c) and 0 at (d), since it is calculated on the same

numbers of distinct 4-paths and 6-cycles.

By eliminating sources of 3-edge triads other than the popular meaning of TC,

C◦ may help to infer dynamic information from static data. The popular meaning

is dynamic: Actors who are not neighbors, but who have neighbors in common at

one time, become neighbors at a later time (Easley & Kleinberg, 2010; Martin et al.,

2013). If a traditional network G has edges labeled by instants in time, define the

dynamic triadic closure D(G) to be, among those triads at which there is at some

time an open 2-path, the proportion at which there is at a later time a 3-cycle. If G

is an AN with events labeled by time, then D shall be calculated on its projection,

where each edge is labeled by the earliest event that projects to it.

In the traditional setting, if a network has time-labeled edges, no two of which are

simultaneous, then D = s3/(s2 + s3) = C/(3 − 2 × C). In the AN setting, pairwise-

exclusive events are essential to D, since an open 2-path in the projection must

correspond to a triad with only pairwise-exclusive events. While the two calculations

are in general unequal even when no two events are simultaneous, C◦ could provide

a useful estimate of D.

2 Theoretical analyses

This section formalizes the exclusive clustering coefficient and evaluates its theoretical

merits. Section 2.1 develops a formal notion of “triad” for ANs. On this foundation,

Section 2.2 unifies C , C∗, and C◦ into a generic clustering coefficient. This definition

specializes to impracticably many statistics, which Section 2.3 whittles down by

appeal to several properties suited to present purposes. The technical details of this

process are relegated to Section 2.4.
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Fig. 3. An AN (a) of actors i, j, k, l, m and its scheduled subgraphs (b) at {i, j, k, l} and (c) at

{k, l, m}. (Color online)

2.1 Triads

2.1.1 Scheduled subgraphs

A triad-centric approach to ANs requires an object of study. What, then, is a

“triad”? Since the triads of a traditional network are the subgraphsinduced by three

actors, a suitable analog of induced subgraphs for ANs would suffice. This paper

proposes to include those events that establish relations among a set of actors:

Definition 2.1

Given an AN G and a subset W of actors of G, the subgraph of G scheduled by

W is the subgraph induced by the actors W together with all events attended by

at least two actors in W . Scheduled graph maps are defined analogously to induced

graph maps, and the triads of G are the subgraphs scheduled by three actors.

Example 2.2

Figure 3 depicts an AN of five actors and two of its scheduled subgraphs. Note in

particular that the scheduled subgraph on the entire set of actors (not shown) does

not include events 6 and 7, since they play no role in establishing relations among

the actors.6

2.1.2 Triad censuses

The classification of AN triads is straightforward but not trivial. While traditional

triads fall into four isomorphism classes (see Section 2.2.1), AN triads, like triads

of multiedge graphs, may require arbitrarily many, due to the unlimited number of

events two or three actors might attend. Consider an arbitrary triad with actors p, q, r.

Take wpq to be the number of events attended by p and q, similarly define wqr and wpr ,

and take wpqr to be the number of events attended by all three. (Note that wpq does

not depend on r, etc.) Up to isomorphism, it may be assumed that wpq � wqr � wpr
(otherwise relabel the actors). Necessarily, wpqr � wpr .

7 Let μ = (μ1, μ2, μ3) = (wpq −
wpqr, wqr −wpqr, wpr −wpqr) count the “exclusive” events between each pair of actors,

and let w = wpqr count the “inclusive” events attended by all three. The pair (μ, w)

6 This shows that an AN need not be the scheduled subgraph of its actors, contrary to the analogous
property of induced subgraphs. Their projections, however, are the same (up to edge weights).

7 While this scheme is more intuitive storage-friendly enumeration of the triad classes is given by the
quadruple of non-negative integers wpqr − wpq, wpq − wqr, wqr − wpr, wpr .
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Fig. 4. The network DG2 (a), its full triad census (b), and its projection (c). The column in

(b) indicates the number of inclusive events; the row indicates the distribution of exclusive

events across pairs of actors. For example, the triad at (A,B,C) is tallied in column 0, row

(2, 1, 0) (see Example 2.3). (Color online)

determines the isomorphism class of the triad. Since μ1 � μ2 � μ3, μ is an integer

partition of three parts; write μ ∈ Par3. Where ��0 is the set of non-negative integers

and T is the set of triad isomorphism classes, this gives a bijective correspondence

T ↔ Par3 × ��0.

Write Trμw for the triad described above, and sμw = sμw(G) for the number of triads

of G isomorphic to Trμw . The (full) triad census of G is then the array (sμw)μ,w .

The partitions Par3 can be totally ordered, and thereby the census arranged in

a matrix, whose size depends on the network.8 Necessarily,
∑

μ,w sμw =
(|V1|

3

)
. The

triads scheduled from i, j, k in Figure 2 (a)–(d), for example, are Tr(1,1,1),0, Tr(0,0,0),1,

Tr(2,1,1),0, and Tr(0,0,0),3.

This scheme explodes as networks grow dense. The following alternative scheme is

instead bounded, but nonetheless captures useful affiliation structure: The events of

a triad fall into four structural equivalence classes, according to which actors attend

them. Instead of binning triads by how many events they have in each class, bin

them by whether they contain some event in each class. If Trμw has, for example, any

inclusive event (i.e., if w > 0), then Trμw shares a bin with Trμ,1; otherwise it is Trμ,0.

Each bin then contains exactly one representative Trμw with μ1, μ2, μ3, w ∈ {0, 1},
and this bin is determined by the two numbers x = μ1 + μ2 + μ3 ∈ {0, 1, 2, 3} and

y = w ∈ {0, 1}. The structural triad census consists of the eight tallies txy of triads

in each bin. Though containing only twice as many bins as the simple census,

the structural census contains useful additional information (see Theorem 2.7 and

Section 3.1).

Example 2.3

The network DG2, depicted in Figure 4 with its full census and its projection, is taken

from a famous study of the American racial caste system (Davis et al., 1941). As

8 Where n = max(μ), there are bijections σ : Par
(n)
3 → {n+3

3 }, from the partitions in Par3 having parts

� n to the subsets of {1, . . . , n + 3} of size 3, and ρ : {n+3
3 } → {1, . . . ,

(
n+3
3

)
}, which indexes these

subsets; the composition ρ ◦ σ : Par
(n)
3 → {1, . . . ,

(
n+3
3

)
} indexes the partitions. σ is a classical bijection

(Stanley, 2002); ρ is the revolving door ordering (Kreher & Stinson, 1999).
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an example of a social unit, the study presented attendance data for five acquainted

women (“Miss A” through “Miss E”) and five social activities (bridge, dinner,

movies, dance, and visiting), forming an AN. The projection contains three 2-edge

and seven 3-edge triads, so the simple census is (0, 0, 3, 7). (Therefore, incidentally,

C(DG2) = 3×7
3+3×7

= 7
8
.)

These tallies obscure higher-order structure: The seven fully connected triads fall

into four classes. One might be called “symmetric” and “exclusive”: Mss. B, D,

and E attended no events together, but each pair were present at one, so that

their triad is (isomorphic to) Tr(1,1,1),0. Two triads were exclusive but not symmetric:

Mss. C and E attended two events without Ms. A, though Ms. A attended different,

separate events with Mss. C and E; they thus form a triad Tr(2,1,1),0, as do Mss. A,

D, and E. The remaining four were “inclusive”, in that all three women attended

some event together (specifically, the four activities of attendance 3). In each case,

at least one pair of women attended another event together, forming the triads

Tr(1,0,0),1 and Tr(1,1,0),1. The women constituting each of the three 2-edge triads joined

in no single activity together, instead forming three copies of Tr(2,1,0),0. For example,

Mss. A and B attended two events together, Mss. A and C one, and Mss. B

and C none. (As an exercise, the reader might recover the structural census from

Figure 4(a), (b).)

2.2 Category framework

2.2.1 Graph maps

A generic clustering coefficient will be defined in terms of graph maps. For present

purposes, a graph map φ : G → H (“φ from G to H”) shall assign each node v of G

to a node φ(v) in H (the image of v under φ) in such a way that every edge (v, w)

in G is preserved, i.e. (φ(v), φ(w)) is an edge in H . One example is the inclusion of a

subgraph G ⊆ H . A graph map φ : G → H is called induced if the image φ(G) ⊆ H

is an induced subgraph. The images φ(v) in H and the preserved edges among them

form the image of G in H . Two graph maps φ : G → H and ψ : H → K yield

the composition ψ ◦ φ : G → K defined by ψ ◦ φ(v) = ψ(φ(v)). Such a graph map

ψ ◦φ : G → K is said to factor through H; for example, any map φ : G → H factors

through its image φ(G) ⊆ H .

A graph map φ : G → H is injective if it sends no two nodes in G to the same

node in H , and surjective if every node in H is the image of some node in G (its

pre-image); by a “copy” of G in H , or a path or cycle “in G”, shall be meant the

image of an injective map. (By convention, paths and cycles in an AN arise from

maps that send v0 to an actor.) Thus, a 4-path φ : P4 → G is closed if it factors

through C6.

An injective, surjective map is bijective, and a bijective map φ : G → H is an

isomorphism if it is induced—that is, if it preserves absences of edges ((φ(v), φ(w)) /∈
G whenever (v, w) /∈ H). The isomorphisms establish an equivalence relation on

graphs; two graphs related by an isomorphism are said to be isomorphic, and to

lie in the same isomorphism class. Two nodes v, w ∈ G are structurally equivalent if

there is an isomorphism G → G that exchanges v and w and sends every other node

to itself; this establishes an equivalence relation on the nodes of G.
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2.2.2 Categories

While unnecessary, the framework of category theory absorbs some useful and

unobjectionable yet messy assumptions into the notation, provides a catalogue of

natural examples, and avoids unnecessary constraints on the range of possibilities.9

A category C consists of a set of objects; for each pair of objects A,B, a

set HomC(A,B) of morphisms from A to B; and, for each pair of morphisms

f ∈ HomC(B,C) and g ∈ HomC(A,B), the composition f ◦ g ∈ HomC(A,C); all

subject to the following conditions (Mitchell, 1965):

i. (Identity) For every A ∈ C, there exists idA ∈ HomC(A,A) satisfying f ◦ idA = f

and idA ◦ g = g for any f ∈ HomC(A,B) or g ∈ HomC(C,A).

ii. (Associativity) For any triple of morphisms f ∈ HomC(C,D), g ∈ HomC(B,C),

and h ∈ HomC(A,B), f ◦ (g ◦ h) = (f ◦ g) ◦ h.

A subcategory C′ ⊆ C consists of the same objects as C and subsets HomC′ (A,B) ⊆
HomC(A,B) that also form a category. A congruence relation ∼ on C consists

of equivalence relations ∼A,B on each HomC(A,B) that are compatible with the

composition of morphisms, so that the quotient category C/ ∼ is determined by the

objects of C and the equivalence classes of morphisms of C under ∼.

Henceforth, view T as the category of AN triads, with morphisms the graph

maps φ : H → K that assign the actors of H to distinct actors of K (and therefore

send events only to events), and with composition given by (f ◦ g)(v) = f(g(v)). T
can be viewed as a subcategory of the category of graphs (Hell, 1979) (with many

objects omitted). Write HomK
T(G,H) for the set of morphisms from G to H that

factor through K . If G is any AN, write HomT(H,G) (an abuse of notation) for the

set of all morphisms from H to any triad of G.

2.2.3 Clustering coefficients

All three clustering coefficients described in Section 1.2 are expressible in category-

theoretic terms. Let ≈ denote the congruence relation on T given by taking any

two maps that agree on actors to be congruent. For example, there is only one

graph map from P4 to the kite graph (a) in Figure 2 that sends v0, v2, v4 to i, j, k

(respectively), and likewise only one such map to (b). However, there are several

such maps to (c), which are all congruent in T/ ≈. Thus ≈ is a “strong” relation in

that it relates very many morphisms. It turns out that, for an AN G,

C(G) =
|HomC6

T/≈(P4, G)|
|HomT/≈(P4, G)| =

|HomT/≈(C6, G)|
|HomT/≈(P4, G)| . (1)

The Opsahl clustering coefficient restricts the morphisms in Equation (1) to

injective graph maps. It is straightforward to check that these form a subcategory

9 While there are infinitely many AN triads, their combinatorial complexity is limited (see Section 2.1). It
would be short work to classify a useful collection (19, by the author’s count) of clustering coefficients,
in the sense of Definition 2.4 and including C , C∗, and C◦, by which structural equivalence classes
of events the events of W and X may be mapped to, and which of these should then be considered
congruent. This scheme, however, would omit more ad hoc clustering coefficients, for instance one
that requires the events v1, v3 of W to be mapped to exclusive events but places no such constraint on
v5 in X. Such a statistic would violate Axiom 1, but may be very useful in certain settings (compare
to the discussion of STC in Section 3.2).
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T̃ ⊂ T. No congruence relation was imposed; for consistency of notation, write

T̃/ = for T̃, where = denotes equality of graph maps (the weakest possible relation).

C∗ is then realized as

C∗(G) =
|HomC6

T̃/=
(P4, G)|

|HomT̃/=(P4, G)| , (2)

analogously to the first formulation in Equation (1). The present proposal further

restricts the morphisms in Equation (2) to induced injections. These turn out to

form their own subcategory T ⊂ T̃. Additionally, the graph maps that agree on

actors and that send events to structurally equivalent images constitute a congruence

relation � on T (or T), which is weaker than ≈ but stronger than =. The statistic

C◦ is then realized as

C◦(G) =
|HomC6

T/�(P4, G)|
|HomT/�(P4, G)| =

|HomT/�(C6, G)|
|HomT/�(P4, G)| . (3)

2.3 Axiomatic approach

2.3.1 General formulation

What is a “clustering coefficient”, especially in the AN setting? Section 2.2 formulated

three variations on the idea, and this section presents a single unifying definition.

The statistics C and C∗ differ in three respects: the choice between the formulations

in Equation (1) (which sometimes agree), the subcategory of graph maps from which

the morphisms in Equation (1) are drawn, and the congruence relation imposed on

them. Whereas P4 (isomorphic to Tr(1,1,0),0) and C6 (isomorphic to Tr(1,1,1),0) are

now recognizable as two among an infinite collection of triads (see Figure 5), a

fourth choice presents: What makes a triple of actors “open” or “closed”? Another

direct approach (Liebig & Rao, 2014) considered three alternatives to C6: Tr(1,1,0),1,

Tr(1,0,0),2, and Tr(0,0,0),3. (These are the four AN triads whose duals are also triads,

and in fact are self-dual (Breiger, 1974).) Alternatives to P4, sometimes taken in

pairs, were obtained by removing a single event from these. The four choices thus

outlined are incorporated into the following general definition:

Definition 2.4

Pick canonical triads X ∈ T and W ⊂ X, a canonical subgraph relation ι : W → X

(there may be many), a subcategory C ⊆ T, and a congruence relation ∼ on C. A

(global) clustering coefficient of G shall be a statistic of either form

Ĉ(G) =
|HomX

C/∼(W,G)|
|HomC/∼(W,G)| (“rate of wedge closure”) or (4)

Ĉ(G) =
|HomC/∼(X,G)|
|HomC/∼(W,G)| (“alcove-to-wedge ratio”), (5)

where morphisms factor through X only via ι. Call the morphisms HomC/∼(W,G)

the wedges of G—closed if they factor through X, open if not—and HomC/∼(X,G)

the alcoves of G.

Further designate a center actor vc ∈ {p, q, r} in (each) W . Given an actor j ∈ G,

obtain the (local) clustering coefficient Ĉ(j) of j by requiring of the morphisms in
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Table 1. Three measures of global and local triadic closure in DG2.

DG2 Miss A Miss B Miss C Miss D Miss E

Classical 0.875 0.833 1.000 1.000 0.833 0.833

Opsahl 0.611 0.500 0.667 0.667 0.600 0.714

Exclusive 0.600 0.500 1.000 0.500 0.500 0.750
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Fig. 5. Four AN triads from the axiomatic analysis: (a) Tr(1,1,0),0, isomorphic to W ; (b)

Tr(1,1,1),0, isomorphic to X; (c) Tr(0,0,0),2, from the discussion of Axiom 4; and (d) Tr(2,1,1),0, from

the discussion of Lemma 2.14. (Color online)

Equation (4) or (5) that φ(vc) = j and ψ(ι(vc)) = j—that is, that wedges and alcoves

are centered at j. The wedge-dependent clustering coefficient Ĉ� of an AN G shall be

the mean value of Ĉ(j) across the actors j at which exactly � wedges are centered.

By letting X range over the four self-dual triads; C over T ⊇ T̃ ⊇ T; ∼ over

=, �, and ≈; and adopting either Equation (4) or (5), Definition 2.4 specializes to

4 × 3 × 3 × 2 = 72 distinct and fairly straightforward statistics, including C , C∗, and

C◦.10 For present purposes, the best choice of X is clearly Tr(1,1,1),0, leaving W =

Tr(1,1,0),0. These choices are assumed henceforth. (Note, however, that Theorem 2.6

does not require this assumption.)

Example 2.5

Evaluations of C , C∗, and C◦ at DG2 (Table 1) are illustrative: Each pair of women

differ by at least one statistic, implying that they all occupy structurally distinct

neighborhoods; none of the statistics, however, distinguishes them all. While C∗ and

C◦ take lower values than C , the rankings of the actors are loosely correlated. Of

particular interest are Mss. B and C, whom C∗ and C do not distinguish but who

take opposite values of C◦. At Miss B, the 4-path (A, 3, B, 4, E) is an open wedge to

C∗ but not a wedge at all to C◦; at Miss C, the 4-path (D, 1, C, 5, E) is as a wedge

to both C∗ and C◦ but only closed to C∗.

C∗ attributes high TC to Miss C because her friends remain better connected when

she is removed from the network, while the events she attended remain. In contrast,

C◦ attributes high TC to Miss B because her friends remain better connected when

she is removed from the network along with the events she attended. The statistic

C∗ thus detects TC that relies in part on inclusive events, which C◦ does not.

The remainder of this section comes with a warning that the labeling schemes

for triad nodes vary by context: Canonical triads Trμw have actors p, q, r such that

10 In fact, some of these turn out to be the same statistic; for example, assuming X = Tr(1,1,1),0, T/ �
and T/ ≈ both yield C◦.
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wpq � wqr � wpr (and unlabeled events); W and X adopt the schemes v0, v1, . . . for

P4 and C6 from Section 1.2; and triads in larger ANs are scheduled at (ordered)

triples of actors (i, j, k) with events a, b, . . . .

2.3.2 Axioms

Section 1.2 delineated three desired properties for a new clustering coefficient:

account for event size, as C∗ does; further account for repeat group attendance;

and weight actors equally, as C does but C∗ does not. This section wraps these

desiderata into four axioms on Ĉ . These are not suited to all settings, but they do

help organize the myriad statistics that arise from Definition 2.4.

The first two axioms capture important features of C∗. In order to prevent single

events from forming closed wedges, C∗ is defined using only injections, from T̃;

Axiom 1 requires that C include induced injections (though not all injections). In

order to allow distinct events to contribute distinct wedges, C∗ removed the very

strong congruence relation ≈ imposed on the morphisms of C; Axiom 2 allows

equivalences only when events are at least structurally equivalent.

Axiom 1 (Induced injections)

All induced injections (hence all isomorphisms) are morphisms (i.e. C contains T).

Axiom 2 (Structural equivalence)

The images of an (event) node under congruent morphisms are structurally equiva-

lent (i.e. ∼ is no stronger than �).

The last two axioms address the concerns raised with C∗. Axiom 3 addresses the

problem of weighting by admitting at most one wedge at any ordered triple. Axiom 4

addresses the influence of bicliques by attacking their symptom: the counterintuitive

way that each actor of a triad can have a wedge with none of the wedges being

closed, which is not possible under C . The idea is that two wedges with different

centers “hook together” (overlap) at their shared “side” (pair of actors), closing each

other, which is here called “wedge buckling”. (Imagine rotating either “open” triad

in Figure 1 by 120◦ and overlaying it with itself.) C∗ violates this idea, for example

at Figure 5(c).11

Axiom 3 (Equal representation)

At each ordered triple, there exists exactly one of the following: no wedge, one open

wedge, or one closed wedge.

Axiom 4 (Wedge buckle)

If wedges exist at two ordered triples with different centers in a triad, then both are

closed.

2.3.3 Theorems

Three useful properties follow from certain subsets of the axioms: two triadic

formulations of Ĉ , which aide conceptualization and computation (Theorems 2.6

11 One could instead simply impose as an axiom the restriction of wedges and alcoves to exclusive
events; Axiom 4 provides an alternative framing for the problem.
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and 2.7), and one characterization (Theorem 2.8). The proofs constitute the next

section.

Theorem 2.6 (Triad census formulation)

For each triad Trμw , write the numbers

Fμw = |HomC/∼(W,Trμw) \ HomX
C/∼(W,Trμw)|

Sμw = |HomX
C/∼(W,Trμw)|

of open and closed wedges, respectively, at Trμw . If Ĉ is defined using Equation (4),

then

Ĉ(G) =

∑
μ,w

sμw(G)Sμw

∑
μ,w

sμw(G)(Fμw + Sμw)
. (6)

Theorem 2.6 decomposes the rate-of-closure calculation into a ratio of motifs,

according to the distribution of triads in G. The theorem proves useful in imple-

menting the various global statistics, which may then be computed via arithmetic

on the full census.

Theorem 2.7 (Wedge binning formulation)

Assume Axioms 1, 3, and 4. Then the triads of G can be binned into subsets S∅(G),

SW (G), and SX(G) according as they contain none, two open, or six closed wedges;

and

Ĉ(G) =
3|SX(G)|

|SW (G)| + 3|SX(G)| . (7)

Theorem 2.7 generalizes the simple triad census description of C in Section 1. C∗

does not satisfy these criteria, but C◦ does; it is recoverable from the structural triad

census as C◦ = 3 × (t30 + t31)/(t20 + t21 + 3 × (t30 + t31)).

Theorem 2.8 (Existence and uniqueness)

There exist unique choices of X, W , C, and ∼ that satisfy Axioms 1, 2, and 3.

Moreover, these choices also satisfy Axiom 4. Under them, Equations (4) and (5)

both produce C◦.

Theorem 2.8 characterizes those specializations of Ĉ that satisfy every axiom.

C◦ turns out to be the unique such statistic. At the heart of Theorem 2.8 lies the

tension between Axiom 2 and Axiom 3. The former forces different types of wedges

to be treated differently, and the latter allows only one of these types to figure into

the formula. The upshot is that any alternative to C◦ still expressible in terms of

Definition 2.4 comes at the cost of at least one axiom.

2.4 Proofs

2.4.1 Triadic formulations

A different batch of lemmas leads up to each of the second two theorems, and

Theorem 2.7 also depends on Theorem 2.6. To simplify the notation, in this section

let Hom (with no subscript) denote the unspecified HomC/∼.
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Proof of Theorem 2.6

The wedges Hom(W,G) can be partitioned according to which triad of G contains

their images. The triads of G are, in turn, partitioned by the full census. Since the

morphisms counts are fixed for isomorphic triads,

Ĉ =

∑
H⊆G

|HomX(W,H)|
∑
H⊆G

|Hom(W,H)|
=

∑
μ,w

( ∑
Trμw∼=H⊆G

|HomX(W,Trμw)|
)

∑
μ,w

( ∑
Trμw∼=H⊆G

|Hom(W,Trμw)|
)

=

∑
μ,w

sμw × Sμw

∑
μ,w

sμw × (Fμw + Sμw)
,

where H ⊆ G ranges over the triads of G. �

Lemma 2.9

Assume Axiom 1.

i. If Trμw has an alcove, then every ordered triple of Trμw has an alcove.

ii. Given actors i, j, k ∈ G, there is an openness-preserving bijection between the

wedges of i, j, k and those of k, j, i.

Part (i) follows from the symmetry of X: Whatever the order of the actors, the

structure of the triad is the same. Part (ii) follows analogously from the more limited

symmetry of W , which allows v0, v1 to be interchanged with v4, v3 with no effect on

the structure. (See Figure 5(a), (b).)

Proof

For (i), pick ψ ∈ Hom(X,Trμw) and suppose ψ takes v0, v2, v4 to i, j, k. Pick any

permutation π ∈ S3 so that π(i, j, k) is an arbitrary ordered triple in Trμw , and let

ρπ : X → X be the isomorphism taking v0, v2, v4 to π(v0, v2, v4), which by Axiom 1

is a morphism. The composition ψ ◦ ρπ : X → Trμw is then a morphism that takes

v0, v2, v4 to π(i, j, k).

For (ii), let ρ : W → W be the isomorphism on W that exchanges v0 and

v4, which is a morphism by Axiom 1. Composition with ρ assigns any wedge

φ : W → G that sends v0, v2, v4 to i, j, k to a wedge φ ◦ ρ that sends v0, v2, v4 to k, j, i.

Moreover, since ρ ◦ ρ is the identity morphism on W , another composition with ρ

takes φ ◦ ρ back to (φ ◦ ρ) ◦ ρ = φ ◦ (ρ ◦ ρ) = φ. Composition with ρ thus pairs

up the wedges of the triad i, j, k centered at j (no wedge is paired with itself). If

such a wedge φ factors through X as φ = ψ ◦ ι, then φ ◦ ρ factors through X as

φ ◦ ρ = (ψ ◦ ι) ◦ ρ = ψ ◦ (ι ◦ ρ) = ψ ◦ (ρ′ ◦ ι) = (ψ ◦ ρ′) ◦ ι, where ρ′ : X → X is the

isomorphism on X that exchanges v0 and v4. Thus φ and φ ◦ ρ are open or closed

together. �

The next two lemmas push the binning scheme of Theorem 2.6 from triads to

ordered triples. The simplicity of Equation (7) comes from the fixed number of

possible wedges (one for each ordered triple; Axiom 3) and the symmetries between

them (Lemma 2.9 and Axiom 4).
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Lemma 2.10

Assume Axioms 1 and 4. Then, if a triad has two wedges with different centers, then

every ordered triple in the triad has an alcove.

Proof

By Axiom 4, such a triad has a closed wedge, hence an alcove. By Lemma 2.9(i), it

then has an alcove at every ordered triple. �

Lemma 2.11

Assume Axioms 1, 3, and 4. Then each triad has exactly one of the following: no

wedges, two open wedges, or six alcoves.

Proof

Each triad contains six ordered triples, which by Axiom 3 have at most one wedge

each. Lemma 2.9(ii) requires that the wedges centered at any one actor either do not

exist, are both open, or are both closed. Lemma 2.10 implies that, if two ordered

triples with different centers have wedges, then all six have closed wedges. Thus the

possible distributions of wedges among the six ordered triples are none, a pair of

open wedges (at the same center), and six closed wedges. �

Proof of Theorem 2.7

Theorem 2.6 provides Equation (6), which respects triad classes. Lemma 2.11 implies

that either Sμw = Fμw = 0, Sμw = 0 and Fμw = 1, or Sμw = 3 and Fμw = 0 for

every triad class. Binning these classes into S∅, SW , and SX , respectively, achieves the

result. �

2.4.2 Characterization

The characterization theorem takes place over three steps: First, the three assumed

axioms only allow wedges and alcoves with no inclusive events (T). (This makes

Axiom 4 unnecessary.) Second, the equal representation of Axiom 3 requires that any

wedges at the same ordered triple of actors are congruent (≈), but when inclusive

events are ignored the weaker relation � is enough. This limits the options to the two

formulations in Definition 2.4 under the category T/ �. Third, these formulations

agree under certain conditions, which turn out to be satisfied under T/ �.

Lemma 2.12

Assume Axioms 1, 2, and 3. Then any wedge or alcove is an induced injection.

Proof

The only way for a wedge or alcove to not be an induced injection is for it to

send some event to an inclusive event. Suppose the alcove ψ : X → G sends

v0, v1, v2, v3, v4, v5 to i, d, j, e, k, f, where at least one of the events d, e, f is inclusive

to the triad at i, j, k. (d, e, and f need not be distinct.) If d or e is inclusive, then

ψ ◦ ι : W → G is a wedge with an inclusive event. If only f is inclusive, then let

ρ : X → X be the isomorphism sending v0, v1, v2, v3, v4, v5 to v2, v3, v4, v5, v0, v1, so that

the composition ψ ◦ ρ ◦ ι : W → G sends v0, v1, v2, v3, v4 to j, e, k, f, i. By Axiom 1,

ψ ◦ρ◦ ι is a wedge with an inclusive event. It is enough, therefore, to prove the result

for wedges.
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Fig. 6. From the proof of Lemma 2.12: (a) the image of ψ : W → G and (b) the necessary

subgraph of G containing (a). (Color online)

So suppose the wedge φ : W → G sends v0, v1, v2, v3, v4 to i, d, j, e, k, where at

least one of d and e is inclusive to the triad at i, j, k. Obtain G′ from G by adding

events f, attended only by i and j, and g, attended only by j and k. (See Figure 6.)

The subgraph inclusion σ : G → G′ is an induced injection, hence by Axiom 1

a morphism. Then the composition σ ◦ φ : W → G′ is a wedge. The graph map

φ′ : W → G′ sending v0, v1, v2, v3, v4 to i, f, j, g, k is an induced injection since f and

g are exclusive events, so by Axiom 1 φ′ is also a wedge—at the same ordered

triple as σ ◦φ. Axiom 2 implies that these wedges are incongruent, which contradicts

Axiom 3. Thus, φ cannot exist. �

Lemma 2.13

Assume Axiom 3. Then ∼ is at least as strong as ≈ on the wedges and alcoves.

Proof

The claim is that any two wedges or alcoves on the same ordered triple of actors

are congruent. If they were not, then Axiom 3 would be violated. �

The pullback ι∗ : Hom(X,G) → Hom(W,G) sends any alcove ψ ∈ Hom(X,G) to

the wedge ψ ◦ ι : W → G. To understand Lemma 2.14, note that the image of ι∗

is in HomX(W,G)—that is, each such ψ ◦ ι factors through X (via the morphism ψ

began with).

Lemma 2.14

Equations (4) and (5) yield the same statistic if and only if ι∗ is injective.

This lemma is not satisfied, for instance, by the category T̃/ = underlying C∗:

The wedge φ : W → Tr(2,1,1),0 (Figure 5(d)) sending v0, v2, v4 to v2, v4, v0 can be closed

by either of the events shared by v0 and v2. C
∗, defined using Equation (4), counts

this as one closed wedge. Its counterpart Ĉ , defined using Equation (5), however,

counts two alcoves, one for each choice of event—that is, φ factors through X in

two ways. (Under this statistic, in fact, Ĉ(Tr(2,1,1),0) = 6
5
.)

Proof

Given φ ∈ HomX(W,G), by definition there exists ψ ∈ Hom(X,G) such that φ =

ψ ◦ ι; thus, in any case, ι∗ has image HomX(W,G). The second condition therefore

amounts to ι∗ being a bijective correspondence between its domain Hom(X,G)

and its range HomX(W,G). Since ι∗ is surjective and its domain and range are

finite, this is true if and only if the domain and range have equal size. Since

the denominators of Equations (4) and (5) are equal, this is true if and only

if the formulations are equal, unless both are undefined. This occurs only when
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Hom(W,G) is empty, in which case both Hom(X,G) and HomX(W,G) are also

empty. �

Proof of Theorem 2.8

Lemma 2.12 implies that wedges and alcoves are induced injections. By Axiom 1,

all of these are morphisms. As far as Definition 2.4 is concerned, then, C is T.

Lemma 2.13 implies that the congruence relation ∼ is no weaker than ≈. Since

the events of two wedges or alcoves at the same ordered triple must be exclusive,

hence structurally equivalent in the triad, the relations � and ≈ have the same effect

in this case; C/ ∼ is T/ �. This establishes uniqueness.

For the auxiliary claim, suppose ψ,ψ′ ∈ HomT/�(X,G) are incongruent. By the

choice of T, their respective images of v1, v3, v5 must be exclusive. If ψ,ψ′ agree on all

three actors, then, by the choice of �, they are congruent. So ψ,ψ′ must disagree on

some actor; say ψ(v0) �= ψ′(v0). This implies that ψ◦ι(v0) = ψ(v0) �= ψ′(v0) = ψ′ ◦ι(v0),
hence that ι∗(ψ) �= ι∗(ψ′). Thus, ι∗ is injective. By Lemma 2.14, both formulations of

Definition 2.4 produce the same statistic.

It remains to verify that C◦ actually satisfies each axiom; this is left to the

reader. �

3 Empirical analyses

This section applies the triadic approach, including C , C∗, and C◦, to three empirical

networks: Section 3.1 assesses the clustering coefficients as measurement instruments,

by comparing their performances on the empirical networks. The assessments

consider reliability, validity, redundancy, and practicality, and are illustrated in

two case studies. Section 3.2 performs triadic analyses of the empirical networks,

using the census and the clustering coefficients. The analyses draw upon and extend

concepts from previous studies (see Section 1.1), including STC, brokerage, and

influence.

3.1 Instrumentation

3.1.1 Data

The analyses employ three empirical networks: The social activity attendance

network DG1 comes from another table in the same study as above (Davis et al.,

1941), and has seen extensive use as a test case for node classification and community

detection techniques (Freeman, 2003). A subset of interlocking directorates data,

from a study of corporate philanthropy in Minneapolis–St. Paul (Galaskiewicz, 1985;

Wasserman & Faust, 1994), constitute GWF. Finally, MR refers to the collaboration

network constructed from the Mathematical Reviews bibliographic database, which is

maintained by the American Mathematical Society, over the years 1985–2008. These

networks are constructed from a range of types and volumes of social interaction

data and have appeared in previous studies that provide checks and comparisons

for the present work. Two (DG1 and MR) have time-labeled events.12

12 DG1 is assumed to consist of events spanning nine months (Freeman, 2003); however, whereas the
study took place over two years, other orderings are not impossible.
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Table 2. Structural censuses of DG1, GWF, and two intervals of MR. The column indicates

the presence (1) or absence (0) of an inclusive event; the row indicates the number of pairs of

actors who attend at least one exclusive event.

DG1 GWF MR (1985–1987) MR (2005–2007)

0 1 0 1 0 1 0 1

0 0 17 0 284 80, 747, 526, 018, 836 17, 275 725, 892, 036, 097, 769 76, 558

1 39 240 266 886 4, 721, 138, 210 8, 611 38, 496, 757, 064 51, 599

2 146 253 452 521 133, 630 2, 014 909, 505 15, 185

3 45 76 130 61 886 129 5, 585 1, 055

Table 2 presents the structural censuses of the networks. The higher-order structure

lost in projection lives mostly in the second column of each census. Several differences

between DG1 and GWF, on one hand, and MR, on the other, are apparent: MR is

far larger, with triads concentrated among the less-connected; “symmetric exclusive”

triads (t30, see Example 2.3) make up a minuscule fraction, undercut only by that

of “symmetric complete” triads (t31). In contrast, DG1 and GWF have remarkably

similar profiles: the event-free triads number t00 = 0, and the largest tallies occupy

a northeast–southwest diagonal band away from the least- and most-connected

types. This indicates that the smaller networks are more uniformly connected, with

fewer poorly connected actors. This difference likely reflects non-uniformity in the

coverage of researchers in MR (Lee & Cunningham, 2014), e.g. as researchers on

the periphery of mathematics appear less frequently in MR.

The editors assign to each publication one primary and any number of secondary

Mathematical Subject Classification (MSC) codes from a hierarchical scheme. At

the coarsest level, publications are binned into 64 groups (for instance, algebraic

geometry, partial differential equations, and astronomy and astrophysics). For the

assessments, 64 subnetworks are constructed by partitioning the literature by primary

classification. Of these, 39 satisfy the following inclusion criteria over each adjacent

three-year interval from 1985–1987 to 2006–2008: the literature is not empty; each

of C , C∗, C◦, and D is defined; and no two of these statistics are zero. Since

their curation and construction are systematic, differences in structure among these

networks should only reflect differences in the cultures of research publication and

limitations of MR coverage. (Nonetheless, size and density are known to influence

measures of TC.)

3.1.2 Criteria

While the statistics surveyed in Section 1.2 are hopefully intuitive, it is not yet

clear that they are useful instruments.13 This section assesses the local and global

definitions of C , C∗, and C◦ on the basis of stability, concurrent validity, discrim-

inability (meant to reflect practicality), and distinguishability (non-redundancy). The

assessments are performed on three samples: the 18 actors of DG1, the 26 actors

13 Strictly speaking, the “instrument” that assigns a clustering coefficient to a social network includes the
collection of sociometric data and the construction of the bipartite graph as well as the graph-theoretic
calculation and the device that performs it; only the calculation is meant here.
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of GWF, and the 39 disciplines of MR (along adjacent three-year intervals). The

criteria are conceptualized and assessed as follows:

• An instrument is stable if it yields similar measurements of the same subject

at different times. Stability is assessed, on pairs of values at the same MR

discipline at adjacent intervals, as the proportion SSM
SST

of the variation in the

values accounted for by the pairing in a one-way analysis of variance (Altman

& Bland, 1983).

• Both C∗ and C◦ are hypothesized to measure properties of graphs that can

also be measured in other ways: As mentioned in Section 1.2, an alternative

correction to C for event size in ANs is the quotient of C by its expected value

Crand on an equivalent random bipartite graph.14 Section 1.2 also suggested

that C◦ may measure dynamic TC, defined as D. The concurrent validity of

each measure shall be assessed as its coefficient of determination R2 with its

alternative (Kimberlin & Winterstein, 2008).

• Two instruments designed to measure distinct properties shall be called

distinguishable if they yield divergent values on the same subjects. Whereas the

coefficient of determination between these values gives their concurrent validity,

the remaining proportion of variance, 1−R2, shall assess their distinguishability.

• An instrument is discriminable if its values in practice are dispersed throughout

its theoretical range (Comin et al., 2015). (Section 1 criticized C for having

low discriminability on ANs.) Discriminability is assessed as the variance s2

of an instrument’s values for a sample of subjects; the standardized values 4s2

are reported, so that discriminability theoretically ranges from 0 (all values

equal; statistic is useless) to 1 (values evenly split between 0 and 1; statistic

perfectly dichotomizes the subjects). A statistic whose values follow a Gaussian

distribution centered at 0.5 with standard deviation 0.25 (and cut off at the

95% thresholds) has discriminability just under 1
4
, while one whose values are

uniformly distributed has discriminability 2
3
.

On MR, each assessment is performed on the pooled values across all intervals.

For instance, each statistic’s stability is computed on 39 × 7 = 273 ordered pairs of

values.

3.1.3 Results

The test results constitute Table 3. (Non-meaningful or redundant cells are left

empty. Plots for each assessment are included in the supplement.) C is by far the

most stable of the statistics ( SSM
SST

= 0.78), with less than half of the variation

in C∗ and C◦ each interval accounted for by the previous. Tests of validity were

inconsistent. C∗ was highly correlated with C/Crand across the women of DG1, but

much less so across the CEOs of GWF and the disciplines of MR. Conversely, C◦

accounted for 40% of the variance in D across the disciplines but none across the

women. Some heteroskedasticity is also visible in the plots of C◦. There is strong

14 Here, Crand is calculated two ways: For the smaller networks DG1 and GWF, take the mean (local)
values of C across 1,000 randomly generated bipartite graphs having the same actor and event
degree sequences (Chen et al., 2005; Admiraal & Handcock, 2008). For the MR subnetworks, use the
asymptotic approximation (Newman et al., 2001).
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Table 3. Evaluations of three clustering coefficients taken over actors (DG1 and GWF) or

subnetworks (adjacent three-year intervals of MR).

Classical Opsahl Exclusive

DG1 GWF MR DG1 GWF MR DG1 GWF MR

Stability 0.781 0.403 0.457

Validity 0.622 0.296 0.113 0.058 0.399

Dist. (Classical) 0.950 0.940 0.999 0.492 0.732 0.924

Dist. (Opsahl) 0.915 0.592 0.948

Discriminability 0.005 0.013 0.047 0.051 0.050 0.026 0.205 0.224 0.001

Table 4. Measures of local triadic closure and centrality in DG1.

TwoWalk

Classical Opsahl Exclusive Dynamic TwoWalk Eigenvector Corrected

Evelyn 0.897 0.767 0.448 0.576 0.319 0.335 0.015

Laura 0.962 0.842 0.487 0.692 0.286 0.309 0.023

Theresa 0.897 0.752 0.145 0.650 0.358 0.371 0.013

Brenda 0.962 0.839 0.450 0.692 0.292 0.313 0.021

Charlotte 1.000 1.000 1.000 1.000 0.154 0.168 0.014

Frances 0.962 0.869 0.778 0.000 0.198 0.209 0.011

Eleanor 0.962 0.796 0.531 0.692 0.220 0.228 0.008

Pearl 0.933 0.646 0.467 0.636 0.187 0.180 −0.007

Ruth 0.897 0.670 0.328 0.650 0.242 0.236 −0.006

Verne 0.897 0.674 0.393 0.576 0.231 0.218 −0.013

Myra 0.933 0.714 0.556 0.273 0.204 0.187 −0.017

Katherine 0.933 0.770 0.536 0.273 0.237 0.220 −0.017

Sylvia 0.897 0.746 0.300 0.576 0.292 0.277 −0.015

Nora 0.897 0.838 0.663 0.725 0.281 0.264 −0.017

Helen 0.897 0.816 0.661 0.611 0.215 0.201 −0.014

Dorothy 0.933 0.541 0.467 0.000 0.143 0.131 −0.012

Olivia 1.000 0.581 1.000 1.000 0.088 0.070 −0.019

evidence here that these instruments are closely related, but only in certain limited

settings.

The three statistics are highly distinguishable; at worst, C explains half of the

variance in C◦ across the women of DG1 (1−R2 = 0.49). This, residual plots reveal,

is due to a consistent negative relationship. C and C∗ are poor discriminants, but on

the actors of the smaller networks C◦ takes values nearly as distributed over [0, 1]

as the hypothetical cut-off Gaussian. This makes sense in light of the higher average

rates of TC in DG1 and GWF; by comparison, the many highly connected triads of

MR are overwhelmed by the more partially connected, which C is better equipped

to discriminate among (and does). Overall, the assessments lend some legitimacy to

the uses of C , C∗, and C◦ in the next section, but more persuasive assessments of

single-value network statistics would be helpful.

Example 3.1

Consider the TC of the women who constitute DG1 (Table 4, with structural

equivalents Olivia and Flora represented by Olivia. Centrality scores will be used
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in Section 3.2. The supplement contains the table for GWF). Partitioning and core–

periphery algorithms tend to identify Pearl, Ruth, and Verne as intergroup bridges

or peripheral group members (Freeman, 2003), though in terms of classical TC

their neighborhoods are unremarkable. In contrast, these women exhibit the lowest

Opsahl TC of the group, and two (Ruth and Verne) are among the three with

lowest exclusive TC. These observations attest to the greater discriminability of

these statistics.

Pearl, however, has exclusive TC on par with several women in the cores of the

two communities (Evelyn, Laura, and Dorothy). Theresa and Sylvia, on the other

hand—who are usually placed near the cores of their respective groups within DG1,

rather than toward the periphery with Ruth and Verne—show lower exclusive TC.

This is due to the high number of events (8 and 7) these women attended. It may be

that the study window omitted events attended by their neighbors in their absence,

though both women attended events as early as March and as late as September,

making this less likely; or it may be that these women played distinctive networking

roles in their respective groups, to which traditional algorithms are not sensitive (see

Section 3.2).

Example 3.2

A previous study of MR (Brunson et al., 2014) compared two subnetworks,

constructed via a nearly even partition of primary MSCs into “pure” and “applied”.15

The analysis of TC used C and C/Crand; the time series are reproduced in Figure 7

(“Classical” and “BipartiteCorrected”). While C revealed persistent properties of

MR, e.g. that the applied research community saw more classical TC than the pure,

C/Crand revealed discordant trends in pure and applied research. Both statistics

arguably discriminated well, and certainly they were distinguishable from each

other.

Figure 7 also includes time series for C∗ and C◦. While the networks’ bipartite-

corrected and Opsahl clustering coefficients trend differently in normalized terms,

they trend similarly relative to each other. More impressive is the stark resemblance

between C◦ and D, up to scale. C∗ and C◦ both are less discriminating than

C in absolute terms, though all three are clearly distinguishable. Like C , C◦

measures a persistent difference between the research cultures: Pure research is better

characterized by exclusive (or dynamic) TC than applied. The negative relationship

between C and C◦ is evident here: the relative values of C◦ are inverted from those

of C , both in the ordering of the networks and in the concavity of the trends.

3.2 Triadic closure in affiliation networks

3.2.1 Strong triadic closure

In social networks with ties of different strengths, the STC hypothesis (Section 1.1.1)

predicts that, when two pairs of actors in a triad are strongly tied, then the third

pair will tend to be at least weakly tied (Granovetter, 1973). Investigators have

formalized and tested this principle in a variety of ways, often in terms of the

15 The partition is coarse and provisional, but reveals a real difference between the research cultures;
these subnetworks displayed consistently and characteristically different behavior.

https://doi.org/10.1017/nws.2015.38 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.38


Triadic analysis of affiliation networks 501

●

●

●
●

●
●

●

●

●

●

●
● ● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

Classical Opsahl Exclusive

BipartiteCorrected Dynamic

0.30

0.35

0.40

0.45

0.50

0.175

0.200

0.225

0.250

0.275

0.015

0.020

0.025

0.030

1.75

2.00

2.25

2.50

2.75

0.003

0.004

0.005

0.006

1990 1995 2000 2005

1990 1995 2000 2005 1990 1995 2000 2005
End year

S
ta

tis
tic

Network
● Aggregate

Pure

Applied

Fig. 7. Three global clustering coefficients and alternative measures for two, on the

aggregate, pure, and applied MR networks along adjacent three-year intervals.

frequency, duration, or intimacy of relations, or of the proportion of relations above

some threshold of strength (Freeman, 1992). One conversion approach to STC in

ANs is therefore to apply these methods to a weighted projection.

The full triad census offers a direct approach: Within a triad, it makes sense to

infer stronger ties between actors from exclusive events than from inclusive events,

consistent with the principle that higher-attendance events foster weaker pairwise

connections (Gupte & Eliassi-Rad, 2012). Accordingly, take the wedge strength of

the ordered triple (i, j, k) to be the number of 4-paths along exclusive events from i

through j to k, and take i and k to be (at least) weakly tied if there is any 2-path

between them. Thus, the triple (p, q, r) in the triad Trμw have wedge strength μ1 × μ2

and are weakly tied if μ3+w > 0. STC shall be measured in an AN as the probability

of a weak tie conditional on wedge strength.16

Figure 8 presents the conditional probabilities for DG1, GWF, and MR over three

evenly spaced three-year intervals, using a square-root scale on the horizontal axis.

In DG1 and GWF, increasing wedge strength is associated (albeit noisily) with a

lower rate of weak tie formation, in defiance of STC. In contrast, STC in MR is

well-modeled by the proportionality

Pr(μ3 + w > 0 | μ1 × μ2 = s) ∝ s
1
2 . (8)

Furthermore, though STC makes no predictions about the proportion of ties between

actors who have no neighbors in common (the case s = 0), in MR this case is well

extrapolated from the pattern across wedges of positive strength. Also noteworthy

is that the value of s appears stable over time.

16 An alternative measure is the expected number of events attended by i and k, conditioned on the
wedge strength of (i, j, k). The results in MR, not reported, are similar to those shown.
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s, up to s = 20. (Note the square root–scale horizontal axis.)

3.2.2 Connectedness and constraint

The STC hypothesis is intimately tied to the study of brokerage, in that connections

among an actor i’s neighbors can be thought to constrain i’s potential to broker

between them (Burt, 1992). Constraint is formulated as a product of i’s investment

in connecting with other actors and the connectedness of these neighbors with each

other. The local clustering coefficient provides a simple model of constraint: If i has

d neighbors, one of whom is j, and j is tied to d(j) of i’s other neighbors, then the

constraint on i due to j can be defined as

c(i, j) =
1

d
× d(j)

d− 1
=

d(j)

d(d− 1)
,

with total constraint c(i) =
∑

j c(i, j) = C(i). An equivalent formulation,

c(i, j) =
|{wedges at i w/ j}|

|{wedges at i}| × |{closed wedges at i w/ j}|
|{wedges at i w/ j}|

=
|{closed wedges at i w/ j}|

|{wedges at i}| , (9)

generalizes neatly to the terms of Definition 2.4. Thus, the family of local clustering

coefficients may be viewed as a family of alternative measures of constraint in

ANs.17

This presents an opportunity to explore the relationship between connectedness

and constraint. As originally defined, constraint decreases with neighborhood size,

holding network density constant. A subtle change in definition, from a focus on

proportional investment to one on marginal investment, instead produces polynomial

growth in constraint due to a strong interaction effect with local density. In both

theoretical (Szabó et al., 2003) and empirical (Ravasz et al., 2002; Vázquez, 2003)

17 This should be compared cautiously to previous approaches that conditioned bipartite clustering
coefficients on node degree rather than a definition-specific wedge count (Lind et al., 2005; Opsahl,
2013).
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Fig. 9. Three wedge-dependent local clustering coefficients in MR. Note that C� is only

defined when � = k(k − 1) for some integer k.

studies, the classical clustering coefficient exhibits the power law relationship

C� ∝ �−1 (10)

(which resonates with the former definition but actually reflects differences in local

density). The family of measures encoded in Definition 2.4 may likewise be expected

to behave differently, depending on the variety of TC they measure.

Taking C to be T and taking the quotient by = effectively weights the local

connectivity of i, as measured by the wedge count at i, by the number of i’s

neighbors and the multiplicity of i’s shared events with them, moderated by the

extent of overlap of these events among the neighbors. As a measure of constraint,

then, C∗
� is highly sensitive to compounding constraint by multiple events, even

between the same small subset of i’s neighbors. In contrast, C◦
� is sensitive only to

pairs of i’s neighbors with at least one exclusive common event each (due to the

restriction to T) and is equally sensitive to constraints on i’s strategic position with

respect to any such pair (Theorem 2.7). That is, C∗
� measures constraint weighted

according to the strengths of the relationships (multiplicity of events) between i

and two of their neighbors, while C◦
� measures constraint in the form of channels

of exchange, hidden from i, between neighbors having their own separate exclusive

channels with i.

Figure 9 depicts C�, C
∗
� , and C◦

� on MR, taken over the same three intervals as in

Section 3.2.1.18 C� follows the expected power-law-shaped curve, which persists over

time. In contrast, the long-term trend in C∗
� is upward, and exhibits large fluctuations

with persistent peaks (e.g. at � = 12 and � = 24), an expected artifact of biclique

18 Scatterplots of values in DG1 and GWF are included in the supplement.
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proliferation.19 C◦
� mimics C�: The long-term trend is downward and concave, and

the fluctuations are modest and transient.

Under the assumption that multiple shared events compound and interact to

produce many multiple brokerage opportunities, the associated measure of constraint

C∗
� compounds enough in kind to outpace it. On these terms, it is not necessarily

to i’s advantage to accumulate neighbors through attendance at common events. In

contrast, the constraint C◦
� imposed by exclusive channels among i’s neighbors di-

minishes with increased brokerage opportunities through i’s own exclusive channels.

As in the classical case, therefore, it is unambiguously to i’s advantage to maintain

many neighbors through mutually exclusive channels. These results demonstrate the

range of possible behaviors for a custom measure of constraint, and the importance

of specifying the brokerage patterns of interest.

3.2.3 Constraint and influence

The preceding analysis interpreted the classical relationship between node degree

and local clustering coefficient in terms of brokerage opportunity and constraint, and

extended it to alternative formulations of brokerage in ANs. Like early conceptions

of constraint, the analysis was restricted to the structure of an actor i’s neighborhood.

Yet research on the roles of actors has long incorporated their positions relative

to the entire network, as popular conceptions of centrality—closeness, betweenness,

and eigenvector—attest. This last analysis attempts to discern whether the observed

trade-offs are local or global phenomena, via a different extension of the same

classical relationship.

Social influence is often measured by eigenvector centrality, based on the recursive

principle that an actor accumulates influence through connections with other

influential actors (Faust, 1997; Borgatti & Halgin, 2011). The eigenvector centrality

of i can be expressed as the cumulative influence of i through walks (paths that

may repeat nodes and edges) of at most some specified length, starting with 1 (node

degree). This calculation can be inverted to produce a measure of influence through

walks of at least some length (Bonacich, 1991): If the �-walk centrality scores of the

nodes of an AN G constitute the vector c� = (c�(1), . . . , c�(n)), and the eigenvector

centrality scores comprise c∞,20 then the �-walk-corrected centrality scores, which

may be positive or negative, constitute c∞ − c�. The actors’ 2-walk centrality scores

provide a measure of the local component of their influence that is self-contained, i.e.

that does not depend on the measure of constraint. Their 2-walk-corrected centrality

scores measure the global component.

Each of i’s neighbors is accessible to i via some 2-walk, so that c2(i) may depend

in large part on the number of i’s neighbors. As the previous analysis revealed,

19 Whenever n � 3 and m � 2, the biclique Kn,m yields, for each of its actors j, pairs of neighbors and
m(m−1) ordered pairs of events they share with j, resulting in (n−1)(n−2)×m(m−1) 4-paths centered
at j. When m � 3, each of these is closed. Thus, any otherwise untied actor in a copy of Kn,m contributes
the atypically high value C∗(j) = 1 to the mean C∗

� , where � = (n− 1)(n− 2) ×m(m− 1). These values
� = (3−1)(3−2)×3(3−1) = 12, � = (3−1)(3−2)×4(4−1) = 24, � = (4−1)(4−2)×3(3−1) = 36, and
� = (3 − 1)(3 − 2) × 5(5 − 1) = 40 correspond to the highest peaks of C∗

� up to � = 56. Two clustering

coefficients based on T̃/ � and T̃/ ≈ exhibited similarly expected fluctuations but decreased with

wedge count. One based on T/ = exhibited no such fluctuations and no long-term trend.
20 Here, each c = c�, c∞ is normalized so that

∑
i c(i)

2 = 1.
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Fig. 10. Scatterplots of Opsahl and exclusive clustering coefficients versus 2-walk- and 4-

walk-corrected eigenvector centrality scores across actors in GWF. Least-squares regression

lines and 95% confidence bands are overlaid.

however, how these 2-walks are counted is equally important. The 2-walks from i

are most closely related to the wedges of C∗, so it is reasonable to expect only a

weak relationship between c2(i) and C∗(i). In contrast, C and C◦ are insensitive to

redundant 2-walks (from i to some neighbor j); no relationship is purely structurally

implied. In order to decompose the relationship between constraint and influence,

each clustering coefficient is considered versus each component of influence.

Figure 10 plots the relationships for the CEOs of GWF. (Those for the women

of DG1, included in the supplement, are similar.) Those with C∗ are indeed weak,

as are those with c∞(i) − c2(i). The standout is C◦ versus c2, and this holds too in

DG1: In these small networks, at least, exclusive TC is associated with discernibly

lower local influence. Specifically, an increase in 2-walk centrality of 0.1 corresponds

to a decrease of 0.46 (GWF) or 0.31 (DG1) in C◦. The lack of any discernible

relationship with 2-walk-corrected centrality suggests that the configuration of i’s

neighborhood is only weakly, if at all, reflective of i’s network-wide influence.

4 Conclusion

This study pursued a measure of TC for ANs, modeled as bipartite graphs, that

controls for the proliferation of bicliques. Bicliques arise from attendance at multiple

events by subsets of actors, which is unlikely to reflect the popular understanding of

TC. The need for such a measure follows from the sensitivity of existing measures

to such structures, even those that control for the sizes of events. In addition to

the proposed exclusive clustering coefficient C◦, the paper presented a classification

scheme for AN triads and an axiomatic framework for defining AN clustering

coefficients.

An instrumental analysis found C◦ to measure distinct properties from the classical

C and the recent proposal C∗, and suggested that, in some settings, C◦ approximates

TC as it is characterized over time. An investigation of several empirical ANs

revealed patterns of TC much richer than could be inferred from the classical triad

https://doi.org/10.1017/nws.2015.38 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.38


506 J. C. Brunson

census and C applied to their actor projections. In the author’s judgment, C◦ comes

across as a useful counterpoint to C; the two could be viewed as limiting cases

between which other clustering coefficients like C∗ interpolate (Saramäki et al.,

2007).

The study has several limitations, most notably the limited number of empirical

(and lack of simulated) ANs investigated, and the fact that these networks were

constructed using different data collection methods. This leaves the conclusions

drawn here open to challenge. Also, no fast algorithms were provided, and the

implementations used were not designed for efficiency; applications of the tools

described here to large networks will require both.

The tools suggest several avenues for future work. The classification of AN triads

provides the basis for a state transition analysis, which may aide models of network

evolution. ANs also exist with weighted edges, and the generic clustering coefficient

described could be adapted, like its predecessor C∗, to this setting.

In summary, it is hoped that the present paper provides a useful framework for

the triadic analysis of ANs.
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