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Compact hybrid fractal antenna for
wideband wireless applications

yogesh kumar choukiker and jagadish chandra mudiganti

A compact size hybrid fractal antenna is proposed for the application in wideband frequency range. The proposed antenna
structure is the combination of Koch curve and self-affine fractal geometries. The Koch curve and self-affine geometries are
optimized to achieve a wide bandwidth. The feed circuit is a microstrip line with a matching section over a rectangular ground
plane. The measured impedance matching fractal bandwidth (S11 ≤ 210 dB) is 72.37% from 1.6 to 3.4 GHz. An acceptable
agreement is obtained from the simulated and measured antenna performance parameters.
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I . I N T R O D U C T I O N

Owing to the progress in wireless communication systems and
increase in their application, small size and wideband anten-
nas are in great demands. These have recently received a
great deal of attention from researcher creating new antenna
structures. One such structure is the fractal shape. The
fractal concept was introduced in antenna field to design
new innovative and competitive antennas for modern com-
munication system technology [1]. Fractal shaped antennas
show some interesting properties such as self-similarity and
scale-invariance. This can be carried out by applying the infin-
ite number of iteration using multiple reduction copy machine
(MRCM) algorithm. In the last decade, researches on fractal
antennas were performed especially on deterministic struc-
tures where exact mathematic relationships are well defined
to describe the fractal structures [2–4]. The space filling prop-
erty, when applied to an antenna element, leads to an increase
of the electrical length. The more convoluted and longer
surface currents result in lowering the antenna resonant fre-
quency for a given overall extension of the resonator. The
fractal miniaturization technique has already been applied to
Koch wire monopole [4], combination of fractal geometries
[5–10], and the Sierpinski fractal-shape antennas [11].
Although the essence of this technique falls into the inductive
loading, the radiation patterns of the antennas derived from
this technique are maintained because of the self-similarities
of the fractals.

In this paper, we have proposed a compact hybrid fractal
antenna as a radiating element for the wideband applications.
It is a combination of Koch curve and self-affine fractals with
compact size of 11.60 × 25.4 mm2. It covers several wireless

bands like DCS-1800 (1.71–1.88 GHz), PCS-1800 (1.80–
1.99 GHz), UMTS (1.92–2.17 GHz), IMT-2000 (1.9–
2.2 GHz), WiBro (2.3–2.4 GHz), Bluetooth (2.4–2.48 GHz),
WLAN 802.11b/g/a (2.4–2.5 GHz), and Wi-Fi. This antenna
provides the omnidirectional radiation patterns and gain is
more than 2 dBi for the wide frequency band.

I I . A N T E N N A G E O M E T R Y A N D
S I M U L A T I O N R E S U L T S

A) Antenna geometry
The recursive procedure of the Koch and self-affine fractal
curves are shown in Fig. 1. To obtain the self-similarity
dimensions, the geometry is scaled down, but with identical
copies of itself. If there are n such copies of original geometry
scaled down by a function S, the similarity dimension D is
defined as described in equation (1).

D = log n
log 1/s

. (1)

For example, a square can be divided into four copies of 1/2
scale, nine copies of 1/3 scale, 16 copies of 1/4 scale, or n2

copies of 1/n scale. Substituting in the above formula, the
dimension of the geometry is ascertained to be 2. This
approach can be followed in determining the dimension of
fractal geometries. For construction of Koch and self-affine
fractal curves, one can start with a straight-line (l) called ini-
tiator and it is divided into three equal parts (l/3). This is the
first iterated version of geometry and is called “generator” for
higher iterations, as shown in Figs 1(a) and 1(b). This proced-
ure is iterated recursively to result in self-similar fractal geom-
etry by taking the order of iteration n and the dimension D
(equation (1)) as the input parameters. Basically, individual
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iterations are applied to both the Koch and self-affine fractal
curves, which are then combined to get hybrid fractal geom-
etry. For further optimizations, dimension “D” for both frac-
tals are varied simultaneously.

The structure of the proposed hybrid fractal antenna for
wideband operation is shown in Fig. 2 with corresponding
optimized parameters are listed in Table 1. The proposed
geometry is constructed using Koch curve and self-affine frac-
tals. Koch curve is applied to the lower edge of rectangular
patch with iteration factor of 3. The upper edge of rectangular
microstrip is replaced by the self-affine fractal, which is con-
structed by a factor of 3 and 2 in the horizontal and vertical
directions, respectively. The motivation of such geometry is
to improve space filling, a feature that translates it into
reduced antenna physical size and to increase the bandwidth.
Also, fractal antennas have an increased number of resonant
frequency bands, a valuable feature that can be advantageous
for multi-functional and multi-standard wireless devices. The

benefit of combining of Koch curve and self-affine fractal
geometries is that it is having plane filling property.
Self-affine geometry leads to curves that electrically very
long, but can fit in a compact physical area. There are
several benefits for choosing such self-affine. The first
benefit is that the increased electrical length leads to lower res-
onant frequency, which effectively provides miniaturized
antenna. The second benefit is that the increased electrical
length can raise the input resistance of the antenna when it
is used in a small antenna. Choosing Koch fractal curve is to
understand the behavior of the resonant frequency of fractal
antenna as a function of the antenna geometry. The proposed
antenna is fed by a 50 V microstrip line of width, Wf, which is
built on one side of a FR-4 dielectric substrate (thickness hs

and relative permittivity, 1r ¼ 4.4) of 66 × 27 mm2. On the
other side of the substrate, a rectangular ground plane of
length 39 mm and width 27 mm is used as reflector element.

B) Simulations results
Figure 3 shows the simulated reflection coefficients of pro-
posed hybrid fractal antenna for different iteration levels. It
is observed that with increase in number of iteration, the
average electrical length of the patch also increases just like
the inductive loading and slot-loading techniques reported
in [12]. Thus, it can be lowered the resonant frequency of
the proposed patch antenna. However, for more than
second iterations, the reduction of operating frequency is
not achievable and the antenna design becomes quite compli-
cated as well as its fabrication becomes difficult. Figure 4
shows the simulated reflection coefficient of the proposed
antenna for the gap (g) between radiating element and
ground plane. It is observed that for g ¼ 1 mm the antenna

Fig. 1. Three initial stages of generation: (a) self-affine curve fractal and (b)
Koch curve fractal geometries.

Fig. 2. Geometry of proposed hybrid fractal planar monopole antenna.
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has the desired bandwidth. Although at different values of gap
(g) show a frequency shift at the higher band. In addition, the
reflection coefficient has high value at g ¼ 1 mm compared
with other values of g. Figure 5 shows the reflection coefficient
of the proposed antenna for width (W1) of radiating element.
It is found that at W1 ¼ 25.4 mm the antenna has the desired
bandwidth. For the other values of W1 the operating band is
low compared with W1 ¼ 25.4 mm. Here, also the reflection
coefficient is high compared to other values of W1. Figure 6

shows the reflection coefficient of proposed antenna for
length (L3) of lower edge of radiating element. It is observed
that the reflection coefficient is quite well at L3 ¼ 5.5 mm.
Although, when we increase or decrease the length (L3), fre-
quency shift is observed at higher-frequency band. Figure 7
shows the simulated reflection coefficients for different sizes
of the radiating element (L1). It is found that when the size
of the radiating element (L1) decreases, the impedance match-
ing at the lower frequencies improves. For, L1 ¼ 5.8 mm the
bandwidth of hybrid fractal antenna is 72.37% over 1.6–
3.4 GHz frequency range. Optimum performance is obtained
in terms of compact size and broad bandwidth of the pro-
posed antenna, keeping other parameters fixed. Figure 8
shows the simulated three-dimensional (3D) radiation
pattern and surface current distribution at 1.9 and 3.07 GHz
for the proposed hybrid fractal antenna. It is observed from
the proposed antenna having omnidirectional radiation prop-
erty for wide frequency band. In addition, the surface current
distribution of current in lower frequency covers feed line and
edges of the radiating element besides for higher frequency
current moves toward the tip as well as it covers radiating
element.

I I I . E X P E R I M E N T A L
V E R I F I C A T I O N S

Proposed hybrid fractal antenna is milled on the copper side
of FR-4 substrate using LPKF-42 Protomat milling machine.
Photographs of fabricated antenna are shown in Fig. 9.
Measured and simulated values of the reflection coefficient
magnitude are plotted in Fig. 10. These results exhibit reason-
able agreement although there is a frequency shift that can be

Fig. 3. Reflection coefficient of proposed hybrid fractal antenna for different
iteration levels.

Table 1. Dimensions of proposed hybrid fractal antenna (All the dimen-
sions in mm).

L1 L2 L3 W1 Wf g hs

5.8 2.9 5.5 25.4 1.5 1.0 1.58

Fig. 4. Reflection coefficient of proposed hybrid fractal antenna for gap (g)
between radiating element and ground plane.

Fig. 6. Reflection coefficient of proposed hybrid fractal antenna for length (L3)
for radiation element.

Fig. 7. Reflection coefficient of proposed hybrid fractal antenna for length (L1)
for radiating element.

Fig. 5. Reflection coefficient of proposed hybrid fractal antenna for width
(W1) of radiating element.
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attributed to reflection from SMA (SubMiniature version A)
connector and some uncertainty in the electrical properties
of the substrate. The 210 dB impedance bandwidth is
72.37%, which is achieved from 1.6 to 3.4 GHz with reso-
nances at 1.9 and 3.07 GHz. Therefore, the antenna covers
wireless band such as DCS-1800 (1.71–1.88 GHz), PCS-1800
(1.80–1.99 GHz), UMTS (1.92–2.17 GHz), IMT-2000 (1.9–
2.2 GHz), WiBro (2.3–2.4 GHz), Bluetooth (2.4–2.48 GHz),
WLAN 802.11b/g/a (2.4–2.485 GHz), and Wi-Fi. The mea-
sured E- and H-plane radiation patterns at 1.9 and
3.07 GHz are shown in Fig. 11. The proposed antenna radi-
ation patterns are stable like monopole, which are almost
omnidirectional in the XZ (co-pol. and cross-pol.) and YZ
(co-pol. and cross-pol.) planes. It may be noted that there is
a slight discrepancy in the measured radiation pattern at 08
and 1808 in the XZ and YZ planes although they correspond
to the same point in radiation pattern. This may be attributed
to the impedance mismatch between cable and antenna that
could have arisen during measurement, while the antenna
was rotated on the turn-table. Table 2 shows the measured
gain and total antenna efficiency at different frequencies.
We can observe that, some variation in measured and simu-
lated gain occurs but the difference is not consistent in

Fig. 8. 3D radiation patterns and surface current distribution of the proposed antenna at (a) 1.9 GHz and (b) 3.07 GHz.

Fig. 9. Photograph of proposed hybrid fractal planar monopole antenna.

Fig. 10. Simulated and measured reflection coefficient of proposed hybrid
fractal planar monopole antenna.

Fig. 11. Measured radiation patterns for proposed antenna: (a) at 1.90 GHz
and (b) at 3.07 GHz.
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nature. This may be attributed to fabrication tolerances asso-
ciated with fractal shape, when simulation expected sharp
edges, but fabrication provided rounded corners. The
maximum peak realized gains in the two resonant frequencies
are 2.58 dBi (at 1.9 GHz) and 4.18 dBi (at 3.07 GHz). The
simulated total antenna efficiency is found to be more than
75% throughout the band.

I V . C O N C L U S I O N S

A compact hybrid fractal planar monopole antenna has been
investigated. By incorporating the Koch curve and self-affine
curve fractals, it is found that the operating frequency of the
fractal antenna is lowered greatly. The measured impedance
bandwidth is 72.37% for frequency band 1.6–3.4 GHz,
which is suitable for several wireless communication band
such as DCS-1800 (1.71–1.88 GHz), PCS-1800 (1.80–
1.99 GHz), UMTS (1.92–2.17 GHz), IMT-2000 (1.9–
2.2 GHz), WiBro2.3–2.4 GHz), Bluetooth (2.4–2.48 GHz),
WLAN 802.11b/g/a (2.4–2.485 GHz), and Wi-Fi. The mea-
sured radiation patterns are stable throughout the operational
band. Therefore, the proposed antenna is feasible for the use
as a low profile and low-cost wideband antenna and support-
ing wireless communication systems.
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