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Accurate numerical simulations of shock–turbulence interaction (STI) are conducted
with a hybrid monotonicity-preserving–compact-finite-difference scheme for a detailed
study of STI in variable density flows. Theoretical and numerical assessments of
data confirm that all turbulence scales as well as the STI are well captured by
the computational method. Linear interaction approximation (LIA) convergence tests
conducted with the shock-capturing simulations exhibit a similar trend of converging
to LIA predictions to shock-resolving direct numerical simulations (DNS). The effects
of density variations on STI are studied by comparing the results corresponding to an
upstream multi-fluid mixture with the single-fluid case. The results show that for the
current parameter ranges, the turbulence amplification by the normal shock wave is
much higher and the reduction in turbulence length scales is more significant when
strong density variations exist. Turbulent mixing enhancement by the shock is also
increased and stronger mixing asymmetry in the postshock region is observed when
there is significant density variation. The turbulence structure is strongly modified
by the shock wave, with a differential distribution of turbulent statistics in regions
having different densities. The dominant mechanisms behind the variable density STI
are identified by analysing the transport equations for the Reynolds stresses, vorticity,
normalized mass flux and density specific volume covariance.
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1. Introduction

The interaction between a normal shock wave and isotropic turbulence is an
important fundamental problem which has been extensively studied. An understanding
of the physics behind this problem is beneficial to many applications such as
hypersonic combustion, inertial confinement fusion and astrophysics. However, the
existence of a wide range of length/time scales and other complicating effects in
flows involving both turbulence and shock waves have posed serious challenges in
the study of these flows.

† Email address for correspondence: jaberi@egr.msu.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-1668-7770
mailto:jaberi@egr.msu.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.542&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.542&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.542&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2017.542&domain=pdf
https://doi.org/10.1017/jfm.2017.542


552 Y. Tian, F. A. Jaberi, Z. Li and D. Livescu

Ribner (1954) proposed a theoretical model for the description of shock–turbulence
interaction (STI), in which Eulerian Rankine–Hugoniot (R–H) equations were solved.
In this theory, referred to as the linear interaction approximation (LIA), the preshock
turbulence was assumed to consist of small-amplitude disturbances, so nonlinear and
viscous effects were excluded from the analysis. This allowed the changes of different
modes across the shock to be separately investigated. The amplification of turbulent
kinetic energy (TKE) and the reduction of turbulence length scales by the shock
are successfully predicted by the LIA. Early direct numerical simulation (DNS) of
shock–isotropic turbulence by Lee, Lele & Moin (1993) (flow Mach number Ms 6 1.2)
showed reasonably good agreement with the LIA for the vorticity amplification when
the turbulent Mach number, Mt, was kept small. However, due to the low resolution
of the simulations, quantities that peak behind the shock were not compared with the
LIA. Mahesh, Lele & Moin (1997) and Jamme et al. (2002) also used DNS to study
the effects of different upstream flow parameters on STI. Lee, Lele & Moin (1997),
Larsson & Lele (2009) and Larsson, Bermejo-Moreno & Lele (2013) conducted
turbulence-resolving simulations for different flow Mach numbers using a high-order
shock-capturing scheme and found good agreement with LIA results for some of the
statistics, like the TKE and vorticity variance, even though the individual Reynolds
stress components were poorly matched with the LIA. More recently, Ryu & Livescu
(2014) conducted shock-resolving DNS for a wide range of parameters and showed
that the DNS results converge to the LIA when the ratio of Kolmogorov length
scale, η, to shock thickness, δ, becomes large, which was achieved by decreasing Mt.
This work established the reliability of the LIA as a prediction tool for low-Mt STI,
even at low upstream Reynolds numbers. The LIA and shock-capturing simulation
data were used for a detailed study of the turbulent energy flux in the postshock
region by Quadros, Sinha & Larsson (2016). Use of the LIA to alleviate the need to
resolve the shock allows study of postshock turbulence at arbitrarily high shock Mach
numbers (Livescu & Ryu 2016). However, shock-LIA studies (following the notation
in Livescu & Ryu 2016) do not address the decay away from the shock or situations
where the nonlinear and/or viscous effects can have an effect on the interaction. On
the other hand, shock-resolving DNS studies are limited to the range of Reynolds
and shock Mach numbers achievable by today’s computers. Turbulence-resolving
shock-capturing simulations could extend the parameter range and flow complexity
(Jammalamadaka, Li & Jaberi 2014) achievable by shock-resolving DNS, provided
that the reliability of the tool can be established for such problems. This is also
addressed in this paper.

The early theoretical study of small-amplitude turbulent fluctuations conducted by
Kovasznay (1953) showed the existence of three different components in compressible
turbulence: vorticity, acoustic and entropic. The effect of upstream entropy fluctuations
on the STI was further studied by Mahesh et al. (1997) and Jamme et al. (2002).
Their results show that a negative correlation between the upstream velocity and
the temperature will cause a higher amplification of TKE and vorticity variance.
The presence of acoustic fluctuations in the upstream flow is found to cause less
amplification of TKE but more amplification of transverse vorticity variance (Mahesh
et al. 1995; Jamme et al. 2002). Hannappel & Friedrich (1995) observed in their
study that the turbulent fluctuations of the transverse vorticity increase more and
those of the streamwise vorticity increase less due to the interaction with the shock
wave when the inflow compressibility increases. Shock waves also enhance mixing
(Menon 1989; Kim et al. 2003), a well-known effect used to increase the fuel–air
mixing in practical combustion/propulsion systems (e.g. Budzinski, Zukoski & Marble
1992; Yang, Kubota & Zukoski 1993).
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FIGURE 1. (Colour online) Scalar structure in multi-fluid turbulence interacting with a
Mach 2 shock identified by the isosurface of heavy-fluid mole fraction and coloured with
instantaneous density fluctuations. The black plane located in the middle of the domain
represents the instantaneous shock surface. The isosurfaces correspond to mole fraction
values of (a) 0.05, (b) 0.95, (c) 0.25 and (d) 0.75.

In the above STI studies, the preshock turbulence is of single-fluid nature, so
the density variations are due to either thermodynamic or acoustic fluctuations. In
applications like hypersonic combustion, where strong density variations exist, the
multi-fluid variable density effects (i.e. due to compositional variations) should
be taken into consideration. In a hypersonic reacting flow, the species mixing
enhancement is affected by the density variation and is expected to be different
from that of a passive scalar. For example, strong mixing asymmetry exists in
variable density turbulence (which is not observed in single-fluid flow), as predicted
by Livescu & Ristorcelli (2008) and Livescu et al. (2010). Such mixing asymmetry
is further amplified by the shock wave, as shown in figure 1. For a system like
this, where nonlinear effects become dominant due to the strong density variations,
the LIA becomes ineffective, leaving high-order numerical simulation as the only
sensible modelling approach. Li & Jaberi (2012) have recently developed a new
shock-capturing finite-difference method based on a monotonicity-preserving (MP)
(Suresh & Huynh 1997) scheme and have tested the method for different supersonic
flows. This work is based on their method, extended to multicomponent flows. Some
of the basic features of multi-fluid STI are described in our recently published paper
(Tian et al. 2017). The goal of the current study is to develop a better understanding
of the effects of the density on the STI and scalar mixing. The configuration addressed
here, where the shock is stationary and the turbulence is fed through the inlet of
an open-ended domain, is also relevant to the Richtmyer–Meshkov instability (RMI)
as it represents a statistically stationary version of this problem. The classical RMI
problem describes the transient linear and the subsequent nonlinear growth of the
interface and the mixing layer (see Zabusky 1999; Brouillette 2002), while the current
study resembles the re-shock problem, where variable density effects are important
for the shock-driven mixing (e.g. Lombardini et al. 2011). In the case where the
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upstream density field is isotropic, converged statistical data can be obtained with
significantly reduced computational cost.

The rest of the paper is organized as follows. The governing equations are presented
in § 2 and the simulation parameters in § 3. In order to establish the accuracy of the
current simulations, the idea of scale separation between the Kolmogorov length scale
and the shock thickness (Ryu & Livescu 2014) (in shock-capturing simulations it
becomes the numerical shock thickness δn) is adopted to limit the viscous effects
during the interaction, and thus to determine whether the interaction is correctly
resolved. Combining grid convergence tests with theoretical analysis, we prove
in § 4.1 of the main results section, § 4, that the statistics are independent of the
mesh and the simulations are reliable. Linear interaction approximation convergence
tests are conducted in § 4.2 to show that the LIA limits can be approximated using
shock-capturing simulations when certain criteria are satisfied. The effects of density
variations on STI are investigated by comparing the current results with those for a
single-fluid simulation in § 4.3. For detailed analysis of the mechanisms and physics
behind this problem, the structure and budgets of important turbulence quantities are
examined in §§ 4.4 and 4.5. The simulation data are then used to look at mixing and
modelling in variable density turbulence in §§ 4.6 and 4.7. Finally, § 5 presents the
conclusions of the study.

2. Governing equations and numerical methodology
In this work, the (following) dimensionless compressible Navier–Stokes equations

for continuity, momentum, energy and mass fraction, in a binary ideal gas system,
are solved numerically:

∂U
∂t
+
∂(F−Fv)

∂x1
+
∂(G−Gv)

∂x2
+
∂(H−Hv)

∂x3
= 0, (2.1)

p=
ρRT
γM2

0
. (2.2)

The solution vector U = {ρ, ρu1, ρu2, ρu3, E, ρY} contains the primary variables,
namely the density, ρ, velocity components, ui, total energy, E, and mass fraction
of the heavy fluid, Y . Here, t, x1, x2, x3 are the time and the three coordinate axes.
In (2.2), R and T denote the specific gas constant and temperature; M0 is the reference
Mach number, which is generated from the non-dimensionalization. The inviscid flux
vectors (F,G,H) and viscous flux vectors (Fv,Gv,Hv) are defined as

F= {ρu1, ρu2
1 + p, ρu1u2, ρu1u3, (E+ p)u1, ρYu1}, (2.3a)

G= {ρu2, ρu1u2, ρu2
2 + p, ρu2u3, (E+ p)u2, ρYu2}, (2.3b)

H= {ρu3, ρu1u3, ρu2u3, ρu2
3 + p, (E+ p)u3, ρYu3} (2.3c)

and

Fv = {0, τ11, τ21, τ31, uiτi1 − q1 − qd1,−J1}, (2.4a)
Gv = {0, τ12, τ22, τ32, uiτi2 − q2 − qd2,−J2}, (2.4b)
Hv = {0, τ13, τ23, τ33, uiτi3 − q3 − qd3,−J3}. (2.4c)

The viscous stress tensor τij, thermal diffusion vector qi, enthalpy diffusion vector qdi
and mass fraction flux vector Ji are calculated by the following equations:

τij =
µ

Re0

(
∂ui

∂xj
+
∂uj

∂xi
−

2
3
∂uk

∂xk
δij

)
, (2.5)
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qi =
−µCp

(γ − 1)M2
0Re0Pr

∂T
∂xi
, (2.6)

qdi =
−µT

(γ − 1)M2
0Re0Sc

∂Cp

∂xi
, (2.7)

Ji =
−µ

Re0Sc
∂Y
∂xi
, (2.8)

where Re0 is a reference Reynolds number. The ratio of specific heats is γ =

Cp/Cv = 1.4. The fluid viscosity is assumed to be dependent on the dimensionless
temperature as µ= T0.75 for all species in the flow. The Prandtl and Schmidt numbers
are Pr = Sc = 0.75. This set of non-dimensional fully compressible equations is
solved numerically in the conservative form. The inviscid fluxes are computed by
the fifth-order MP scheme, as described in Li & Jaberi (2012), with the exception
that, here, the mass fraction equation is also computed in the conservative form
using the MP scheme. The fluxes are divided into forward and backward parts via
the Lax–Friedrichs flux splitting method after projecting them into the characteristics
field. Both parts are then reconstructed using the MP scheme and combined before
projecting back to the physical space. The same tolerance value (10−10) for the MP
scheme as in Li & Jaberi (2012) is used for this study. The viscous and diffusive
fluxes are calculated by a sixth-order compact scheme (Lele 1992) coupled with
a fifth-order one-sided compact boundary scheme of Cook & Riley (1996). Time
advancement is achieved via the classical third-order Runge–Kutta scheme.

3. Simulation set-up and parameters

Figure 2(a) shows the three-dimensional (3-D) isosurface of heavy-fluid mole
fraction from the base multi-fluid STI simulation, which is coloured by local pressure
fluctuations. This highlights the set-up of the current simulations: the dimensions of
the computational domain are (L1, L2, L3)= (4π, 2π, 2π); the streamwise direction is
denoted by x (or x1) and transverse directions are denoted by y and z (or x2 and x3);
the normal shock is nearly stationary and is initialized in the middle of the domain,
consistent with the laminar Rankine–Hugoniot relations. Periodic boundary conditions
are implemented in the transverse directions and a buffer layer is set at the end of
the domain from x= 4π to x= 6π. The turbulence is assumed to be homogeneous in
the transverse directions and isotropic before the shock wave. Averages are computed
over homogeneous directions to obtain the statistics of the flow. Reynolds averages
are denoted by an overbar, f , while Favre averages are denoted by a tilde, f̃ ; the
corresponding fluctuations around these averages are denoted by f ′ and f ′′.

To provide inflow conditions, isotropic turbulence fields are superposed on
a uniform mean flow with a Mach number of 2.0 and then advected through
the inlet using Taylor’s hypothesis. At relatively low turbulent Mach numbers
Mt = u′iu′i

1/2
/
√
γRT , Taylor’s hypothesis is a good approximation for upstream

isotropic turbulence. Moreover, the turbulence is allowed to develop before reaching
the shock wave so as to achieve a realistic state. We use the same method as
that of Ristorcelli & Blaisdell (1997), and generate the turbulence by a separate
temporal simulation of decaying isotropic turbulence. The velocities for the isotropic
box simulations are initialized randomly following a 3-D Gaussian spectral density
function. The mean velocity is set to zero. The peak value of the energy spectrum
is k0 = 4.0. The temperature field is uniform initially and the initial pressure is
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FIGURE 2. (Colour online) Instantaneous contours of 3-D pressure fluctuations and
the shock surface resulting from isotropic turbulence interacting with a Mach 2 shock.
(a) Isosurface of heavy-fluid mole fraction (φ = 0.25) coloured by instantaneous pressure
fluctuations. (b,c) Instantaneous shock surface coloured by the ratio of the local pressure
jump across the shock for (b) multi-fluid A (see the definition in § 4.3) and (c) single-fluid
cases.

calculated by solving the Poisson equation. The simulation is then conducted until
the skewness of the velocity derivative reaches approximately −0.5 and the flatness
reaches approximately 4.0. The range of Mt values of the final fully developed
turbulence is 0.03–0.38 and that of the Reynolds number based on the Taylor

microscale, Reλ = ρ
√

u′iu′i/3λ/µ, is 9–45. The Taylor microscale is computed from
the viscosity, µ, and the turbulent energy dissipation, ε, as λ = (15µu′2rms/ε)

0.5 and
u′rms= (u

′
iu′i/3)0.5. These isotropic turbulence boxes are taken from the same temporally

decaying isotropic turbulence simulations at different times.
The variable density (multi-fluid) effects arise from variations in the composition

field, by correlating the density to an isotropic scalar field (heavy-fluid mole fraction
or mass fraction). The scalar field is generated as a random field following a Gaussian
spectrum with a peak at ks = 8.0 and has a double-delta probability density function
(p.d.f.) distribution, so that the scalar value is either 0.0 or 1.0. The scalar field is then
smoothed out by solving the pure diffusion equation, until the scalar gradients become
well resolved on the mesh. The resulting scalar field is allowed to decay in fully
developed isotropic turbulence simulations for approximately one eddy turnover time
as a passive scalar (denoted as φ). The density field is then calculated by taking X=φ
for case A (where X is the mole fraction of the heavy fluid) or Y = φ for case B and
using the ideal gas equation of state in its multicomponent form, ρ = pγM2

0/RT . The
ratio of the molar masses of the two fluids is 1.78, resulting in an Atwood number,
At = (W2 − W1)/(W2 + W1), of 0.28. This value of the Atwood number was chosen
such that the variable density effects are non-negligible, yet the interaction with the
shock wave is still in the wrinkled-shock regime. Higher At values cause significant
distortions of the shock front and even breaking of the shock, depending on the speed
of sound in the light fluid.

A ‘buffer’ layer is set at the end of the domain from x= 4π to x= 6π to prevent
reflections of waves from the outflow boundary. In this region, the flow variables
are smoothly dissipated to a laminar solution through a damping function, effectively
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controlling the unphysical oscillations around the outflow (Larsson & Lele 2009). A
constant back pressure calculated from the Rankine–Hugoniot equations is applied as
the outflow boundary condition. This outflow boundary condition has been shown to
cause small movement of the shock wave (Larsson & Lele 2009). However, the Mt
value is low in the final simulations, and the shock drifting speed is calculated to be
less than 0.2 % of the mean flow speed, so we are confident that the shock movement
does not affect the statistics presented.

4. Results and discussion
In this section, the variable density (VD) effects on the STI and the mechanisms

behind the interaction are discussed in detail. However, before discussing these effects,
the accuracy of the simulations is established by grid convergence tests and analysis
of various flow variables. Convergence to the LIA is then studied for shock-capturing
simulations, and the criteria for convergence are identified. The comparison between
multi-fluid and single-fluid cases is then made for various turbulent statistics. A
series of in-depth analyses of turbulence budgets for important turbulence and mixing
quantities like the TKE and the variance of the mole fraction are presented for better
understanding of VD effects on STI.

To ‘eliminate’ the statistical variability, most results are space averaged over
homogeneous directions and time averaged for more than two pass-over times after
the flow has reached a statistically steady state, which is achieved after the acoustic
wave has propagated from the outlet to the shock wave (Larsson et al. 2013). The
pass-over time is calculated as tp = 2π/u1,u + 2π/u1,d, where u1,u and u1,d are the
preshock and postshock mean streamwise velocities. Instantaneous results are also
presented when needed. For all of the results presented in this section, the coordinate
is shifted such that the shock is located at approximately k0x= 0.0.

4.1. Accuracy of numerical results
In the STI simulations, the grid resolutions used for both the turbulence and the shock
wave are critical to the accuracy of results. Here, the inflow turbulence is generated
separately using 2563 grid points and has a kmaxη value of approximately 2.3, where
kmax is the maximum turbulence wavenumber and η is the Kolmogorov length scale.
The value of kmaxη is usually taken to be greater than 1.5 to resolve small-scale
turbulence. It is relatively easy to construct a mesh to fully resolve turbulence in
the preshock region. However, the postshock small-scale turbulence is expected to
decrease in size, especially in the shock normal direction. Therefore, to ensure that
the smallest postshock turbulence scales are well resolved, a detailed grid convergence
test is conducted using five different meshes, as shown in table 1. The calculation of
kmaxη is based on the largest grid size among all three directions to give safer and
more conservative estimates.

In figure 3, several large- and small-scale turbulent statistics obtained from the
convergence test are shown. The region of unsteady wrinkled shock movement is
marked as a grey area in this and the following figures. Due to the unsteady shock
movement and wrinkled shock surface, the averaged shock thickness is much larger
than the instantaneous numerical shock thickness. As the mesh gets refined from
grid-1 to grid-3 to grid-5 with the same compression ratio, all turbulent statistics
converge, proving the sufficiency of the grid resolution. Results from meshes with
different compression ratios, i.e. grid-5 and grid-4, are compared to make sure that
the grid is fine enough to resolve the decreased length scale in the x-direction.
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FIGURE 3. (Colour online) Results of multi-fluid grid convergence tests at Reλ = 45 and
Mt = 0.09. (a) Turbulent kinetic energy, (b) Kolmogorov length scale η, (c) streamwise
Taylor microscale λ1 and (d) transverse vorticity variance ω′2ω′2. The region of unsteady
wrinkled shock movement is marked in grey.

Mesh info 1xd/1y Reλ Mt (kmaxη)min η/δn

Grid-1 1024× 2562 2.0 45 0.09 0.96 0.93
Grid-2 1024× 3842 1.3 45 0.09 1.45 0.93
Grid-3 1536× 3842 2.0 45 0.09 1.45 1.40
Grid-4 1536× 5122 1.5 45 0.09 1.93 1.40
Grid-5 2048× 5122 2.0 45 0.09 1.93 1.86

TABLE 1. Details of the simulations used in the grid convergence tests.

Statistics that characterize the behaviour of the mass fraction are also examined.
Figure 4 shows the mass fraction variance and the Batchelor scale, representing
large-scale and small-scale statistics of mixing respectively. Again, these statistics are
grid converged and the errors are small when using grid-5. The convergence rate of
the Batchelor scale is slower than for all of the other statistics, a consequence of VD
effects.

Larsson et al. (2013) have investigated how the large scales are affected by the
finite computational box size. Their results show that the effects of box size are
minimal for the range of parameters analysed. For the current study, the same peak
wavenumber k0 = 4 for the energy spectra and the same box size are used, so the
effects from finite computational box size should also be negligible.

Another important issue in STI simulations is whether the interaction between the
shock wave and the turbulence is well captured. When a shock-capturing scheme
is used, a scale separation between the shock width and turbulence length scales is
desirable. As suggested by Ryu & Livescu (2014), the ratio of the Kolmogorov length
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FIGURE 4. (Colour online) Results of multi-fluid grid convergence tests at Reλ = 45 and
Mt = 0.09. (a) Mass fraction variance φ′φ′ and (b) Batchelor scale λB.

scale to the numerical shock width, δn, is considered to be an important parameter
for assessment of this separation, where δn is calculated as (u1,u − u1,d)/|∂u1/∂x1|max
and |∂u1/∂x1|max denotes the maximum magnitude of the streamwise velocity
gradient. For the coarsest simulation conducted with grid-1, the ratio of the preshock
Kolmogorov length scale to the numerical shock width is estimated to have a value
of approximately 0.93. However, since the Kolmogorov length scale is calculated
using average dissipation, locally, turbulence eddies can become commensurate with
the numerical shock thickness. Indeed, the use of instantaneous dissipation values
to estimate the minimum turbulence length scale yields a ratio with the numerical
shock thickness that is much smaller. In order to achieve a better scale separation,
the numerical shock width needs to be reduced to a much smaller value than that
corresponding to the grid-1 simulation. The dependence of δn on the grid size is
investigated by conducting a series of tests using a range of grid sizes around
the shock region. The results are shown in figure 5. This figure indicates that the
numerical shock width is linearly correlated with the grid size, as expected. Therefore,
by refining the mesh in the x-direction, the scale separation can be controlled. Results
from grid-2 and grid-3 simulations show good resolution of the postshock Kolmogorov
length scale with a kmaxη value of approximately 1.45, but considerably different
postshock prediction of ω′2ω′2. This difference can be attributed to the effects of the
scale separation ratio (0.93 for grid-2 and 1.40 for grid-3), as shown in table 1.
Further increase of the scale separation ratio has a small effect on the resolution of
the postshock statistics, e.g. from grid-4 (1.4) to grid-5 (1.86). To confirm this, we
have also considered another set of simulations with lower Reλ but a wider range of
scale separation ratios, and noticed that having a larger than 1.4 scale separation ratio
has a minimal effect on the statistics presented here. These results are not shown
for brevity. Based on these results, we can safely say that for the final simulation
conducted with grid-5, which has a scale separation ratio of 1.86, the scale separation
ratio is large enough to correctly resolve the STI with the current shock-capturing
method.

4.2. Convergence to the LIA for the single-fluid case
Using fully resolved STI simulations, Ryu & Livescu (2014), showed that as the ratio
of Kolmogorov length scale, η, to shock thickness, δ, becomes large, the DNS results
converge to the LIA solutions. This suggests that the scale separation between η and
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FIGURE 5. Relation between the numerical shock width, δn, and the grid size in the shock
region.

δ can be a criterion for controlling the viscous effects on the interaction. In Livescu
& Ryu (2016), high-Reynolds-number/high-shock-Mach-number postshock turbulence
data were generated using the LIA procedure, which resolved the issue of high or
prohibitive computational cost of fully resolved DNS. For shock-capturing simulations,
such convergence has not been investigated in previous studies. In DNS, the scale
separation is controlled by the ratio η/δ, which can be calculated as η/δ= (Re0.5

λ (Ms−

1))/(7.69Mt), and it was varied in Ryu & Livescu (2014) by changing Mt, which also
minimized the nonlinear effects. In shock-capturing simulations, η/δn, Mt, Reλ and Ms

are, in general, independent parameters; however, the same general principle can be
applied to study the convergence of the numerical results to the LIA.

Unlike DNS, where an overlap between the shock width and turbulence scales does
represent a physical problem, albeit different from the LIA limit, shock-capturing
simulations need to have separation of scales to ensure that the numerical shock-
capturing algorithm does not alter the physics of the problem. For the current
simulations, the numerical shock thickness depends on the mesh size in the streamwise
direction instead of any turbulent statistics, so it can be independently varied without
changing Mt and Reλ. The shock thickness for different shock-capturing schemes is
affected by the amount of numerical dissipation introduced around the shock. It is
shown in Li & Jaberi (2012) that the MP5 scheme has less numerical dissipation
than the WENO scheme, so the numerical shock thickness is smaller for MP5.
Generally, the shock jump is represented by 2–3 grid points and the numerical
shock thickness calculated using (u1,u − u1,d)/|∂u1/∂x1|max is approximately 1.61x.
By changing 1x, the scale separation ratio can be independently varied. Figures 3
and 4 (these figures correspond to multi-fluid cases, but the ideas are the same) show
that for a ratio η/δn greater than 1.40, there is no significant error in the postshock
statistics. Compared with shock-resolving simulations, this feature of shock-capturing
simulations relaxes the requirement of a fully resolved shock profile and makes
the simulations cheaper without diminishing the accuracy of the turbulent statistics.
Larsson (2010) took a different approach towards this problem. A theoretical model of
the error introduced by the shock-capturing scheme was used to predict the postshock
turbulence statistics. The error of the postshock Reynolds stresses was found to scale
with the grid spacing to the second order. Using this model, a critical value of
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LIA convergence case Reλ Mt

Case 1 (final case) 45 0.09
Case 2 30 0.24
Case 3 16 0.24
Case 4 9 0.24
Case 5 30 0.03
Case 6 30 0.09
Case 7 30 0.17
Case 8 30 0.24
Case 9 30 0.38

TABLE 2. Cases considered for the LIA convergence tests.

k01x can be calculated to control the error of the Reynolds stresses for a certain
shock-capturing scheme. Compared with this method, the scale separation criterion
naturally takes into account the artificial dissipation added in the shock region by
using the numerical shock thickness as a shock length scale, which makes it a
simpler criterion. Typically, a scale separation ratio η/δn > 1.4 is recommended for
the current shock-capturing simulations. We also recognize that, even though the scale
separation ratio provides guidance in conducting shock-capturing turbulence-resolving
simulations, the specific value of the scale separation criterion is not universal. It
depends on the shock-capturing method and the way in which the numerical shock
is quantified.

While η/δn is still an important parameter for assessment of the accuracy of the
results, it is unlikely that the results in the shock region will have the same physical
meaning as those from shock-resolving DNS. Therefore, to study the convergence to
the LIA in shock-capturing simulations, Mt and Reλ need to be considered separately,
instead of being one single parameter as in shock-resolving DNS. Single-fluid
simulations are conducted covering a wide range of Mt and Reλ parameter space
to study the convergence to the LIA. The value of Reλ immediately upstream of the
shock varies between 9 and 45, and Mt immediately before the shock ranges from
0.03 to 0.38. More details on the LIA convergence tests can be found in table 2. The
minimum scale separation in these tests is η/δn = 1.4 to ensure accuracy.

In figure 6, the streamwise and transverse Reynolds stress components (u′1u′1 and
u′2u′2) obtained from the single-fluid simulations are compared with the LIA solution.
All of the plots are normalized by the values immediately upstream of the shock wave.
The effects of Reλ are first considered and the Mt values are kept at approximately
0.24 (except for the Reλ = 45 case, for which Mt = 0.09). The results for u′1u′1 are
shown in figure 6(a). As Reλ increases, the postshock peak values of u′1u′1 converge
to the LIA prediction in some region behind the shock. For u′2u′2, the postshock
value reaches the peak immediately after the shock wave, and then it monotonically
decreases. The peak value immediately after the shock can be affected by the shock
thickness, shock corrugation and unsteady shock movement, so it is not a good
representation of the shock amplification of turbulence. As suggested by Ryu &
Livescu (2014), the values of u′2u′2 at the corresponding u′1u′1 peak positions are
examined instead to evaluate the convergence. The trend of converging to the LIA
prediction for u′2u′2 is shown in figure 6(b), and this qualitatively matches with DNS
results. However, compared with u′1u′1, the convergence of u′2u′2 is slower. This can
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FIGURE 6. (Colour online) Comparison of the Reynolds stress obtained from single-fluid
simulations with the LIA results. Here, Mt ≈ 0.24 except for Reλ = 45. (a) Streamwise
Reynolds stress and (b) transverse Reynolds stress.

0 5 10 15 20 0 5 10 15 20

 0.5

 0

1.0

1.5

2.0

2.5

 0.5

 0

1.0

1.5

2.0

2.5

(a) (b)
Single-fluid:
LIA

Single-fluid:
Single-fluid:
Single-fluid:
Single-fluid:

FIGURE 7. (Colour online) Comparison of the Reynolds stress obtained from single-fluid
simulation with LIA results. Here, Reλ ≈ 30. (a) Streamwise Reynolds stress and
(b) transverse Reynolds stress.

be explained by the fact that the Mt values in these simulations are not low enough
for u′2u′2 to approximate the LIA solution. As Mt increases, the shock wave becomes
more wrinkled and it strongly affects the convergence of u′2u′2, since this quantity is
more sensitive to shock wrinkling (Lee et al. 1997).

To further examine the role of the shock wrinkling, the effects of Mt on the
convergence to LIA predictions are examined by setting the Reλ immediately before
the shock wave to approximately 30 and varying Mt. In figure 7, the normalized
plots of Reynolds stresses are compared, and it can be seen that the amplification
ratios of u′1u′1 for all of the cases are very close (but different from the LIA limit),
and those of u′2u′2 converge to the LIA as Mt decreases. This indicates that for
the current shock-capturing simulations, the nonlinear effects induced by high Mt

are more important for u′2u′2 than for u′1u′1. The results are also consistent with our
previous statement that u′2u′2 is more sensitive to Mt. When comparing with DNS
results, u′2u′2 exhibits the same converging trend, but u′1u′1 does not converge to the
LIA limit at Reλ= 30. It seems that the LIA limit of u′1u′1 cannot be approximated by
decreasing Mt at low Reλ, and Reλ needs to be large enough for convergence to be
achieved. This is confirmed by another test with low Mt (0.09) and higher Reλ (45),
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as shown in figure 6. For Reλ greater than 45 and Mt lower than 0.1, the match to
LIA results is fairly good, suggesting that a minimum value of Reλ of approximately
45 is needed for the streamwise Reynolds stress component to converge.

In summary, the results show that the shock-capturing simulations exhibit a similar
converging trend to the LIA solutions to shock-resolving DNS. The LIA solutions
for individual Reynolds stresses can be approached provided that there is separation
of scale between the turbulence scales and the shock width, Reλ is large enough (for
u′1u′1) and Mt is low enough (for u′2u′2). On the other hand, the approach to the LIA
prediction is different for the streamwise and spanwise components of the Reynolds
stress tensor. For the transverse component, the converging trend agrees very well with
the DNS results as we vary either Mt or Reλ. However, the streamwise component
does not converge to the LIA prediction at low Reynolds numbers by varying Mt,
which is different from the DNS study by Ryu & Livescu (2014). This is attributed to
the fundamental differences between shock-capturing turbulence-resolving simulations
and shock-resolving DNS. A further test then shows that the LIA limit of u′1u′1 can
be approached at both large Reλ (45) and low Mt (0.09), which represents a regime
where viscous and nonlinear effects are not important for the prediction of u′1u′1.
Based on these findings, it would be safer to extend the single-fluid STI to multi-fluid
STI at higher Reλ. The requirement on Reλ makes the shock-capturing simulation
more expensive. However, one can still achieve a large-scale separation between the
Kolmogorov length scale and the physical shock thickness with the shock-capturing
method using coarser grids than shock-resolving DNS. In practice, the use of coarser
grids for simulating the shock should dominate over the requirement of increased
grid resolution for the turbulence to be able to capture a higher-Reynolds-number
flow. Therefore, shock-capturing simulations should be an effective tool for studying
STI so long as the results have been carefully verified as done here.

4.3. Effects of density variations on STI
In this section, the effects of density variations on STI are examined in detail by
comparing the results obtained from VD or ‘multi-fluid’ simulations with those
obtained from a reference ‘single-fluid’ simulation. As demonstrated in the previous
section, a minimum value of Reλ ≈ 45 is needed for the streamwise Reynolds stress
to converge to the LIA prediction. At lower Reλ, the convergence trend of u′1u′1 is
different from that for fully resolved DNS studies (Ryu & Livescu 2014). Therefore,
the value of Reλ = 45 was chosen for the results presented in the rest of the paper.
These results are obtained using grid-5 from table 1 and are grid converged, as shown
in § 4.1. For the two multi-fluid cases considered in this study, two different methods
are used to generate density variations at the inflow: (i) the heavy-fluid mole fraction
is correlated with the random scalar used for initialization and (ii) the heavy-fluid
mass fraction is correlated with the random scalar. In the following discussion, these
two cases will be referred to as the multi-fluid A and multi-fluid B cases. The
random scalar fields used to generate density in both multi-fluid cases are the same
and have symmetric p.d.f.s. Evidently, this initialization of the density field will
make the density p.d.f. of multi-fluid A case symmetrical and that of multi-fluid B
case asymmetrical. Below, the multi-fluid A case will be treated as the default case,
because it is a better representation of most mixing processes, in which the initial
volumes occupied by the fluids in the mixture are specified. Moreover, the reactants
in a stoichiometric combustion process are commonly introduced based on their mole
fractions, so a specified mole fraction field at the inlet is preferred. The multi-fluid B
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FIGURE 8. (Colour online) Two-dimensional (2-D) contours of the instantaneous scalar
and density fields for (a,b) multi-fluid A simulation and (c,d) single-fluid simulation. The
2-D contours are taken at the same time step, in planes x–z.

case is also of interest to us, as it features a different inflow density structure (for
the same density ratio), compared with the default case. The single-fluid reference
simulation was conducted using the same inflow conditions for turbulent variables
except density. In this reference case, the mass fraction of the heavy fluid is set to 1.0.
At the same time, a passive scalar equation, which is the same as the mass fraction
equation in the multi-fluid case, is solved for comparison. This case is referred to as
just the single-fluid case and is used as a reference to study the effects of VD on
STI. For all cases, the turbulence is allowed to adjust itself to the scalar field in the
preshock region before interacting with the normal shock.

In figure 2(b,c), the instantaneous shock fronts coloured by the ratio of the local
pressure jump as obtained from the multi-fluid A and single-fluid cases are compared.
As expected, the shock wave becomes more wrinkled and creates a stronger pressure
jump in the multi-fluid case. Figure 8 shows the instantaneous 2-D contours of density
and scalar for the multi-fluid A (heavy-fluid mole fraction) and single-fluid cases.
After scaling the contours to the same range, figure 8(a,c) shows that the density
variation is much stronger in the multi-fluid case due to the compositional change.
In contrast, the variation of density in the reference (single-fluid) case results from
thermodynamic fluctuation, which makes it very small for the parameters considered
here. When examining the passive scalar and mass fraction fields (figure 8b,d) for
each case, we observe that the scalar fields have similar structure and magnitude
before the shock wave as they are generated similarly at inflow. After passing
through the shock wave, the scalar fields and mixing are different. Evidently, when
the density variation is significant in preshock turbulence, the mixing enhancement
by the shock is stronger.

Figures 9–15 show several important flow statistics obtained from the multi-
fluid and single-fluid simulations. These statistics are gathered by averaging over
homogeneous directions and time, so that they only depend on the streamwise
direction.
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FIGURE 9. (Colour online) Plots of (a) TKE, (b) Kolmogorov length scale, (c) Taylor
microscale and (d) transverse vorticity variance for the multi-fluid A (red) and single-fluid
(blue) simulations.

Four important turbulence statistics are compared in figure 9 for the single-fluid and
multi-fluid A cases. Before the shock wave, both cases yield the same results. This
observation not only confirms that the inflow conditions are somewhat similar in these
cases, but also implies that for the current simulation, the effect of density variations
on turbulence is small in the preshock region. On comparing the multi-fluid TKE and
vorticity variance with the corresponding single-fluid values in figure 9(a,d), it is noted
that the amplification in these turbulent statistics is much more significant in the multi-
fluid cases. Furthermore, the multi-fluid TKE reaches a peak at approximately k0x≈
2.0, which is closer to the shock than k0x≈π for the single-fluid case. Figure 9(b,c)
shows the comparison for the streamwise turbulence Taylor micro length scale, λ1, and
the Kolmogorov length scale, η. The reduction in turbulence length scales across the
shock wave is evident in this figure; the multi-fluid cases show more reduction than
the single-fluid case. It should be noted that the changes in turbulence statistics in
the multi-fluid cases are expected to depend on the scalar structure and the Atwood
number (e.g. Lombardini et al. 2011); these are not discussed in this paper.

In figure 10, statistics related to the scalar field (heavy-fluid mass fraction for
multi-fluid case A and passive scalar for the single-fluid case) and mixing are
compared. Both the scalar variance φ′φ′ and the Batchelor scale λB are shown.
Here, λB is calculated based on the scalar dissipation and is representative of the
smallest scales in the scalar field. The scalar statistics are normalized by the values
immediately before the shock wave. After passing through the shock wave, the
faster decay of the scalar variance for the multi-fluid case indicates stronger shock
enhancement of scalar mixing. The Batchelor scale, however, shows a more complex
behaviour. Unlike the Kolmogorov length scale, the Batchelor scale across the shock
wave is observed to decrease with the same rate in the multi-fluid and single-fluid
cases. After passing through the shock wave, the Batchelor scales of the multi-fluid
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FIGURE 10. (Colour online) Plots of normalized (a) scalar variance and (b) Batchelor
scale for the multi-fluid A (red) and single-fluid (blue) simulations.

cases exhibit a transient process of decreasing before returning to the preshock
value, during which an even smaller structure of the scalar field is generated. In
the single-fluid case, however, the Batchelor scale increases monotonically back to
its preshock value. We also note that after k0x ≈ 10.0, the multi-fluid λB values are
larger than the single-fluid values as the faster mixing immediately after the shock
smooths out the small scalar scales. The different behaviours of the scalar variance
and the Batchelor scale in the postshock region can be explained by using the scalar
transport equation. This will be discussed in § 4.5. We also note that results from
multi-fluid case B show almost the same behaviour as those from multi-fluid case A
for the above statistics, despite their completely different density p.d.f.s.

It was shown in figure 1 that the turbulence structure is affected very differently by
the shock in regions with different density values. To further understand this behaviour,
conditional expectations of several turbulence quantities, conditioned on the density,
are calculated and examined. Figures 11–15 show these conditional means at various
locations for the multi-fluid A and single-fluid cases. These statistics are calculated in
selected spanwise planes (y–z planes) and then averaged in time. The conditional mean
of the scalar, shown in figure 11(a), confirms the correlation of the density field with
the scalar field (heavy-fluid mole fraction in this case). The dependence of the mole
fraction on the density is almost linear on average, which suggests that the density
fluctuations are mainly caused by compositional variations, instead of thermodynamic
fluctuations. After passing through the shock wave, a decrease in the slope is observed
due to enhancement of density variation across the shock wave, which is translated
into an increased extent of the x-axis values. This results from a larger local variation
of the shock strength, with the subsequent amplification of the postshock values in the
multi-fluid case. For comparison, figure 11(b) shows that the correlation between the
passive scalar and the density is very low in the single-fluid case, which is expected.

Figure 12 shows the development of the correlation between pressure and density
fluctuations as the flow passes through the shock and moves away from it. Little
correlation between the pressure and the density is observed before the shock, as
expected. The increase in the correlation between the pressure and the density can
be mostly attributed to the acoustic field. Due to the rapidly evolving nature of
the acoustic field in STI (as evidenced in the rapid decay predicted by the LIA),
it is worth comparing the pressure–density correlation close to the shock, where
the transient effects dominate, with the far field behaviour. Figure 12(a) shows
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FIGURE 11. (Colour online) Conditional expectation of scalar as a function of density
at various streamwise locations for (a) the multi-fluid A case and (b) the single-fluid
case. The conditional mean is calculated using variables in a spanwise plane at certain
streamwise locations and then averaged over time. The peak TKE positions are different
between the multi-fluid (k0x≈ 2.0) and single-fluid (k0x≈π) cases.
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FIGURE 12. (Colour online) Conditional expectation of pressure as a function of density
at various streamwise locations for (a) multi-fluid A close to the shock, (b) multi-fluid A
at the far field and (c) the single-fluid case.

the development of the conditional mean of the pressure close to the shock wave.
Immediately after the shock, at k0x ≈ 0.64, there exists a strong positive correlation,
which is the direct effect of the shock wave on the turbulence. During the postshock
flow/turbulence development, the root-mean-square value of the pressure fluctuations,
p′rms, decreases rapidly, as indicated by the decreasing range of pressure fluctuations.
This behaviour is related to the conversion of potential energy to TKE as evident by
the fact that p′rms remains almost unchanged after reaching the peak TKE position. In
the far field (as shown in figure 12b), the pressure fluctuations become less correlated
with the density fluctuations in the mixed-fluid regions. The loss of pressure–density
correlation is hypothesized to be caused by the nonlinearity introduced by the strong
density fluctuations and the coupling between different modes.

Figure 12(c) shows the density–pressure correlation at various positions for the
single-fluid case. In contrast to the multi-fluid case, the small-perturbation assumption
is satisfied, so the mode decomposition of Kovasznay (1953) can be applied. Based
on the way in which the inflow turbulence is generated (Ristorcelli & Blaisdell
1997), the preshock turbulence is dominated by vorticity and acoustic modes. In
this case, the pressure and density fluctuations should follow the isentropic process,
γ (γ − 1)ρ ′/ρ = (γ − 1)p′/p (Kovasznay 1953). For the current single-fluid case, the
density and pressure fluctuations indeed follow the isentropic process scaling after
being normalized by the local mean, in agreement with previous studies (Lee et al.
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FIGURE 13. (Colour online) Conditional expectation of temperature as a function of
density at various streamwise locations for (a) the multi-fluid A case and (b) the
single-fluid case.

1993; Mahesh et al. 1997). After passing through the shock wave, the isentropic
scaling is no longer satisfied due to the generation of an entropy mode, which has a
negative correlation between density and temperature fluctuations (figure 13b). This
should be contrasted with the study by Mahesh et al. (1997), where the focus was
on the interaction between the turbulent boundary layer and the shock wave. In
such a case, the inflow fluctuations satisfy the weak form of Morkovin’s hypothesis
(Morkovin 1962), instead of following the isentropic relations. For the current case,
despite the generation of an entropy mode, the pressure fluctuations cannot be
neglected even at k0x = 9.24, and, therefore, Morkovin’s hypothesis is not satisfied
throughout the domain.

For a complete discussion on thermodynamic properties, the conditional expectation
of temperature for both the multi-fluid A case and the single-fluid case are shown
in figure 13. For the multi-fluid case, the direct effect of upstream Mach number
fluctuations on the temperature is strong, resulting in a positive correlation between
the density and the temperature. The generated entropy mode as predicted by the
LIA in the single-fluid case seems to be overshadowed by this effect even further
downstream. For the single-fluid case, the scaling between the density and the
temperature fluctuations satisfies that of an isentropic process before the shock wave.
Through the interaction with the shock wave, negative correlation is established, as
previously mentioned. However, the correlation is not fully linear, which can be
attributed to the presence of the acoustic mode and the coupling between this and
the entropy mode.

In figure 14(a), the conditional expectation of the TKE is shown. We note that the
TKE has a preferential distribution in the relatively high- or low-density regions in
the postshock region. One possible explanation is that in the high- and low-density
regions, the local sound speed has different values from that of the average sound
speed, so that the local shock velocity, u1,s, becomes non-zero (in the reference
frame of the laminar shock wave) and changes significantly. The local movement
of the shock surface then further changes the postshock velocity, u1,d, and makes it
deviate from the averaged postshock velocity, u1,d. The deviation from u1,d or u′i in
low- and high-density regions is much larger in magnitude than that in regions with
moderate density, which results in larger TKE in the high- and low-density regions.
We have computed the conditional average of u′i on density. The results agree very
well with our explanation for conditional TKE. We also note that the TKE is larger in
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FIGURE 14. (Colour online) Conditional expectation of TKE as a function of density at
various streamwise locations for (a) the multi-fluid A case and (b) the single-fluid case.
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FIGURE 15. (Colour online) Conditional expectation of enstrophy as a function of density
at various streamwise locations for (a) the multi-fluid A case and (b) the single-fluid case.

the light-fluid regions compared with the heavy-fluid regions. This is due to the low
inertia of the light fluid, which responds faster to changes in the local strain and, thus,
accelerates faster (Livescu & Ristorcelli 2009; Livescu et al. 2010). This explanation
is also applicable to figure 14(b) for the single-fluid case, which shows a preferential
distribution of TKE in the lower-density fluid region before the shock wave. After
passing through the shock wave, a stronger amplification in the high- and low-density
regions is noted, but this is relatively weak, which agrees with the previous arguments.

The correlation between vorticity and density has a completely different behaviour
from the TKE. Evidently, figure 15(a) shows that more vorticity is generated in the
mixed-fluid regions. Before reaching the shock wave, the mixing process is relatively
slow, so that there are still large regions with pure or partially mixed fluids and only
narrow regions with fully mixed fluids. In these regions, the density gradients remain
large. Through the interaction with the shock wave, the large density gradients lead
to the generation of vorticity through the baroclinic torque (see (4.2)). For the single-
fluid case (figure 15b), the distribution of vorticity is not affected much by the shock
because of the absence of large density variations.

The discussion above using conditional expectations emphasizes the VD effects
on the modification of the turbulence structure. These effects reveal the underlying
physics of multi-fluid STI. It is worth mentioning that the conditional expectations
for the multi-fluid B case (not shown) show similar trends to those of the multi-
fluid A case.
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4.4. Reynolds stresses

The modification of the Favre-averaged normal Reynolds stress components ũ′′αu′′α or
Rαα (no summation over α) across the shock wave is an important feature of STI. As
mentioned in the previous section, the preshock behaviour of the Reynolds stresses
is very similar for multi-fluid and single-fluid cases and is dominated by viscous
dissipation. The VD effects on the viscous dissipation in the pre-shock region are
small at the Atwood number considered here. After passing through the shock wave,
the main contributing mechanisms to the transient development of Reynolds stresses
are the pressure–velocity correlation and the pressure–strain correlation (Lee et al.
1997; Jamme et al. 2002; Larsson et al. 2013). This corresponds to the decay of the
acoustic mode generated by STI. However, when the VD effect is introduced, the
dominant terms in the Reynolds stress budgets are unknown, especially after passing
through the shock wave. To investigate this, the budgets of the Favre-averaged normal
Reynolds stresses need to be considered. Before further discussing the turbulence
budgets, we need to differentiate the modification of turbulence by the shock from
its evolution away from the shock. For shock-capturing simulations, when there is
an overlap in scale, the turbulence and TKE budgets in the shock region cannot
be correctly captured. However, when there is a scale separation between the shock
and the turbulence, as is the case here, the numerical diffusion effects become, in
principle, negligible during the interaction. Thus, the interaction becomes physical;
however, it also becomes uninteresting from the point of view of the budget equations.
Nevertheless, the evolution away from the shock is accurately described by the
current approach and, for the VD case, has unknown evolution mechanisms that can
be elucidated by the budget equations. Thus, the following discussion is focused
on the evolution of turbulence away from the shock, with the immediate postshock
value treated as the boundary value. Livescu et al. (2009) derived the Reynolds stress
budgets for compressible turbulence as follows:

∂(ρũkRαα)/2
∂xk

= −ρRαk
∂ ũα
∂xk︸ ︷︷ ︸

term I

+p′
∂u′α
∂xα︸ ︷︷ ︸

term II

−
∂

∂xα
(p′u′′α)︸ ︷︷ ︸

term III

−τ ′αk
∂u′α
∂xk︸ ︷︷ ︸

term IV

−u′′α

(
∂p
∂xα
−
∂ταk

∂xk

)
︸ ︷︷ ︸

term V

−
∂

∂xk
(ρu′′αu′′αu′′k/2)︸ ︷︷ ︸

term VI

+
∂

∂xk
(τ ′αku′′α)︸ ︷︷ ︸

term VII

. (4.1)

The left-hand side (LHS) of (4.1) contains terms describing the advection of
Reynolds stresses by the mean velocity, and it is balanced by summation of all terms
on the right-hand side, which include (I) production, (II) turbulent pressure–strain,
(III) velocity–pressure transport, (IV) viscous dissipation, (V) production due to the
mean pressure plus stress gradient, (VI) turbulent transport and (VII) viscous diffusion.
Figures 16–20 show the contributions of the individual terms in the Rαα equation and
the summation of all of the right-hand side terms, denoted by RHS. As mentioned
before, all of the statistics are time- and space-averaged to achieve converged results.
The streamwise Reynolds stress R11 budgets are shown in figure 16 (the results
for the multi-fluid A and multi-fluid B cases are close, so only the multi-fluid A
results are shown). We note that in the postshock region, there exists a strong
transient process which is dominated by the combination of pressure–strain (II) and
pressure–velocity (III) correlations. These correlations are related to the pressure
and quickly decrease, which is hypothesized to correspond to the fast decay of the
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FIGURE 16. (Colour online) Contributions of the different terms in the R11 transport
equations for the multi-fluid A simulation. (a) Plots of all of the contributing terms in
the transport equation and (b) balance of the LHS and RHS of the transport equation.

acoustic field generated by STI. All of the other terms remain small compared with
these three terms in the entire postshock region. Figure 16(b) gives the balance of
R11 transport terms. The good balance of advection and RHS in both the shock zone
and the postshock zone confirms the accuracy of the simulation.

After the initial strong transient process, the pressure–strain (II) and pressure–
velocity (III) terms exhibit long-lasting small-magnitude fluctuations, and the
dissipation (IV) becomes the leading-order term. These fluctuations are partly due
to the limited size of the inflow turbulence box and can be smoothed by repeating
the simulations using additional realizations of the isotropic turbulence box and then
averaging the results. In order to remove the effects of limited turbulence box size, we
have conducted five more new simulations using different realizations of statistically
identical isotropic inflow turbulence and then averaged the budget terms for all of
these realizations in addition to time. Other methods have also been used to reduce
the statistical variability, such as the blending method of Larsson & Lele (2009) or
the auxiliary forced isotropic turbulence (IT) simulation of Ryu & Livescu (2014). It
can be seen in figure 17 that the secondary fluctuations are greatly smoothed. All of
the following budget plots in this subsection are averaged over five realizations.

In Figure 18, the R22 budgets are presented. For R22, the pressure–velocity (III) term
vanishes due to averaging in homogeneous directions, but the pressure–strain remains
dominant in the transient region. On comparing this term for the R11 and R22 budgets,
we note a similar behaviour, with a quick return to zero while oscillating around the
x-axis, but with opposite sign. After k0x ≈ 2.0, the dissipation starts to become the
leading contributing term in the R22 budget, just like the R11 budget. The good balance
of the R22 budget is shown in figure 18(b).

To further illustrate the effects of multi-fluid density variations on the Reynolds
stresses, the contributing terms are normalized by the corresponding Reynolds
stress values at the same location, as shown in figure 19. We note that both the
multi-fluid and single-fluid values are now of similar magnitude, in contrast to the
large differences in their absolute values. The single-fluid budgets agree qualitatively
well with those from previous STI studies (Lee et al. 1997; Jamme et al. 2002;
Larsson et al. 2013). One difference is in the magnitude of the dissipation term,
which is relatively small compared with that of Larsson et al. (2013). To examine
the difference, a preliminary simulation in a similar parameter range (Mt ≈ 0.15 and
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FIGURE 17. (Colour online) Contributions of the different terms in the R11 transport
equations for the multi-fluid A simulation averaged over five different realizations.
(a) Plots of all of the contributing terms in the transport equation and (b) balance of the
LHS and RHS of the transport equation.
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FIGURE 18. (Colour online) Contributions of the different terms in the R22 transport
equations for the multi-fluid A simulation averaged over five different realizations.
(a) Plots of all of the contributing terms in the transport equation and (b) balance of the
LHS and RHS of the transport equation.

Ms= 1.5) was performed (not shown here) and the results were found to be similar to
those of Larsson et al. (2013). Therefore, the difference can be attributed to different
shock and turbulent Mach numbers.

We note that the pressure–strain and pressure–velocity terms return to zero faster
in the multi-fluid case, proving that the transient process for the multi-fluid case is
shorter than that for the single-fluid case, which is in agreement with our previous
observation. After the first large transient process of postshock adjustment, we note
that in both cases there is a secondary lower-level transient process that lasts for a
very long time in the postshock region, with magnitude close to the dissipation term,
especially for the multi-fluid case. This long-lasting small-magnitude transient process
makes the development of Reynolds-averaged Navier–Stokes (RANS) models for these
terms challenging. This observation is in agreement with Gréa et al. (2016), even
though the jumps themselves can be well predicted by some of the existing models
(Schwarzkopf et al. 2016).

Other than the time-averaged and space-averaged statistics, the instantaneous
planar data in homogeneous directions could also provide valuable insights into the
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FIGURE 19. (Colour online) Normalized contributions of the different terms in the R11
transport equations averaged over five different realizations for (a) multi-fluid A and
(b) single-fluid simulations.
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FIGURE 20. (Colour online) Normalized contributions of the different terms in the R22
transport equations averaged over five different realizations for (a) multi-fluid A and
(b) single-fluid simulations.

turbulence statistics and structure. Figure 21 shows a comparison of the transverse
kinetic energy spectra for single- and multi-fluid cases at different locations. The
positions selected include immediately before the shock (k0x≈−0.72) and at k0x≈4.0.
Again, because the shock surface is wrinkled, the location of the chosen plane cannot
be immediately before the shock everywhere, which will affect the accuracy of the
calculations. In order to gather the spectral information immediately before the shock,
the instantaneous shock wave position and shape are first calculated. Then, the spectra
are taken at the plane in close overall location to the shock wave.

In figure 21, the normalized spectra are compared at positions before the shock
and at k0x ≈ 4.0 for each case. Immediately before the shock wave, the spectra for
the single- and multi-fluid cases are nearly identical. After passing through the shock
wave, at k0x≈ 4.0, the small-scale energy is enhanced for both cases, agreeing well
with early studies by Lee et al. (1993). However, the amplification of the small scales
is stronger in the multi-fluid case at the same spatial location.

4.5. Vorticity variance
Vorticity is another important variable that is strongly affected by STI. Earlier studies
on STI have proved that the transverse vorticity variance ω′2ω′2 (or ω′3ω′3) is amplified

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.542


574 Y. Tian, F. A. Jaberi, Z. Li and D. Livescu

100 102101

10–4

10–5

10–6

10–7

10–1

10–2

10–3

Multi-fluid
Multi-fluid
Single-fluid
Single-fluid

k

FIGURE 21. (Colour online) Two-dimensional spectra of the transverse turbulent kinetic
energy. The comparisons are made immediately before the shock wave and at k0x≈ 4.0.

immediately after the shock wave, while the streamwise component ω′1ω′1 stays
unchanged. This is then followed by an increase in ω′1ω′1 and a decrease in ω′2ω′2 as
the turbulence returns to isotropy downstream of the shock. The amplification of ω′2ω′2
predicted by the LIA has been reasonably well captured by previous shock-resolving
DNS studies (Ryu & Livescu 2014). The current shock-capturing simulations also
show good agreement on the amplification ratio of ω′2ω′2 with the LIA outside the
shock zone. When the effect of VD (due to compositional change) is introduced,
the modification of vorticity variance by the shock can no longer be predicted by
the LIA. In figure 22, the vorticity variance for both the single-fluid and multi-fluid
cases is plotted. As demonstrated before, the amplification of the transverse vorticity
variance by the shock is greater when density variations are large. For the streamwise
vorticity variance, both cases show values unaffected by the shock immediately after
it has occurred, while the multi-fluid values increase faster downstream.

The governing equation for vorticity variance can be derived from the momentum
equation and is used here to identify the mechanisms responsible for the change
in vorticity. After rearrangement, this equation takes the following form (Lee et al.
1993):

uj
∂

∂xj
(ω′2α ) = 2ω′αω

′
j
∂uα
∂xj︸ ︷︷ ︸

term I

+2ω′αω
′
j
∂u′α
∂xj︸ ︷︷ ︸

term II

−ω′2α
∂uk

∂xk︸ ︷︷ ︸
term III

−ω′2α
∂u′k
∂xk︸ ︷︷ ︸

term IV

+2εijkω′α
∂ρ

∂xj

∂p
∂xk

/ρ2︸ ︷︷ ︸
term V

+2εijkω′α
∂

∂xj

(
1
ρ

∂τkq

∂xq

)
︸ ︷︷ ︸

term VI

−
∂

∂xj
ω′2α u′j︸ ︷︷ ︸

term VII

−2ω′αu′j
∂ωα

∂xj︸ ︷︷ ︸
term VIII

+2ωαω′α
∂u′α
∂xj︸ ︷︷ ︸

term IX

−2ωαω′α
∂u′k
∂xk︸ ︷︷ ︸

term X

. (4.2)

The terms on the LHS of (4.2) represent the convection or transport of vorticity
variance by the mean velocity, and the RHS terms are (I) production by mean velocity,
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FIGURE 22. (Colour online) Streamwise and transverse vorticity variance for the multi-
fluid and single-fluid cases.

(II) production by turbulent stretching, (III) vorticity mean dilatation, (IV) vorticity
turbulent dilatation, (V) baroclinic torque, (VI) viscous diffusion/dissipation,
(VII) turbulent transport, (VIII) mixed velocity–vorticity gradient, (IX) mixed
vorticity–velocity gradient and (X) vorticity dilatation. The last three terms vanish
due to the averaging in homogeneous directions, but they are shown in the equations
for completeness.

The main contributing terms in (4.2) are shown in figures 23 and 24. A previous
DNS study by Jamme et al. (2002) considered the vorticity variance budgets inside the
shock wave. Here, the postshock region is of interest. It can be seen that the dominant
mechanisms in the postshock development region of the flow are the production by
turbulent stretching (II) and viscous dissipation (VI) terms. These two terms have
competing effects on the vorticity variance. Turbulent-stretching or production has a
positive contribution while viscous dissipation decreases the vorticity variance. The
relative importance of these two terms describes the different behaviours of ω′1ω′1 and
ω′2ω

′

2. In the ω′1ω
′

1 transport equation, term (II) is more significant than term (VI),
resulting in a net increase in ω′1ω

′

1. On the contrary, the magnitude of term (VI) is
larger than term (II) for ω′2ω′2, causing the spanwise vorticity variance to decrease. It is
worth mentioning that, other than the above dominant terms, terms like the baroclinic
torque (V) or the mean velocity stretching (I) also make small contributions to the
development of spanwise vorticity variance immediately after the shock, but they have
virtually no effect on the streamwise vorticity.

Comparison can be made of vorticity variance budgets between multi- and
single-fluid cases in order to understand the effects of density variations. In both
cases, production by the turbulent stretching (II) and viscous dissipation (VI) terms
are the main mechanisms for modelling vorticity in the postshock region. Generally,
the dominant terms in the multi-fluid case have much larger magnitudes than those
in the single-fluid case. As for specific vorticity components, both the multi-fluid
and single-fluid cases have increasing turbulent stretching (II) and decreasing viscous
diffusion (VI) terms close to the shock (figures 23a and 24a) for ω′1ω′1. The increase in
the magnitude of viscous diffusion (VI) seems to not occur as fast as that of turbulent
stretching (II). Due to this, the multi-fluid A case shows a greater contribution from
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FIGURE 23. (Colour online) Contributions of the different terms in the transport
equation for (a) ω′1ω′1 and (b) ω′2ω′2 for the multi-fluid simulation.
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FIGURE 24. (Colour online) Contributions of the different terms in the transport
equation for (a) ω′1ω′1 and (b) ω′2ω′2 for the single-fluid simulation.

the turbulent stretching (II) than from the viscous diffusion term (VI) in the vicinity
of the shock. The increase in the magnitude of the viscous term (VI) is closely
connected to the increase of the streamwise vorticity variance. For transverse vorticity
variance budgets, the turbulent-stretching term (II) has a different behaviour; in
the multi-fluid case it increases slowly after the shock and in the single-fluid case
it decreases almost immediately after the shock. The ω′2ω

′

2 viscous term (VI) for
the single-fluid case decreases in magnitude after the shock, which results from the
decrease of the vorticity variance. In contrast, this term remains almost unchanged for
a short distance in the multi-fluid case before the decrease in magnitude, indicating
a different transient process compared with the single-fluid case.

Ribner (1954), Lee et al. (1993), Larsson & Lele (2009) and Livescu & Ryu (2016)
showed that STI leads to a two-dimensionalization of the flow immediately after the
shock, i.e. the flow becomes locally axisymmetric. The vortex-stretching term is
therefore smallest immediately after the shock. This term then increases as the flow
evolves away from the shock and returns to a 3-D structure. Following the expression
of the vortex-stretching term in Livescu & Ryu (2016), the turbulent-stretching term
can be decomposed into contributions from eigenvectors and eigenvalues of the strain
rate. After normalizing the turbulent-stretching term in the enstrophy equation using
ω′2ω

′

2 and the turbulence time scale TKE/ε (where ε is the rate of dissipation), the
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FIGURE 25. (Colour online) The vortex-stretching term in the enstrophy equation,
normalized by ω2ω2 and the turbulence time scale TKE/ε.

effects of the eigenvectors and eigenvalues of the strain rate can be isolated. As shown
in figure 25, the magnitude of the turbulent stretching decreases to approximately
zero across the shock wave. During the transient postshock process, the multi-fluid
case exhibits a faster return to 3-D isotropic turbulence structure, indicated by the
faster increase in the normalized turbulent-stretching term. Further downstream, the
multi-fluid A case reaches its peak value much sooner than the single-fluid case. The
behaviour of the normalized turbulent-stretching term indicates that the contributions
to the return to 3-D turbulence come not only from increased enstrophy amplification,
but also from the change of alignment between the vorticity and strain rate tensor
eigenvectors. This difference is hypothesized to be the result of the nonlinear effects
introduced by large density variations.

4.6. Mixing
When turbulence passes through a shock wave, enhancement of mixing by STI
is generally expected (see figure 10). In this section, the mixing characteristics of
multi-fluid turbulence interacting with a normal shock wave are studied in more detail.
When the VD effect is introduced, the modification of turbulence by the shock is
shown to be very different from that of the single-fluid case. This leads to changes
in basic features of turbulent mixing after the shock.

Figure 26 compares the scalar Taylor microscale of the heavy-fluid mole fraction or
passive scalar (λφ = (φ′φ′/(∂φ/∂x1)2)

0.5) between the multi-fluid and single-fluid cases.
Both cases are normalized using the values immediately before the shock. Immediately
after the shock, the same decrease in λφ is observed. These results and those shown
in figure 10(b) for the Batchelor scale indicate that the modification of the scalar
length scales by the shock wave is not dependent on the density variations in the
preshock turbulence. Away from the shock, the multi-fluid flow exhibits a transient
region with slowly decreasing λφ until k0x ≈ 3.0. After the transient region, λφ for
the multi-fluid case starts to increase. On the contrary, λφ for the single-fluid case
continuously increases after the shock. It was shown in figure 10 that the Batchelor
scale λB for the multi-fluid case becomes even larger than that for the single-fluid case
close to the end of the domain. This is not observed for λφ , and the multi-fluid case
λφ values remain small throughout the postshock region. This suggests that the scalar
field as affected by the shock and density variations are very different at small and
intermediate length scales.
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FIGURE 26. (Colour online) Plots of the scalar Taylor microscale for the multi-fluid (red)
and single-fluid (blue) cases.

The transport equation for the Favre-averaged scalar (passive scalar or heavy-fluid
mass fraction) variance is considered here to study the characteristics of scalar mixing
for multi-fluid turbulence interaction with the shock wave. This equation is rearranged
in the following form (Livescu, Jaberi & Madnia 2000):

∂ρũjφ̃′′2

∂xj
=−2ρũ′′j φ′′

∂φ̃

∂xj︸ ︷︷ ︸
term I

−2M′j
∂φ′

∂xj︸ ︷︷ ︸
term II

−
∂

∂xj
(ρũ′′j φ′′2)︸ ︷︷ ︸

term III

+2
∂

∂xj
(M′jφ′)︸ ︷︷ ︸

term IV

+2φ′′
∂Mj

∂xj︸ ︷︷ ︸
term V

, (4.3)

where Mj= (µ/Re0Sc)∂φ/∂xj. The LHS in (4.3) represents the convection of the scalar
variance by the mean velocity, and the terms on the RHS are (I) production, (II) scalar
dissipation, (III) turbulent diffusion, (IV) viscous diffusion and (V) compressibility.

Figure 27 shows that for the multi-fluid case A, the most important term is scalar
dissipation (II). In the vicinity of the shock wave, there is a transient process where
the production (I) and turbulent transport ((III)+ (IV)) terms make relatively small
contributions to the overall balance. These two terms reduce to zero at approximately
k0x ≈ 5.0 and after that the advection is only balanced by the scalar dissipation. In
contrast, the only dominant term for the single-fluid case is the scalar dissipation
throughout the postshock region, as shown in figure 28(b). To make a better
comparison between the two cases, the magnitudes of the scalar dissipation and
advection terms are shown together in figure 29. Immediately after the shock, the
same value for the scalar dissipation is observed. As the flow moves away from the
shock, the scalar dissipation for the multi-fluid case starts to decrease, while that for
the single-fluid case keeps increasing. However, after k0x≈ 3.0, the scalar dissipation
in the multi-fluid case starts to increase with a faster rate than that in the single-fluid
case. In the region before k0x≈ 10.0, the scalar dissipation of the multi-fluid flow is
higher in magnitude, which indicates enhanced mixing.

Another important feature of scalar mixing in the STI configuration is that, unlike
velocity field statistics, the direct effects of the shock on the scalar statistics are almost
the same in the single- and multi-fluid cases. This can be explained by the fact that
the Rankine–Hugoniot relation for the scalar is linear, φu = φd. This feature of scalar
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FIGURE 27. (Colour online) Contributions of the different terms in the scalar variance φ̃′′2
transport equations for the multi-fluid simulation. (a) Plots of all of the contributing terms
in the transport equation and (b) balance of the LHS and RHS of the transport equation.
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FIGURE 28. (Colour online) Contributions of the different terms in the φ̃′′2 transport
equations for (a) the multi-fluid and (b) the single-fluid simulation.

transport prevents direct changes in the scalar field by the shock. This trend exists
so long as the preshock turbulent Mach number Mt and density ratio in the multi-
fluid case are low. These criteria are satisfied in our reported simulations, so the
modifications of scalar statistics across the shock remain the same regardless of the
VD effects. Furthermore, those scalar statistics using only y–z plane data (e.g. scalar
variance) are continuous across the shock. For completeness, we need to mention that
the evolution of the scalar away from the shock is indeed affected by the VD effects.

The structure of the scalar field can be studied by examining the scalar spectra.
Figure 30 shows the comparison of the scalar (passive scalar or heavy-fluid mole
fraction) variance spectra at three locations: immediately before the shock, at peak
TKE and at k0x ≈ 4.0. The spectra immediately before the shock wave match well
with one another. However, downstream of the shock at k0x≈ 4.0, the multi-fluid case
shows more amplification of small-scale fluctuations (figure 30a). The more significant
amplification of these fluctuations is accompanied by smaller scalar length scales λφ
and λB and a higher rate of scalar dissipation. Comparison of the scalar variance
spectra at the peak TKE position shows almost the same profiles for the single- and
multi-fluid cases (figure 21b). We have already argued that the modification of scalar
statistics (obtained by averaging over planes perpendicular to the mean flow direction)
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FIGURE 29. (Colour online) Comparison of the scalar dissipation and advection terms
obtained from the multi-fluid and single-fluid simulations.
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FIGURE 30. (Colour online) Two-dimensional spectra of the scalar. The comparison is
made at various locations: (a) immediately before the shock wave and at k0x ≈ 4.0 and
(b) immediately before the shock wave and at peak TKE position.

by the shock is not very sensitive to the preshock turbulence. The collapse of the
scalar variance spectra immediately after the shock at peak TKE position implies
that the scalar evolution away from the shock is strongly affected by the postshock
turbulence.

A mixing asymmetry in VD turbulence was observed for Rayleigh–Taylor
turbulence, and its mechanisms were studied by Livescu & Ristorcelli (2008, 2009)
and Livescu et al. (2010). Due to the differential accelerations experienced by the
fluids with different molecular weights, the pure heavy fluid mixes more slowly than
the pure light fluid, in contrast to the Boussinesq approximation. Such non-Boussinesq
effects in turbulence statistics have already been observed in the current multi-fluid
STI results, and a similar mixing asymmetry can be observed by comparing the
p.d.f.s of the scalars (heavy-fluid mole fraction, heavy-fluid mass fraction and passive
scalar) and the density. Figures 31–33 show the p.d.f.s of the scalar and the density
as obtained from the spanwise 2-D plane data at various streamwise positions for the
multi-fluid A (mole fraction), multi-fluid B (mass fraction) and single-fluid (passive

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.542


Variable density turbulence interaction with a normal shock wave 581

0.2 0.4 0.6 0.8 1.0 0–0.2–0.4–0.6 0.2 0.4 0.6

0.5

0

1.0

1.5

2.0

2.5

3.0

3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

(a) (b)
Inlet
Right before
shock
Peak TKE

FIGURE 31. (Colour online) The p.d.f.s of the multi-fluid A case: (a) scalar (mole
fraction) and (b) density fluctuation at various locations. The p.d.f.s are calculated at
specified y–z planes and then averaged over time.

scalar) cases. For the multi-fluid case A, figure 31 shows that the p.d.f. of the inflow
heavy-fluid mole fraction is symmetrical. Before reaching the shock, the effect of
multi-fluid density variations on the mixing asymmetry is negligible. After passing
through the shock wave, however, the initially symmetric mole fraction p.d.f. starts to
become skewed, and the skewness keeps increasing during the postshock development.
The skewed p.d.f.s suggest that the light fluid vanishes faster than the heavy fluid.
This is also shown in the density p.d.f.s, as the low-density tails of the p.d.f.s vanish
faster. In the multi-fluid case B (figure 32), a similar behaviour is observed for the
density p.d.f. Initially, a symmetrical mass fraction p.d.f. results in a skewed density
p.d.f. The interaction with the shock itself has only a small effect on the asymmetry.
Away from the shock, the skewness in the density p.d.f. increases. This asymmetry
in the multi-fluid cases is related to the larger kinetic energy in the light-fluid regions
(see figure 14a above). This preferential distribution of TKE suggests that the mixing
is stronger in the low-density regions. In contrast, figure 33 shows that the single-fluid
scalar and density p.d.f.s remain symmetrical throughout the domain.

4.7. Normalized mass flux and density specific volume covariance

The normalized mass flux ai = ρu′i/ρ = −u′′i and density specific volume covariance
b = −v′ρ ′, where v = 1/ρ, are important quantities for the modelling of mixing in
compressible turbulent flows with significant inhomogeneity and density variations
(Schwarzkopf et al. 2016). Both of these terms appear as a closure in the Favre-
averaged Reynolds stress equations. Even though in the current study the terms
involving ai and b may not be important to Reynolds transport on average, the
contributions from these terms might be significant locally. More importantly, as
the density ratio of the two fluids increases, the interaction with the shock tends to
generate strong inhomogeneity, particularly when the shock becomes unstable and
breaks. In these conditions, the behaviour and modelling of ai and b will be of great
significance. Considering these factors, the behaviour of the normalized mass flux
and density specific volume covariance is further investigated in this section.

Figure 34 compares a1 and b for both the single- and multi-fluid cases. The
magnitudes of these two terms in multi-fluid turbulence are comparably larger
than those in the single-fluid case. In figure 34(a), the preshock values of the
normalized mass flux are shown to be small. After passing through the shock
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FIGURE 32. (Colour online) The p.d.f.s of the multi-fluid B case: (a) scalar (mass
fraction) and (b) density fluctuation at various locations. The p.d.f.s are calculated at
specified y–z planes and then averaged over time.
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FIGURE 33. (Colour online) The p.d.f.s of the single-fluid case: (a) passive scalar and
(b) density fluctuation at various locations. The p.d.f.s are calculated at specified y–z
planes and then averaged over time.

wave, the streamwise normalized mass flux is greatly amplified, indicating a strong
inhomogeneity in the streamwise direction, generated by the VD effects. This can
be explained by the mismatch between the mean density jump in the simulated STI
and the value predicted by the R–H relation, as observed in Larsson et al. (2013) for
single-fluid flows. Immediately after the shock, the mean density jump is lower than
the laminar R–H prediction. The mean density then slowly returns to the laminar R–H
mean density as the turbulence decays downstream of the shock, introducing a small
mean density inhomogeneity in the streamwise direction. This is strongly amplified
in the multi-fluid simulations, as the wrinkling of the shock surface and variations in
the shock strength increase the deviation from the R–H values. Further downstream,
a1 attains a very high magnitude for a short distance before decreasing, in agreement
with previous observations that the mean density returns to the R–H value and the
flow becomes isotropic. In figure 34(b), the density specific volume covariances for
the two cases are compared. As b is a measure of the mixing state, its behaviour
is expected to be similar to that of scalar variance (figure 10a) outside the shock
region, at least when the non-Boussinesq effects are not large. This is confirmed by
figure 34(b), which shows that b slowly decreases before the shock and much faster
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FIGURE 34. (Colour online) Plots of (a) the normalized mass flux a1 and (b) the
density specific volume covariance −v′ρ ′ for the multi-fluid and single-fluid simulations.

after passing through the shock. For the single-fluid case, the density specific volume
correlation remains statistically unimportant throughout the whole domain.

The transport equations for the normalized mass flux components ai, which appear
in unclosed form in the transport equations for the Reynolds stresses, are (Livescu
et al. 2009)

∂

∂t
(ρai)+

∂

∂xj
(ρũjai) = bPi︸︷︷︸

term I

+ρv′
∂p′

∂xi︸ ︷︷ ︸
term II

−ρaj
∂

∂xj
(ũ′i − ai)︸ ︷︷ ︸

term III

+
∂ρ

∂xj

1
ρ
(ρ ′u′iu′j − Rij)︸ ︷︷ ︸
term IV

+ρ
∂

∂xj
(aiaj)︸ ︷︷ ︸

term V

−

(
∂

∂xj
(ρ ′u′iu′j)+ ρu′i

∂u′j
∂xj

)
︸ ︷︷ ︸

term VI

, (4.4)

where Pi= ∂p/∂xi− ∂τij/∂xj. Figure 35 shows the terms in the streamwise normalized
mass flux equation. The contributing terms are normalized by local values of a1 so
that their relative magnitudes can be shown. Immediately after the shock, terms (II)
and (VI) are the leading-order terms and have opposite sign. In the vicinity of the
shock wave, positive net contributions from these two terms are observed, which
correspond to the sharp increase of a1 after the shock wave. Further downstream,
term (II) decreases and term (VI) increases. After k0x ≈ 2.0, term (II) becomes
negative and keeps decreasing. Term (VI) approaches 0 after k0x ≈ 5.0, making
term (II) the only dominant term. The overall behaviour of a1 is dominated by
term (II), while term (VI) contributes to the transient process after the shock
interaction and affects the peak position of a1. The good balance of the advection
term with all of the RHS terms once again confirms the accuracy of the simulations.

The density specific volume covariance b is a measure of the mixing state. This is
an unclosed term in the normalized mass flux equations. Its governing equation has
the form (Livescu et al. 2009)

∂

∂t
b+ ũj

∂b
∂xj
= 2aj

∂b
∂xj︸ ︷︷ ︸

term I

−2aj(1+ b)
∂ρ

∂xj

1
ρ︸ ︷︷ ︸

term II

+ρ
∂

∂xj

(
u′jρ ′v′

ρ

)
︸ ︷︷ ︸

term III

+2ρv′
∂u′j
∂xj︸ ︷︷ ︸

term IV

. (4.5)
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FIGURE 35. (Colour online) The contributions of different terms in the normalized mass
flux, a1, transport equations for the multi-fluid simulation.

Figure 36 shows all of the terms in the transport equation of b (normalized by local
values of b). The only important term in this equation is term (IV). Terms (I), (II)
and (III) have non-zero contributions close to the shock in the postshock region, but
their total contribution to b is negligible. The ‘transient’ region ends at approximately
k0 ≈ 3.0; after that, term (IV) becomes the only non-zero term and remains nearly
constant. It can be concluded that the modelling of term (IV) is critical to the RANS
simulation of VD mixing in STI. Figure 36(b) shows the good balance between the
advection and RHS terms.

5. Conclusions
A hybrid numerical method, which combines a monotonicity-preserving scheme

with a compact scheme, is used for high-order numerical simulations of isotropic
multi-fluid turbulence interacting with a planar normal shock wave. A reference
simulation of single-fluid turbulence is also conducted with similar conditions. The
main objective is to study the effects of density variations on the STI and mixing.
Convergence tests are conducted to establish the accuracy of numerical results using
different meshes with a wide range of grid sizes. The computed statistics are found
to be independent of the grid when the turbulence after the shock is well resolved
and the scale separation between the numerical shock thickness and the turbulent
scales is adequate.

To further establish shock-capturing simulation as an effective tool in studying STI,
LIA convergence tests are conducted to show that shock-capturing simulations exhibit
converging trends to LIA predictions. As Reλ increases, both the streamwise and the
spanwise components of the Reynolds stress tensor indeed show converging trends
to LIA predictions. Stronger Mt effects on the LIA convergence of the spanwise
component are observed. The streamwise component, however, does not converge
towards LIA predictions at low Reλ. Further results show that the LIA limits for the
streamwise component can be approached using turbulence-resolving shock-capturing
simulations with a minimum Reλ of approximately 45 and a coarser grid compared
with shock-resolving DNS. This advantage over DNS makes the shock-capturing
simulations an effective tool for achieving accurate predictions.
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FIGURE 36. (Colour online) The contributions of the different terms in the density specific
volume covariance, b, transport equations for the multi-fluid simulation.

A comparison between two multi-fluid cases and a single-fluid case is made to
identify and explain the effects of large density variations on the flow structure and
turbulence statistics in the STI configuration. Due to the strong nonlinear effects
introduced by density variations, the modification of turbulence statistics by the
normal shock is shown to be different from those of the single-fluid case and
the LIA prediction, with an increased amplification of turbulence variables (like
TKE and vorticity variance) and a more significant reduction in turbulence length
scales. Turbulent mixing enhancement by the shock is also more significant in the
multi-fluid cases. Redistribution of turbulence statistics across the shock wave is
another important feature of multi-fluid STI, as reflected in the changes in the
conditional expectations. For thermodynamic variables, the isentropic relations of
fluctuations are satisfied for the single-fluid case before the shock. After passing
through the shock wave, both acoustic and entropy modes are important for the
correlations of thermodynamic properties. For the multi-fluid cases, the nonlinear
effects and the coupling between different modes complicate the analysis, and further
investigation is needed. It is also found that the TKE has a preferential distribution
in the pure-fluid regions after the shock wave, while the vorticity amplification is
strongest in the mixed-fluid areas. This difference is attributed to the different roles
that density plays for these quantities. The effects of different density p.d.f.s in
the preshock turbulence are examined by comparing two multi-fluid cases. Both
multi-fluid cases exhibit very similar behaviour across the shock even though their
density fields are different. Other parameters such as At and ks may also affect the
interaction, but they are not the focus of the current study.

Also for multi-fluid flow, a detailed study of the turbulent budgets for Reynolds
stresses, vorticity variance and scalar variance is conducted and the dominant
mechanisms in the postshock region are identified. The rapid increase in the
streamwise Reynolds stress component after the shock wave is mainly caused
by the pressure–strain and velocity–pressure correlations, whereas the decrease in
the transverse Reynolds stress is mostly due to the pressure–strain term, which is
consistent with the observations made in the single-fluid simulation. Away from the
shock wave, as transient processes vanish, the viscous dissipation becomes dominant
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and causes both Reynolds stresses to decrease. After being normalized using the
corresponding local Reynolds stress values, the contributing terms become similar
in magnitude. The energy spectra of the transverse kinetic energy are different at
the same absolute position k0x ≈ 4.0, confirming that the multi-fluid and single-fluid
flows have different postshock length scales. For the vorticity variance, the dominant
terms are turbulence stretching (positive contribution) and viscous diffusion (negative
contribution). Turbulence stretching plays an important role in understanding the
postshock behaviour: it attains small values immediately after the shock due to
the two-dimensionalization of turbulence; during the return to a 3-D structure, the
normalized turbulence stretching for the multi-fluid case increases faster and reaches
its peak earlier compared with the single-fluid case. The mechanism that is responsible
for enhanced mixing has been identified to be the increased scalar dissipation. The
modification of scalar statistics, as measured by changes in variables like the Batchelor
scale, the scalar Taylor microscale and the scalar dissipation across the shock wave,
is shown to be similar in single- and multi-fluid simulations, which is attributed to
the linear Rankine–Hugoniot relation for the scalar. The mixing asymmetry is more
pronounced after the interaction with the shock for the multi-fluid turbulence. This
can be explained by the preferential distribution of TKE in the low-density regions.
The mechanisms that are responsible for the postshock development of turbulence are
identified and used to assess the main characteristics of VD compressible flows.
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