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Let T be a set of terms over an arbitrary (but finite) number of Boolean variables. Let U(T )

be the set of truth assignments that satisfy exactly one term in T . Motivated by questions in
computational complexity, Rudich conjectured that there exist ε, δ > 0 such that, if T is any set
of terms for which U(T ) contains at least a (1 − ε)-fraction of all truth assignments, then there
exists a term t ∈ T such that at least a δ-fraction of assignments satisfy some term of T sharing a
variable with t [8].

We prove a stronger version: for any independent assignment of the variables (not necessarily
the uniform one), if the measure of U(T ) is at least 1 − ε, there exists a t ∈ T such that the
measure of the set of assignments satisfying either t or some term incompatible with t (i.e., having
no satisfying assignments in common with t) is at least δ = 1 − ε − 4ε

1−ε . (A key part of the
proof is a correlation-like inequality on events in a finite product probability space that is in some
sense dual to Reimer’s inequality [11], a.k.a. the BKR inequality [5], or the van den Berg–Kesten
conjecture [3].)

1. Introduction

Let Ω1, . . . ,Ωn be fixed finite sets, each of size at least 2, and let Ω = Ω1 × · · · × Ωn. A partial
selection function for Ω1, . . . ,Ωn is a function f such that (i) its domain, dom(f), is a subset of
[n] := {1, . . . , n}, and (ii) for each i ∈ dom(f), f(i) ∈ Ωi. The cylinder of f is the set

C(f) := {x ∈ Ω : xi = f(i), ∀i ∈ dom(f)}.

We tend to think of f and C(f) as interchangeable, as different partial selection functions give
different cylinders.
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Let f and g be partial selection functions. We say that an index i is fixed in f if i ∈ dom(f)

and free (in f) otherwise. We say f and g are dependent if they share a fixed variable, i.e., if
dom(f) ∩ dom(g) �= ∅, and denote this by f ∼ g (or C(f) ∼ C(g)). We say that f and g are
incompatible, denoted f ∼′ g (or C(f) ∼′ C(g)) if there exists i ∈ dom(f) ∩ dom(g) such that
f(i) �= g(i). Note that f ∼′ g implies f ∼ g.

Throughout this paper, F denotes a set of cylinders of Ω. For F ∈ F , we define

N(F) = NF (F) := {G ∈ F : G �= F,G ∼ F},

and

N[F] = NF [F] := N(F) ∪ {F}.

These are, respectively, the open neighbourhood and closed neighbourhood of F in the graph
(F ,∼). Similarly, we define N ′(F) = N ′

F (F) := {G ∈ F : G ∼′ F}, and N ′[F] = N ′
F [F] :=

N ′(F) ∪ {F}, the open neighbourhood and closed neighbourhood of F in the graph (F ,∼′).
We define U(F) to be the set of elements of Ω uniquely covered by F , i.e., those that belong to

precisely one member of F . Motivated by some questions in computational complexity, Rudich
[7] investigated families of cylinders F of {0, 1}n for which a large fraction of elements of Ω are
uniquely covered. He conjectured that in any such family, there must be a cylinder whose closed
neighbourhood in (F ,∼) covers a non-trivial fraction of {0, 1}n.

Conjecture 1.1 (Rudich’s conjecture). There exist ε, δ > 0 such that, for all n � 1 and for
any set of cylinders F of {0, 1}n, if |U(F)| � (1 − ε)2n, there is a cylinder F ∈ F for which∣∣∣∣ ⋃

G∈N[F]

G

∣∣∣∣ � δ2n.

Remark 1.2. If ε = 0, then |U(F)| = 2n and F is a partition. Thus (F ,∼) is the complete
graph. We may then take δ = 1: for every F ∈ F , N[F] = F and |

⋃
{G : G ∈ N[F]}| = 2n.

Remark 1.3. Rudich’s conjecture fails for ε � 1 − 1/e (that is, for such an ε, there is no δ > 0

for which the conclusion of the conjecture holds). To see this, given δ > 0, let k > log2(1/δ)

be a positive integer and n = k2k. Partition [n] into 2k blocks of size k and let F consist of 2k

cylinders of {0, 1}n, where the ith cylinder has all indices in block i fixed to 1 and all other indices
free. Then |U(F)| = ((1 − 2−k)2

k−1)2n > e−12n (since (1 − 1/t)t−1 > 1/e for all t). But (F ,∼)

has no edges, so for any F ∈ F , |
⋃

{G : G ∈ N[F]}| = |F | = 2n−k < δ2n.

Remark 1.4 (Original statement of Rudich’s conjecture). Rudich formulated Conjecture 1.1
as a statement about sets of boolean terms rather than cylinders. Let V = {x1, . . . , xn} be a set of
boolean variables, i.e., each xi takes on values from the set {True,False}. There is an obvious
correspondence between {0, 1}n and the set of all truth assignments to the variables in V . A
literal is a boolean variable or the logical negation of a boolean variable, and a boolean term is
a conjunction of literals, i.e., an expression of the form l1 ∧ l2 ∧ · · · ∧ lt, where each li is a literal
and no li is the negation of another lj . The set of truth assignments that satisfy t is a cylinder in
{0, 1}n. Conjecture 1.1 is thus a rephrasing of Rudich’s original conjecture: there exist ε, δ > 0
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such that, for any set of terms, T , in any number of variables, if the fraction of truth assignments
that satisfy exactly one term in T is at least 1 − ε, then there is a term t ∈ T such that at least a
δ fraction of assignments satisfy a term that shares a variable with t.

Our main result, Theorem 1.5 below, is a strengthening of Rudich’s conjecture. For each
i ∈ [n], let μi be a probability measure on the finite set Ωi and let μ = μ1 × · · · × μn be the
corresponding product measure on Ω. We say (Ω, μ) is a finite product probability space.

Recalling that U(F) is the set of elements covered by exactly one member of F , we have the
natural partition U(F) =

⋃
F∈F F ′, where (for F ∈ F)

F ′ = F ′
F := F \

⋃
{G ∈ F : G �= F}. (1.1)

For G ⊆ F , we set

UF (G) :=
⋃
F∈G

F ′
F ,

so in particular UF (F) = U(F).

Theorem 1.5. Let F be a family of cylinders in a finite product probability space (Ω, μ). Let
δ(ε) = 1 − ε − 4ε

1−ε
. If μ(U(F)) � 1 − ε, then there is an F ∈ F such that

μ
(
UF (N ′

F [F])
)

� δ(ε).

Note that δ(ε) > 0 for all 0 < ε < 3 − 2
√

2.

Note that the case of Theorem 1.5 in which μ is a uniform measure on Ω = {0, 1}n contains
Conjecture 1.1, since

⋃
{G : G ∈ N[F]} ⊇ UF (N[F]) ⊇ UF (N ′[F]).

To prove Theorem 1.5, we first prove Theorem 1.7 below, an inequality that is in some sense
dual to a celebrated inequality of Reimer. Note that for partial selection functions f and g, f �∼ g

means they have disjoint domains while f �∼′ g means they agree on any common point of their
domains.

Let A,B ⊆ Ω and x, y ∈ Ω. We say:

x ∈ A and y ∈ B hold disjointly if ∃f �∼ g, x ∈ C(f) ⊆ A, y ∈ C(g) ⊆ B

and

x ∈ A and y ∈ B hold compatibly if ∃f �∼′ g, x ∈ C(f) ⊆ A, y ∈ C(g) ⊆ B.

We define

A ∩d B = {x ∈ Ω : x ∈ A and x ∈ B hold disjointly},
A ∩c B = {x ∈ Ω : x ∈ A and x ∈ B hold compatibly},
A ×d B = {(x, y) ∈ Ω × Ω : x ∈ A and y ∈ B hold disjointly},
A ×c B = {(x, y) ∈ Ω × Ω : x ∈ A and y ∈ B hold compatibly}.

The notation above is chosen to emphasize the common framework. However, the by now
well-studied operation ∩d is often denoted � (e.g., in [3]) and we will do so below, and of course
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∩c is simply ∩. We also remark that Goldstein and Rinott [5] use A♦B for A ×c B and that,
trivially, A ×d B ⊆ A ×c B.

Theorem 1.6 (Reimer’s inequality [11]). If (Ω, μ) is a finite product probability space then

∀A,B ⊆ Ω, μ(A�B) � μ(A)μ(B). (1.2)

This was conjectured by van den Berg and Kesten [3], who proved it when the Ωi are totally
ordered and A,B are increasing with respect to the product order on Ω; this is the BK inequality.
Theorem 1.6 is also called the BKR inequality.

We will prove the following similar results.

Theorem 1.7 (Strong Dual Inequality). If (Ω, μ) is a finite product probability space, then

∀A,B ⊆ Ω, (μ × μ)(A ×c B) � μ(A ∩ B). (1.3)

Corollary 1.8 (Dual Inequality). If (Ω, μ) is a finite product probability space, then

∀A,B ⊆ Ω, (μ × μ)(A ×d B) � μ(A ∩ B). (1.4)

Since (1.2) can also be written as

∀A,B ⊆ Ω, μ(A ∩d B) � (μ × μ)(A × B),

we view (1.4) as dual to (1.2).
It is easy to see (and well known; see, e.g., [2, Remark 4.4a]) that Theorem 1.6 implies the

historically first correlation inequality, as follows.

Theorem 1.9 (Harris–Kleitman inequality [6, 10]). For any finite product probability space
(Ω, μ) with Ω = {0, 1}n, and A,B ⊆ Ω increasing,

μ(A ∩ B) � μ(A)μ(B).

When A and B are increasing sets, it is easily verified that A ×c B = A × B, and thus The-
orem 1.7 implies Theorem 1.9.

We prove Theorem 1.7 in Section 2 and Theorem 1.5 in Section 3. In the last section, we
suggest some extensions of these results.

2. Proof of Theorem 1.7

The great step in Reimer’s proof of Theorem 1.6 was his ‘Butterfly Lemma’, Lemma 2.2 below.
We first demonstrate how Theorems 1.6 and 1.7 are proved: they are reduced to a set of ‘local’
inequalities which are then given by the lemma. A subcube Q of Ω = Ω1 × · · · × Ωn is a set
of the form Q1 × · · · × Qn, where Qi ⊆ Ωi and 1 � |Qi| � 2 for each i ∈ [n]. For x, y ∈ Ω, the
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subcube generated by x and y is

[x, y] := {z ∈ Ω : zi ∈ {xi, yi}}.

For a subcube Q, let Pairs(Q) := {(x, y)|Q = [x, y]}. For each x ∈ Q, there is a unique y ∈ Ω

such that Q = [x, y]; this is the complement of x relative to Q, denoted xQ. For (x, y) ∈ Pairs(Q),
we have

(μ × μ)(x, y) = μ(x)μ(y) =
∏
i

μi(xi)μi(yi).

This product is the same for all (x, y) ∈ Pairs(Q) and is denoted μQ. Thus, if X ⊆ Ω × Ω, we
have

(μ × μ)(X) =
∑
Q

|XQ|μQ,

where XQ = X ∩ Pairs(Q) and Q ranges over subcubes of Ω. It follows that, for X,Y ⊆ Ω × Ω:

If |XQ| � |YQ| for all subcubes Q then (μ × μ)(X) � (μ × μ)(Y ). (2.1)

Since μ(S) = (μ × μ)(S × Ω) (for any S ⊆ {0, 1}n), we may rewrite the inequalities (1.2) and
(1.3) of Theorems 1.6 and 1.7 in the form (μ × μ)(X) � (μ × μ)(Y ) for appropriate X,Y ⊆
Ω × Ω, and hope to derive them from (2.1). Thus Reimer proves (1.2) by showing

|((A�B) × Ω)Q| � |(A × B)Q|, (2.2)

while Theorem 1.7 will follow from the next result.

Proposition 2.1. For any A,B ⊆ Ω and subcube Q of Ω,

|(A ×c B)Q| � |((A ∩ B) × Ω)Q|. (2.3)

The statement of the Butterfly Lemma requires some definitions. A butterfly in Ω is an ordered
pair of subcubes, β = (R, Y ), with |R ∩ Y | = 1 (See Figure 1). We write b or b(β) for the unique
element of R ∩ Y , called the body of β. The subcubes R(β) := R and Y (β) := Y are the red and
yellow wings of β. The points r = r(β) := b

R
and y = y(β) := b

Y
are, respectively, the red tip

and yellow tip of β. The span of β is then [r, y], the unique minimal subcube containing R ∪ Y .
A butterfly with span Q is called a Q-butterfly.

If B is a family of Q-butterflies, we define

R(B) :=
⋃
β∈B

R(β), Y(B) :=
⋃
β∈B

Y(β).

If no two butterflies of B have the same red tip, we say B has distinct red tips.

Lemma 2.2 (Butterfly Lemma [11]). If B is a family of Q-butterflies with distinct red tips,
then

|B| � |R(B) ∩ Y(B)|.
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y(β) = 000

r(β) = 111

001

010 b(β) = 110

100

Figure 1. A butterfly β in {0, 1}3. Points in R(β) are red, those in Y (β) are yellow. Note that b(β) ∈ R(β) ∩ Y (β).

Proof of Proposition 2.1 Let Z = {x ∈ Q : (x, xQ) ∈ A ×c B}. Note that |Z | = |(A ×c B)Q|.
We will define a family B = {β(x) : x ∈ Z} of Q-butterflies that satisfies: (i) R(B) ⊆ A, (ii)
Y(B) ⊆ B, and (iii) the red tip of β(x) is x.

Condition (iii) implies that B satisfies the hypothesis of Lemma 2.2, while (i), (ii) and the fact
that B is a Q-butterfly imply that R(B) ∩ Y(B) ⊆ A ∩ B ∩ Q. Thus, by the lemma,

|(A ×c B)Q| = |B| � |R(B) ∩ Y(B)|
� |A ∩ B ∩ Q|
= |((A ∩ B) × Ω)Q|,

where the final equality uses the easy identity |T ∩ Q| = |(T × Ω)Q| for any T ⊆ Ω.
It now suffices to define B. Fix x ∈ Z . By definition, there are partial selection functions

f �∼′ g such that x ∈ C(f) ⊆ A and xQ ∈ C(g) ⊆ B. Since f and g are compatible, we may
define the partial selection function h with dom(h) = dom(f) ∪ dom(g) and

h(i) :=

{
f(i) i ∈ dom(f),

g(i) i ∈ dom(g).

Let b(x) be some element of C(h) = C(f) ∩ C(g) ⊆ A ∩ B. Since x ∈ C(f) and xQ ∈ C(g),
we have R(x) := [x, b(x)] ⊆ C(f) ⊆ A and Y (x) := [xQ, b(x)] ⊆ C(g) ⊆ B. If we set β(x) :=

(R(x), Y (x)), then B := {β(x) : x ∈ Z} is a family of Q-butterflies satisfying (i), (ii) and (iii),
and the proof is complete.

3. Proof of Theorem 1.5

We are given a set F of cylinders of (Ω, μ) satisfying μ(U(F)) � 1 − ε. We want a lower bound
for

max
F∈F

μ
(⋃

{G′ : G ∈ N ′[F]}
)

= μ(U(F)) − min
F∈F

∑
G�∈N′[F]

μ(G′). (3.1)
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Since the sets F ′ (F ∈ F) defined in (1.1) form a partition of U(F), we have

min
F∈F

∑
G�∈N′[F]

μ(G′) � 1

μ(U(F))

∑
F∈F

μ(F ′)
∑

G�∈N′[F]

μ(G′)

=
1

μ(U(F))
(μ × μ)

(⋃
{F ′ × G′ : F �= G, F ∩ G �= ∅}

)

� 1

μ(U(F))
(μ × μ)

(⋃
{F × G : F �= G, F ∩ G �= ∅}

)

=
1

μ(U(F))
(μ × μ)(S(F ,F)), (3.2)

where for sets F ,G of cylinders, we define

S(F ,G) =
⋃

{F × G : F ∈ F , G ∈ G, F �= G, F ∩ G �= ∅}.

Claim 3.1. (μ × μ)(S(F ,F)) � 4(1 − μ(U(F))).

Proof. Let F1,F2 be a partition of F maximizing (μ × μ)(S(F1,F2)). Then (μ × μ)(S(F1,F2))

is at least the expected value of (μ × μ)(S(G,F − G)), where G is a subset of F chosen uniformly
at random. For each (x, y) ∈ S(F ,F), there is a pair of distinct cylinders F,G in F with x ∈ F ,
y ∈ G, and F ∩ G �= ∅, whence

Pr
G

[(x, y) ∈ S(G,F − G)] � Pr
G

[(F ∈ G) ∧ (G �∈ G)] = 1/4

and, summing over (x, y) ∈ F × F ,

EG[(μ × μ)(S(G,F − G))] � (1/4)(μ × μ)(S(F ,F)).

Thus (μ × μ)(S(F1,F2)) � (1/4)(μ × μ)(S(F ,F)).

Now let A =
⋃

F∈F1
F and B =

⋃
F∈F2

F . Since S(F1,F2) ⊆ A ×c B, Theorem 1.7 gives

(μ × μ)(S(F ,F)) � 4(μ × μ)(A ×c B)

� 4μ(A ∩ B)

= 4μ
(⋃

{F ∩ G : F ∈ F1, G ∈ F2}
)

� 4(1 − μ(U(F))). (3.3)

Finally, by combining (3.1), (3.2) and Claim 3.1 with the assumption that μ(U(F)) � 1 − ε,
we obtain

max
F∈F

μ
(⋃

{G′ : G ∈ N ′[F]}
)

� μ(U(F)) − 4

(
1 − μ(U(F))

μ(U(F))

)
� 1 − ε − 4ε

1 − ε
.
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4. Further questions and remarks

In Theorem 1.5 we showed that Rudich’s conjecture is true for all ε < 3 − 2
√

2 ≈ 0.171, while
the example given in Remark 1.3 shows that the conjecture fails for ε � 1 − 1/e ≈ 0.632. It is
natural to ask if it holds for all ε < 1 − 1/e.

Question 4.1. Is is true that for all ε < 1 − 1/e there exists δ > 0 such that, for all n � 1 and
for any set of cylinders F of {0, 1}n, if |U(F)| � (1 − ε)2n, then there is a cylinder F ∈ F for
which ∣∣∣∣ ⋃

G∈N[F]

G

∣∣∣∣ � δ2n?

It is natural to ask whether Rudich’s conjecture extends to more general probability spaces
with cylinders replaced by events satisfying some kind of independence assumption. For a finite
family of events E in an (arbitrary) probability space (Ω, μ), say a graph G on E is a strong
dependency graph for E if for all disjoint E ′, E ′′ ⊆ E with E ′ �∼ E ′′ (that is, no edges of G join E ′

and E ′′), the events in E ′ are independent of those in E ′′; equivalently,

μ

( ⋂
E∈E ′∪E ′′

E

)
= μ

( ⋂
E∈E ′

E

)
μ

( ⋂
E∈E ′′

E

)
(4.1)

for all such E ′, E ′′. Note that this is true when E is a set of cylinders in a product space and
G = (E ,∼).

Rudich [12] and Tardos [16] asked if Conjecture 1.1 might generalize to this setting. We again
use U(E) for the event that a unique member of E occurs and, given a strong dependency graph
G for E , N[F] for the closed neighbourhood of F in G.

Conjecture 4.2. There exists ε, δ > 0 such that, for every probability space (Ω, μ), every fam-
ily E of events in Ω, and every strong dependency graph G for E , if μ(U(E)) � 1 − ε then
μ
(⋃

E∈N[F] E
)

� δ for some F ∈ E .

In fact it is natural to ask whether this holds at the level of dependency graphs in the sense of
the Lovász local lemma ([4] or, e.g., [1]), that is, where we only assume (4.1) when E ′ consists
of a single event. Szegedy [14] provided a counterexample to this. The following is a simplified
version due to Tardos [16].

Example 4.3. Let k, l > 1. Let ω = (ω0, ω1, . . . , ωk) be selected according to the uniform meas-
ure μ on Ω = [k] × [l]k. Let E = {Aij : i ∈ [k], j ∈ [l]}, where Aij = {ω ∈ Ω : (ω0 = i and ωi =

j) or (ω0 �= i and ωi = 1)}.
We first check that the graph on E obtained by taking Aij adjacent to Ai′j′ if and only if i = i′

(and j �= j ′) is a dependency graph, that is, that for any Ai0j0 , . . . , Aikjk ∈ E with i1, . . . , ik �= i0,
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the events E = Ai0j0 and E ′ =
⋂k

l=1 Ailjl are independent. We have

μ(E ∩ E ′) = μ(E ′ ∩ {ω0 = i0, ωi0 = j0}) + μ(E ′ ∩ {ω0 �= i0, ωi0 = 1})
= μ(E ′ ∩ {ω0 = i0})μ(ωi0 = j0) + μ(E ′ ∩ {ω0 �= i0})μ(ωi0 = 1)

= μ(E ′)μ(E),

where the second equality holds because the events E ′ ∩ {ω0 = i0} and E ′ ∩ {ω0 �= i0} do not
depend on ωi0 , and the third because μ(ωi0 = j) = l−1 for any j (so also μ(E) = l−1).

Let A = Ai0j0 and notice that

A′
(
= A \

⋃
{Aij : (i, j) �= (i0, j0)}

)
= {ω0 = i0, ωi0 = j0, ωi �= 1∀i �= i0},

which, using symmetry, gives

μ(U(E)) = klμ(A′) = (1 − l−1)k−1.

On the other hand, noting that N := N[Ai0 ,j0 ] = {Ai0 ,j : j ∈ [l]}, we have

μ

( ⋃
B∈N

B

)
= μ(ω0 = i0) + μ(ω0 �= i0, ωi0 = 1) =

1

k
+

k − 1

kl
. (4.2)

The conclusion of Rudich’s conjecture then fails, since k, l can be chosen to make μ(U(E))

arbitrarily close to 1 and the right-hand side of (4.2) arbitrarily close to 0.

As noted above, there is an obvious symmetry between Reimer’s inequality (1.2) and the dual
inequality (1.4). The formal dual of the strong dual inequality, (1.3), is μ(A ∩c B)

(= μ(A ∩ B)) � μ(A)μ(B), which is of course not true in general. Can one find stronger versions
of Reimer’s inequality and the dual inequality that are dual to each other in some natural sense?

Note that the definitions and properties of cylinders, partial selection functions, relations ∼ and
∼′, and operations �, ×d, and ×c apply to any product space. In [5], Goldstein and Rinott proved
that each of Theorems 1.6 and Corollary 1.8 can be extended to general product probability
spaces.1 Their methods also work for Theorem 1.7.

Theorem 4.4. For (Γ, ν) =
∏n

i=1(Γi, νi), a product of probability spaces, and for all measur-
able A,B ⊆ Γ,

ν(A�B) � ν(A)ν(B),

(ν × ν)(A ×c B) � ν(A ∩ B).

In follows that Rudich’s conjecture and Theorem 1.5 easily extend to general product probab-
ility spaces.

Corollary 1.8 was used by one of the authors to prove a theorem about boolean decision tree
complexity [13]. That result is a strengthening of several conjectures on approximate decision
tree complexity due to Impagliazzo and Rudich [7, 8] and Tardos [15]. The conjectures of

1Note the present results were proved some years ago and appeared in preliminary form in [9].
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Impagliazzo and Rudich stemmed from investigations in the foundations of cryptography and
were the motivation for Rudich’s conjecture. Tardos’s motivation was, in part, to explore the
relation between deterministic and non-deterministic query complexity classes.
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[4] Erdős, P. and Lovász, L. (1975) Problems and results on 3-chromatic hypergraphs and some related
questions. In Infinite and Finite Sets: Colloq., Keszthely, 1973; Dedicated to P. Erdős on his 60th
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