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TRANSLATIONS BETWEEN LINEAR AND TREE NATURAL
DEDUCTION SYSTEMS FOR RELEVANT LOGICS

SHAWN STANDEFER
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Abstract. Anderson and Belnap presented indexed Fitch-style natural deduction systems for
the relevant logics R, E, and T. This work was extended by Brady to cover a range of relevant
logics. In this paper I present indexed tree natural deduction systems for the Anderson–Belnap–
Brady systems and show how to translate proofs in one format into proofs in the other, which
establishes the adequacy of the tree systems.

The earliest relevant logics were put forward in the form of Hilbert-style axiom
systems.1 Alan Ross Anderson and Nuel Belnap provided Fitch-style cascade natural
deduction systems for what they regarded as the central relevant logics, the logics R,
E, and T.2 The idea behind the systems was that when one introduces a conditional,
the antecedent should be relevant to the consequent. The usual conditional rules are
the following.

A

A→B

B →E

A hyp
...

B

A→B →I

In the→I rule, one only needs to reach the conclusion B under the assumption ofA.
Standard cascade systems have a rule of reiteration that permit one to copy sentences
from superproofs to subproofs, permitting the following derivation.
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1 See Moh (1950), Church (1953), and Došen (1992). For overviews of the history and
development of relevant logics, see Dunn & Restall (2002) and Bimbó (2006).

2 See Anderson & Belnap (1975) and Anderson, Belnap, & Dunn (1992) for the natural
deduction systems. See Pelletier (1999) for an overview of the development of different types
of natural deduction systems.
Jaśkowski (1934) presented a natural deduction system that is similar to that of Fitch. Since
Jaśkowski’s work predates Fitch’s, Fitch-style systems should perhaps be called “Jaśkowski–
Fitch-style systems” or “JF-systems.” I will use the term “cascade system” for this style of
linear natural deduction system, to have a term that does not involve proper names.
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1 A hyp

2 B hyp

3 A reit 1

4 B→A →I 2–3

5 A→ (B→A) →I 1–4

To prevent this sort of derivation, Anderson and Belnap required that for a
conditional to be introduced, the antecedent had to be used to obtain the consequent.
They employed indices to track use, in this sense. The indices are sets of natural
numbers. Hypotheses have singleton indices {k}, where k is the depth of nesting of
subproofs at that hypothesis. The Anderson–Belnap rules for the conditional are the
following.

Aa

A→Bb

Ba∪b →E

A{k} hyp
...

Ba

A→Ba–{k} →I

In →I, it is required that k ∈ a. This requirement prevents the derivation of (K)
axiom, sometimes called the weakening axiom or the law of irrelevance, A→ (B→A),
above, as the index on A will be {1}, whereas B will have {2}. These rules are the
conditional rules for the logic R. To obtain the logics E and T, Anderson and Belnap
place restrictions on either the reit rule or→E. Indexed cascade systems canbe extended
from the arrow fragment to the vocabulary {→,∼,&,∨}without difficulty. Brady (1984)
extended theAnderson–Belnap systems to cover awide range of relevant logics without
any restriction on reit.
Prawitz (1965, 81ff.) gave a tree natural deduction system for a relevant logic. His

system did not use indices. Rather, he used side conditions on the rule (→I ). First,
he required that each instance of the rule discharge at least one occurrence of an
assumption. This no-vacuous discharge policy was sufficient to rule out the derivation
of A→ (B→A), but the addition of the & and ∨ created some difficulties.
To accommodate the truth-functional connectives, Prawitz imposed a side condition

onderivations, in addition to the conditionbanning vacuousdischarge for conditionals.
The condition uses the concept of a sentence occurrence B originating from a sentence
occurrence A. B originates from A just in case there is a sequence of sentence
occurrences C1, ...,Cn, where C1 = A, Cn = B , A is not discharged by (∨E), and Ci+1
is either immediately below Ci or Ci+1 is an assumption discharged by an application
of (∨E). The side condition is on applications of (→I ) that are below applications of
(&I ) or (∨E). Let such an application of (→I ) have B as its premise and discharge
occurrences of A. If one premise of (&I ), or one minor premise of (∨E), originates
from A in the subderivation determined by B, then the other premise, respectively
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minor premise, must also originate from an occurrence of A that is also discharged by
that application of (→I ).3

Prawitz’s system has the benefit of using the familiar tree natural deduction rules
for & and ∨.4 The system normalizes, and it permits a derivation of distribution of
conjunction over disjunction: A&(B ∨C )→ (A&B)∨ (A&C ).5 It trades indices for
the side condition above. The downside, depending on one’s view, is that the logic
is not that of R, but rather the positive logic obtained from Urquhart’s semilattice
semantics.6 This is a proper strengthening of positive R, as it permits derivation of
(A→B ∨C )&(C→D)→ (A→B ∨D), which is invalid in R. The derivation

(A→B ∨C )&(B→C )
(&E)

A→B ∨C A
(→E)

B ∨C

(A→B ∨C )&(B→C )
(&E)

B→C
(1)

B
(→E)

C
(2)

C
(∨E) (1),(2)

C

can be extended to a derivation of the R-invalid formula by two applications of
(→I ). The interested reader can check that Prawitz’s side condition holds for this
derivation.
Since the publication of Prawitz’s work, there appears to have been comparatively

little interest in developing tree natural deduction systems for relevant logics.7 I
will briefly mention a few exceptions. First, there has been some interest in tree
systems in connection with Urquhart’s semilattice semantics. Giambrone & Urquhart
(1987) and Meyer et al. (1988) gave systems for the positive logics of the semilattice
semantics. These systems use indices rather than Prawitz’s side condition on (→I ).8

Second, Slaney (1990), Read (1988), and Restall (2000) present tree natural deduction
systems in which nodes are sequents. These approaches cover a large range of
relevant logics, and include structural rules operating on the left-hand side of the
sequents. I will discuss these systems more in the final section. Finally, Francez (2014)
investigates an index-free, signed tree natural deduction system for a positive fragment
of R.
In this paper, I will provide indexed tree natural deduction systems for a range of

relevant logics (§2). I will first present the cascade systems developed by Brady (§1). I
will show the trees sound and complete for the target logics by showing how to translate

3 Prawitz (1965, p. 85). The full side condition covers the classical absurdity rule and includes
(∃E) in its statement, although those are omitted here.

4 Throughout, & and ∨ bind more tightly than→.
5 In fact, the usual classical derivation will work.
6 See Charlwood (1981). Dunn & Restall (2002) incorrectly state that Prawitz’s system is R
minus distribution. See Urquhart (1972) for more details on the semilattice semantics and
some of its variations, and Humberstone (1988) for a modification to bring the semilattice
semantics in line with the positive logic of R.

7 Here I mean relevant logics in the tradition of Anderson, Belnap, Dunn, Meyer, Sylvan, and
Plumwood. Tennant (2012, 2015, 2017) provides tree proof systems for core logic, which
takes a distinct approach to relevance.

8 This is not to say that no side conditions used. There are some, although they are easier to
check, dealing just with the indices.
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cascade proofs into tree proofs (§3), and vice versa (§4).9 I will conclude by indicating
some possible payoffs of these new systems (§5).

§1. Cascade systems. Anderson and Belnap present cascade systems for the rele-
vant logicsR,E, andT, which are relatively strong logics. There are a host ofwell known,
weaker relevant logics.10 Brady (1984) provided cascade systems for many of these
weaker systems.11 Before getting into the cascade systems, it will be useful to lay out
Hilbert-style axioms for the positive logics. I will return to negation later in this section.
The axiom systems are for logics as sets of theorems.12 All of the logics I will look

at have the following axioms and rules.

(A1) A→A (A8) A&(B ∨C )→ (A&B)∨ (A&C )

(A2) A&B→A

(A3) A&B→B

(A4) (A→B)&(A→C )→ (A→B&C ) (R1) A,A→B⇒B

(A5) A→A∨B (R2) A,B⇒A&B

(A6) B→A∨B (R3) (A→B),(C→D)⇒ (B→C )→

(A7) (A→C )&(B→C )→ (A∨B→C ) (A→D)

The logics are distinguished by the adoption of some or all of the following axioms.

(C1) (A→B)&(B→C )→ (A→C )
(C2) (A→B)→ ((B→C )→ (A→C ))
(C3) (A→B)→ ((C→A)→ (C→B))
(C4) (A→ (A→B))→ (A→B)
(C5) (A→ (B→C ))→ (B→ (A→C ))

Different positive logics are obtained by adopting some or all of these axioms.13

B A1-A8, R1-R3 T TJ+C4

DJ B+C1 RW TW+C5

TW B+C2-3 R RW+C4

TJ TW+C1

9 VonPlato (2017) provides translations between cascade, there called “linear,” and tree natural
deduction systems for intuitionistic and classical logic. The cascade-to-tree translation is
similar to the one adopted here. The tree-to-cascade translation is substantially different.
The cascade-to-tree translation of Standefer (2019) is roughly the same as the one used here,
but the tree-to-cascade translation used here is substantially different from that of Standefer
(2019). The present translation is an improvement in not requiring the shuffling around and
subsequent identification of assumptions, instead using the extra information contained in
the indices to identify assumptions at the outset.

10 Many of these weaker logics are studied by Routley et al. (1982), among other sources.
11 Brady (1984) also provided systems for quantificational logics and rule strengthenings of
these logics. I will not get into those systems here.

12 They are in the framework FMLA of Humberstone (2011, 103ff.).
13 A more careful nomenclature for the logics would include a superscripted ‘+’ to indicate
that positive logics, i.e. negation-free logics, are under consideration. Since these are the only
logics under consideration for most of this paper, I will leave the superscript off.
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With the target logics in view, we can now turn to the cascade systems.
The cascade systems have an intuitive graphical presentation. For the development

of this paper, it will be useful to present them in a nongraphical form, which will permit
precise definitions.14 To settle some notation, X and Y will be used for sequences of
formulas, X,A will be used for the concatenation of X and 〈A〉, X⌢〈A〉, and X,Y will
be used for the concatenation X⌢Y . The lower case letters a,b,c,d, and e are used for
sets of natural numbers and lower case letters from later in the alphabet, i,j,k, etc., as
well as ë, are used for natural numbers.

Definition1. Asequent,A1{k1}
, ...,An{kn}�CBb , is a pair of a sequence, 〈A

1
{k1}
, ...,An{kn}〉,

of indexed formulas and an indexed formula Bb .
15 If n = 0, then the sequence is 〈〉.

The lengthL(X ) of a sequenceX is defined recursively asL(〈〉) = 0 andL(X⌢〈A〉) =
L(X )+1.
The depth of a sequent s = X�CA, D(s), is L(X ).
An S-sequence is a sequence of sequents.16

Let Σ be an S-sequence, 〈s1, ...,sk〉. The depth of the nth member of Σ, D(n), is
D(sn).

Definition 2. An S-sequence, 〈s1, ...,sn〉, is nested iff for all m < n, sm and sm+1
have one of the following forms: either

• sm is X�CAa and sm+1 is X,B{k}�CB{k},
• sm is X�CAa and sm+1 is X�CBb , or
• sm is X,A{k}�CBb and sm+1 is X�CA→Bb–{k},

provided n ≥ 2. If n = 1, then s1 is of the form B{k}�CB{k}.

The third case in the definition deserves comment. The third case is the one in which
a hypothesis is no longer available. For the purposes of this paper, it is sufficient to
consider proofs in which a hypothesis is discharged via a conditional introduction rule.
This is not themost general form of the definition, but it will work for present purposes.
The addition of quantifiers or a modal operator, or the use of a different disjunction
elimination rule or another rule that discharges assumptions, would require altering
this definition.
For many purposes, it is best to picture the S-sequences written out vertically, rather

than horizontally. I will refer to the individual members of an S-sequent as lines.
The indexed formula Aa in a line X�CAa is the formula of the line. For reasons that
will become clear soon, I will call a sequent of the form X,A{k}�CA{k}, where no
k′ ≥ k occurs in X a hyp step. I will also use the notation n ∈ [i,j] for i ≤ n ≤ j,
with parentheses replacing one or both brackets to mean the corresponding ordering
is strict, e.g. n ∈ (i,j] is i < n ≤ j.

Definition 3 (Subproof, availability). Let Σ be a nested S-sequence. A subproof ó of
Σ is the subsequence 〈si, ...,sj〉, where 1≤ i ≤ j ≤ L(Σ) such that

14 Borghuis (1998) presented an alternative precise definition of these sort of natural deduction
systems. I would like to thank Valeria de Paiva for the reference.

15 The superscripts here do the job of indicating possibly distinct sentences, which job is, in
other contexts, often done by subscripts.

16 This terminology is based on the terminology of Indrzejczak (2010, chap. 2).
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• si is X,A{k}�CA{k},

• for all n ∈ [i,j],D(i)≤D(n),
• eitherD(j+1) =D(i) – 1 or j = L(Σ),

Such a subproof will be denoted ó ij .

A subproof ó ij is closed at line n iff j < n, and otherwise ó
i
j is open at line n. For a

closed subproof ó ij , j is the line that closes the subproof.

The innermost subproof at line n, ó(n), is the subrpoof ó ij , where n ∈ [i,j] and

D(i) =D(n).
One subproof ó contains another subproof ó′, ó ❂ ó′ iff for some n,m,j,k, ó is ónm

and ó′ is ój
k
, n < j, and either k < m or both m = k and m is the last line of Σ. The

reflexive closure of ❂ is ⊒.
A line n is available to a line m, n ≻ m, iff n < m and either D(n) = 0 or

ó(n)⊒ ó(m).
A subproof ó ij is available to a line n iff either j+1 = n or j+1≻ n.

These definitions are meant to capture, formally, the usual features of the graphical
presentation of cascade proofs. A subproof is a sequence of lines beginning with a hyp
step and ending when the formula assumed in the hyp step is no longer an assumption.
One subproof ó contains another ó′ when ó′ begins in the scope of ó and either ends in
the scope of ó or both continue till the end of the proof. One line is available to another
just in case the former happens earlier, either categorically, i.e. not in a subproof, or
with an appropriate subproof containment.
The definition of a closed subproof being available to a line relies on a feature of the

definition of nesting: in stepping out of a closed subproof to the the line following the
ending of that subproof the depth must decrease by exactly 1. While there are more
flexible definitions one could use, it turns out that this will be enough for our purposes.
A proof be a nested S-sequence labeled with rules and justification numbers. The

rules will be the following. The conventions on justification numbers will be explained
following the definition of a proof.

Hyp X,A{k}�CA{k}, where k > k
′, for any number k′ occurring in an index

in X.
Reit From X�CAa to infer X,Y�CAa .
→E From X�CA→Bb and X�CAa , to infer X�CBa∪b .
→I From a subproof starting with X,A{k}�CA{k} ending with X,A{k}�CBb , to

infer X�CA→Bb–{k}, provided k ∈ b.
&E From X�CA&Ba , to infer X�CAa or X�CBa .
&I From X�CAa and X�CBa , to infer X�CA&Ba .
∨E From X�CA→Cb , X�CB→Cb , and X�CA∨Ba , to infer X�CCa∪b .
∨I From X�CAa or X�CBa , to infer X�CA∨Ba .
Dist From X�CA&(B ∨C )a , to infer X�C(A&B)∨ (A&C )a .

Call the index {k} on the displayed formula A{k} in the hyp rule the hyp index. The
hyp rule above is more flexible than Brady’s formulation of the rule, a point to which I
will return following the definition of a cascade proof.
Now, for the conventions on justification numbers. The rule hyp does not require

any justification numbers. A step justified by the rule→I is annotated with the range
i – j, where ó ij is the subproof indicated in the rule. The justification numbers for
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the remaining rules are those for lines containing the premise sequents of the rules, in
the order presented in the rule statement.

Definition 4. A proof Σ is a nested S-sequence labeled with rules and justification
numbers such that

• line 1 is a hyp step with depth 1,
• each member of Σ is the conclusion of one of the rules, which labels it, and
whose justification numbers are those of the displayed premise sequents or
subproof, and

• all premise sequents or subproofs cited in justification numbers for a line ë are
available to ë.

It will be useful in the translations to treat the lines of a proof as including the rules
and justifications, which I will do.
I can now proceed to Brady’s side conditions. These are conditions on the→E and

∨E rules, with max(∅)=Df – 1.

B If b 6= ∅, then a = {k} such that max(b)< k.
DJ If b 6= ∅, then a 6= ∅, max(b)<max(a), and a – {max(a)} ∈ {b,∅}.
TW If b 6= ∅, then a 6= ∅, max(b)<max(a), and a ∩b = ∅.
TJ If b 6= ∅, then a 6= ∅, max(b)<max(a), and either a∩b= ∅ or a – {max(a)}=
b.

T If b 6= ∅, then a 6= ∅, max(b)≤max(a).
RW a ∩b = ∅.
R No restriction.

Brady requires the hyp index to be the rank of the formula, defined as the depth of
the line of the hyp rule. The additional flexibility of the hyp rule adopted here does not
lead to new theorems being provable. Any proof using this hyp rule can be transformed
into a proof using Brady’s hyp rule by shifting hyp indices that are greater than the
rank to the rank throughout the proof and percolating the results through the rules.
That the result satisfies the conditions is a consequence of the following lemma, for
which it will be useful to employ a definition.

Definition 5. A partial function f : ù⇀ù is

• monotonic iff n < m implies f(n)≤ f(m), for all n,m in the domain of f ;
• injective iff f(n) = f(m) implies n =m, for all n,m in the domain of f.

For a set of natural numbers b contained in the domain of a partial function f,
f[b] = {f(n) : n ∈ b}.

Lemma 1. Suppose a monotonic, injective partial function f : ù⇀ù is defined on
a finite set a ∪b, where a,b ⊆ ù. Then the following hold.

1. If a 6= ∅ then f[a] 6= ∅.
2. If a is a singleton, then f[a] is a singleton.
3. If max(a)<max(b), then max(f[a])<max(f[b]).
4. If a ∩b = ∅, then f[a] ∩ f[b] = ∅.
5. If a – max(a) = b, then f[a] – max(f[a]) = f[b].
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Proof.. Suppose a monotonic, injective partial function f is defined on a finite set
a ∪b, where a,b ⊆ ù.
Both 1 and 2 are immediate.
For 3, suppose max(a) <max(b). Since f is monotonic, max(f[a]) ≤max(f[b]).

By the injective condition on f, max(f[a]) 6=max(f[b]).
For 4, suppose a ∩b = ∅, but f[a]∩f[b] 6= ∅. Then there is some n ∈ f[a]∩f[b],

and so n ∈ f[a] and n ∈ f[b]. But then there are m and k such that m ∈ a, k ∈ b and
f(m) = f(k) = n. By the injective condition, m = k, so a ∩ b 6= ∅, contradicting the
assumption.
For 5, suppose a – max(a) = b. Suppose f[a] – max(f[a]) 6= f[b]. There are two

cases. Suppose there is n ∈ f[a] – max(f[a]) but n 6∈ f[b]. Then for m = f(n), m ∈
a – max(a) but m 6∈ b, contradicting the assumption. Suppose there is n 6∈ f[a] –
max(f[a]) and n ∈f[b]. Then form=f(n),m 6∈ a –max(a) butm ∈ b, contradicting
the assumption. �

Shifting indices in a sequent so that hyp indices match the rank of a step defines a
monotonic, injective partial function on indices in a sequent. The indices on the steps
in the original cascade proof satisfy the required conditions. This is sufficient to apply
lemma 1, as appropriate for the target logic, for the corresponding steps in the proof
with shifted indices.
I will focus on the positive logics for this paper. The addition of negation adds no new

challenges, just a proliferation of straightforward cases. The techniques of this paper
can easily be extended to cover negation rules. The issue, rather, is that the addition
of negation would somewhat clutter the presentation. The full logics, along with other
logics, such as DW and DK, that differ from ones above only in their negation axioms
can be accommodated by the techniques below.
Next, I need to introduce some notation. I will use the notation A1a1, ...,A

n
an
⊢CBb to

indicate that there is a proof whose final line is A1a1, ...,A
n
an

�CBb , with appropriate rule

and justification annotations.17 I will say that Σ is a proof of A1a1, ...,A
n
an
⊢CBb just in

case Σ witnesses the claim that A1a1, ...,A
n
an
⊢CBb .

Let us proceed to the tree natural deduction proof systems.

§2. Trees. The tree natural deduction proof systems I will give use indices, in much
the same way as the Anderson–Belnap–Brady systems of the previous section. The
technical development of the tree systems will follow that of Prawitz (1965), which
will largely be suppressed here. There is a rule of assumption, A{k}, whose index is a

singleton {k}, where k is an natural number. The other rules are given in Figure 1.18

The rule (→I ) has three conditions: (i) k ∈ a, (ii) all occurrences of open
assumptions of A{k} in the subtree ending with the premise of the rule are discharged,
and (iii) no other assumption in the subtree ending with the premise of the rule has an
index {k′} with k′ > k. The third condition can be dropped in the cases of R and RW,
but its inclusiondoes not cause anyproblems.The condition is needed in the other cases.
Condition (ii) can be motivated by reflection on some ideas of Leivant (1979). In

the tree systems, the indices on assumptions mark out assumption classes, in the sense

17 Note that since each hyp index ai is {ki}, ki < ki+1, for i ∈ [1,n).
18 I will use Π,Π1, ... to include the step listed immediately above the rule line in the tree proofs.
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(1)
A{k}

Ba
( I ), (1)

A Ba−{k}

A Bb Aa
( E )

B

A{k}

Aa Ba
(&I )

A&Ba

A&Ba
(&E )

Aa

A&Ba
(&E )

Ba

Aa
( I )

A Ba

Ba
( I )

A Ba

A Cb B Cb A Ba
( E )

Ca b

A&(B C)a
(Dist)

(A&B ) (A&C)a

a b

Fig. 1. Rules of the tree systems.

of Leivant (1979). An assumption class is a set of occurrences of an indexed formula in
a proof. Leivant was working with unindexed formulas and so used Prawitz’s notion of
a discharge function to distinguish members of a particular assumption class. In this
setting, the indices on assumption formulas mark out the assumption classes and so
carry the information needed for a discharge function for a proof.
Condition (iii) may seem slightly ad hoc, so a few words motivating it are in order.

The condition is actually in force in cascade proofs, although it is hidden in plain sight.
In graphical form, the rule for introducing the conditional is the following.

n A{k} hyp
...

m Ba

p A→Ba–{k} →I n –m

The hypothesis discharged, A{k}, is the assumption of the innermost subproof at
line m. Since the hyp index for line n is k, and the subproof started on line n is the
innermost, there is no k′ > k such that an undischarged hypothesis has index {k′}.
There is no need to postulate an analog of (iii) for cascade proofs because the subproof
structure builds it in.19

Finally, we must supply global constraints on tree proofs for the index discipline we
adopt. First, assumptions have indices that are singletons, {k}, where k is a natural
number. No open assumptions of distinct formulas can have the same index. An
open assumption may have the same index as a discharged assumption, depending
on the construction of the proof. Different occurrences of a single formula as open
assumptions may have the same index, but they need not.

19 Adjusting cascade systems so that the subproof structure does not force the condition would
be a large departure. The result would likely be something similar to Lemmon-style systems.
See Lemmon (1965), Slaney (1990), or Indrzejczak (2010, 43ff.) for more on Lemmon-style
systems.
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These are the rules and conditions common to all of the tree systems. To obtain the
different logics of the previous section, one imposes Brady’s conditions on the (∨E)
and (→E) rules.
As in the previous section, I will define some notation for being a proof of a formula

under certain assumptions. The notation A1a1, ...,A
n
an
⊢TBb means that there is a tree

proof of Bb whose sequence of open assumption classes isA
1
a1
, ...,Anan . I will say that Π

is a proof ofA1a1, ...,A
n
an
⊢TBb just in caseΠ is a proofwitnessing thatA

1
a1
, ...,Anan ⊢TBb .

Now, I will move on to the translations.

§3. Translations: from cascades to trees. In this section, I will show how to translate
cascade proofs to tree proofs, and conversely. I will beginwith the translation of cascade
proofs to tree proofs. As noted in 1, the justification annotations play an important role
in this paper. They enable the definition of trace trees, which are key to this direction
of the translation.
Given such a proof, we will construct a tree, called the trace tree. The nodes of a

trace tree will have one of three forms: Aa , [A{k},n], and (A{k},n). The latter two are
intermediaries that help deal with discharging of assumptions and will be removed
once the initial translation is completed. In the translation, assumptions are translated
as [A{k},n], and (A{k},n) marks which occurrences of [A{k},n] will be replaced by
discharged assumptions, with the other occurrences of the bracketed pairs replaced
by undischarged assumptions. The trace tree t(ë) of a line ë of a proof Σ is defined
inductively as follows.

Case: Hyp. Line ë is X,A{k}�CA{k}, hyp. Then, t(ë) is

[A{k},ë]

Case: Reit. Line ë is X�CAa , reit k. Then, t(ë) is t(k).
Case: →I. Line ë is X�CA→Ba–{k},→I i – j. Then, t(ë) is the following.

(A{k},i) t(j)
(→I )

A→Ba–{k}

Case: &E, ∨I, Dist. Suppose ñ ∈ {&E,∨I,Dist}. Line ë isX�CAa , ñn. In that case,
t(ë) is the following.

t(n)
(ñ)

Aa

Case: →E, &I. Suppose ñ ∈ {→ E,&I}. Line ë is X�CAa , ñm,n. Then, t(ë) is the
following.20

20 Throughout, I will assume that the justifications match the order of the rules presented in
this section.
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t(m) t(n)
(ñ)

Aa

Case: ∨E. Line ë is X�CCa∪b , ∨E m,n,p. In that case, t(ë) is the following.

t(m) t(n) t(p)
(∨E)

Ca∪b

The trace tree t(ë) for a line ë of a cascade proof may not be a tree proof. There may be
nodes of of the form (A{k},i) or [A{k},i ]. The tree must be operated upon to remove
these nodes. Further, the tree may not satisfy the global constraints. These will be
addressed in turn.
To deal with the nonformula nodes, we will construct a sequence of trees. First note

that each node α of the form (A{k},i) occurs next to a subtree ðα ending in the premise
Ba of a (→I ) rule. This will be used to define an ordering on nodes α of the form
(A{k},i). Say that for nodes α and â , α < â iff â occurs in ðα .
Let Π0 be the initial tree, t(ë). To form Πj+1, for j ≥ 0, we do the following. Let α

be a <-minimal node in Πj . In the subtree ðα ending with Ba , there are nodes of the
form [A{k},i ], where A{k} is discharged by the corresponding application of the rule
→I in the cascade proof. Replace all occurrences of [A{k},i ] withA{k}, and mark them
as discharged by the (→I ) following ðα . Finally, delete the node (A{k},i) and add (i)
to the rule label (→I ). The result is Πj+1. There are fewer nodes of the forms (A{k},i)
in Πj+1 than in Πj , so there must be a j ≥ 0 such that Πj contains no nodes of that
form. Call this tree Π′.
The tree Π′ may contain nodes of the form [A{k},i ]. Replace each node of the form

[A{k},i ] with A{k}. These are the undischarged assumptions of the proof. Call the
resulting tree Π. It remains to check that Π satisfies the conditions on the rules and
the global conditions on indices.
To begin, there are a two observations concerning Π. First, if a 6= ∅, then an

occurrence of indexed formula Aa in Π has above it, for each k ∈ a, an undischarged
assumption whose index is {k}. Second, observe that each inference labeled with one
of (∨I ), (Dist), (&I ), and (&E) is an application of that rule.
Next, we show that Π satisfies the restrictions on (→I ). Conditions (i) and (ii) are

immediate from the construction. For condition (iii), note that in the→I case of the
construction of the trace tree, all hyp steps occurring in ó ij , apart from the initial hyp

step of ó ij have hyp indices greater than that of line i, and the construction of Π does

not change any indices. Suppose that there is a violation of condition (iii) for some
application α of (→I ) such that A{kα} is discharged but for some k > kα , B{k} is an
open assumption of ðα . Suppose the former is the translation of hyp line n and the
latter of hyp line m. There are two cases, n < m and n > m, since n =m is impossible.
Suppose n < m. As B{k} is an open assumption in ðα but A{kα} is discharged by α,
the subproof ó(m) cannot close before ó(n) does. But this violates the conditions on
nesting in Σ. If n > m, then the restriction the rule hyp that hyp indices increase with
depth is violated. Therefore, α cannot be a violation of (iii). So, there are no violations
of (iii).
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Next, we argue that Π satisfies the restrictions on (→E) and (∨E). Π satisfies the
restrictions because the corresponding steps in Σ did, and the construction of Π does
not alter any indices.
All that remains is to check that the global conditions on indices are satisfied. The

condition that assumptions have singleton indices holds, as no step in the translation
added additional numbers to indices. No open assumptions of distinct formulas in
Π have the same index. The construction did not change the indices on the open
assumptions of the cascade proof, which were all distinct as required by the hyp rule.
As all the conditions are satisfied, I conclude that Π is the desired tree proof.
To translate a cascade proof Σ ofA1a1, ...,A

n
an
⊢CBb , one constructs t(L(Σ)). One then

constructs a series proofs, Π0, ...,Πn, marks assumptions discharged, removes certain
nodes, and finally changes the open assumption nodes from the form [A{k},i ] to A{k}.

The resulting proof Π is a tree proof of A
i1
ai1
, ...,Aimaim ⊢TBb . Call the translation just

described T. So T(Σ) = Π. This gives us the following theorem.

Theorem 1. Let Σ be a cascade proof of A1a1, ...,A
n
an
⊢C Bb . Then T(Σ) = Π is a tree

proof of A
i1
ai1
, ...,Aimaim ⊢TBb .

The proof Π may leave out some steps of Σ, including some open assumptions of Σ.
These are steps, and hypotheses, that do not show up in the trace tree of the conclusion.
Such steps are, in a sense, otiose for obtaining the conclusion, so it is not, I think, a
problem that they are omitted by the translation.
Let us turn to translations in the other direction, from trees to cascades.

§4. Translations: from trees to cascades. The translation from tree proofs to cascade
proofs uses a technique that I will call weaving, which I will define following some
auxiliary definitions.

Definition 6. Suppose the cascade proofs Σ1, ...,Σn are, respectively, proofs of
Xi�CA

i
ai
. Then the proofs are compatible iff for formulas B{k1} and C{k2} occurring in

the Xi ’s, if k1 = k2 then B = C .

The idea for the translation is that subtrees of the tree proof will translate to
compatible cascade proofs, which will in turn be woven together. The index discipline
on tree proofs will enforce the differentiated condition. To proceed, we will need a
definition.

Definition 7. Let Σ be a cascade proof of A1{k1}
, ...,An{kn} ⊢CBb where ëi and ëj are

the lines for the hyp steps for Ai{ki} and A
j

{kj}
, where j = i+1 and 1≤ i < j ≤ n.

The top of ó(ëi) with respect to ëj is the sequence of lines 〈sëi , ...,sm〉, where ëj =
m+1.
The truncated top of ó(ëi) with respect to ëj is the sequence of lines 〈sëi+1, ...,sm〉,

where ëj =m+1. If ëi =m, then the truncated top is 〈〉.

In the top of an open subproof, there may be hyp steps, although these will be for
subproofs that close in the top of that subproof. So, the depth of the top of an open
subproof may increase before decreasing again to its initial depth.
Suppose one has a pair of compatible cascade proofs, Σ1 of A

1
a1
, ...,Anan ⊢CBb and

Σ2 of C
1
c1
, ...,Cmcm ⊢CDd . Let (E

1
e1
,p1), ...,(E

ℓ
eℓ
,pℓ) be a sequence of pairs of the open
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hypotheses of Σ1 and Σ2 together with natural numbers such that ei ≤ ei+1, for 1≤ i < ℓ
and pi is 1 or 2, depending on whether E

i
ei
is an open assumption of exactly one of the

two proofs or of both. It will be notationally convenient to have a way to refer to the E
formulas in order of their subscripts. LetX be 〈A1a1, ...,A

n
an
〉 and letY be 〈C 1c1, ...,C

m
cm
〉.

Then ì(X,Y ) is 〈E1e1, ...,E
ℓ
eℓ
〉.

We construct a sequence of proofs, Σi , where Σ0 = 〈〉, and a series of partial functions
defined on initial segments of the natural numbers fi : ù×{1,2}⇀ù, 0≤ i < ℓ. The
notation ój will be used for subproofs from Σj , with j ∈ {1,2}. Given the proof
constructed up to stage i, Σi , further lines are appended as indicated below. Let X
be the sequence E1e1, ...,E

i
ei
, and if i = 0, X = 〈〉. Where s(Y ) is a sequent with the

displayed sequence Y of indexed formulas, s(X ) is s(Y ), replacing Y with X. There
are two basic cases, depending on whether pi+1 = 1 or pi+1 = 2.

Case 1: Embed. In this case, pi+1 = 1, so E
i+1
ei+1
is an assumption of only one

proof, Σj , and it is the hyp step on line ë, Y,E
i+1
ei+1

�CE
i+1
ei+1
, where Y is a

possibly empty sequence of indexed formulas. Append to Σi the sequence
〈sr(X ) ...,sp(X )〉, where 〈sr(Y ) ...,sp(Y )〉 is the top of ój(ë).
Letëj be the greatest line number fromΣj such thatf

i(ëj,j) is defined.
21

Set fi+1(n,j) = fi(n,j), where n ≤ ëj . For each line sq(Y ) in the top of
ój(ë), set f(q,j) = m, where m is the line number of the newly added
sq(X ) in Σ

i+1. Finally, each justification number n in Σi+1 is replaced by
f(n,j), with j ∈ {1,2} as appropriate.

Case 2: Merge. In this case, pi+1 = 2, so E
i+1
ei+1

is a hyp formula of both

Σ1 and Σ2. The respective lines are ë1, Y,E
i+1
ei+1

�CE
i+1
ei+1
, and ë2,

Z,E i+1ei+1�CE
i+1
ei+1
.Append to Σi the sequence 〈sr1(X ) ...,sp1(X )〉, where

〈sr1(Y ) ...,sp1(Y )〉 is the top of ó1(ë1). Then, append the sequence
〈sr2(X ) ...,sp2(X )〉, where 〈sr2(Z) ...,sp2(Z)〉 is the truncated top of ó2(ë2).
As in the previous case, let ëj be the greatest line number from Σj such

that fi(ëj,j) is defined. Set f
i+1(n,j) = fi(n,j), where n ≤ ëj . For each

line sq(Y ) in the top of ó1(ë1), set f(q,1) =m, wherem is the line number
of the newly added sq(X ) in Σ

i+1. For each line sq(Z) in the truncated
top of ó2(ë2), set f(q,2) = m, where m is the line number of the newly
added sq(X ) in Σ

i+1. Additionally, set f(ë2+1,2) = f(ë1+1,1). Finally,
each justification number n in Σi+1 is replaced by f(n,j), with j ∈ {1,2}
as appropriate.

The preceding construction is the weave of Σ1 and Σ2, W(Σ1,Σ2), yielding Σ
ℓ as the

output.
There are two important features of W(Σ1,Σ2). First, it is a cascade proof. Each

stage produces a sequence of lines that satisfies the conditions on being a proof with
appropriate rules and justifications. Second, since no indices are changed, if the proofs
Σ1, ...,Σn are compatible, thenW(Σ1,Σ2),Σ3, ...,Σn are compatible.
While the details of weaving can get a bit involved, the idea behind the construction

is fairly straightforward. Given two cascade proofs, one orders their open assumptions
so that the hyp indices are increasing. One proceeds down the sequence, pulling in
steps, with modifications to the sequence of assumptions, from one or both proofs,

21 If fi (·,j) is undefined for every input, then set ëj = 0.
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Σ i
. . .

E ie i hyp

A1a1
...

Anan

Σ j
. . .

E i+1e i +1 hyp

B 1b1
...

Bmbm

Dd hyp

...

Σ i+1
. . .

E ie i hyp

A1a1
...

Anan

E i+1e i +1 hyp

B 1b1
...

Bmbm

Fig. 2. Weave case 1 in graphical form.

Σ1
. . .

Ee hyp

A1a1
...

Anan

Cc hyp

...

Σ2
. . .

Ee hyp

B
1
b1

...

Bmbm

Dd hyp

...

Σi
. . .

Ee hyp

A1a1
...

Anan

B1b1
...

Bmbm

Fig. 3. Weave case 2 in graphical form.

according to the current member of the sequence of assumptions, (Ee,p) In the first
case, one inserts the steps in the top of the subproof beginning with Ee , with the
possible addition of more hypotheses. In the second, one inserts the steps in the top
of the subproof beginning with Ee in one proof, and then the steps in the truncated
top of the subproof starting with Ee in the other, “merging” the two hyp steps for Ee
in the weave. Figure 2 presents the graphical form of case 1, with the leftmost proof
being Σi , the middle displaying the relevant subproof top from Σj , with j ∈ {1,2}, and
the rightmost presenting Σi+1. Figure 3 presents the graphical form of case 2, with the
tops of the two displayed subproofs from Σ1 and Σ2 on the left merged to produce the
subproof of Σi whose top is on the right.22

I can now proceed to the translation. One translates the tree proof Π from the leaves
downwards to the conclusion. There are a several cases, depending on the rule used. It
will be helpful to bear in mind that, since Π is a tree proof, the proof as a whole obeys
the index discipline on assumptions.

22 The diagonal dots,
. . ., indicate that steps of the proofs may change in depth. Following

diagonal dots, the number of vertical lines need not represent the depth of a line.
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Case: Assumption. Π is an assumption, A{k}. This translates to a hyp step
A{k}�CA{k}.

Case: One premise, no discharge. This case covers (&E),(∨I ), and (Dist). The
case is the following.

Π
Aa

(ñ)
Ba

By the inductive hypothesis, there is a translation Σ of Π, ending with the
following line.

i X�CAa

This is then extended as follows

i X�CAa

i+1 X�CBa ñi

Case: (→I ). The case is the following.

(1)
A{k}

Π
Ba

(→I ), (1)
A→Ba–{k}

By the inductive hypothesis, there is a translation Σ′ of Π, ending with the
following.

i X,A{k}�CA{k}

...

j X,A{k}�CBa

Note that since k is the greatest integer among the indices on open
assumptions,A{k} heads the innermost subproof of Σ

′. One can then extend
Σ′ with the following line.

j+1 X�CA→Ba–{k} →I i – j

Let this new proof be Σ, which is the desired translation.
Case: (→E). The case is the following.

Π1
A→Bb

Π2
Aa

(→E)
Ba∪b

By the inductive hypothesis, there are translations Σ1 and Σ2 of Π1 and
Π2, respectively, ending with the following.
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Σ1

j1 X�CA→Bb

Σ2

j2 Y�CAa

By the index discipline on the trees, the indices on open hypotheses of
Σ1 and Σ2 satisfy the conditions on indices and they are compatible.

23

Construct the weave W(Σ1,Σ2). There are then two subcases, depending
on whether max(b) < max(a). In case max(b) < max(a), W(Σ1,Σ2) end
with the following, where U is the initial subsequence of ì(X,Y ) obtained
at line i.

i U�CA→Bb
...

n ì(X,Y )�CAa

This is then extended with

n+1 ì(X,Y )�CA→Bb reit i

n+2 ì(X,Y )�CBa∪b →E n,n+1

The step satisfies Brady’s conditions, if any, because the step in the tree
proof satisfied them.The subcase in which max(b)≥max(a) is similar, with
a different reit step.

Case: (&I ). The case is the following.

Π1
Aa

Π2
Ba

(&I )
A&Ba

By the inductive hypothesis, there are translations Σ1 and Σ2 of Π1 and
Π2, respectively, ending in the following.

Σ1

j1 X�CAa

Σ2

j2 X�CBa

Then,W(Σ1,Σ2) ends with the following.

n X�CAa
...

m X�CBa

W(Σ1,Σ2) is then extended with the following.
The result is the desired translation.

Case: (∨E). The case is the following.
By the inductive hypothesis, there are translations Σ1, Σ2, and Σ3 of Π1,

Π2, and Π3, respectively, ending with the following.

23 The assumptions about the indices in trees ensure that translations of multipremise rules can
be used in weaves. I will omit this in later steps with multipremise rules.
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m+1 X�CAa reit n

m+2 X�CA&Ba &I m+1,m

Π1
A→Cb

Π2
B→Cb

Π3
A∨Ba

(∨E)
Ca∪b

Σ1

j1 X�CA→Cb

Σ2

j2 X�CB→Cb

Σ3

j3 Y�CA∨Ba

W(Σ1,Σ2) ends with the following.

n1 X�CA→Cb
...

n2 X�CB→Cb

There are then two cases, depending on whether max(b) < max(a) or
not. Only one, max(b)<max(a), will be presented here, as they are similar.
W(W(Σ1,Σ2),Σ3) then ends with the following lines, where U is the initial
subsequence of ì(X,Y ) obtained at lines m1 and m2.

m1 U�CA→Cb
...

m2 U�CB→Cb
...

m ì(X,Y )�CA∨Ba

This is extended by the following lines.

m+1 ì(X,Y )�CA→Cb reit m1

m+2 ì(X,Y )�CB→Cb reit m2

m+3 ì(X,Y )�CCa∪b ∨E m,m+1,m+2

The result is the desired translation. The translation satisfies Brady’s
conditions, if any, because the original tree proof satisfied them.Call the
translation just described C. So C(Π) = Σ. We have the following theorem.

Theorem 2. Let Π be a tree proof of A1a1, ...,A
n
an
⊢TBb . Then C(Π) = Σ is a

cascade proof of A1a1, ...,A
n
an
⊢CBb .
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Tree proofs translate to cascade proofs, and cascade proofs translate to tree proofs.
Brady (1984) shows that the cascade systems are sound and complete for the relevant
logic X, where X is a logic listed in 1. As Brady’s results carry over to the cascade
systems of this paper, it follows that the tree system for the relevant logic X are sound
and complete for X.

§5. Conclusions. In this paper, I haveprovided indexed tree natural deductionproof
systems for a range of relevant logics with cascade proof systems. The translations
above demonstrate the adequacy of these systems and, I hope, shed some light on
the mechanisms of the index discipline and restrictions in the Anderson–Belnap–
Brady systems. I will close with some comments on the work so far, beginning with a
discussion of the trade offs of the two kinds of natural deduction systems, followed by
accommodating negation and the logic E, and ending with a discussion of dependency
as found in the indexed systems, contrasted with Lemmon-style systems.
There is a trade off in the move from tree to cascade or conversely: In the cascade

systems, the dependencies of the assumptions aremade clear by the subproof structure,
whose linearity requires abandoning immediate connection between premises and
conclusions of rules; in contrast, the tree systems enforce an immediate connection
between premises and conclusions but obscure the dependencies of assumptions by
spreading them throughout the tree structure.24 Given these trade offs, one might
wonder what advantages are to be gained from moving to a tree proof system. There
are two potential payoffs that I would like to highlight. First, fusion is a very natural
connective in the context of trees whose inferential role is, perhaps, less clear in cascade
systems. The rules for fusion are the following.25

Aa Bb

A◦Ba∪b
(◦I )

A→ (B→C )∅ A◦Ba
Ca

(◦E)

For logics weaker than R, conditions will need to be placed on the indices in both rules,
which I leave open here. In the context of tree proofs, the contribution of fusion may
be easier to see than in the context of cascade proofs.
Second, techniques for proving normalization theorems are well known for tree

natural deduction systems.26 Normalization for cascade systems, while not unknown,
is not as common.27 These systems may facilitate normalization proofs for some of
these relevant logics, particularly if (Dist) is dropped. Dropping (Dist) results in
the distribution-less logic corresponding to dropping the distribution axiom from the
Hilbert-style system or the distribution rule from the cascade system.
Next, a comment on extensions of the systems. In 1, I indicated that negation rules

can be added without any problems. The translations extend to negation rules in a

24 For more on the trade offs involved in cascade and tree systems, see Restall (2014) and
Hazen & Pelletier (2014).

25 I have presented the (◦E) rule that I did, rather than a general elimination-style rule to keep
the correspondence with cascade systems. See Read (2010, 2014) or Jacinto & Read (2017)
for more on general elimination-style rules.

26 See, for example, Prawitz (1965), Raggio (1965), Medeiros (2006), and Francez (2014),
among others.

27 See Brady (2006, 2010) for detailed examples. See Fitch (1952, 115ff.) for an early example.
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straightforward way. Thus, a large swath of the propositional logics studied by Brady
(1984) can be given tree systems.28

Returning to the motivations laid out in the introduction, one might wonder about
E, which is conspicuous in its absence from the bulk of this paper. Anderson and
Belnap’s cascade system for E is obtained by imposing a restriction on the rule of
reiteration, which captures the modal aspect of E’s conditional. Brady (1984) does not
offer a cascade system for E, since those systems are obtained by restrictions on the
rules→E and ∨E rather than on reit. There are two ways one can proceed for giving a
tree natural deduction system for E. The first is to use one of the systems discussed by
Standefer & Brady (2019) as the basis for a tree system. The second is to use the tree
system of Standefer (2018). These offer different views of natural deduction for E.
Finally, I will close with a comment about the indices, which play such an important

role in Anderson–Belnap–Brady systems, as well as the tree systems presented here.
Some logicians, such as Prawitz, give systems that do not use indices, opting for side
conditions on rules. The side conditions can, sometimes, be complex and nonlocal. The
indices have the advantage of being local annotations, in the sense of going along with
each formula, and permitting simple rules. To check whether a rule can be applied, one
checks the indices on the premises of the rule, rather than checking a global condition
on the proofs. The indices are simple, in the sense that they are just sets of natural
numbers. Other approaches to relevant logic tend to use more general structures to
indicate dependencies on premises.29 The indices are, further, not model-theoretically
loaded. They do not need to be understood as representing features of a model, as
usually happens in indexed tableau systems.30 This is not to say that the indices must
be treated purely instrumentally and without philosophical import.31 The indices here
track use and dependence, important concepts in relevant logic.
The main advantage of the indices over the Lemmon-style systems of, say, Slaney

(1990) is that the structure of dependencies is simpler. A set of natural numbers has a
natural representation as the sequence of those numbers in increasing order, as opposed
to the more general groupoid structures used by Slaney. Assumptions corresponding
to later numbers depend on the assumptions corresponding to earlier numbers; newer
assumptions come later. With that in mind, we can revisit Brady’s conditions from 1.
The rule →E will be the rule of interest below, with A→Bb the major premise

and Aa the minor. The condition for B requires that the minor premise depend on
only one assumption, which is newer than anything the major premise depends on,
so the dependencies of the conclusion extend those of the major premise by one. The
condition added for DJ permits the dependencies of the major and minor premises
to overlap significantly, requiring that the minor premise depends on what the major
premise does, with the addition of one newer assumption. The dependencies of the
conclusion are then those of the minor premise. With both B andDJ, the dependencies

28 The question of whether these techniques can be extended to the quantifiers is an interesting
one that I leave open. An additional question is how to accommodate the disjunctive rules
considered by Brady.

29 See, for example, Slaney (1990), Read (1988), Restall (2000), or Mares (2017).
30 For examples, see Priest (2008), especially the chapter on relevant logic, or Mints (1992), for
examples from modal logic. See Read (2015) for discussion of labels in proof systems from
an inferentialist point of view.

31 See Mares (2004) for an interpretation of the indices in terms of situated inference. The
indices can, in some cases, give rise to models, as is the case in Urquhart’s semantics.
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of the conclusion extend those of the major premise by one. The condition for T
says that the minor premise must depend on newer assumptions than the major
premise. The dependencies of the conclusion are interlaced in the manner of the weave
construction.32 The condition for RW requires that the dependencies be, in a sense,
disjoint, and the conclusion gathers together these dependencies. Finally, R eschews
additional restrictions, relying only on the strictures of→I.
For the indexed natural deduction systems of this paper, there is a sense in which

it is most natural to start with R, obtaining weaker logics by adding conditions on
the dependencies being appropriate for →E and ∨E. In contrast, the Lemmon-style
systems “start” with the weaker logics, aroundB. They have rules operating on premise
structures, which are not part of the cascade or tree systems of this paper. Stronger
logics are obtained through the adoption of additional rules dealing with premise
structure. These systems appear to provide a different view of dependence than that of
the indexed systems, although a fuller discussion is beyond the scope of this paper.
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