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A series of direct numerical simulations were performed of Taylor–Couette (TC) flow,
the flow between two coaxial cylinders, with the outer cylinder rotating and the inner
one fixed. Three cases were considered, where the Reynolds number of the outer
cylinder was Reo = 5.5× 104, Reo = 1.1× 105 and Reo = 2.2× 105. The ratio of radii
η= ri/ro was fixed to η= 0.909 to mitigate the effects of curvature. Axially periodic
boundary conditions were used, with the aspect ratio of vertical periodicity Γ fixed
to Γ = 2.09. Being linearly stable, TC flow with outer cylinder rotation is known to
have very different behaviour than TC flow with pure inner cylinder rotation. Here,
we find that the flow nonetheless becomes turbulent, but the torque required to drive
the cylinders and level of velocity fluctuations was found to be smaller than those
for pure inner cylinder rotation at comparable Reynolds numbers. The mean angular
momentum profiles showed a large gradient in the bulk, instead of the constant angular
momentum profiles of pure inner cylinder rotation. The near-wall mean and fluctuation
velocity profiles were found to coincide only very close to the wall, showing large
deviations from both pure inner cylinder rotation profiles and the classic von Karman
law of the wall elsewhere. Finally, transport of angular velocity was found to occur
mainly through intermittent bursts, and not through wall-attached large-scale structures
as is the case for pure inner cylinder rotation.
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1. Introduction

Taylor–Couette (TC) flow, the flow between two coaxial and independently rotating
cylinders, can present different types of transition to turbulence. For vanishing
viscosity, TC flow is linearly unstable if |roωo| < |riωi|, where ri,o are the radii of
the inner and outer cylinders, and ωi,o their angular velocities (Rayleigh 1917), due
to the centrifugal forces. If viscosity is considered, a minimum rotation strength is
required to overcome the viscous damping. For pure inner cylinder rotation, once this
stability threshold is crossed, TC flow presents a supercritical transition to turbulence,
where the purely azimuthal flow develops large-scale structures that fill up the entire
gap and effectively redistribute angular momentum (Taylor 1923; Fardin, Perge &
Taberlet 2014). With increasing rotation, these large-scale structures undergo a series
of transitions from laminar Taylor vortices to wavy Taylor vortices to modulated wavy
Taylor vortices to turbulent Taylor vortices (Andereck, Liu & Swinney 1986). Even at
very large Reynolds numbers these structures have been observed to persist in some
regions of the parameter space, i.e. at Re ∼ O(105) in simulations (Ostilla-Monico
et al. 2014a) and then at Re ∼ O(106) in experiments (Huisman et al. 2014). The
flow field shows a clear lack of statistical spatial homogeneity and these ‘rolls’ cause
substantially large deviations of the near-wall velocity profiles of TC flow from the
classic wall-turbulence profiles of channels and pipes. This effect has been attributed
to the role of curvature and the centrifugal instability (Ostilla-Mónico et al. 2016).
For an overview of supercritical TC flow at large Reynolds numbers, we refer the
reader to the review of Grossmann, Lohse & Sun (2016).

If, instead, the outer cylinder is rotated, and the inner cylinder is kept fixed, the
flow undergoes a subcritical transition to turbulence. This transition is quite different
from the supercritical transition detailed previously, as the flow does not go undergo
a series of changes from less complex to more complex flow patterns, but instead
makes a sudden transition to turbulence, either in localized spots or filling the entire
gap. While Taylor (1936) found evidence for this subcritical transition by measuring
the torques and how they deviated from the predictions for steady flow, this transition
was first systematically studied by Coles (1965), who found that for low outer cylinder
Reynolds numbers, Reo = droωo/ν with ν the fluid kinematic viscosity and d the gap
width, d = ro − ri, intermittent turbulent patches coexisted with laminar flow, with
well-defined interfaces. The persistence time of these patches increased with increasing
inner cylinder Reynolds number Rei= dωiri/ν, and so did the turbulent fraction, until
the flow was fully turbulent. For the lower Reo range, the flow had to be started in a
supercritical state, such that the centrifugal instabilities provided an initial perturbation
for the generation of turbulence. For larger values of Reo, the flow no longer required
the centrifugal instability to transition to turbulence, and could remain exclusively
in the subcritical region and still see a spontaneous, or ‘catastrophic’, transition to
turbulence.

Studies of subcritical TC flow continued through the years, both theoretically,
in an attempt to develop nonlinear stability criteria, as well as numerically and
experimentally. The focus of many of these studies was on the sharp turbulent–laminar
interface and on spiral turbulence, a particular flow where the bursts took a spiral
shape (van Atta 1966; Andereck, Dickman & Swinney 1983). We refer the reader to
the thesis of Borrero-Echeverry (2014) for a detailed historical overview of studies
of subcritical TC flow. Subcritical transitions to turbulence have been well studied in
the past, and are an active area of research, because not only TC flow, but also pipe
and channel flows present a subcritical transition to turbulence. For a comprehensive
overview of this field, we refer the reader to the review by Eckhardt et al. (2008).
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Turbulent Taylor–Couette flow with stationary inner cylinder

A recent systematic study of pure outer cylinder rotation (OCR) in TC flow was
performed by Burin & Czarnocki (2012), who experimentally studied in detail the
effect of gap width and end-plate configurations on the transition to turbulence.
These authors also performed velocimetry in the bulk and found that regions of high
turbulence were associated with high shear. Earlier, Borrero-Echeverry, Schatz &
Tagg (2010) had already provided evidence for superexponential dependence on the
Reynolds number of the decay times of turbulence. Therefore, it seems that outer
cylinder TC flow with high Reynolds number is turbulent for extremely long time
scales. This regime has not been well characterized: Burin & Czarnocki (2012) did not
provide velocimetry close to the walls. The other experimental studies by Paoletti &
Lathrop (2011) and Paoletti et al. (2012) only provided torque measurements for pure
OCR, which indicated values well above the values for laminar flow but also much
lower than the torque values for pure inner cylinder rotation. However, experiments
are limited by the necessary presence of end plates to provide flow confinement,
and this could potentially affect the physics. Numerical studies of pure OCR in an
infinite (periodic) domain are limited to Deguchi, Meseguer & Mellibovsky (2014),
who considered Reynolds numbers near the transition to turbulence.

In this article, we conducted a series of direct numerical simulations (DNS) of
axially periodic and fully turbulent TC flow with only outer cylinder rotation, in an
attempt to isolate and study subcritical behaviour of TC flow, and to eliminate
the effect of perturbations arising at the end plates. We consider pure outer
cylinder rotation because it does not have the complex combination of sub- and
supercritical behaviour seen in turbulent counter-rotating TC flow (van Gils et al.
2012; Brauckmann & Eckhardt 2013; Grossmann et al. 2016). The simulated TC
geometry is a narrow-gap system, which produces very strong rolls in the case of
pure inner cylinder rotation (ICR), and limits the effect of strong curvature, which
causes very different flow physics (Ostilla-Mónico et al. 2016). In this article, we
extend the analysis of Ostilla-Mónico et al. (2016) in an attempt to understand which
pieces of the flow physics come from the centrifugal (in)stability and to reveal and
quantify the differences between supercritical and subcritical TC turbulence.

2. Simulation details

The DNS were performed using an energy-conserving second-order centred
finite-difference code with fractional time stepping (Verzicco & Orlandi 1996; van der
Poel et al. 2015). This code has been extensively used and validated for TC flow. The
ratio of radii η= ri/ro was chosen as η= 0.909 as in Ostilla-Mónico et al. (2016), to
mitigate curvature effects. The aspect ratio Γ = Lz/d, where Lz is the axial periodicity
length, was taken as Γ = 2.09. To reduce computational costs, a rotational symmetry
order ns = 20 was imposed, which results in a minimum azimuthal extent of π-gap
widths at the inner cylinder. This choice of nsym and Γ results in computational boxes
that are large enough to show sign changes of the azimuthal velocity autocorrelation
functions at the mid-gap, as was already observed in Ostilla-Mónico, Verzicco &
Lohse (2015) for pure inner cylinder rotation. The size of the time steps was chosen
dynamically by imposing that the maximum Courant–Friedrichs–Lewy (CFL) number
in the grid is 0.5.

Three different outer cylinder Reynolds numbers were simulated: Reo = 5.5 × 104,
Reo= 1.1× 105 and Reo= 2.2× 105. These outer cylinder Reynolds numbers have an
equivalent shear Reynolds number Res = 2|ηReo − Rei|/(1+ η) (Dubrulle et al. 2005)
to pure ICR rotations at Rei=5×104, Rei=1×105 and Rei=2×105. These Reynolds

799 R1-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.400


R. Ostilla-Mónico, R. Verzicco and D. Lohse

numbers are much larger than the transitional Reynolds numbers for spiral turbulence
Reo ∼ 5000 (Coles 1965; Andereck et al. 1983; Deguchi et al. 2014), and are in the
regime where no spiral structures are seen in experiments (Burin & Czarnocki 2012).
With the largest Reynolds number, an inner cylinder frictional Reynolds number
Reτ ,i = uτ ,id/ν of up to 1220 is achieved, where the frictional velocity of the inner
cylinder is defined as uτ ,i=√τw/ρ with τw the shear stress at the cylinder wall and ρ
the fluid density. The outer cylinder frictional Reynolds number (velocity) is simply
Reτ ,o = ηReτ ,i (uτ ,o = ηuτ ,i). For convenience we define the inner cylinder viscous
length as δν,i = ν/uτ ,i, the non-dimensional distance from the wall r̃= (r− ri)/d, the
non-dimensional axial coordinate z̃ = z/d and the non-dimensional angular velocity
ω̃=ω/ωo, with the angular velocity ω= uθ/r.

We also note that the lowest Reynolds number simulated is about one order of
magnitude larger than the estimated Reynolds number for transition at η = 0.909 by
Burin & Czarnocki (2012). It was impossible with our simulations to achieve stable
turbulent states at Reynolds numbers lower than Reo = 5.5 × 104, probably due to
the small computational box used. To perform the simulations, we first started a
simulation with Reo = 1.1 × 105 and a stationary inner cylinder with white noise of
O(roωo). After a very long transient of about 1000 large eddy turnover times based on
d/(roωoη), a statistically stationary state was reached. The transients were significantly
longer than those of pure ICR TC flow, because uτ is a factor of two to three times
smaller. This state was used as the initial condition for both the Reo = 2.2 × 105

and Reo = 5.5 × 104 simulations, and the mesh was either coarsened or refined to
ensure a correct balance between accuracy and speed of computation. Attempting to
start simulations at lower Reo from initial conditions at Reo = 5.5 × 104 resulted in
divergence of the fields for unclear reasons. If white noise of order O(roωo) was used
at Reo = 1.1 × 104, the system would slowly relaminarize and return to the purely
azimuthal, steady state.

After the transients, the simulations were run for (at least) an additional 67 large
eddy turnover times based on t̃ = ηroωot/d. The temporal convergence was assured
by checking the radial dependence of the angular velocity current Jω, defined as
Jω = r3(〈urω〉θ,z,t − ν∂r〈ω〉θ,z,t) (Eckhardt, Grossmann & Lohse 2007), where 〈· · · 〉xi

denotes averaging with respect to xi. Jω should have no radial dependence when
averaged for an infinite time; however, for finite-time statistics we considered that
deviations smaller than 3 % from the average value in the bulk were sufficient, as
these were associated with deviations of the time-averaged torque (Jω at the cylinders)
at both cylinders smaller than 1 %, a value we have used previously (Ostilla-Mónico
et al. 2016). The computational domain was uniformly discretized in the azimuthal
and axial directions, while a clipped Chebyshev-type clustering was used in the radial
direction. Full details of the numerical resolution used are provided in table 1. The
table includes pure ICR data (i.e. the I1 and I2 cases) from Ostilla-Mónico et al.
(2016) (referred to there as R1 and R2) for comparison. The I1 case has the same
Reτ as the O2 case, while the I2 case has the same driving shear as the O2 case.

3. Results

We first focus on the torque to drive the cylinders. At comparable Reynolds
numbers, a smaller torque is required for pure OCR than for pure ICR, as can be
seen from table 1. The torque, non-dimensionalized as a pseudo-Nusselt number
Nuω= Jω/Jωpa, where Jωpa is Jω for the purely azimuthal flow, is approximately a factor
four smaller. As a direct consequence of this, the frictional Reynolds number Reτ is
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1 2 3 4 5 6 7 8 9 10 11
Case Rei Reo Nθ Nr Nz 1r+ 1z+ ri1θ

+ Reτ ,i Nuω

O0 0 5.5× 104 384 768 512 0.2–1.6 3.3 6.6 402 11.6± 0.2
O1 0 1.1× 105 384 1024 768 0.2–2.1 3.8 11.5 703 18.3± 0.8
O2 0 2.2× 105 768 1024 1024 0.3–3.6 5.0 9.9 1220 26.2± 1.3
I1 1× 105 0 1024 1024 2048 0.3–4.1 2.7 9.1 1410 69.5± 0.2
I2 2× 105 0 1536 1536 3072 0.3–5.2 3.4 11.4 2660 126± 2.1

TABLE 1. Details of the numerical simulations. Column 1 is the name by which the
simulation will be referred to in the article. Columns 2 and 3 are the inner and outer
cylinder Reynolds numbers. Columns 4–6 represent the numbers of points in the azimuthal,
radial and axial directions. Column 7 shows the minimum and maximum resolutions in the
radial direction normalized with the inner cylinder wall unit. Columns 8 and 9 show the
axial and azimuthal resolutions (at the inner cylinder) in inner cylinder wall units. Column
10 refers to the inner cylinder frictional Reynolds number, and the last column shows the
torque non-dimensionalized as a pseudo-Nusselt number.

approximately a factor two lower because Reτ ∼√Nuω. This results in smaller values
of uτ for pure OCR, and thus the longer transients observed in the DNS.

Transport of angular velocity from across the gap is much more inefficient in the
case of subcritical turbulence, something that can be expected from the ‘optimal’
transport results of van Gils et al. (2012) and Paoletti et al. (2012), where the
driving torque drastically decreases with the appearance of the radial partitioning into
subcritical and supercritical zones. However, unlike the quasi-Keplerian case, where
|r2

oωo| > |r2
i ωi| and |ωo| < |ωi|, which were found both numerically (Ostilla-Monico

et al. 2014b) and experimentally (Nordsiek et al. 2015) to not sustain angular velocity
transport across the gap, in pure OCR there is still turbulence present, and the flow
is not purely azimuthal because Nuω 6= 1. In the case of pure OCR rotation, the
gradients of both angular velocity and angular momentum point in the same direction,
i.e. inwards, while in the quasi-Keplerian cases, they point in different directions,
i.e. inwards for the angular momentum and outwards for the angular velocity.

To understand why the torque is lower for pure OCR, we visualize the flow field
in figure 1, which shows a pseudocolour plot of the instantaneous angular velocity
for an azimuthal cut (a) and at the mid-gap (b) for the O2 case. A complete absence
of the large-scale rolls can be seen. These figures can be compared to figures 1 and 3
of Ostilla-Mónico et al. (2015), visualizations of the instantaneous velocities for the
I1 case. For the same geometrical parameters, and similar Reynolds numbers, the
velocities in the pure IRC cases have marked axial inhomogeneities. The existence
of rolls has been linked to increased transport (Brauckmann & Eckhardt 2013;
Grossmann et al. 2016), so from this alone we can expect a smaller Nuω.

Figure 2(a) shows L̃, the azimuthally, temporally and axially averaged angular
momentum for the O0, O1, O2 and I1 cases, as well as the experimental data
from Burin & Czarnocki (2012) for η = 0.97 and Reo = 6800. For pure ICR, rolls
effectively redistribute angular momentum such that the flow is marginally stable.
This is reflected in the I1 case showing a constant angular momentum profile in the
bulk equal to the arithmetic average of L at both cylinders. For pure OCR, the flow
is already stable and thus we do not expect rolls to form or angular momentum to
be redistributed. Instead, all pure OCR cases show a significant gradient of angular
momentum in the bulk. For pure OCR, the larger the angular momentum gradient in
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FIGURE 1. Pseudocolour plot of the instantaneous angular velocity for the O2 case for a
constant azimuth (a) and at the mid-gap (b). No large-scale structures can be seen, as is
seen for pure inner cylinder rotation in Ostilla-Mónico et al. (2015, 2016).
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FIGURE 2. (a) The temporally, axially and azimuthally averaged angular momentum for
the three pure OCR cases and the I1 case for comparison, as well as experimental data
from Burin & Czarnocki (2012). (b) The root mean square (r.m.s.) of the azimuthal
velocity for the numerical cases.

the bulk, the more stable the configuration. The resulting profile shape comes from
the competing mechanisms of centrifugal stabilization in the bulk and destabilization
in the boundary layers by shear. The numerical pure OCR velocity profiles are in
qualitative agreement with the experimental profiles, as the bulk profile becomes
flatter and the boundary layers thinner with increasing Reo. We also note that similar
phenomena were seen for the strongly counter-rotating cylinder cases of Brauckmann,
Salewski & Eckhardt (2016), which show significant deviations from constant angular
momentum profiles in the bulk after the onset of the radial partitioning of stability.

Figure 2(b) shows the root mean square (r.m.s.) of the azimuthal velocity u′θ for the
O0, O1, O2 and I1 cases. The level of fluctuations decreases with Reynolds number.
When comparing the O1 and the I1 cases, a much lower level of fluctuations inside
the boundary layer is seen for pure OCR. This is expected from the much lower values
of uτ for pure OCR than for pure ICR. Indeed, uτ is approximately a factor of two
larger for the I1 case, and this is directly reflected in the level of fluctuations being
approximately twice as large as for the O1 case.
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FIGURE 3. (a) The streamwise velocity in inner cylinder wall units for all the cases at the
inner cylinder, and from PC flow at Reτ ≈ 1000. The dashed curve represents u+= r+ and
the dashed line represents u+ = 2.5 log(r+)+ 5.2. (b) The logarithmic diagnostic function
for the cases shown in (a). The horizontal dashed line represents Ξ+ = 2.5.

We now focus on the near-wall region, to compare pure OCR with pure ICR,
and to quantify the effects of curvature and instability. Figure 3(a) shows the mean
streamwise velocity at the inner cylinder region in inner units for all cases, where U+
is U+ = (riωi − 〈uθ 〉θ,z,t)/uτ ,i and r+ is the distance from the wall in inner cylinder
wall units, r+= (r− ri)/δν,i. The simulation of plane Couette (PC) flow at Reτ ≈ 1000
from Pirozzoli, Bernardini & Orlandi (2014) has been added for comparison. Rotating
PC flow is the limit of TC flow when η → 1, i.e. the two cylinders become two
plates. Therefore, curvature effects and centrifugal (de)stabilization are not present.
Romanov (1973) showed that PC flow is also stable to linear perturbations at all
Reynolds numbers, though the mechanism is not centrifugal and this could cause
different behaviour.

Both pure ICR and pure OCR TC flow can be seen to deviate substantially from the
classical von Karman law of the wall, U+= κ−1 log(y+)+B, with κ = 0.4 and B= 5.2,
while PC flow follows it better. Pure OCR TC flow has a significantly higher value of
U+ far away from the walls, while pure ICR TC flow has a rather flat profile in the
bulk – consistent with the notion that angular momentum is redistributed in the bulk.
It seems that while, in the bulk, pure ICR redistributes angular momentum through
the rolls, pure OCR has the opposite effect, and generates a strong gradient of angular
momentum. Thus, the two lines deviate from the PC profile in opposite ways, showing
the importance of the centrifugal (in)stability.

Very close to the wall, it could seem that the O2 case is beginning to show a
logarithmic-like region. This can be better seen in figure 3(b), which shows the
logarithmic diagnostic function Ξ+ = dU+/d(log r+) for the same cases. Even if the
pure OCR cases deviate much more than both the PC cases and the pure ICR cases,
and do not show the S-like shape in Ξ+ around r+ ≈ 100 that is seen in several
canonical flows (Ostilla-Mónico et al. 2016), they are coming closer to the classical
law of the wall with increasing Reτ number. It could be that for higher drivings, and
thus higher Reτ , the pure OCR profiles collapse in the near-wall region onto the PC
profiles, once the boundary layer is small enough such that it no longer feels the
effect of curvature and of the centrifugal stabilization. However, from the figures its
seems that the centrifugal (in)stability mechanism plays a critical role in determining
the bulk behaviour, and is responsible for the large deviations of TC flow from PC
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FIGURE 4. Root-mean-squared fluctuations for all cases for the streamwise/azimuthal (a),
wall-normal/radial (b) and spanwise/axial (c) velocities in inner cylinder wall units.

flow behaviour. Finally, the outer cylinder wall profiles show very similar behaviour
and are not shown here, so the main effects seems to be mediated by the centrifugal
(in)stability and not by convex or concave curvature.

We now show the fluctuations in inner cylinder wall units for all three components
of velocity in figure 4. While the streamwise fluctuations are considerably smaller
for pure OCR, the profiles are closer to those of plane Couette flow for radial (wall-
normal) and axial (spanwise) fluctuations. The cases of pure ICR rotation show very
strong deviations for these two velocities, attributed to the axial inhomogeneity of
the flow in Ostilla-Mónico et al. (2016). Again, the outer cylinder wall profiles show
very similar behaviour and are not shown here. The significant deviations from PC
flow behaviour can be attributed again to the different mechanisms at play, especially
centrifugal (de)stabilization.

Finally, to quantify the nature of transport in the boundary layers, figure 5(a) shows
the pre-multiplied axial spectra of radial and azimuthal velocity for the O2 case at
r+ ≈ 12, i.e. around the peak of u′ fluctuations inside the boundary layer. The peak
seen at the roll-wavelength for pure ICR in Ostilla-Mónico et al. (2016) is no longer
present, as transport occurs through small-scale fluctuations or ‘bursts’ (Brauckmann
& Eckhardt 2013). These bursts transport angular velocity, and are very intermittent,
having large amplitude but slow dynamics, meaning that extreme events are more
likely to happen. The peak in the radial spectra corresponds to the characteristic length
scale of these bursts. We note that spectra seen here are consistent with the spectra
seen in channel flow (Jimenez 2012) and in plane Couette flow (Avsarkisov et al.
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FIGURE 5. (a) The axial spectra for the radial (red dashed) and azimuthal (blue solid)
velocities for r+ ≈ 12, near the inner cylinder, for the O2 case. (b) The p.d.f. of Nuω at
the mid-gap for both the I2 and O2 cases. The orange dashed line represents a Gaussian
p.d.f. with mean and variance equal to those of the O2 case.

2014), having a peak in the radial (wall-normal) spectra associated with the size of
the transporting structures, and no saturation for the azimuthal velocity, indicating
large-scale structures attached to the wall that do not transport Reynolds stresses.

To quantify this feature, figure 5(b) shows the probability density function (p.d.f.) of
the local convective angular velocity current urω≈Nuω for both the O2 and I2 cases
at mid-gap, i.e. in the bulk, as well as a Gaussian distribution with mean and variance
equal to the O2 case. While for pure ICR, transport occurs mainly through the hairpin
vortices, seen as the prominent peak centred around the middle of the graph, for the
O2 case, the signature of these bursts is reflected here in the fatter tails of the p.d.f.,
which are super-Gaussian, and have no apparent power-law behaviour. The p.d.f.s are
not symmetric around zero, as there is a net positive angular velocity transport. From
both panels, it becomes clear that the mechanisms for angular velocity transport are
very different for pure ICR and pure OCR.

4. Summary and conclusions

A series of DNS of turbulent Taylor–Couette flow with pure outer cylinder rotation
were conducted. Overall, pure OCR TC flow behaves in a very different manner
from supercritical pure ICR TC flow. The torque and fluctuation levels are much
smaller for comparable Reynolds numbers than those of pure ICR flow. Transport of
angular velocity, now more inefficient, occurs through intermittent ‘bursts’ instead of
through the large-scale structures. Pure OCR TC flow can be seen as just an extreme
case of counter-rotating TC flow with the radial partitioning of stability described by
Brauckmann & Eckhardt (2013) and Brauckmann et al. (2016) moving to the inner
cylinder. The competition between the shear instabilities in the boundary layer and
the centrifugal stabilization in the bulk gives rise to mean velocity profiles that show
a significant angular momentum gradient in the bulk, consistent with the experiments
of Burin & Czarnocki (2012). The near-wall profiles deviate very strongly from
both pure ICR rotation and plane Couette flow, revealing the very strong role of the
centrifugal mechanisms in TC flow, be it stabilizing for pure OCR or destabilizing
for pure ICR. Pure ICR and pure OCR deviate in opposite manners from the PC
flow profiles, so this can be attributed to the role of centrifugal (de)stabilization.
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Finally, the large-scale structures completely disappear in this regime, and the axial
velocity spectra reveal that transport near the wall occurs predominantly through very
intermittent and small-scale structures.

Two main questions remain: the large-scale rolls seem to form in certain regions of
the parameter space, where the flow is fully unstable (Ostilla-Monico et al. 2014a).
However, it is still unclear why these rolls are formed, and why they are axially
pinned. From these simulations, it seems that the centrifugal instability plays a clear
role in the nature of the turbulence and the formation of the rolls, but a complete
understanding is still missing. Furthermore, the question remains of what happens in
the quasi-Keplerian regime, which satisfies |Lo|> |Li| and |ωo|< |ωi| (Ostilla-Monico
et al. 2014b; Nordsiek et al. 2015). The simulations in this article have generated and
sustained turbulence in the absence of end plates at high Reynolds numbers. However,
turbulence in the quasi-Keplerian regime has not been sustained in simulations, and,
as mentioned previously, this could be due to the opposing gradients of angular
momentum and angular velocity. We refer the reader to Grossmann et al. (2016) for
a recent review of the progress on this problem.

Acknowledgements

We thank V. Spandan for extensive help in proof-reading the paper and keeping
some simulations running during the months-long wall-clock times, and we thank
M. Burin for providing the data for figure 2 and for valuable discussions. We
acknowledge Y. Yang and X. Zhu for fruitful and stimulating discussions. We also
gratefully acknowledge computational time for the simulations provided by SurfSARA
on resource Cartesius through a NWO grant.

References

ANDERECK, C. D., DICKMAN, R. & SWINNEY, H. L. 1983 New flows in a circular Couette system
with corotating cylinders. Phys. Fluids 26, 1395–1401.

ANDERECK, C. D., LIU, S. S. & SWINNEY, H. L. 1986 Flow regimes in a circular Couette system
with independently rotating cylinders. J. Fluid Mech. 164, 155–183.

VAN ATTA, C. W. 1966 Exploratory measurements in spiral turbulence. J. Fluid Mech. 25 (3),
495–512.

AVSARKISOV, V., HOYAS, S., OBERLACK, M. & GARCÍA-GALACHE, J. P. 2014 Turbulent plane
Couette flow at moderately high Reynolds number. J. Fluid Mech. 751, R1–8.

BORRERO-ECHEVERRY, D. 2014 Sub-critical transition to turbulence in Taylor–Couette flow. PhD
thesis, Georgia Institute of Technology, Atlanta, GA.

BORRERO-ECHEVERRY, D., SCHATZ, M. F. & TAGG, R. 2010 Transient turbulence in Taylor–Couette
flow. Phys. Rev. E 81, 025301.

BRAUCKMANN, H., SALEWSKI, M. & ECKHARDT, B. 2016 Momentum transport in Taylor–Couette
flow with vanishing curvature. J. Fluid Mech. 790, 419–452.

BRAUCKMANN, H. J. & ECKHARDT, B. 2013 Intermittent boundary layers and torque maxima in
Taylor–Couette flow. Phys. Rev. E 87 (3), 033004.

BURIN, M. J. & CZARNOCKI, C. J. 2012 Subcritical transition and spiral turbulence in circular
Couette flow. J. Fluid Mech. 709, 106–122.

COLES, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385–425.
DEGUCHI, K., MESEGUER, A. & MELLIBOVSKY, F. 2014 Subcritical equilibria in Taylor–Couette

flow. Phys. Rev. Lett. 112, 184502.
DUBRULLE, B., DAUCHOT, O., DAVIAUD, F., LONGARETTI, P. Y., RICHARD, D. & ZAHN, J. P.

2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental
data. Phys. Fluids 17, 095103.

799 R1-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.400


Turbulent Taylor–Couette flow with stationary inner cylinder

ECKHARDT, B., FAISST, H., SCHMIEGEL, A. & SCHNEIDER, T. 2008 Dynamical systems and the
transition to turbulence in linearly stable shear flows. Phil. Trans. R. Soc. Lond. A 366,
1297–1315.

ECKHARDT, B., GROSSMANN, S. & LOHSE, D. 2007 Torque scaling in turbulent Taylor–Couette
flow between independently rotating cylinders. J. Fluid Mech. 581, 221–250.

FARDIN, M. A., PERGE, C. & TABERLET, N. 2014 The hydrogen atom of fluid dynamics
– introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt. 10 (20),
3523–3535.

VAN GILS, D. P. M., HUISMAN, S. G., GROSSMANN, S., SUN, C. & LOHSE, D. 2012 Optimal
Taylor–Couette turbulence. J. Fluid Mech. 706, 118–149.

GROSSMANN, S., LOHSE, D. & SUN, C. 2016 High-Reynolds number Taylor–Couette turbulence.
Annu. Rev. Fluid Mech. 48, 53–80.

HUISMAN, S. G., VAN DER VEEN, R. C. A., SUN, C. & LOHSE, D. 2014 Multiple states in highly
turbulent Taylor–Couette flow. Nat. Commun. 5, 3820.

JIMENEZ, J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid. Mech. 44, 27–45.
NORDSIEK, F., HUISMAN, S. G., VAN DER VEEN, R. C. A., SUN, C., LOHSE, D. & LATHROP, D. P.

2015 Azimuthal velocity profiles in Rayleigh-stable Taylor–Couette flow and implied axial
angular momentum transport. J. Fluid Mech. 774, 342–362.

OSTILLA-MONICO, R., VAN DER POEL, E. P., VERZICCO, R., GROSSMANN, S. & LOHSE, D.
2014a Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech.
761, 1–26.

OSTILLA-MONICO, R., VERZICCO, R., GROSSMANN, S. & LOHSE, D. 2014b Turbulence decay
towards the linearly-stable regime of Taylor–Couette flow. J. Fluid Mech. 747, 1–29.

OSTILLA-MÓNICO, R., VERZICCO, R., GROSSMANN, S. & LOHSE, D. 2016 The near-wall region
of highly turbulent Taylor–Couette flow. J. Fluid Mech. 768, 95–117.

OSTILLA-MÓNICO, R., VERZICCO, R. & LOHSE, D. 2015 Effects of the computational domain size
on DNS of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids 27, 025110.

PAOLETTI, M. S., VAN GILS, D. P. M., DUBRULLE, B., SUN, C., LOHSE, D. & LATHROP, D. P.
2012 Angular momentum transport and turbulence in laboratory models of Keplerian flows.
Astron. Astrophys. 547, A64.

PAOLETTI, M. S. & LATHROP, D. P. 2011 Angular momentum transport in turbulent flow between
independently rotating cylinders. Phys. Rev. Lett. 106, 024501.

PIROZZOLI, S., BERNARDINI, M. & ORLANDI, P. 2014 Turbulence statistics in Couette flow at high
Reynolds number. J. Fluid Mech. 758, 327–343.

VAN DER POEL, E. P., OSTILLA-MONICO, R., DONNERS, J. & VERZICCO, R. 2015 A pencil
distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids
116, 10–16.

RAYLEIGH, LORD 1917 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148–157.
ROMANOV, V. A. 1973 Stability of plane-parallel Couette flow. Funct. Anal. Applics. 7 (2), 137–146.
TAYLOR, G. I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc.

Lond. A 104, 213–218.
TAYLOR, G. I. 1936 Fluid friction between rotating cylinders. Proc. R. Soc. Lond. A 157, 546–564.
VERZICCO, R. & ORLANDI, P. 1996 A finite-difference scheme for three-dimensional incompressible

flow in cylindrical coordinates. J. Comput. Phys. 123, 402–413.

799 R1-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

40
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.400

	Turbulent Taylor–Couette flow with stationary inner cylinder
	Introduction
	Simulation details
	Results
	Summary and conclusions
	Acknowledgements
	References




