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Abstract

Current limit state surrogate modeling methods for system reliability analysis usually build surrogate models for failure
modes individually or build composite limit states. In practical engineering applications, multiple system responses may
be obtained from a single setting of inputs. In such cases, building surrogate models individually will ignore the correlation
between different system responses and building composite limit states may be computationally expensive because the non-
linearity of composite limit state is usually higher than individual limit states. This paper proposes a new efficient Kriging
surrogate modeling approach for system reliability analysis by constructing composite Kriging surrogates through selection
of Kriging surrogates constructed individually and Kriging surrogates built based on singular value decomposition. The
resulting composite surrogate model will combine the advantages of both types of Kriging surrogate models and thus re-
duce the number of required training points. A new stopping criterion and a new surrogate model refinement strategy are
proposed to further improve the efficiency of this approach. The surrogate models are refined adaptively with high accuracy
near the active failure boundary until the proposed new stopping criterion is satisfied. Three numerical examples including a
series, a parallel, and a combined system are used to demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

System reliability analyses have been carried using either
analytical techniques such as first- and second-order reli-
ability methods (FORM and SORM, respectively; Hohen-
bichler & Rackwitz, 1983, 1988) or Monte Carlo sampling-
based methods (Mori & Ellingwood, 1993; Dey & Mahade-
van, 1998). These methods tend to be inaccurate or inefficient
when the system limit state is highly nonlinear (Du & Sud-
jianto, 2004). In this situation, surrogate modeling-based re-
liability analysis methods have been studied to balance com-
putational efficiency and accuracy during the past decades.
Several surrogate modeling methods have been developed
for component reliability analysis using polynomial chaos ex-
pansion (Choi et al., 2004; Hu & Youn, 2011), support vector
machine (Basudhar & Missoum, 2008; Basudhar et al.,
2008), and Kriging (Echard et al., 2011, 2013). However,
only a few surrogate modeling methods for system reliability
analysis have been reported (Bichon et al., 2011; Fauriat &

Gayton, 2014) in the literature. This paper focuses on Kriging
surrogate models for system reliability analysis.

Currently, three types of approaches have been pursued to
build Kriging surrogate models for system reliability analy-
sis: building individual surrogates for each of the limit states
by choosing their training points independently (Bichon
et al., 2011; Fauriat & Gayton, 2014), building a single sur-
rogate for the composite limit state (Bichon et al., 2008), and
building individual surrogates but by choosing training
points adaptively based on a composite learning function
(Bichon et al., 2011; Fauriat & Gayton, 2014). The first
method is applicable to any system (series, parallel, and
combined), while the other two methods, in the current im-
plementation, are only applicable to parallel and series sys-
tems unless decomposition techniques are applied to the
system configuration (Youn et al., 2007; Youn & Wang,
2009). In terms of efficiency, the third method usually is
more efficient than the other two methods (Bichon et al.,
2011; Fauriat & Gayton, 2014). However, the number of
surrogate models will increase with the number of compo-
nents (individual limit states). In addition, the correlation
between different system responses is ignored in the first
and third methods.
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One way of considering correlations between different sys-
tem responses during Kriging is to use co-Kriging (Myers,
1982). The co-Kriging approach becomes very challenging
when the number of system responses increases. In reality,
we usually can get multiple system responses (such as stress
and deflection of structures) from one system simulation or
experiment, and it becomes hard to separate the system simu-
lation model (to obtain individual responses as opposed to
obtaining multiple responses) due to the complicated interac-
tions and couplings between components (Du & Chen, 2002,
2004). To address this, we propose to model the system re-
sponses from a random field perspective and account for
the correlations between system responses during surrogate
modeling using singular value decomposition (SVD; Palmer
et al., 2012). SVD has been widely used in many areas, such
as pattern recognition (Kopp et al., 1997) and geometry mod-
eling (Koprinarov et al., 2002), to represent high-dimensional
correlated vectors using a small number of important features
and independent latent responses. Here, the latent responses
refer to the responses obtained from SVD. They are called la-
tent responses to distinguish them from the original re-
sponses. The correlations between different system responses
can be maintained by constructing surrogate models for the
latent responses.

Even if the SVD-based surrogate model is able to capture
the correlation between different system responses using
important features, in some problems, the nonlinearity of
the latent responses may be higher than that of the original re-
sponses in some regions of the inputs. To tackle this situation,
we propose to build composite Kriging surrogate based on the
selection of SVD-Kriging surrogate models and the Kriging
surrogate models built independently at each input location,
by using a selection criterion. Ensembles of different types
of surrogate models (i.e., polynomial chaos expansion, Krig-
ing, and radial basis functions) have been extensively stud-
ied in the past decades by using weighted sum (Bishop, 1995;
Sanchez et al,. 2008) and weight factor methods (Viana &
Haftka, 2008; Viana et al., 2009). Because we are trying to
build a composite of the same type of surrogate model (Krig-
ing) and the surrogate model is selected from the reliability
analysis perspective, the selection of SVD-Kriging and indi-
vidual Kriging approach at different input settings presented
in this paper is different from the ensemble of surrogates pre-
sented in Bishop (1995), Sanchez et al. (2008), Viana and
Haftka (2008), and Viana et al. (2009). The resulting com-
posite surrogate from the proposed method has advantages
of both types of Kriging surrogates and improves the overall
accuracy of the surrogate model for system reliability analysis.

Along with the new composite surrogate modeling ap-
proach, we also propose a new stopping criterion to check
the accuracy of the surrogate model for system reliability
analysis. The proposed stopping criterion overcomes the
drawbacks of criteria used in current methods, which are de-
fined from a single sample perspective (Bichon et al., 2011;
Fauriat & Gayton, 2014). The current learning functions
(used for choosing training points) available in the literature

are developed only for either a series or a parallel system
and not for any general system topology; this paper proposes
a new surrogate model refinement strategy (learning func-
tion), which is applicable to any general system. Some of
the challenges in the stopping criterion and surrogate model
refinement raised by the composite surrogate modeling ap-
proach have also been discussed.

The key contributions of this paper are therefore summa-
rized as the following:

1. development of an SVD-based Kriging approach for
system reliability analysis,

2. building of a composite Kriging surrogate model based
on SVD-based and individual Kriging surrogate models,

3. a new stopping criterion defined directly from the sys-
tem reliability analysis perspective, and

4. development of a new surrogate refinement strategy
applicable to any general system configurations (series,
parallel, or combined).

The remainder of the paper is organized as follows: Section
2 provides brief introductions to system reliability analysis
and Kriging surrogates for system reliability analysis. Section
3 describes the proposed methodology for system reliability
analysis. Section 4 demonstrates the application of proposed
methodology for series, parallel, and combined system
reliability analyses. Concluding remarks are provided in Sec-
tion 5.

2. BACKGROUND

This section provides brief introductions to system reliability
analysis and Kriging surrogate modeling methods for system
reliability analysis.

2.1. System reliability analysis

System failure events may be defined through a series, a par-
allel, or a mixed series/parallel combination of individual fail-
ures (Mahadevan & Haldar, 2000; Liang et al., 2007). Let
giðXÞ, i ¼ 1, 2, . . . , m, represent the individual limit states,
where X ¼ ½X1, X2, . . . , Xn� is a vector of random variables.
The system failure probability of a series system is given by

ps
f ¼ Pr <

m

i¼1
giðXÞ � 0

� �
, (1)

where ps
f is the system failure probability, Prf�g is probability,

giðXÞ � 0 is the failure event of the ith component, and < is
union.

The failure probability of a parallel system is given by

ps
f ¼ Pr >

m

i¼1
giðXÞ � 0

� �
, (2)

where > is intersection.
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When system failure is defined through a mixture of series
and parallel combination of individual failures, the system
failure probability needs to be defined according to the con-
figuration of the system (Youn et al., 2011). In engineering
design, one of the critical issues is the efficient and accurate
estimation of system failure probability. During the past de-
cades, a group of methods have been developed based on
the first- and second-order approximations (FORM, SORM;
McDonald & Mahadevan, 2008) and surrogate modeling
(Bichon et al., 2011; Fauriat & Gayton, 2014). This paper
focuses on surrogate modeling-based approaches. Next, we
briefly discuss Kriging-based surrogate modeling methods
for system reliability analysis.

2.2. Kriging surrogates for system reliability analysis

2.2.1. A brief review of Kriging surrogate model

In a Kriging surrogate, the performance function g(x) is as-
sumed to be a realization of a Gaussian process (GP), G(x),
defined as (Rasmussen, 2006)

GðxÞ ¼ fðxÞT âþ 1ðxÞ, (3)

where â ¼ ½b1,b2, . . . ,bp�T is a vector of unknown coeffi-
cients, fðxÞ ¼ ½ f1ðxÞ, f2ðxÞ, . . . , fpðxÞ�T is a vector of regres-

sion functions, fðxÞT â is the trend function of prediction or
mean of the GP, and 1ðxÞ is assumed to be a GP with zero
mean and covariance cov½1ðxðiÞÞ, 1ðxð jÞÞ�.

After estimating the hyperparameters of the Kriging model
(Lophaven et al., 2002), the mean prediction (ĝðxÞ) and mean
square error (MSE) (MSEðĝðxÞÞ) of the prediction of G(x) at
a point x are given by (Lophaven et al., 2002):

ĝðxÞ ¼ fðxÞT âþ rðxÞT R�1ðg� FâÞ, (4)

MSEðĝðxÞÞ ¼ s2
1{1� rðxÞT R�1rðxÞ þ ½FT R�1rðxÞ
� fðxÞ�TðFT R�1FÞ�1½FT R�1rðxÞ � fðxÞ�}, (5)

where rðxÞ ¼ ½Rðx� xð1ÞÞ, Rðx� xð2ÞÞ, . . . , Rðx� xðkÞÞ� is
the correlation matrix between point x and the training points
xðiÞ, i¼ 1, 2, . . . , k, where k is the number of training points, F
and g are f(x) and g(x) evaluated at the training points, and s2

1

is given by

s2
1 ¼
ðg� FâÞT R�1ðg� FâÞ

k
: (6)

The prediction at any point x using the Kriging surrogate
model follows a normal distribution given by GpðxÞ �
NðĝðxÞ,s2

gðxÞÞ, where sGpðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðĝðxÞÞ

p
:

2.2.2. Individual limit state (ILS) method for system
reliability analysis

A straightforward way of performing surrogate modeling-
based system reliability analysis is to build a Kriging surrogate
model for each of the limit states giðXÞ, i ¼ 1, 2, . . . , m.
In order to reduce the computational cost during surrogate
modeling, the surrogate models are refined adaptively by gen-
erating more training points close to the limit state. This re-
finement is usually based on a learning function, which deter-
mines the location of a new training point. The most widely
used learning functions for ILS surrogate modeling include
the effective feasibility function (EFF) defined in the efficient
global reliability analysis (EGRA) method (Bichon et al.,
2008, 2011) and the U function proposed in the adaptive-
Kriging Monte Carlo simulation (AK-MCS) method (Echard
et al., 2011). The EFF and U functions for the training of the
ith ILS are given by

EFFðxÞ ¼ ðĝiðxÞ � eiÞ 2F
ei � ĝiðxÞ
sgiðxÞ

� �
� F

eL � ĝiðxÞ
sgi ðxÞ

� ��

�F eU � ĝiðxÞ
sgiðxÞ

� ��
� sgiðxÞ

�
2f

ei � ĝiðxÞ
sgiðxÞ

� �

� f
eL � ĝiðxÞ
sgiðxÞ

� �
� f

eU � ĝiðxÞ
sgiðxÞ

� ��

� F
eL � ĝiðxÞ
sgiðxÞ

� �
� F

eU � ĝiðxÞ
sgiðxÞ

� �� �
: (7)

and

UðxÞ ¼ jĝiðxÞj
sgi ðxÞ

, (8)

where ei is the failure threshold (ei¼ 0 in this paper); eU ¼ ei þ
1, eL ¼ ei 2 1; ĝiðxÞ, sgiðxÞ are the mean and standard devia-
tion of the GP prediction of the ith ILS at point X ¼ x; 1 is
usually chosen as 1 ¼ 2sgiðxÞ (Bichon et al., 2011); and
F(.) and f(.) are the cumulative distribution function and
probability density function of a standard Gaussian variable,
respectively.

The EFF function quantifies the expectation that a point is
close to the limit state (Bichon et al., 2011), and the U func-
tion predicts the probability of making an error on the sign of
ĝiðxÞ (Echard et al., 2011). Based on the learning functions
given in Eqs. (7) and (8), a new training point is identified
in EGRA and AK-MCS by maximizing the EFF as

x� ¼ arg max
x[X

fEFFðxÞg

and minimizing the U function as

x� ¼ arg min
x[X

fUðxÞg,

respectively. For the system reliability analysis, the EFF or U
values of any ILS can be used to determine the EFF or U
value for the system. More details about the ILS method
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are available in Bichon et al. (2011) and Fauriat and Gayton
(2014).

2.2.3. Composite limit-state (CLS) method

For some problems, especially series and parallel systems,
the system reliability analysis can be performed by building a
single surrogate model for the CLS (Bichon et al., 2011; Faur-
iat & Gayton, 2014). The reason that the CLS is possible is the
failure events of series and parallel systems can be approxi-
mated by extreme events (i.e., maximum or minimum of in-
dividual events). For example, the system failure probability
given in Eq. (1) can be approximated as below

ps
f ¼ Pr <

m

i¼1
giðXÞ � 0

� �
� Pr gminðXÞ � 0f g, (9)

where

gminðxÞ ¼ min
m

i¼1
fgiðxÞg, 8x [ X:

Similarly, the failure probability of a parallel system can be
approximated as

ps
f ¼ Pr <

m

i¼1
giðXÞ � 0

� �
� Pr{gmaxðXÞ � 0}, (10)

where

gmaxðxÞ ¼ max
m

i¼1
fgiðxÞg, 8x [ X:

Because the CLS functions gminðXÞ and gmaxðXÞ are un-
known functions, the surrogate models can be built adap-
tively using the learning functions (i.e., EFF and U functions)
in Eqs. (7) and (8). Based on the surrogate models of gminðXÞ
and gmaxðXÞ, the system failure probability can be estimated
(Bichon et al., 2011; Fauriat & Gayton, 2014) by performing
MCS on the composite surrogate model.

2.2.4. ILS with composite learning (ILS-CL) function
method

Similar to the ILS method, individual surrogate models are
built for each of the limit states in the ILS-CL method. The
difference between ILS and ILS-CL is that in ILS, new train-
ing points for each of the surrogates are chosen independently
based on the learning functions given in Eqs. (7) and (8),
whereas new training points in ILS-CL are chosen based on
a composite learning function defined according to the sys-
tem failure criterion (Bichon et al., 2011; Fauriat & Gayton,
2014). When the EGRA method (Bichon et al., 2008,
2011) is used to build the ILS, the composite EFF is given by

EFFðxÞ¼ðĝ�ðxÞ�eiÞ
�

2F

�
ei� ĝ�ðxÞ
s�gðxÞ

�

�F
eL� ĝ�ðxÞ
s�gðxÞ

 !
�F

eU� ĝ�ðxÞ
s�gðxÞ

 !�
�s�gðxÞ

	 2f
ei� ĝ�ðxÞ
s�gðxÞ

 !
�f

eL� ĝ�ðxÞ
s�gðxÞ

 !
�f

eU� ĝ�ðxÞ
s�gðxÞ

 !" #

� F
eL� ĝ�ðxÞ
s�gðxÞ

 !
�F

eU� ĝ�ðxÞ
s�gðxÞ

 !" #
, (11)

where ĝ�ðxÞ and s�gðxÞ are a response prediction selected
from all the predictions of system responses and correspond-
ing standard deviation chosen based on the type of the system
(series or parallel). For a series and a parallel system, ĝ�ðxÞ
are determined by

ĝ�ðxÞ¼ min
i¼1,2, : : :,m

ðĝiðxÞÞ

and

ĝ�ðxÞ¼ max
i¼1,2, : : :,m

ðĝiðxÞÞ,

respectively. Similarly, when the AK-MCS method is used to
build the individual surrogate models (called AK-SYS in
Fauriat & Gayton, 2014), the composite U learning function
is given by

UðxÞ¼ jĝ
�ðxÞj

s�gðxÞ
, (12)

where ĝ�ðxÞ and s�gðxÞ are obtained in the same way as in the
composite EFF.

The CLS and ILS-CL function methods, however, are only
for series or parallel systems. They cannot be applied to gen-
eral systems with combined series and parallel systems (as
pointed out in Fauriat & Gayton, 2014). In the subsequent
section, we propose a new surrogate modeling method for
system reliability analysis of any series, parallel, or a com-
bined system.

3. PROPOSED EFFICIENT KRIGING
SURROGATE MODELING APPROACH (EKSA)

3.1. Overview of the basic principle

Before discussing the basic principle of the proposed EKSA
method, we first explain the scope of the proposed method.
The proposed method is applicable to problems where a set
of output responses (g1ðxÞ, g2ðxÞ, . . . , gmðxÞÞ are obtained
from a given setting of input variables x. The system failure
is affected by the group of output responses. Figure 1 gives
an illustration of the problem. The system simulation model
is treated as a black box. Inside the black box, there may be
complicated interactions or couplings between different com-
ponent simulation models. In summary, for a specific input
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setting x, we will get outputs g1ðxÞ, g2ðxÞ, . . . , gmðxÞ from
one system-level simulation or experiment.

This type of problem is very common in practical engineer-
ing applications. For example, we get both the deflection and
stress responses at multiple locations from one finite element
analysis of a beam under loading. For one vehicle side impact
simulation, we get the abdomen load, pubic symphsis force,
rib deflection, and viscous criteria responses (Du & Chen,
2004; Youn et al., 2004; Zhou & Mahdevan, 2006). The pro-
posed EKSA method will focus on the system reliability anal-
ysis of such problems. For such problems, there are two kinds
of Kriging surrogate modeling methods, which are explained
as follows:

1. individual surrogate modeling: building surrogate
models for g1ðXÞ, g2ðXÞ, . . . , and gmðXÞ individually
and

2. random field surrogate modeling: building surrogate
model from a random field perspective.

The individual responses (g1ðxÞ, g2ðxÞ, . . . , gmðxÞ) are usually
non-Gaussian random variables when the response functions
are nonlinear functions of the input variables and are corre-
lated due to the shared random inputs. This is similar to ran-
dom responses at different locations of a random field. Mod-
eling system responses as a random field for system reliability
analysis has been investigated in Hu and Du (2015) and Hu
and Mahadevan (2015b) based on FORM. In this paper,
this concept is further extended for surrogate modeling-based
system reliability analysis by using the SVD (Chatterjee,
2000) or proper orthogonal decomposition (Palmer et al.,
2012). The reason that SVD is used is that the system random
field response is a non-Gaussian random field. Without using
FORM to transform the non-Gaussian random field into a
Gaussian random field, we use SVD to identify the important
features of the non-Gaussian random field. After identifying
the important features of the system response, Kriging surro-
gate models are constructed for the latent responses. More de-
tails of Kriging surrogate modeling based on SVD are avail-
able in Section 3.2.

Both the individual surrogate modeling method and the
random field surrogate modeling method have their own ad-
vantages. As mentioned in the Introduction, random field sur-
rogate modeling is able to capture the correlation, but in some

input regions, the nonlinearity of random field surrogate mod-
eling may be unnecessarily higher than that of the individual
surrogate models. In other words, the SVD-Kriging model
(i.e., Kriging model of the latent responses) may be better
than the individual Kriging surrogate models (built indepen-
dently for each limit state in the original space) in some input
regions, and not in some other input regions. As both the in-
dividual Kriging models and the SVD-based Kriging model
are modeling the same system responses, combining the sur-
rogate models obtained from these two approaches into a
composite surrogate model for system reliability analysis
will have advantages of both types of Kriging surrogate mod-
eling methods and thus improve its efficiency without sacri-
ficing the accuracy. In the proposed EKSA method, the
Kriging surrogate models are first constructed using the afore-
mentioned two approaches. Then the appropriate surrogate
model for each input condition is chosen to predict the system
response, based on a selection criterion to be discussed later.
Note that in the proposed method, which surrogate model
should be used is determined by the algorithm automatically,
and there is no need to identify whether the nonlinearity of the
random field surrogate model is higher than that of the indi-
vidual surrogate models. In order to refine the resulting com-
posite surrogate model, we propose a new stopping criterion
and a new refinement method (for choosing training points).

In the subsequent section, we first investigate SVD-based
surrogate modeling and then discuss the construction of a
composite surrogate for system reliability analysis.

3.2. Initial surrogate modeling

3.2.1. SVD

Suppose we have a data matrix M [ Rns	nz , which con-
tains ns realizations of a random field at nz locations, M can
be decomposed using SVD as follows (Chatterjee, 2000)

M ¼WSVT , (13)

where W [ Rns	ns and V [ RnZ	nZ are orthogonal matrices
consisting of the orthonormal eigenvectors of MMT and
MT M, respectively, and S [ Rns	nz is an rectangular diago-
nal matrix. The diagonal elements of S are the singular values
ë ¼ ½l1,l2, . . . ,lk�, where k ¼ min (ns, nZ) arranged in de-
creasing order.

Defining H ¼WS [ Rns	nZ , we have M ¼ HVT . If the
eigenvectors corresponding to the first r largest eigenvalues
are used to reconstruct M, we have

M̃ ¼ HrVT
r , (14)

in which Hr [ Rns	r is the first r columns of H and
VT

r [ Rr	nZ is the first r columns of VT .
The above equations show that a random field can be re-

constructed based on realizations of the random field using
the important features.

Fig. 1. Illustration of the system simulation problem.
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3.2.2. Kriging surrogate modeling based on SVD

In order to build the initial surrogate model for system re-
liability analysis based on SVD, we first generate nin training
points of X. We then have the training points as

xs ¼ ½xð1Þ, xð2Þ, . . . , xðnmÞ� [ Rn	nin , (15)

where xðiÞ is the ith training point, 8i ¼ 1, 2, . . . , nin.
After performing system-level simulations at the initial

training points given in Eq. (15), we have the system re-
sponses as

gs ¼ ½gð1Þ, gð2Þ, . . . , gðninÞ�T [ Rnin	m

¼

g1ðxð1ÞÞ g2ðxð1ÞÞ . . . gmðxð1ÞÞ
g1ðxð2ÞÞ g2ðxð2ÞÞ . . . gmðxð2ÞÞ

..

. ..
. . .

. ..
.

g1ðxðninÞÞ g2ðxðninÞÞ . . . gmðxðninÞÞ

2
6664

3
7775

nin	m

:
(16)

Because the system responses may be quite different in mag-
nitude from each other, the system response matrix given in
Eq. (16) is normalized as below:

gs ¼ Iîg

þ

ug1ðxð1ÞÞ ug2ðxð1ÞÞ . . . ugmðxð1ÞÞ
ug1ðxð2ÞÞ ug2ðxð2ÞÞ . . . ugmðxð2ÞÞ

..

. ..
. . .

. ..
.

ug1ðxðninÞÞ ug2ðxðninÞÞ . . . ugmðxðninÞÞ

2
6664

3
7775

nin	m

, (17)

in which I [ Rnin	1 is a vector of ones, îg¼½m̂g1,m̂g2, . .. ,m̂gm�,
where

m̂gi¼
1

nin

Xnin

j¼1
giðxð jÞÞ,

and ugiðxðjÞÞ¼giðxðjÞÞ� m̂gi :

Defining the second term on the right-hand side of Eq. (17)
as Z [ Rnin	m, we then have

gs ¼ Iîg þ Z: (18)

In order to model Z as a random field according to the prin-
ciple discussed in Section 3.1, we perform SVD to Z using
the method presented in Section 3.2.1. Assume that the first
r largest eigenvalues are used to reconstruct Z; according to
Eq. (14), we have

Z̃ ¼ HZVT
Z (19)

and

gs ¼ Iîg þHZVT
Z , (20)

where HZ [ Rnin	r and VT
Z [ Rr	m are computed using Eqs.

(13) and (14).

Eq. (20) is rewritten as

gsðiÞ ¼ ½g1ðxðiÞÞ, g1ðxðiÞÞ, . . . , gmðxðiÞÞ�

¼ îg þ
Xr

j¼1
HjðiÞv j, 8i ¼ 1, 2, . . . , nin, (21)

where Hj(i) is the element of HZ at ith row and jth column,
and vj is the jth row of VT

Z [ Rr	m, which represents the
jth important feature used to approximate Z.

With all the training inputs xðiÞ and the corresponding latent
responses, Hj(i), j ¼ 1, 2, . . . , r, at the training points, we
then construct surrogate models for HjðXÞ, 8j ¼ 1, 2, . . . , r
using the Kriging method discussed in Section 2.2.1. Thus,
we have the SVD-based Kriging surrogate model as

GSVDðXÞ ¼ ½GSVD
p1
ðXÞ, GSVD

p2
ðXÞ, . . . , GSVD

pm
ðXÞ�

¼ îg þ
Xr

j¼1
ĤjðXÞvj, (22)

where GSVD
pi
ðXÞ is the response of the ith component from the

SVD-Kriging surrogate model, and ĤjðXÞ is the jth surrogate
model. For given X ¼ x, we have ĤjðXÞ � NðĥjðxÞ,s2

Hj
ðxÞÞ.

3.2.3. Composite Kriging surrogate models for system
reliability analysis

Suppose individual surrogate models Gind
pi
ðXÞ, i¼ 1, 2, . . . ,

m have also been built using the Kriging method based
on the same training points given in Eqs. (15) and (16). For

a given X ¼ x, we have Gind
pi
ðXÞ � Nðĝind

i ðxÞ, ðsind
gi
ðxÞÞ2Þ,

8i ¼ 1, 2, . . . , m. Similarly, from the SVD-Kriging surrogate
model (Section 3.2.2), we have

GSVD
pi
ðxÞ � NðĝSVD

i ðxÞ, ðsSVD
i ðxÞÞ2Þ, 8i ¼ 1, 2, . . . , m, (23)

in which

½ĝSVD
1 ðxÞ, ĝSVD

2 ðxÞ, . . . , ĝSVD
m ðxÞ� ¼ îg þ

Xr

j¼1
ĥjðxÞvj (24)

and

½sSVD
g1
ðxÞ,sSVD

g2
ðxÞ, . . . ,sSVD

gm
ðxÞ� ¼

Xr

j¼1
s2

Hj
ðxÞðvj 8 vjÞ

 !8(1=2)

,

(25)

where ðvj 8 vjÞ is the Hadamard product, A8(1=2) is the Hadamard
root of matrix A (Reams, 1999), and ĥ1ðxÞ, ĥ2ðxÞ, . . . , ĥrðxÞ
and sH1ðxÞ,sH2ðxÞ, . . . ,sHrðxÞ are the mean and the standard
deviation of the prediction at x from ĤjðXÞ, 8j ¼ 1, 2, . . . , r.

The purpose of building a composite surrogate model
using the individual surrogate models and the SVD-based
Kriging surrogate models is to reduce the uncertainty in the
system reliability analysis estimate. Note that the composite
surrogate model is different from the surrogate model of
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CLS discussed in Section 2.2.3. In system reliability analysis,
we are only concerned about the sign of the prediction on the
active system failure boundary (whether a given input falls in
a failed or a safe region). Motivated by this, we use the U
function defined in Eq. (8) to facilitate the building of the
composite surrogate model. For a given X¼ x, we first com-
pute the U values of predictions from SVD-Kriging and indi-
vidual surrogate models by

USVD
i ðxÞ ¼ jĝ

SVD
i ðxÞj

sSVD
i ðxÞ

and

U ind
i ðxÞ ¼

jĝind
i ðxÞj

sind
gi
ðxÞ , 8i ¼ 1, 2, . . . , m:

Based on the U values, we then determine which surrogate
model prediction we should use by

FiðxÞ ¼ arg maxf½USVD
i ðxÞ, Uind

i ðxÞ�g, 8i ¼ 1, 2, . . . , m, (26)

where FiðxÞ ¼ 1 indicates USVD
i ðxÞ . Uind

i ðxÞ and FiðxÞ ¼ 2
indicates USVD

i ðxÞ , Uind
i ðxÞ. If FiðxÞ ¼ 1, we will use the

prediction from the SVD-based Kriging surrogate; otherwise,
the prediction from the individual Kriging model is used.

For X¼ x, after selection, we have the prediction of the ith
system response as

G piðxÞ � NðĝiðxÞ, ðsgiðxÞÞ
2Þ

¼
NðĝSVD

i ðxÞ, ðsSVD
gi
ðxÞÞ2Þ, if FiðxÞ ¼ 1

Nðĝind
i ðxÞ, ðsind

gi
ðxÞÞ2Þ, if FiðxÞ ¼ 2

, 8i ¼ 1, 2, . . . , m:

(

(27)

The above equation is applied to all the system responses
for any X ¼ x. Figure 2 summarizes the general procedure
of the proposed composite surrogate modeling.

Note that in the above procedure, two kinds of Kriging sur-
rogate models are combined to get a composite surrogate
model, where the U function is employed to decide which
surrogate model should be used at each location of the input
domain. This is different from the ensemble of surrogate
models.

In the subsequent sections, we develop a new learning
function and a new stopping criterion in constructing the
composite surrogate model.

3.3. Stopping criterion

Using the surrogate model, the system failure probability can
be estimated based on Monte Carlo sampling as follows:

p̂s
f ¼

1
NMCS

XNMCS

i¼1
ÎsðxðiÞÞ, (28)

where NMCS is the number of MCS samples and ÎsðxðiÞÞ is the
estimated system failure state at the ith sample point with
ÎsðxðiÞÞ ¼ 1 indicating failure and ÎsðxðiÞÞ ¼ 0 indicating
safe. The value of ÎsðxðiÞÞ is obtained based on the surrogate
model predictions at xðiÞ. Due to the uncertainty in the surrogate
model predictions, there may be error in the value of ÎsðxðiÞÞ.
The error of ÎsðxðiÞÞwill result in the error in the system failure
probability estimate, p̂s

f .
In the EGRA and AK-MCS methods, the stopping criteria

have been defined as U . 2 and EFF , 0.001. These stopping
criteria are defined from a single sample perspective not from
the reliability analysis perspective as been discussed in Hu
and Mahadevan (2015a). That a sample cannot satisfy U .

2 or EFF , 0.001 does not mean that the reliability analysis
accuracy cannot satisfy our requirement. In this paper, a new
stopping criterion is defined from the system reliability anal-
ysis perspective based on the partitioning of MCS samples. A
similar idea has been used in Hu and Mahadevan (2015a).
The basic idea of the sampling partition is to assume that
the error of system reliability analysis mainly comes from
the group of samples that have a high probability of making
an error in the value of ÎsðxðiÞÞ. Based on this idea, we parti-
tion the MCS samples into two groups, namely, group 1 sam-
ples [where the probability of making an error on the value of
ÎsðxðiÞÞ is low] and group 2 samples (the remaining samples).
After the partition, Eq. (28) is rewritten as

p̂s
f ¼

1
NMCS

XNg1

j¼1
Îsðxð jÞÞþ

XNg2

j¼1
Îsðxð jÞÞ

 !
, (29)

where Ng1 and Ng2 are the number of samples in group 1 and
group 2, respectively.

We can then use the following convergence criterion to es-
timate the potential failure probability estimate error (Hu &
Mahadevan, 2015a)

1max
r ¼ max

N�f2
[½0, Ng2�

jN f 2 � N�f2 j
N f 1 þ N�f2

	 100%

( )
, (30)

where 1max
r is the maximum potential percentage error of the

system failure probability estimate, and Nf 1 and Nf 2 are the

Fig. 2. General procedure of the proposed composite surrogate modeling.
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number of samples corresponding to ÎsðxðiÞÞ ¼ 1 among
group 1 and group 2, respectively.

In Hu and Mahadevan (2015a), the sample partition is
achieved through UðxðiÞÞ. This kind of partition, however,
is not applicable to system failure probability estimate as there
are multiple components in a system and the failure state of a
system is affected by the system topology. In order to over-
come this challenge, we propose a new partition method to
make the percentage error estimate possible.

Based on the mean and standard deviation of the predic-
tion, we first define the failure indicator and safe indicator
for component i as follows

Î f
ciðxÞ ¼

1, if ĝiðxÞ , 0
0, otherwise

�
, (31)

where ĝiðxÞ is the mean prediction from the assembled surro-
gate model and

Îs
ciðxÞ ¼ 1� Î f

ciðxÞ: (32)

We also define a sign indicator for component i as

Isign
ci ðxÞ ¼

1, if UgiðxÞ . 2
0, otherwise

�
, (33)

where UgiðxÞ ¼ jĝiðxÞj=sgiðxÞ and Isign
ci ðxÞ ¼ 1, indicating

that the probability of making an error on the value of Î f
ciðxÞ

or Îs
ciðxÞ is low. Otherwise, the probability of making an error

is high.
Note that the above definitions are at the component

level. In order to get the indicators at the system level,
Boolean functions need to be defined according to the sys-
tem topology. For a series system with m components, the
indicator that the system is failed and the probability of
making an error on the failure state of the system is low
is given by

Ifail
s ðxÞ ¼

Xm
i¼1

Isign
ci ðxÞÎ

f
ciðxÞ: (34)

The indicator that the system is safe and the probability of
making an error is low is given by

Isafe
s ðxÞ ¼

Ym
i¼1

Isign
ci ðxÞÎs

ciðxÞ: (35)

If Ifail
s ðxÞ . 0 or Isafe

s ðxÞ . 0, it means that the probability
of making an error on the value of ÎsðxÞ is low (i.e., this sample
belongs to group 1). Otherwise, sample x belongs to group 2.

Similarly, for a parallel system with m components, we
have

Ifail
s ðxÞ ¼

Ym
i¼1

Isign
ci ðxÞÎ

f
ciðxÞ, (36)

Isafe
s ðxÞ ¼

Xm
i¼1

Isign
ci ðxÞÎs

ciðxÞ: (37)

For a combined series and parallel system, Ifail
s ðxÞ and

Isafe
s ðxÞ can be defined according to the system topology

based on Eqs. (34) through (37). For example, for a combined
system given in Figure 3, Ifail

s ðxÞ and Isafe
s ðxÞ can be defined as

Ifail
s ðxÞ ¼

Y3

i¼1

Isign
ci ðxÞÎ

f
ciðxÞþ

Y4

i¼3

Isign
ci ðxÞÎ

f
ciðxÞ, (38)

Isafe
s ðxÞ ¼

X3

i¼1
Isign
ci ðxÞÎs

ciðxÞ
 ! X4

i¼3
Isign
ci ðxÞÎs

ciðxÞ
 !

: (39)

Based on the same principle, ÎsðxÞ is computed using compo-

nent-level indicator Î f
ciðxÞ for a series and parallel system as

below

ÎsðxÞ ¼
Xm
i¼1

Î f
ciðxÞ, (40)

for a series system

ÎsðxÞ ¼
Ym
i¼1

Î f
ciðxÞ, (41)

for a parallel system.
For the combined system given in Figure 3, we have

ÎsðxÞ ¼
Y3

i¼1

Î f
ciðxÞ þ

Y4

i¼3

Î f
ciðxÞ:

Based on the defined Ifail
s ðxÞ and Isafe

s ðxÞ, the sample indices
of the group 1 samples are obtained as

In1 ¼ arg
i¼1,2,...,NMCS

fIfail
s ðxiÞ . 0 or Isafe

s ðxiÞ . 0g: (42)

Once the indices of the group 1 samples are available, the in-
dices of the group 2 samples (In2) are obtained as well. We then
have Ng1 and Ng2 easily, which are the lengths of In1 and In2,
respectively. With In1 and In2, we can also obtain Nf 1 and Nf 2

using Eqs. (40) and (41), or the Boolean function defined ac-
cording to the system topology and thus the potential percentage
error of the system failure probability estimate can be evaluated
using Eq. (30). If the percentage error of the analysis satisfies
our requirement (say, 5%), we estimate the system failure prob-
ability using the surrogate model and Eq. (28). Otherwise, the

Fig. 3. An example of a combined system.
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surrogate model needs to be refined. In the following section,
we discuss the refinement of the surrogate model by choosing
training points based on a learning function.

3.4. Refinement of the surrogate models

In current adaptive Kriging surrogate modeling methods for
reliability analysis, learning functions are usually defined to
select new training points. The learning functions given in
Eqs. (7) and (8) have also been extended to system reliability
analysis of parallel and series systems as given in Eqs. (11)
and (12) (Bichon et al., 2011; Fauriat & Gayton, 2014). Ap-
plication of the extended EFF and U functions, however, is
limited to series and parallel systems. In this section, we de-
fine a new learning function for the surrogate modeling
method proposed in Section 3.2, and the proposed learning
function is applicable to general systems.

We define the new learning function based on the same
principle of the U function (Echard et al., 2011). The learning
function estimates the probability of making an error on the
value of ÎsðxÞ. Because the prediction of the composite surro-
gate model G piðxÞ is a random variable, IsðxÞ is also a random
variable. Define the learning function as PeðxÞ, the new train-
ing point is identified as

x� ¼ arg max
x[X

fPeðxÞg: (43)

If ÎsðxÞ ¼ 1, the probability of making an error is 1 2 Pr
fIsðxÞ ¼ 1g, where Prf�g stands for probability. If ÎsðxÞ ¼
0, the probability of making an error is PrfIsðxÞ ¼ 1g. We
therefore have the learning function as

PeðxÞ ¼ 1� PrfIsðxÞ ¼ 1g, if ÎsðxÞ ¼ 1
PrfIsðxÞ ¼ 1g, otherwise

:

�
(44)

It can be seen from the above equation that the most critical
part is the computation of PrfIsðxÞ ¼ 1g by considering the
surrogate model prediction uncertainty. In order to estimate
PrfIsðxÞ ¼ 1g, we first analyze the statistical properties of
GpjðxÞ, i ¼ 1, 2, . . . , m.

For a given x, the prediction of component i from the com-
posite surrogate model is a normal random variable given by
GpiðxÞ � NðĝiðxÞ,s2

gi
ðxÞÞ. Depending on the value of FiðxÞ

given in Eq. (26), GpiðxÞ may come from the SVD-based
Kriging or individual Kriging. According to Eq. (22), GpiðxÞ
and GpjðxÞ, 8i, j ¼ 1, 2, . . . , m, are correlated normal random
variables if both of them come from the SVD-based
Kriging model. We therefore have the covariance between
GpiðxÞ and GpjðxÞ, 8i, j ¼ 1, 2, . . . , m as

X
ij
¼

EðGpiðxÞGpjðxÞÞ
� EðGpiðxÞÞEðGpjðxÞÞ, if FiðxÞ¼1 and FjðxÞ¼1,
0, otherwise

8<
: (45)

where
P

ij is an element of the covariance matrix
P

and E(.) is
expectation.

From Eq. (22), we also have

GpiðxÞ ¼ m̂gj
þ
Xr

k¼1
ĤkðxÞvkðiÞ

and

GpjðxÞ ¼ m̂gj
þ
Xr

k¼1
ĤkðxÞvkð jÞ,

where vk ( j) is the jth element of vk, 8k ¼ 1, 2, . . . , r. Substi-
tuting GpiðxÞ and GpjðxÞ into Eq. (45) and after simplification,
we have

X
ij
¼

Pr
k¼1

s2
Hk
ðxÞvkðiÞvkð jÞ, if FiðxÞ ¼ 1 and FjðxÞ ¼ 1

0, otherwise

8<
: : (46)

For a given x, we therefore have a multivariate normal distri-
bution as GpðxÞ¼½Gp1ðxÞ,Gp2ðxÞ, ...,GpmðxÞ��NðĝðxÞ,

P
Þ,

where ĝðxÞ is given in Eq. (27) from the composite surrogate
model. Based on the multivariate normal distribution,
PrfIsðxÞ ¼ 1g is computed for a parallel system as

PrfIsðxÞ ¼ 1g ¼
ð0

�1

� � �
ð0

�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞmj

P
j

p
	 exp � 1

2
ðg� ĝðxÞÞT

X�1ðg� ĝðxÞÞ
� �

	 dg1 � � � dgm: (47)

For a series system, PrfIsðxÞ ¼ 1g is computed by

PrfIsðxÞ ¼ 1g ¼ 1�
ð1

0
� � �
ð1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞmj

P
j

p
	 exp � 1

2
ðg� ĝðxÞÞT

X�1ðg� ĝðxÞÞ
� �

	 dg1 � � � dgm: (48)

For a combined system, the expression of the probability is
more complicated. However, analytically solving Eqs. (47)
and (48) and expressions for general system is computation-
ally challenging, especially when the number of components
is high. In this paper, we therefore employ the sampling-based
method. We first generate Nsimu samples for GpðxÞ ¼
½G p1ðxÞ, G p2ðxÞ, . . . , G pmðxÞ� based on NðĝðxÞ,

P
Þ (Math-

works Inc., 1998). Let the generated samples be gij, 8i ¼ 1, 2,
. . . , Nsimu; j ¼ 1, 2, . . . , m. PrfIsðxÞ ¼ 1g can be easily esti-
mated by

PrfIsðxÞ ¼ 1g � 1
Nsimu

XNsimu

i¼1
IsðgiÞ, (49)

where Is(gi) is the system failure indicator, which can be ob-
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tained using the Boolean functions defined in Section 3.3
[Eqs. (40) and (41)].

Note that we do not need to get a very accurate estimate of
PrfIsðxÞ ¼ 1g because selection of two training points with
close probabilities of making an error will have similar ef-
fects on surrogate modeling. Therefore, Nsimi can be chosen
as Nsimu ¼ 1	105 or a smaller number. If we compute PeðxÞ
for all the MCS samples, we can then identify a new training
point using Eq. (43) during each iteration. However, the
number of samples from MCS may be very large, thus mak-
ing the identification of new training point computationally
very expensive. In order to solve this problem, we use the
sample partitioning method discussed in Section 3.3. We
compute PeðxÞ only for the group 2 samples because only
the group 2 samples have large probabilities of making a
classification error. This is another advantage of the sample
partitioning.

Once the new training point x* is identified using Eq. (43),
the system simulation is performed with the new training
point at the input setting. Based on the system simulation re-
sult, the surrogate model is reconstructed using the method
presented in Section 3.2. Then, the accuracy of the surrogate
model is checked using the stopping criterion proposed in
Section 3.3. This process continues until the stopping criter-
ion is satisfied.

The stopping criterion given in Eq. (30) is a conservative
error estimate of the system failure probability. For some
problems, even if the requirement given in Eq. (30) cannot
be satisfied, it is possible that the probability of making an er-
ror in the state of the system is very low for every individual
samples. To avoid this situation, we further define another
stopping criterion based on PeðxÞ. The PeðxÞ criterion is de-
fined as

½Pmax
e ðxÞ, Inmax� ¼ maxfPeðxÞg , 1e� 4, (50)

where Pmax
e ðxÞ is the maximum probability of making an error

in the group 2 samples and Inmax is the corresponding sample
index.

Until now, the proposed surrogate modeling method, the
stopping criterion, and the refinement method have been dis-
cussed. In the next section, we will provide a numerical im-
plementation of the proposed EKSA method.

3.5. Implementation procedure

In this section, we summarize the overall implementation pro-
cedure of the proposed EKSA method. Table 1 gives the de-
tailed numerical procedure of the proposed method.

4. NUMERICAL EXAMPLES

In this section, four examples featuring series, parallel, and
combined system configurations are used to demonstrate
the proposed EKSA method. In the first two examples, the

proposed EKSA method is compared with the following three
methods:

1. MCS on the original (true) limit-state functions;
2. modeling of limit-state functions individually and up-

dating the surrogate models adaptively using ILS-CL,
discussed in Section 2.2.4; and

3. Constructing a CLS function for the system and updat-
ing the function adaptively using Eqs. (7) and (8), dis-
cussed in Section 2.2.3.

In the third example, the proposed method is compared with
MCS and ILS method (Section 2.2.2) as neither the ILS-CL
method nor the CLS method can be directly applied to com-
bined systems. In the fourth example, the proposed method is
compared with MCS and the ILS-CL method. The trend func-
tion of the Kriging model is chosen as a constant function for
all the methods in the four examples. The convergence criter-
ion for AK-MCS and EGRA are chosen as U . 2 and EFF ,

1	1023. The percentage error of system failure probability
analysis is computed by

1% ¼
jp̂s

f � ps
f , MCSj

ps
f , MCS

	 100%, (51)

where p̂s
f stands for the system failure probability estimate

from a method (i.e., EKSA, ILS-CL, CLS, or ILS) and
ps

f , MCS is the estimate from MCS.

4.1. A series system

A series system with eight limit state functions as given in
Eqs. (52)–(59) is employed as our first example. This exam-
ple is modified from (Schuermans & Van Gemert, 2005;
Echard et al., 2011).

g1ðXÞ ¼ 3þ 0:1ðX1 � X2Þ2 �
ðX1 þ X2Þffiffiffi

2
p , (52)

g2ðXÞ ¼ 3þ 0:1ðX1 � X2Þ2 þ
ðX1 þ X2Þffiffiffi

2
p , (53)

g3ðXÞ ¼ 7ðX2 þ 3Þ2 � 5X2
1 þ ðX2

1 þ ðX2 þ 3Þ2Þ2 þ 1, (54)

g4ðXÞ ¼ 7ðX2 þ 1Þ2 � 5ðX1 þ 2Þ2

þ ððX1 þ 2Þ2 þ ðX2 þ 1Þ2Þ2 þ 5, (55)

g5ðXÞ ¼ ðX1 � X2Þ þ
6ffiffiffi
2
p , (56)

g6ðXÞ ¼ ðX2 � X1Þ þ
6ffiffiffi
2
p (57)
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g7ðXÞ ¼ 2ðX1 � 3Þ2 � 4X2
2ððX1 � 3Þ2 þ X2

2Þ
2 þ 1, (58)

g8ðXÞ ¼ 2ðX1 þ 2Þ2 � 4ðX2 � 1Þ
þ ððX1 þ 2Þ2 þ ðX2 � 1Þ2Þ2 þ 1, (59)

where X1 and X2 are independent standard normal variables.
The system failure probability is defined as

ps
f ¼ Pr <

8

i¼1
giðXÞ � 0

� �
: (60)

We first generate eight initial training points for X1 and X2

in the interval [–4, 4]. We then perform system failure prob-
ability analysis using the ILS-CL and CLS methods using
AK-MCS and EGRA. Figures 4 and 5 show the comparisons
between the learned limit state and true limit state from the
ILS-CL and CLS methods, respectively. The results show
that the ILS-CL method is able to accurately learn the final
limit state functions, whereas the CLS method failed to learn
the CLS function due to the high nonlinearity.

We also performed system failure probability estimation
using the EKSA method. Figure 6 presents comparisons of
the learned CLS and the true limit state based on the final train-
ing points identified in the EKSA method. It shows that after
assembly, the learned limit state is closer to the true limit state
than both the SVD-Kriging and individual Kriging models.

Table 2 gives the results comparison of different methods for
the series system example. In order to demonstrate the robust-
ness of the proposed method and account for the sampling
uncertainty, 40 runs of the EKSA and ILS-CL methods are per-
formed and the average results are reported. Because the CLS
method fails to model the highly nonlinear limit state as shown
in Figure 5, we only run the CLS method once. The results show
that the proposed EKSA method is more efficient (in terms of
number of function evaluations) than the ILS-CL and CLS
methods in order to achieve the same level of accuracy.

4.2. A parallel system

A parallel system with nine limit state functions as given in
Eqs. (61) through (69) is used as our second example. There
are two standard normal variables X1 and X2 in each of the
limit-state functions.

g1ðXÞ ¼ 4� X2
1X2, (61)

g2ðXÞ ¼ 6� ðX1 þ X2 � 5Þ2

30
� ðX1 � X2 � 12Þ2, (62)

g3ðXÞ ¼ min
2þ 0:1ðX1 � X2Þ2 +

ðX1 þ X2Þffiffiffi
2
p ?

4ffiffiffi
2
p + ðX1 � X2Þ ?

8>><
>>: , (63)

Table 1. Implementation procedure of EKSA

Set Cov pf = 1 and xMCS = 1
While Cov pf . 0.05 do

Generate NMCS samples of xi, i = 1, 2, . . . , NMCS and combine the new samples with xMCS

While 1max
r . 5% and Pmax

e . 1 × 10−2 do
Surrogate Modeling

Construct SVD-based Kriging surrogate model (Sect. 3.2.1 and 3.2.2)
(a) Perform SVD for gs using Eqs. (14)–(19)
(b) Construct surrogate models Ĥj(X), j¼ 1, 2, . . . , r using Kriging surrogate model, xs, and results from SVD.
Construct individual surrogate models.
Obtain mean and standard deviation of surrogate model predictions from the SVD-based Kriging surrogate
model and individual surrogate models for all the samples in xMCS.
Choose the predictions and standard deviations and obtain the composite mean predictions
ĝ(x) = [ĝ1(x), ĝ2(x), . . . , ĝm(x)] and standard deviations [sg1 (x), sg2 (x), . . . , sgm (x)] (Sec. 3.2.3).

Stopping Criterion Checking
Compute the U values using Eq. (8).
Identify the indices of the group-one sample and group-two sample using the method presented in Sec. 3.3.
Compute 1max

r using Eq. (30).
Identification of New Training Points

Compute the covariance matrix S using the method presented in Sec. 3.4.
Obtain Pe(x) for the group-two sample.
Identify Pmax

e , Inmax, and the new training point x∗ using Eq. (50).
Perform system simulation at the new training point and update xs and gs.

End While
Estimate p̂s

f using Eq. (28).
Compute Cov pf =

��������������������
(1 − p̂s

f )/p̂s
f /NMCS

√

End While
Obtain p̂s

f
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g4ðXÞ ¼ 6� ððX1 � X2 þ 1Þ2 þ 5X2 þ 1Þ, (64)

g5ðXÞ ¼ 4 cos
pX1

6

� �
sin

pX2

8

� �
� 8, (65)

g6ðXÞ ¼ 4� ððX1X2 þ 1Þ2 þ 4X2Þ, (66)

g7ðXÞ ¼ 2� ðX1 þ X2Þ2=5� ðX1 � X2Þ2=4, (67)

g8ðXÞ ¼ 7 sin
pX1

3

� �
cos

pX2

6

� �

� cos
pX1

3

� �
sin

pX2

8

� �
� 4, (68)

g9ðXÞ ¼ ðð1:5þ X1Þ2 þ 4Þð1:5þ X2Þ=20

� sinð2:5ð1:5þ X1ÞÞ � 3: (69)

The system failure probability is defined as

ps
f ¼ Pr

n
>
9

i¼1
giðXÞ � 0

o
: (70)

Similar to example 1, we first perform system reliabilityanal-
ysis using the ILS-CL and CLS methods. Figures 7 and 8 show
the limit state comparisons of different methods (ILS-CL and
CLS).

Figure 9 gives the learned CLS function from the EKSA
method based on the identified training points form EKSA.
Similar conclusion can be obtained as example 1.

Fig. 4. Comparison of learned composite limit state using composite learning function and true composite limit state.

Fig. 5. Comparison of learned composite limit state using composite limit state and true composite limit state.
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Fig. 6. Comparison of learned composite limit state from the efficient Kriging surrogate modeling approach and true composite limit state.
SVD, singular value decomposition.

Table 2. Results comparison of the series system example

ILS-CL CLS

AK-MCS EGRA AK-MCS EGRA EKSA MCS

p̂s
f 0.0812 0.0801 0.0420 0.0328 0.0828 0.0835

NOF 8 + 44.78 8 + 49.67 8 + 189 8 + 180 8 + 24.03 1×106

1 (%) 2.75 4.07 49.7 60.72 0.84 NA

Note: The number of function evaluations (NOF) is given as the number of initial training points + the number of added training
points.

Efficient Kriging surrogate modeling approach 155

https://doi.org/10.1017/S089006041700004X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700004X


Table 3 gives the results comparison of different methods,
including the number of function evaluations, percentage er-
ror, and estimated system failure probability. Similar to exam-
ple 1, 40 runs of EKSA and ILS-CL methods are performed
to account for the sampling uncertainty, and the average re-
sults are reported. It shows that the EKSA method is more ac-
curate and efficient than the other methods.

4.3. A combined series and parallel system

A cantilever beam-bar system as shown in Figure 10 is adopted
from Song and Der Kiureghian (2003) and Wang et al. (2011)
as our third example. The reliability block diagram, which de-
fines the failure of the system, is also given in Figure 10.

The five limit state functions of this example are given as

g1ðXÞ ¼ S� 5F=16, (71)

g2ðXÞ ¼ M � LF, (72)

g3ðXÞ ¼ M � 3LF=8, (73)

g4ðXÞ ¼ M � LF=3, (74)

g5ðXÞ ¼ M þ 2LS� LF, (75)

where g1ðXÞ is the fracture of the brittle bar, g2ðXÞ is the for-
mation of a hinge at the fixed point of the beam given the frac-
ture of the bar, g3ðXÞ is the formation of a hinge, g4ðXÞ is the
formation of another hinge at the midpoint of the beam given
the formation of a hinge at the fixed point, and g5ðXÞ is the frac-
ture of the bar given the formation of a hinge at the fixed point.

Table 4 gives the random variables of the cantilever beam-
bar system. In this example, we first generate 10 initial train-
ing points. We then perform system reliability analysis using

Fig. 7. Comparison of learned composite limit state using composite learning function and true composite limit state.

Fig. 8. Comparison of learned composite limit state using composite limit state and true composite limit state.
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the EKSA method, ILS method, and MCS. Table 5 gives the
results comparison of the combined system example. The re-
ported result of the EKSA method is the average result of 40
runs. It shows that the EKSA method is far more efficient than
the ILS method. This demonstrates the effectiveness of the
proposed EKSA method for general systems with combined
series and parallel systems.

4.5. Vehicle side impact

A vehicle side-impact example given in Bichon et al. (2011)
is employed as our fourth example. In this example, the side-

impact crash-worthiness of a vehicle is subjected to uncer-
tainty in the geometry and material properties of several
key components. It is a series system with 10 failure modes.
There are totally 11 random variables in this system. Because
we are using the same random variables (same distribution
types and distribution parameters) as those given in Bichon
et al. (2011), we direct interested readers to Bichon et al.
for detailed information of the random variables. We also
use the same limit state functions. Expressions of the 10 limit
state functions are also available in Bichon et al. From one
side-impact simulation, we can obtain the responses of the
10 limit state function. According to the result given in Bi-

Fig. 9. Comparison of learned composite limit state from the efficient Kriging surrogate modeling approach and true composite limit state.
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chon et al., about 415 impact simulations need to be per-
formed to get an accurate estimate of the system failure prob-
ability. We then perform system reliability analysis using the
EKSA method, the ILS-CL (i.e., AK-MCS and EGRA)
method, and MCS. Table 6 gives the results comparison of
different methods. The results of the EKSA and ILS-CL
methods are the average results of 40 runs. Note that the
CLS method is not compared in this example because it is al-
ready shown in the first three examples that the CLS method
is much less efficient and accurate than the other methods.

The results show that the EKSA method is much more ac-
curate than the ILS-CL method and also more efficient. To
maintain a fair comparison, further analysis shows that the
ILS-CL method using AK-MCS requires (on average)
362.5 function evaluations to achieve the same accuracy level
(less than 5%) as the EKSA method. This further demon-
strates the effectiveness of the proposed EKSA method.

5. CONCLUSION

When surrogate modeling is used for system reliability anal-
ysis, we may model the system responses independently or
considering the correlations between system responses. In
this paper, we propose a SVD-based Kriging approach to ac-

count for correlations between different system responses.
The SVD-based Kriging model, however, may only be accu-
rate in some input regions. In order to overcome this, this pa-
per proposes to combine the SVD-based Kriging with the
Kriging surrogate models of individual limit states.

Considering that currently used stopping criteria for surro-
gate modeling-based system reliability analysis are based on
individual samples, this paper proposes a new stopping criter-
ion directly from the perspective of the system reliability anal-
ysis estimate by partitioning the MCS samples into two
groups, based on the probability of making a classification
error. In addition, current learning functions for surrogate
modeling-based system reliability analysis are limited to ser-
ies and parallel systems. Therefore, we propose a generalized
surrogate model refinement strategy, which is applicable to
series, parallel, and combined systems. Three numerical ex-
amples demonstrate that the proposed EKSA method can sig-
nificantly improve both the efficiency and the accuracy of the
system reliability analysis significantly.

The proposed composite surrogate (combing SVD-Kriging
model and individual Kriging models) enables us to use the
advantages of both types of Kriging surrogate models during
the system reliability analysis. This dramatically increases the

Table 3. Results comparison of the parallel system example

ILS-CL CLS

AK-SYS EGRA AK-MCS EGRA EKSA MCS

p̂s
f 0.0122 0.0121 0.0114 0.0115 0.0123 0.0124

NOF 9 + 22.30 9 + 32.63 9 + 101 9 + 157 9 + 15.39 1×107

1 (%) 1.61 2.42 8.06 7.06 0.81 NA

Fig. 10. A cantilever beam-bar system.

Table 5. Results comparison of the combined system example

ILS

AK-MCS EGRA EKSA MCS

p̂s
f 0.004745 0.004745 0.0047 0.0048

NOF 10 + 353 10 + 461 10 + 2.38 1×107

1 (%) 1.72 1.72 0.27 NA

Note: 353 ¼ 66 + 72 + 78 + 84 + 53 includes the NOF for each limit
state function; 461 ¼ 79 + 81 + 102 + 106 + 93.

Table 4. Random variables of the combined system
example

Variable Distribution Mean SD

L Normal 5 0.05
S Normal 700 300
M Normal 150 30
F Normal 50 10
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efficiency and accuracy of system reliability analysis. Be-
sides, the proposed method can be applied to not only general
combined series and parallel systems but also multidiscipli-
nary systems with complicated interactions and couplings.
The developed stopping criterion and learning function re-
move the limitations of current methods and make the pro-
posed method promising for systems with different config-
urations.

This work only considered aleatory uncertainty in the input
variables for system reliability analysis. Future studies need
include considering epistemic uncertainty in surrogate mod-
eling-based system reliability analysis, and extension of
the proposed method to time-dependent reliability analysis
problems.
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