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A complete nonlinear self-similar solution that characterizes the impact of two liquid
wedges symmetric about the velocity direction is obtained assuming the liquid to
be ideal and incompressible, with negligible surface tension and gravity effects.
Employing the integral hodograph method, analytical expressions for the complex
potential and for its derivatives are derived. The boundary value problem is reduced
to two integro-differential equations in terms of the velocity modulus and angle to
the free surface. Numerical results are presented in a wide range of wedge angles for
the free surface shapes, streamline patterns, and pressure distributions. It is found that
the splash jet may cause secondary impacts. The regions with and without secondary
impacts in the plane of the wedge angles are determined.
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1. Introduction
The formation of a splash following the collisions of liquids and granular materials

is a widely observed phenomenon in nature and engineering. Examples include
plunging breaking water waves, and drops impacting a free surface or a thin film of
the same liquid. Splashing may lead to fluid fragmentation and generation of droplets
and sprays. These phenomena have common features of liquid defragmentation near
the free surface, liquid evaporation and air entrainment, generation of cavitation nuclei,
bubbles, secondary drops and sprays. A review of these phenomena over a range
of diversified problems has been presented by Yarin (2006), focusing on liquid drop
impacts on thin liquid layers and dry surfaces. Kiger & Duncan (2012) described
the process of air entrainment, and Thoroddsen, Etoh & Takehara (2008) centred
discussions on the initial stage of drop impact when liquid masses come into contact
and merge.

The investigation of liquid splashing during the last century was mostly based
on experimental observation. Over the past decade new experimental tools such as
high-speed video camera technologies (Thoroddsen 2002) and the X-ray technique
(Zhang et al. 2012) have been applied to fluid impacts, and have revealed the complex
structure of the flow at the initial stage accompanied by fluid fragmentation and the
formation of a spray cloud. However, these techniques are still far from giving a
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thorough insight into this phenomenon, especially at the initial stage. Direct numerical
simulations of splashing for drops impacting on a liquid layer have been performed
by Weiss & Yarin (1999) and Davidson (2002) based on the boundary integral method
with the inclusion of surface tension forces. Incompressible Navier–Stokes equations
with surface tension have been solved numerically by Josserand & Zaleski (2003).
The initial stage of high-velocity droplet impact on a shallow water layer has been
investigated by Howison et al. (2005) and Oliver (2007) using the method of matched
asymptotic expansions. A numerical investigation of splashing and wave breaking
processes using the SPH method has been performed by Landrini et al. (2007).

A related free boundary problem has been investigated by Keller & Miksis (1983)
and Keller, Milewski & Vanden-Broeck (2002). They considered two wedges of liquid
initially at rest and touching at their vertices. For later times the free surface flow is
driven by the surface tension only. They introduced self-similar variables

x= X
( ρ
σ t2

)
and y= Y

( ρ
σ t2

)
, (1.1)

where ρ is the density and σ is the surface tension coefficient. The system of integro-
differential equations obtained includes two equations with respect to the free surface
shape and the velocity potential, which were solved numerically.

In this study we investigate splash jet formation at the initial stage following an
impact between two liquids of the same density using velocity potential theory with
fully nonlinear boundary conditions, based on the assumption that the liquid is inviscid
and incompressible. When the gravity and surface tension effects are ignored, the
flow becomes self-similar. Such a formulation makes it possible to determine the
flow topology at the initial stage of the impact when two liquid masses collide and
form a splash jet. The integral hodograph method (Semenov & Cummings 2006)
is employed to derive analytical expressions for the complex-velocity potential, the
complex-conjugate velocity, and the mapping function. They are all defined in the
first quadrant of a parameter plane, in which the original boundary value problem
is reduced to two integro-differential equations in terms of the velocity magnitude
and the velocity angle to the liquid boundary. They are solved numerically using the
method of successive approximations. The results are presented through streamlines
and the pressure distributions along the line of symmetry and near the root of the
splash jet. The results obtained have given some insights into the extremely complex
flow structure observed in experiments.

2. Formulation and analysis
We consider the problem in which two symmetric liquid wedges of half-angles α+

and α− move in opposite directions parallel to their symmetry lines with velocity V0

and VD, respectively, and they meet head-on at point A at time t = 0, where the origin
of the Cartesian coordinate system of X–Y is chosen. A sketch of the problem and the
definitions of the geometric parameters are shown in figure 1(a). It is assumed that the
Y-axis is along the symmetry line of the liquid wedges. Due to the collision, a splash
jet appears with the tip at point C as well as a stagnation point on the Y-axis. The
velocity at point P, V0, is used as a reference velocity, and velocity VD is determined
from the solution of the problem to satisfy the condition that the location of the
stagnation point occurs at point A.

For impact of two liquid wedges with constant velocities, the time-dependent
problem in the physical plane Z = X + iY has no explicit length scale. In such a
case the shape of the flow pattern is expected to remain unchanged although the
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FIGURE 1. (a) Sketch of the collision of two liquid wedges: the dashed lines are the initial
free surfaces of the wedges at the moment of impact at the origin, the solid lines are the shape
of the free surface at a later time, and C is the tip of the splash jet, whose trajectory is shown
by the dot-dashed line. (b) The parameter plane.

size varies with time. As a result, the problem becomes time-independent in the
self-similar plane z = x + iy defined by x = X/(V0t), y = Y/(V0t). When V0 is used
as a reference velocity, the velocity magnitude of the upper liquid wedge at infinity,
point P, in the self-similar plane is unity (v0 = 1). The complex-velocity potential
W(Z, t)=Φ(X,Y, t)+ iΨ (X,Y, t) for self-similar flows is written in the form

W(Z, t)=Φ(X,Y, t)+ iΨ (X,Y, t)= V2
0 tw(z)= V2

0 t[φ(x, y)+ iψ(x, y)], (2.1)

where φ and ψ are the velocity potential and the stream function in the self-similar
plane.

The problem is now to determine the function w(z) which conformally maps
the self-similar plane z onto the complex-velocity potential region w. Following
Joukovskii’s method, we choose the first quadrant of the ζ -plane as the parameter
region to derive expressions for the non-dimensional complex velocity, vx − ivy =
dw/dz, and for the derivative of the complex potential, dw/dζ , both as functions of the
variable ζ = ξ + iη. Once these functions are found, the velocity field and the mapping
function z= z(ζ ) are determined as follows:

vx(ξ, η)− ivy(ξ, η)= dw

dz
(ζ ), z(ζ )= zA +

∫ ζ

a

dz

dζ ′
dζ ′,

dz

dζ
= dw

dζ

/
dw

dz
. (2.2)

2.1. Expressions for the governing functions
Conformal mapping allows us to fix three arbitrary points in the parameter region,
which are P, C, and D as shown in figure 1(b). The image of point A (ζ = a) should
be determined as part of the solution of the problem. In this plane, the interval of
the imaginary axis (0 < η < 1, ξ = 0) corresponds to the free surface CP, and the
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Collision of Two Liquid Wedges 135

interval (1< η <∞, ξ = 0) corresponds to the free surface CD. The positive real axis
(0< ξ <∞, η = 0) corresponds to the symmetry line P′D′, or the Y-axis.

The boundary value problem for the complex-velocity function can be formulated
in the parameter plane. At this stage, we write the velocity modulus along the free
surface, that is, along the positive part of the imaginary axis of the ζ -plane as
|dw/dz|ζ=iη = v(η), 0 < η <∞. This function will be determined below using the
dynamic boundary condition.

In the frame of reference fixed at the stagnation point A, the velocity component
normal to the symmetry line equals zero, while the tangential component is negative
along AP′ and positive along AD′. This means that the argument of the complex
velocity, χ = arg (dw/dz)ζ=ξ , along the real axis of the parameter region is known as
χ(ξ)= π/2, 0< ξ < a, and χ(ξ)=−π/2, a< ξ <∞.

The problem is then to find the function (dw/dz) in the first quadrant of the
parameter plane, which satisfies the given boundary conditions. The integral formula
(Semenov & Cummings 2006; Semenov & Iafrati 2006)

F(ζ )= v∞ exp
[

1
π

∫ ∞
0

dχ
dξ

ln
(
ζ + ξ
ζ − ξ

)
dξ − i

π

∫ ∞
0

d ln v
dη

ln
(
ζ − iη
ζ + iη

)
dη + iχ∞

]
(2.3)

determines the complex function F(ζ ) in the complex plane ζ , which satisfies the
given boundary conditions on the real and imaginary axes of the first quadrant: χ(ξ)=
arg[F(ζ )], 0 < ξ <∞, η = 0 and v(η) = |F(ζ )|, 0 < η <∞, ξ = 0, v∞ = v(η)|η=∞,
χ∞ = χ(ξ)|ξ=∞. Using the above formula to solve the mixed boundary value problem
and evaluate the first integral over the step change of the function χ(ξ), we finally
obtain the expression for the complex velocity in the ζ -plane as

dw

dz
= v0

(
ζ − a

ζ + a

)
exp

[
− i
π

∫ ∞
0

d ln v
dη

ln
(

iη − ζ
iη + ζ

)
dη − i

π

2

]
. (2.4)

It can be easily verified that for ζ = ξ the argument of the right-hand side of (2.4) is
the function χ(ξ), while for ζ = iη the modulus of the right-hand side of (2.4) is the
function v(η), i.e. the above boundary conditions are satisfied.

In order to analyse the behaviour of the velocity potential along the free surface,
it is useful to introduce the unit vectors n and τ , which are normal and tangent to
the free surface, respectively. The normal vector is directed from the liquid region
outward, while along the free surface s increases and the liquid region is on the left
(see figure 1a). With this notation,

dw= (vs + ivn) ds, (2.5)

where vs and vn are the tangential and normal velocity components, respectively.
Let θ denote the angle between the velocity vector on the free surface and τ ,
θ = tan−1(vn/vs). Equation (2.5) allows us to determine the argument of the derivative
of the complex potential, ϑ = arg(dw/dζ ):

ϑ(ζ )= arg
(

dw

dζ

)
= arg

(
dw

ds

)
+ arg

(
ds

dζ

)
=
{
θ, 0< ξ <∞, η = 0,
θ + π/2, ξ = 0, 0< η <∞.

(2.6)

Now we have to determine the function θ(ζ ) along the whole fluid boundary,
that is, along the real and imaginary axes of the parameter region. The function θ
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FIGURE 2. (a) Variation of θ = tan−1(vn/vτ ) along the boundary of the liquid region. (b) The
corresponding variation in the parameter plane.

changes continuously along the parts PC and CD of the free surface, and it changes
stepwise on going around points P, C, D and A. Going around the first quadrant
of the parameter plane anticlockwise, as shown in figure 2(b), corresponds to going
around the liquid region in the self-similar plane z in the positive direction of the
spatial coordinate s (see figure 1a). The corresponding change of the function θ is
shown in figure 2(a). The continuous change along the free surface is shown by solid
lines, while its step changes are shown by dashed lines. The step changes at points
P,C,D, and A, as is seen from figure 2(a), are 1θP = −(π + α+), 1θC = −π + µ,
1θD =−(π+ α−), and 1θA = π, respectively.

By introducing the continuous function λ(ς) we can write the function θ(ς) as
follows:

θ(ζ )+ π=


0, a< ξ <∞, η = 0,
1θA, 0< ξ < a, η = 0,
λ(η)+1θA +1θP, ξ = 0, 0< η < 1,
λ(η)+1θA +1θP +1θC, ξ = 0, 1< η <∞,

(2.7)

where λ(0)= 0.
The problem is then to find the function dw/dζ in the first quadrant of the parameter

plane which satisfies the boundary condition (2.6). This is a uniform boundary value
problem, or a problem that has the same type of boundary condition. Using the
integral formula (Semenov & Cummings 2006; Semenov & Iafrati 2006)

dw

dς
= K exp

[
− 1
π

∫ ∞
0

dϑ
dξ

ln
(
ς 2 − ξ 2

)
dξ + 1

π

∫ ∞
0

dϑ
dη

ln
(
ς 2 + η2

)
dη + iϑ∞

]
, (2.8)

where K is a real factor, ϑ(ζ )= arg[dw/dζ ], 0< ξ <∞, η = 0 and 0< η <∞, ξ = 0,
ϑ∞ = ϑ(ζ )ζ→∞, to solve boundary value problem (2.6), (2.7) and evaluate the integrals
over each step change of the function θ(ζ ), we finally obtain the expression for the
derivative of the complex potential in the ζ -plane as

dw

dζ
= Kζ−2α+/π−1 (ζ 2 − a2)(

ζ 2 + 1
)1−µ/π exp

[
1
π

∫ ∞
0

dλ
dη

ln
(
ζ 2 + η2

)
dη
]
, (2.9)
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where K is a real factor. Integration of (2.9) in the parameter region allows us to
obtain the function w = w(ζ ) which conformally maps the parameter region onto the
corresponding region in the complex potential plane:

w(ζ )= wA + K
∫ ζ

a
ζ ′(−2α+/π−1) (ζ ′2 − a2)(

ζ ′2 + 1
)1−µ/π exp

[
1
π

∫ ∞
0

dλ
dη

ln
(
ζ ′2 + η2

)
dη
]

dζ ′,

(2.10)

where wA is a constant.
Dividing (2.9) by (2.4), we can obtain the derivative of the mapping function dz/dζ

whose integration (2.2) gives the mapping function z = z(ζ ). Equations (2.4) and (2.9)
include the parameters K and a, and the functions v(η) and λ(η), all to be determined
from physical considerations, and the dynamic and kinematic boundary conditions. At
time t = 0, the tip of the splash jet, point C, and the stagnation point A at the origin
coincide. The tip of the splash jet moves with the velocity of the liquid at point
C having the magnitude vC = v(η)|η=1 and the angle β = − arg(dw/dz)|ζ=i with the
x-axis. Thus we can write the equation

zC =
∫
Γ

dz

dζ
dζ = vCeiβ, (2.11)

where Γ is an arbitrary contour in the parameter plane connecting points A and C as
shown in figure 1(b). The last equation makes it possible to determine the parameters
K and a if the functions v(η) and λ(η) are known.

The originality of the integral hodograph method lies in the combination of two
methods, namely the boundary integral and hodograph methods. The integral formulae
(2.3) and (2.8) enable us to find expressions for the complex velocity and for the
derivative of the complex potential defined in the parameter plane, and to extract
all the flow singularities in explicit form consistent with the hodograph method.
These expressions may contain unknown non-singular functions, namely the velocity
magnitude and the slope of the solid surface, which are determined from derived
integral equations which are consistent with the boundary integral method.

2.2. Dynamic and kinematic boundary conditions
The dynamic and kinematic boundary conditions for an arbitrary self-similar flow were
derived by Semenov & Iafrati (2006), exploiting the Bernoulli equation and the fact
that along the free surface the acceleration of liquid particles is orthogonal to the free
boundary. These equations have the form

dθ
ds
= v + s cos θ

s sin θ
d ln v

ds
, (2.12)

1
tan θ

d ln v
ds
= d

ds

[
arg
(

dw

dz

)]
, (2.13)

Multiplying both sides of (2.12) and (2.13) by ds/dη = |dz/dζ |ζ=iη and taking into
account that dθ/ds = dλ/ds, we obtain the following integro-differential equation for
the function λ(η):

dλ
dη
= v + s cos θ

s sin θ
d ln v

dη
, (2.14)

where s = s(η) is obtained by integration of the expression |dz/dζ |ζ=iη along the
imaginary axis of the parameter plane. Determining the argument of the complex
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velocity from (2.4) and substituting the result into (2.13), the following integral
equation for the function d(ln v)/dη is obtained:

− 1
2 tan θ

d ln v
dη
+ 1
π

∫ ∞
0

d ln v
dη′

η′

η′2 − η2
dη′ = a

a2 + η2
. (2.15)

The system of (2.14)–(2.15) allows us to determine the functions v(η), λ(η) together
with the function θ(η) using (2.7). Once these functions are found, the velocity at
point D can be obtained from vD = limη→∞ v(η) and the angle of the tip of the splash
jet, µ (see figure 2a), is given by

µ= α− + α+ − lim
η→∞

λ(η). (2.16)

By choosing the location of the reference point in the Bernoulli equation to be at
the stagnation point A, setting W(ZA, t) = 0 or wA = 0, and taking advantage of the
self-similarity of the flow, we can determine the pressure at any point of the flow
region by using

c∗p =
2(P− PA)

ρV2
0

= Re
(
−2w+ 2z

dw

dz

)
−
∣∣∣∣dw

dz

∣∣∣∣2, (2.17)

where the functions z = z(ζ ), w = w(ζ ) and dw/dz are determined from (2.2), (2.10)
and (2.4), respectively.

2.3. Direct impact of two two-dimensional rectangular jets
It has been shown in Semenov & Wu (2013) that when the liquid wedge hits a wall,
the self-similar solution tends to the steady solution of a rectangular jet impacting
on the wall, when the angle of the wedge tends to zero and its flow rate remains
finite. Here, the steady flow problem of two impinging rectangular two-dimensional
jets can be found to be a special case of the above self-similar solution. We notice
that in this case the angles of the liquid wedges α+, α− and the angle of the splash
jet µ are equal to zero. However, the length of the splash jet created from the impact
of the rectangular jets is infinite. In addition, for steady flows velocity magnitude
along the free surface is constant and the normal component of the velocity is zero,
i.e. v(η) ≡ v0 and λ(η) ≡ 0. By using these values, the expressions for the complex
velocity in (2.4) and for the derivative of the complex potential in (2.9) become

dw

dz
=−iv0

(
ζ − a

ζ + a

)
, (2.18)

dw

dζ
= K

ζ 2 − a2

ζ(ζ 2 + 1)
. (2.19)

The velocity field and geometry of the free boundaries can be determined by (2.2)
when the parameters K and a are known. They are determined from the conditions
that the flow rate across the upper jet is q+ = h+v0 and the flow rate across the lower
jet is q− = h−v0, where h+ and h− are the widths of the upper and lower impinging
jets, respectively. By integrating (2.19) along an arc of an infinitesimal circle in the
parameter plane centred at point PP′ (ζ = 0) and using the residue theorem, we obtain

q+ = Im
(∮

ζ=0

dw

dζ
dζ
)
= π

2
Res
η→0

dw

dζ
ζ =−π

2
Ka2. (2.20)
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Similarly for the lower jet, integrating (2.19) along an arc of an infinitely large circle,
we obtain

q− = Im
(∮

ζ=∞

dw

dζ
dζ
)
=−Im

(∮
ζ ′=0

dw

dζ ′
1

dζ ′2
dζ ′
)
=−π

2
K, (2.21)

where the new variable ζ ′ = 1/ζ is introduced to calculate the residue of the function
dw/dζ at infinity. From (2.20) and (2.21) we obtain

K =−2q−
π
, a2 = q+

q−
= h+

h−
. (2.22)

The angle of the splash jet β and the argument of the velocity at the point ζ = i are
the same. By taking the argument of expression (2.18) we determine the angle β as
follows:

β =− arg

(
dw

dζ

∣∣∣∣
ζ=i

)
=−π

2
+ 2 tan−1 1

a
. (2.23)

In the case of equal jet widths, h+ = h−, the parameter a = 1, then the angle β = 0,
i.e. the outgoing splash jet is directed along the x-axis. These results are consistent
with those presented in Milne-Thomson (1962).

3. Results and discussion
3.1. Numerical approach

The method of successive approximations for solving the system of nonlinear
equations comprising the integro-differential equation (2.14) and the integral
equation (2.15) is similar to that used by Semenov & Iafrati (2006) and Semenov
& Cummings (2006) for solving the self-similar problem of water entry of a wedge
and for the time-dependent Hele-Shaw flow, accounting for effects of surface tension.

The numerical solution is sought on a fixed set of points ηj, j = 1, . . . , 2N
distributed along the imaginary axis of the parameter plane. The total number of points
is chosen in the range N = 100 to 300 to check the convergence and accuracy of the
solution procedure. The points ηj are so distributed as to provide a higher density of
the points sj = s(ηj) near the tip of the splash jet. Taking into account the singularities
in (2.9) at points ζ = 0, ζ = i, and ζ =∞, the location of the nodes nearest to these
points is chosen as follows: η1 = ε1, ηN−1 = 1 − ε1, ηN+1 = 1 + ε1, and η2N = 1/ε1

where ε1 = 10−4 in order to provide sufficiently good accuracy. The integrals in the
system of equations are evaluated analytically after the linear interpolations of the
functions d ln v/dη and dλ/dη on the intervals (ηj−1, ηj) are used.

3.2. Validation of the numerical approach (symmetric liquid wedges)

In figure 3, streamline patterns are shown for an upper liquid wedge of α+ = 10◦ and
different angles α− of the lower liquid wedge. For the case α+ = α− = 10◦, figure 3(a)
clearly shows the symmetry of the flow and of the pressure distribution along the
y-axis about the x-axis, which can be considered as a solid wall. The obtained value
of the tip angle is 9.47◦, which is close to the value 9.50◦ obtained by Semenov &
Wu (2013) as the double contact angle from a different procedure for the problem of a
liquid wedge impacting a solid wall.
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FIGURE 3. Streamline patterns (solid lines) in the self-similar plane and the pressure
distribution along the y-axis (dashed line) and along the ‘zero’ streamline starting at the
origin (dot-dashed lines) for an upper liquid wedge of half-angle 10◦ and a lower wedge of
half-angles: (a) 10◦, vD = 1, vC = 1.45; (b) 30◦, vD = 0.87, vC = 1.53; (c) 70◦, vD = 0.74,
vC = 1.39; (d) 90◦, vD = 0.70, vC = 1.29. The increment of the stream function for two
successive streamlines is 0.1. The dotted lines show the undisturbed liquid wedges.
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3.3. Vertical impact of two liquid wedges
The streamline patterns for an upper liquid wedge of α+ = 10◦ colliding with liquid
wedges of α− = 30◦, 70◦, and 90◦, respectively, are shown in figures 3(b)–3(d). For the
case α− = 30◦, it can be seen that the splash jet is directed into the half-plane of the
liquid wedge of the smaller angle. For x = 0, the y-coordinate of the tip of the upper
undisturbed wedge (dotted line) is equal to −1 in figure 3(a–d), which corresponds
to the dimensionless velocity v0 = 1 at point P at infinity, while the tip coordinate
of the lower undisturbed liquid wedge corresponding to the velocity at point D is
smaller than 1, and it decreases as the angle α− increases. The undisturbed wedge
sides (dotted lines) in the self-similar coordinate system can be written as

y+ =−1+ 1
tanα+

x, y− = vD − 1
tanα−

x. (3.1)

For α+ = 10◦ and α− = 70◦, as illustrated in figure 3(c), the splash jet touches the
free surface of the upper liquid wedge creating a cavity. At the same time, the velocity
direction of the liquid in the splash jet, which can be seen as the streamline slope, is
almost parallel to the undisturbed free surface of the upper wedge. Due to the flow
self-similarity, the cavity will continuously grow in the physical plane. In real flows in
the presence of air, the pressure inside the closed growing cavity will become lower
than that on the free surface. The pressure difference between the two sides of the
splash jet can push the splash jet towards the cavity, distort the splash jet, and make
it possible for air to rush into the cavity. However, the present formulation of the
problem does not consider such complicated flows. From a mathematical standpoint,
the splash jet moves into the second sheet of the Riemann surface without interaction
with the main flow.

For α+ = 10◦ and α− = 90◦ shown in figure 3(d), the splash jet is directed into the
upper liquid wedge. The overlapping leads to a secondary impact between the splash
jet and the wedge in physical reality. However, mathematically, the jet moves into the
second sheet of the Riemann surface without interaction. In the case of overlapping of
the splash jet and the wedge, we can expect subsequent impacts and new splash jets in
real situations.

Such multi-impact processes with the formation of multiple cavities facilitate the
generation of a liquid/air mixture, liquid aeration, and the transformation of the splash
jet into a spray. Similar situations occur for plunging breaking waves, as reviewed by
Kiger & Duncan (2012), in which the splash jet formed from an impact between the
wave crest and the free surface may be observed clearly in the case of oblique impacts,
or in the form of an air/liquid mixture in the case of nearly vertical impacts such as a
waterfall.

The streamline pattern for α+ = 60◦ and α− = 70◦ is shown in figure 4(a). It can
be seen that the velocity at the tip of the splash jet becomes much higher than for a
liquid wedge of angle α+ = 10◦ shown in figure 3(c), while the angle of the splash
jet becomes smaller. The splash jet overlaps with the undisturbed upper wedge, or
moves into the second sheet of the Riemann surface mathematically. However, the
thickness of the splash jet becomes smaller in comparison with the cases shown
in figure 3(c). In physical reality, the distortion of the splash jet by the pressure
difference between the growing cavity and the external free surface may destroy the
splash jet, as discussed. The experiments of Thoroddsen (2002) showed an ‘ejecta
sheet’ as a spray at the initial stage of the impact of a drop onto a thin liquid
film. From figure 4(b) it can be seen that the splash jet is almost perpendicular to
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FIGURE 4. (a,b) Streamline patterns (solid lines) in the self-similar plane and the pressure
distribution along the ‘zero’ streamline starting at the origin (dot-dashed lines) for an upper
liquid wedge of α+ = 60◦ and a lower wedge of (a) α− = 70◦, vD = 0.94, vC = 6.25, and (b)
α− = 90◦, vD = 0.81, vC = 4.91. (c) The pressure distribution along the y-axis, (d) Close-up
of the flow pattern near the root of the splash jet for case (b).

the free surface of the liquid wedge. The flow near the root of the splash jet is
shown in close-up in figure 4(d). The pressure along the ‘zero’ streamline shown by
a dot-dashed line increases as we move from the stagnation point to the core of the
splash jet. In other words, the high-speed splash jet is caused by a high local pressure
occurring near the intersection of the free surfaces of the liquid wedges. It occurs on
the free surface of the liquid wedge of the larger angle.

The pressure distributions along the y-axis are shown in figure 4(c) for an upper
liquid wedge of angle α+ = 60◦ and for different angles of the lower liquid wedge
including a flat free surface, α− = 90◦. As illustrated, the pressure at the stagnation
point increases substantially with the angle of the lower wedge. The pressure decays
slowly for y< 0, which corresponds to the wedge of the larger angle.

Flow regimes with and without secondary impact of the splash jet are shown in
figure 5 by shaded and clear areas, respectively, in the plane of half-angles of the
liquid wedges α+ and α−. It is seen that secondary impact always occurs if one of
the liquid wedges has a flat free surface α±/π= 0.5. For the case α+ = α−, secondary
impact of the splash jet does not occur for any angles α±/π < 0.5 since the flow is
symmetric and the splash jet moves along the x-axis.
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FIGURE 5. Flow regimes with and without secondary impact of the splash jet (shaded and
clear areas, respectively), in the plane of half-angles of the liquid wedges α+ and α−. The
dot-dashed line corresponds to the symmetric flows with respect to the x-axis.

For the case of small deadrise angles shown in figure 4(a,b), the jet near its
tip becomes very thin and the splash impacts the almost undisturbed side of the
wedge. The evolution of the surface when α+→ 0 is shown in figure 6 for angles
α+ = 0.1◦, 0.5◦, and 2◦. It can be seen that as the angle α+ decreases, the cavity
becomes slender, while the splash jet tip angle and the velocity vD (shown by the
coordinate of the horizontal dotted line) of the liquid in the lower half-plane increase.

The angle and velocity of the tip of the splash jet, the velocity of the liquid in the
lower half-plane, and the pressure at the stagnation point are shown in table 1 for
several angles α+.

3.4. Different systems of coordinates
In some cases it is more convenient to specify the ratio VD/V0, for example VD/V0 = 1,
rather than choosing the stagnation point at the origin of the coordinate system.
However, such a formulation leads to an additional nonlinear equation with respect
to the velocity at point D from which the coordinates of the stagnation point can be
obtained. The present formulation can be used to obtain the flow configuration and
velocity field for any ratio VD/V0. This is because the problem depends on only the
relative velocity VD+V0, not VD and V0 individually. Thus, the dynamic results such as
pressure and the kinematic results such as the flow field relative to the stagnation point
will not change if these velocities are changed to VD − dV and V0 + dV , respectively,
where dV is a transportation velocity of the moving system of coordinates in the
physical plane.

To obtain a mathematical formulation of this physical configuration, we apply a
transportation velocity 1v in the self-similar plane to the total calculated flow, in
which v0 = v(0) = 1 and vD = limη→∞ v(η). The velocities at points P and D become
v′0 = v0 −1v and v′D = vD +1v, respectively. The vertical coordinate of the stagnation
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FIGURE 6. Streamline patterns in the self-similar plane for an upper liquid wedge at small
angles: (a) α+ = 0.1◦, vD = 0.9072, vC = 1.0000; (b) α+ = 0.5◦, vD = 0.8672, vC = 1.0001;
(c) α+ = 2◦, vD = 0.7830, vC = 1.0354.

α+ µ/π vC β vD cpA α+ µ/π vC β vD cpA

0.1 0.357 1.00002 89.69 0.907 1.015 30 0.090 2.094 79.21 0.722 2.974
0.5 0.323 1.00008 89.43 0.867 1.032 40 0.0652 2.680 76.75 0.748 4.045
2 0.259 1.035 88.35 0.783 1.125 50 0.0441 3.526 74.34 0.781 5.660
5 0.211 1.128 86.74 0.730 1.301 60 0.0282 4.795 72.38 0.829 8.310

10 0.169 1.292 84.83 0.705 1.583 70 0.0131 7.608 69.11 0.876 14.220
20 0.122 1.653 81.82 0.704 2.199

TABLE 1. Results for impact between the liquid wedge of angle α+ and the flat free
surface.

point is now y′A = 1v in the corresponding self-similarity plane x′ − y′. By using
the velocity at point P as a reference velocity we may normalize the velocities and
coordinates as follows:

v′′0 = 1, x′′ = x
1

v0 −1v , y′′ = y′′A + y
1

v0 −1v , (3.2)

where

1v = v
′′
D − vD

v0 + v′′D
, y′′A =

1v

v0 −1v (3.3)

are obtained using the given ratio VD/V0 = v′′D/v′′0 = v′′D. The vertical coordinate y′′A is
the stagnation point in the self-similarity plane x′′ − y′′, which corresponds to the given
velocity ratio of the upper and lower liquid wedges.

4. Conclusions
The presented complete solution to the self-similar problem of an impact between

two liquid wedges with the fully nonlinear boundary conditions has revealed that the
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splash jet caused by the collision of two impacting masses of fluid is directed into the
half-plane of the wedge with the smaller angle, and may form a closed cavity. The
range of the wedge angles corresponding to the flows, with and without overlapping of
the splash jet with the main flow region, has been determined. Along the axis of the
flow symmetry, the pressure reaches its maximum at the stagnation point and decays
more slowly in the wedge with the larger angle. In the case of small deadrise angles
the maximum pressure in the flow region occurs near the root of the splash jet, and
causes the very thin and high-speed splash jet.
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