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We study the spectrum of regular and singular Sturm{Liouville problems with
real-valued coe± cients and a weight function that changes sign. The self-adjoint
boundary conditions may be regular or singular, separated or coupled. Su± cient
conditions are found for (i) the spectrum to be real and unbounded below as well as
above and (ii) the essential spectrum to be empty. Also found is an upper bound for
the number of non-real eigenvalues. These results are achieved by studying the
interplay between the inde¯nite problems (with weight function which changes sign)
and the corresponding de¯nite problems. Our approach relies heavily on operator
theory of Krein space.

1. Introduction

We study the spectrum of Sturm{Liouville problems associated with the di¬erential
equation

¡ (py0)0 + qy = ¶ wy on J; (1.1)

where
J = (a; b); ¡ 1 6 a < b 6 1;

and the coe¯ cients satisfy the basic conditions

1

p
; q; w 2 Lloc(J; R); p > 0; jwj > 0 a.e. on J; w changes sign on J; (1.2)

and suitable boundary conditions. The form of these boundary conditions depends
on the classi­ cation of the endpoints a, b of the interval J as regular, or singular
and, when singular, whether limit-point or limit-circle in the space

H = L2(J; jwj) =

½
f : J ! C :

Z

J

jf j2jwj < 1
¾

;

with inner product and norm given by

(f; g) =

Z

J

f·gjwj; kfk2 =

Z

J

jf j2jwj:

For details, see [22].
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Our approach is based on the well-established theory based on the equation

¡ (py0)0 + qy = ¶ jwjy on J: (1.3)

This is the so-called right-de­ nite case, which can be studied using operator theory
in the Hilbert space H. Let S be a self-adjoint realization of (1.3) in H , i.e.

Sm in ³ S = S ¤ ³ Sm ax;

where Sm in , Sm ax are the minimal and maximal operators associated with (1.3),
respectively. Let D(S) denote the domain of such an operator S. We refer to such
domains as self-adjoint domains in H. If both endpoints are in the limit-point case
in H , then Sm in = S = S ¤ = Sm ax, and there is no proper self-adjoint restriction of
Sm ax and hence there are no boundary conditions. In all other cases, the operators S
are determined by restricting the domain D(Sm ax) of Sm ax with self-adjoint bound-
ary conditions. The theory of self-adjoint operators in H yields a characterization
of all self-adjoint domains. For details, see [16,22].

To `transfer’ results from the right-de­ nite theory with weight function jwj to
corresponding problems for the inde­ nite weight function w, we use results and
methods of operator theory in the Krein space K = L2(J; w). This is the space of
all (equivalence classes) of functions from H , but with the inde­ nite inner product

[f; g] =

Z b

a

f ·gw; f; g 2 H: (1.4)

Thus the Hilbert space H and the Krein space K consist of the same set of
elements, but have di¬erent inner products. Operators between these spaces are
`connected’ by means of the so-called fundamental symmetry operator J , de­ ned
by

(J f)(t) = f(t) sgn(w(t)); f 2 H: (1.5)

We are particularly interested in the self-adjoint realizations T of (1.1) in the
Krein space K. These are given by

T = J S; (1.6)

where S is a self-adjoint realization of (1.3). Equation (1.6) determines a one-to-
one onto correspondence between the self-adjoint realizations of (1.3) in the Hilbert
space H and the self-adjoint realizations of (1.1) in the Krein space K. Therefore,
the self-adjoint boundary conditions that determine S, obtained from the right-
de­ nite theory in H involving jwj, are precisely the same boundary conditions that
determine T in the Krein space K involving w.

Note that the operators T given by (1.6) map H into H and thus are operators
in this space. But, as an operator in H , T is not self-adjoint or even symmetric.
However, observe that the spectrum of T considered as an operator in H is the same
as the spectrum of T considered as an operator in K; this follows directly from the
de­ nition of the spectrum and from the fact that the topology of K is the same as
that of H , both being generated by the norm of H. Thus, by the spectrum of the
Sturm{Liouville problem consisting of (1.1) together with the boundary conditions
that determine S, and therefore also T , we mean the spectrum of T . Note that this
reduces to the right-de¯nite case for positive weight functions.
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How is the spectrum of S related to the spectrum of T ? This is the question
we study in this paper. There seems to be no simple answer to this question. The
spectrum of S is real, the spectrum of T may not be. In 1918, Richardson [19] showed
that, even in the regular case, there are such problems with non-real eigenvalues.

The study of the existence and number of non-real eigenvalues is our primary
interest in this paper. Our ­ rst theorem identi­ es a class of problems that have
only real spectrum.

Theorem 1.1. Let the operators S and T be de¯ned as above and assume that
inf( ¼ (S)) > 0. Suppose there exist (non-degenerate) subintervals J+ , J¡ of J such
that w is positive a.e. on J + and negative a.e. on J¡. Then ¼ (T ) is real and is
unbounded above as well as below.

Proof. To be given in x 5.

The unboundedness of the spectrum, above and below, when w > 0 and p changes
sign, was established by M�oller in [15].

There is an extensive literature on regular problems satisfying the hypotheses of
theorem 1.1; these are called left-de­ nite. For some recent results, see [2,3,5,10,20,
21]. More information can be obtained from the references of these papers.

Our second main result gives conditions for the essential spectrum to be real
and gives an upper bound for the number of non-real eigenvalues. Recall that a
closed operator in Banach spaces is called a Fredholm operator if its null space is
­ nite dimensional and its range has ­ nite codimension (this implies that its range is
closed). The essential spectrum of a closed operator T in a Banach space, denoted
by ¼ e(T ), is the set of all ¶ 2 C such that T ¡ ¶ I is not a Fredholm operator, where
I denotes the identity operator.

Theorem 1.2. Let the operators S and T be de¯ned as above and assume that, for
some " > 0, there are exactly m points of ¼ (S), counting multiplicity, to the left of
", for some m 2 N0 = f0; 1; 2; 3; : : : g. Then the essential spectrum of T is real and
T has at most 2m non-real eigenvalues, counting multiplicity.

Proof. This theorem is a special case of the abstract theorem 3.3 below.

Since the coe¯ cients p, q, w are real, the non-real eigenvalues occur in conjugate
pairs.

We do not know if the essential spectrum of T is always real. However, under an
additional condition, we can give an a¯ rmative answer.

Theorem 1.3. Let the operators S and T be de¯ned as above. Assume that J is
the union of ¯nitely many intervals J1; : : : ; Jn such that w does not change sign on
Jk for k = 1; : : : ; n. Then the essential spectrum of T is real.

Proof. To be given in x 5.

The next result shows that there is a close relationship between the discreteness
of the spectra of S and T .

Theorem 1.4. Let the operators S and T be de¯ned as above. If the essential spec-
trum of S, ¼ e(S), is empty, then either ¼ e(T ) is empty or consists of the entire
complex plane. In particular, ¼ e(S) is empty when each endpoint is either regular
or limit-circle.
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Proof. The ­ rst part follows directly from proposition 3.4 below. The last sentence
follows from this proposition and the well-known fact (see [16, x 24]) that ¼ e(S)
is empty, i.e. the spectrum is discrete, when each endpoint is either regular or
limit-circle.

For regular problems with separated boundary conditions, the upper bound of
the number of non-real eigenvalues given by theorem 1.2 is well known (see [5,13]).

Our proofs are heavily dependent on the Krein-space-theory approach. A detailed
treatment of such an approach has been undertaken by µCurgus and Langer in the
fundamental paper [5]. This is based on Langer’s theory of de­ nitizable operators
in Krein spaces and a deep understanding of the spectral theory of self-adjoint
operators is required. µCurgus and Langer are mainly interested in the spectral
resolution and characterizations of singular critical points. As a byproduct, they
have some information about non-real eigenvalues.

Here, since we are mainly interested in the non-real spectrum, we give a more
direct description of the underlying Krein-space theory. Our restriction to this par-
ticular topic leads to a treatment that only uses basic Krein-space theory. Apart
from the right Krein space, which is the space L2(J; w), we also construct `a left
Krein space’, which reduces to the Hilbert space D(S1=2) for strictly positive-
de­ nite S. We show that, under certain assumptions, which correspond to the
conditions in [5], that the quadratic form [T f; f ] has only ­ nitely many negative
squares, the left Krein space reduces to a Pontryagin space.

For the convenience of the reader, we present the basic de­ nitions and facts on
Krein and Pontryagin spaces. For more in-depth results, we refer the interested
reader to the monographs of Bognar [4] and Azizov and Iohvidov [1]. Most of the
results on Krein spaces established here are known to specialists in this area. How-
ever, we feel it is appropriate to present these results in as simple and self-contained
a manner as possible to readers mainly interested in di¬erential equations. In this
regard, we observe that, in [5], µCurgus and Langer start with a study of minimal
operators in Krein space and develop the theory of self-adjoint extensions of these|
in parallel with the Hilbert-space theory. However, since boundary conditions are
self-adjoint for the weight w if and only if they are self-adjoint for the weight jwj,
nothing is lost by using the one-to-one onto correspondence given by (1.6). Thus
the reader can go directly from the self-adjoint, regular or singular, separated or
coupled, boundary conditions obtained from the Hilbert-space theory for jwj to the
same boundary conditions for w.

The characterization of (S1=2) used below is due to Krein [11, 12], but since this
work is not easily accessible, we give a self-contained proof of it here.

This paper is organized as follows. Following this introduction, x 2 gives a short
introduction to Krein spaces, and x 3 contains an overview of self-adjoint operators
in Krein spaces and their spectra. In x 4, a left Krein space is constructed, which
is related to the `left-de­ nite Hilbert-space theory’. Section 5 contains proofs of
theorems 1.1 and 1.3.

2. Krein spaces

In this section, we give basic de­ nitions and results on Krein spaces. For more
details, we refer the interested reader to [1,4,8].

https://doi.org/10.1017/S0308210500002584 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500002584


Inde¯nite Sturm{Liouville problems 643

For a linear operator T , we use D(T ), R(T ) and N(T ) to denote its domain,
range and null-space, respectively.

A space (K; [¢; ¢]) is called a Krein space if K is a vector space and

[¢; ¢] : K £ K ! C (2.1)

is a sesquilinear form such that there are linear submanifolds K + and K¡ with
K = K + u K¡ (algebraic direct sum) such that (K + ; [¢; ¢]) as well as (K¡; ¡ [¢; ¢])
are Hilbert spaces and [K + ; K¡] = f0g, i.e. [f; g] = 0 for all f 2 K + and g 2 K¡.
We write K = K + © K¡ and call this a fundamental decomposition of the Krein
space K. Fundamental decompositions are not unique.

Note that [f; f ] 2 R for any f 2 K. Unless K + = f0g or K¡ = f0g, there are
elements f 2 K n f0g such that [f; f ] = 0. Such an element f is called neutral.

If K¡ is ­ nite dimensional, then the Krein space K is called a Pontryagin space
and µ, the dimension of K¡, is called the index of this Pontryagin space. If K + is
­ nite dimensional, then we can consider the Krein space (K; ¡ [¢; ¢]) instead, and it
is therefore no restriction to assume that K¡ is ­ nite dimensional if at least one of
K + , K¡ has this property.

The space H = K, equipped with the inner product

(f; g) = [f + ; g + ] ¡ [f¡; g¡]; (2.2)

where f; g 2 K, f = f + + f¡, g = g+ + g¡, f + ; g+ 2 K + , f¡; g¡ 2 K¡, is a
direct sum of Hilbert spaces and therefore a Hilbert space itself, to be called the
associated Hilbert space of K (with respect to the decomposition K = K + u K¡).
The inner product of H is not unique, since it depends on the decomposition of K .
The topology of the Krein space K is de­ ned to be the topology generated by the
norm of this Hilbert space H . It is this topology that determines the continuity of
linear operators in K and their resolvent sets and hence their spectra.

The map J on K given by

J f = f + ¡ f¡; f = f+ + f¡; f+ 2 K + ; f¡ 2 K¡; (2.3)

is linear and continuous and satis­ es J 2 = I; J ¤ = J , where J ¤ is the adjoint of J
in the associated Hilbert space H. This map J is called a fundamental symmetry;
it connects the Krein-space inner product [¢; ¢] with the Hilbert-space inner product
(¢; ¢) by means of the formulae

[f; g] = (J f; g); (f; g) = [J f; g]; f; g 2 K: (2.4)

Conversely, if J is a bounded self-adjoint linear operator on a Hilbert space H
such that J 2 = I , then, by the spectral theory of self-adjoint operators in Hilbert
space, [f; g] = (J f; g) de­ nes a Krein-space structure on H, J is a fundamental
symmetry and N (J ¡ I) © N (J + I) is its fundamental decomposition.

Of particular interest in this paper are the Hilbert and Krein spaces constructed
as follows.

Let J = (a; b), ¡ 1 6 a < b 6 1, be an interval and w 2 Lloc(J; R), i.e. w is a
locally Lebesgue integrable real-valued function, with w(t) 6= 0 for almost all t 2 J .
Then it is well known that the set of (equivalence classes of) measurable functions
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f on J such that Z

J

jwjjf j2 < 1

is a Hilbert space, denoted L2(J; jwj), with inner product

(f; g) =

Z

J

jwjf ·g: (2.5)

The linear operator J , de­ ned by

(J f)(t) = sgn w(t)f(t) =
w(t)

jw(t)jf(t); t 2 J; f 2 H; (2.6)

is continuous, self-adjoint and satis­ es J 2 = I . Hence, with respect to the inner
product

[f; g] =

Z

J

wf ·g; (2.7)

L2(J; jwj) becomes a Krein space, which we denote by L2(J; w). Its fundamental
symmetry J is generated by multiplication by sgn(w) and its fundamental decom-
position is given by

L2(J; w) = L2(J¡; jwj) © L2(J + ; jwj); (2.8)

where
J§ = ft 2 J : §w(t) > 0g:

Note that J§ is not necessarily an interval and need not even contain an interval.

3. Self-adjoint operators in Krein spaces

In this section, we discuss some of the basic theory of self-adjoint operators in
a Krein space (K; [¢; ¢]) with fundamental symmetry J and its associated Hilbert
space H = (K; (¢; ¢)). Let T be a densely de­ ned linear operator from H into H
and T ¤ its Hilbert-space adjoint. The Krein-space adjoint T + of T is de­ ned by

[T f; g] = [f; T + g] (3.1)

for f 2 D(T ) and g 2 D(T + ), where D(T + ) is the set of all g 2 K such that the
map f ! [T f; g] is continuous. Note that

T + = J T ¤ J :

A densely de­ ned linear operator T in a Krein space is called Hermitian if
T » T + . As in the Hilbert-space case, this is equivalent to requiring that [T f; f ] 2 R
for all f 2 D(T ). The operator T is called self-adjoint in the Krein space K if
T = T + . Note that T is self-adjoint in K if and only if J T is self-adjoint in H .
Thus if T is self-adjoint in K, then it is closed and its resolvent set is given by

» (T ) = f¶ 2 C : T ¡ ¶ is one-to-one and ontog:

This follows from the de­ nition of the resolvent set and the closed graph theorem.
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In contrast to the Hilbert-space case, the spectrum of self-adjoint operators in
Krein spaces is, in general, not real. But the points in the spectrum occur in complex
conjugate pairs.

Proposition 3.1. If T is a self-adjoint operator in a Krein space, then its spectrum
is symmetric with respect to the real axis.

Proof. Since a closed linear operator is one-to-one onto if and only if its Hilbert-
space adjoint has this property, it is clear that any of T ¡ ¶ , T ¤ ¡ ·¶ , J T ¤ J ¡ ·¶ =
T + ¡ ·¶ = T ¡ ·¶ being one-to-one onto implies that all these operators are one-to-
one onto. Thus ¶ 2 » (T ) if and only if ·¶ 2 » (T ). Therefore, » (T ) is symmetric with
respect to the real axis, and hence so is the spectrum of T , ¼ (T ) = C n » (T ).

Let C + = f ¶ 2 C : Im ¶ > 0g, C¡ = f¶ 2 C : Im ¶ < 0g.

Proposition 3.2. Let T be a self-adjoint operator in a Krein space (K; [¢; ¢]) and
let L be a ¯nite-dimensional subspace of K, which is invariant under the operator
T , such that all the eigenvalues of the restriction of T to L are either in C + or in
C¡. Then [f; f ] = 0 for all f 2 L. In particular, [f; f ] = 0 for all eigenvectors f
corresponding to non-real eigenvalues.

Proof. We only establish the case for C + , since the case for C¡ is similar. Let IL

denote the identity map on L and let Q = T restricted to L. For any r > 0 such
that the eigenvalues of Q all are inside the semicircle in the upper half-plane of
radius r centred at the origin, we have that

IL = ¡ 1

2º i

Z r

¡r

(Q ¡ ¬ I)¡1 d¬ +
1

2º

Z º

0

µ
I ¡ e¡i’

r
Q

¶¡1

d’:

Since
1

2º

Z º

0

µ
I ¡ e¡i’

r
Q

¶¡1

d’ ! 1
2 IL

as r ! 1, it follows that

lim
r ! 1

¡ 1

2º i

Z r

¡r

(Q ¡ ¬ I)¡1 d¬ = 1
2 IL:

Thus, for any f 2 L, we have that

[f; f ] =

·
i

º

Z 1

¡1
(Q ¡ ¬ )¡1 d ¬ f; f

¸
=

i

º

Z 1

¡1
[(Q ¡ ¬ )¡1f; f ] d¬ :

Since T , and therefore Q, is symmetric, [(Q ¡ ¬ )¡1f; f ] 2 R for all real ¬ , the above
identity can only hold if both sides are zero.

Theorem 3.3. Let T be a self-adjoint operator in a Krein space with fundamental
symmetry J , and let S = J T . Assume the spectrum of S is ¯nite below some posi-
tive number ", i.e. ¼ (S)\( ¡ 1; ") consists of at most a ¯nite number of eigenvalues
of ¯nite multiplicity. Let m be the total multiplicity of these eigenvalues. (If there
are no eigenvalues below ", then m = 0.) Then the essential spectrum of T (if any)

https://doi.org/10.1017/S0308210500002584 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500002584


646 Q. Kong, M. M�oller, H. Wu and A. Zettl

is real, the non-real part of the spectrum of T (if any) consists of ¯nitely many non-
real eigenvalues and the root subspaces of these eigenvalues have ¯nite dimensions
and their total dimension is at most 2m. In particular, the non-real eigenvalues
have ¯nite multiplicities and their total multiplicity is at most 2m.

Proof. First we show that the essential spectrum of T is real. In a manner similar to
the proof of proposition 3.1, we establish that T ¡ ¶ is Fredholm if and only if T ¡ ·¶
is Fredholm and thus if and only if N (T ¡ ¶ ) and N (T ¡ ·¶ ) are ­ nite dimensional
and R(T ¡ ¶ ) and R(T ¡ ·¶ ) are closed, since the ­ nite codimensionality of the last
two spaces immediately follows from, for example,

R(T ¤ ¡ ·¶ ) = R(T ¤ ¡ ·¶ ) = N(T ¡ ¶ )? and R(T ¡ ·¶ ) = J R(T ¤ ¡ ·¶ )J :

Thus ¶ 2 ¼ e(T ) if and only if N (T ¡ ¶ ) or N (T ¡ ·¶ ) is in­ nite dimensional or
T ¡ ¶ or T ¡ ·¶ not open, and hence there is an in­ nite-dimensional submanifold M
of D(T ) such that either k(T ¡ ¶ )fk 6 " Im(¶ )=3j ¶ j for all f 2 M with kfk = 1 or
k(T ¡ ·¶ )fk 6 " Im(¶ )=3j¶ j for all f 2 M with kfk = 1. Here and in the following,
the norm is the one associated with the Hilbert-space inner product (¢; ¢).

Assume there is ¶ 2 ¼ e(T ) n R. Without loss of generality, we may assume the
­ rst case. Then

Im[(T ¡ ¶ )f; f ] = ¡ Im ¶ [f; f ]

and

j[(T ¡ ¶ )f; f ]j 6 kJ (T ¡ ¶ )fkkfk = k(T ¡ ¶ )fkkfk

yield

j[f; f ]j 6 "

3j ¶ j for f 2 M; kfk = 1:

Then

(Sf; f) = [T f; f ] = [(T ¡ ¶ )f; f ] + ¶ [f; f ] 6 "j Im ¶ j
3j ¶ j + 1

3
" < "

for all f 2 M , with kfk = 1. But this contradicts the minimax principle, since
¼ (S) \ (¡ 1; ") consists of at most ­ nitely many eigenvalues of ­ nite multiplicity.

By proposition 3.2, the submanifold L spanned by all eigenvectors belonging
to eigenvalues in the upper half-plane C + consists of neutral elements. By the
polarization formula for inner products, the inner product is identically zero on L.
From T L » L, [T f; f ] = 0 for all f 2 L and the minimax principle, it follows that
dim L 6 m. Since the total multiplicity of an isolated eigenvalue ¶ of T coincides
with the total multiplicity of the eigenvalue ·¶ of T ¤ = T , it follows that the total
multiplicity of all non-real eigenvalues is at most 2m.

To show that there is no other non-real spectrum, we note that if ¶ 2 ¼ (T )n ¼ e(T ),
then the observations at the beginning of this proof imply that N (T ¡ ¶ ) 6= f0g or
N (T ¡ ·¶ ) 6= f0g. But since there are only ­ nitely many non-real eigenvalues, there
is · 2 C n R such that N (T ¡ · ) = f0g and N (T ¡ ·· ) = f0g. Thus T ¡ · and
T ¡ ·· have index 0 and, by the index stability theorem (see [9, theorem IV.5.22]),
the index must be 0 in C + and C¡ and, more generally, on C n ¼ e(T ). So every
point in ¼ (T ) n ¼ e(T ) must be an eigenvalue.
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Proposition 3.4. Let K be a Krein space, T a self-adjoint operator in K, J a
fundamental symmetry on K and let S = J T . Assume that » (T ), the resolvent
set of T , is not empty. If the essential spectrum of S is empty, then the essential
spectrum of T is empty.

Proof. Since S is self-adjoint in a Hilbert space, C nR » » (S). Hence we can choose
¶ 2 » (T ) and · 2 » (S). Since ¼ e(S) = ;, the spectral theorem for self-adjoint
operators shows that

S =
1X

j = 1

¶ jPj ;

with mutually orthogonal ­ nite-rank projections Pj and j¶ j j ! 1 as j ! 1, and
thus

(S ¡ · )¡1 =
1X

j = 1

( ¶ j ¡ · )¡1Pj

is compact. Hence, in view of (T ¡ · J )¡1 = (S ¡ · )¡1J ,

(T ¡ · J )¡1 ¡ (T ¡ ¶ )¡1 = (T ¡ · J )¡1(T ¡ ¶ ¡ T + · J )(T ¡ ¶ )¡1

= (T ¡ · J )¡1( · J ¡ ¶ )(T ¡ ¶ )¡1

is compact, and hence also (T ¡ ¶ )¡1 is compact. This completes the proof, since
an operator with compact resolvent has no essential spectrum (see, for example, [9,
theorem III.6.29]).

The following example shows that » (T ) = ; can occur even if ¼ e(S) = ;.

Example 3.5. Let Ly = y0 on L2(0; 1), with domain

D(L) = H1(0; 1) = fy 2 L2(0; 1) : y 2 ACloc(0; 1); y0 2 L2(0; 1)g:

Then L is a closed operator with dense domain and

D(L¤ ) = fy 2 H1(0; 1) : y(0) = 0 = y(1)g:

Let H = (H1(0; 1))2 and let J : H ! H be given by

J =

µ
0 I

I 0

¶
;

where I is the identity operator on L2(0; 1). Then H becomes a Krein space K with
fundamental symmetry J . De­ ne T : K ! K by

T =

µ
L 0

0 L¤

¶
:

Since

J T =

µ
0 L ¤

L 0

¶

is self-adjoint in H , T is self-adjoint in K. For each ¶ 2 C, y(t) = e¶ t is in D(L)
and satis­ es Ly = ¶ y. Thus » (T ) is empty.
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On the other hand, D(LL ¤ ) is the set of all

y 2 H2(0; 1) = fy 2 H1(0; 1) : y0 2 H1(0; 1)g

satisfying y(0) = 0 = y(1), and LL¤ y = y00. Thus LL¤ is a regular self-adjoint
Sturm{Liouville operator with Dirichlet boundary conditions and its spectrum is
discrete, consisting entirely of simple isolated eigenvalues. By [14, theorem 1.2],
¼ (J T ) is discrete and ¼ e(J T ) » f0g. But

dim N (J T ) = dim N (T ) = dim N(L) = 1;

and consequently the essential spectrum of J T is empty.

4. A construction of left-de¯nite Krein spaces

Given an invertible self-adjoint operator T in a Krein space K, we construct a new
Krein space associated with T . This new space is called the left-de­ nite Krein space
associated with T and is denoted by KT . We continue to use the notation from the
previous sections.

Theorem 4.1. Let T be an invertible self-adjoint operator in a Krein space with
fundamental symmetry J and let S = J T . Let U = jSj1=2. Then there is an inner
product [¢; ¢]1 on D(U ) such that KT = (D(U ); [¢; ¢]1) is a Krein space with the
following properties.

(1) D(T ) is dense in D(U ) with respect to the Hilbert-space norm generated by
the inner product [¢; ¢]1.

(2) [T f; g] = [f; g]1 for all f; g in D(T ).

(3) R = T ¡1jD(U) is a continuous self-adjoint operator in the Krein space KT .

Proof. It is known (see, for example, [9, theorem VI.6.23]) that D(U ) is a Hilbert
space with respect to the inner product

(f; g)1 = [J Uf; Ug] = (Uf; Ug): (4.1)

From the functional calculus for self-adjoint operators in Hilbert space, it follows
that J1 := sgn(S) is unitary on the Hilbert space D(U ) and J 2

1 = I . Thus

[f; g]1 = (sgn(S)f; g)1 = (U sgn(S)f; Ug) (4.2)

de­ nes a Krein-space structure on D(U ). Part (1) follows from the fact that D(T )
is dense on the Hilbert space D(U ) (see [9, theorem VI.2.23]).

(2) For f; g 2 D(T ), from (4.2) it follows that

[f; g]1 = (U sgn(U )f; g) = [T f; g]: (4.3)

(3) The inclusions

T ¡1D(U ) » D(T ) = D(jSj) » D(jSj1=2) (4.4)
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show that R maps D(U ) into itself. Also, the continuity of the embedding KT ,! K
shows that R has a closed graph. Thus R is continuous by the closed graph theorem.
Let f; g 2 D(T ). Then T ¡1f; T ¡1g 2 D(T ) and, by (2),

[Rf; g]1 = [T T ¡1f; g] = [f; g] = [g; f ] = [Rg; f ]1 = [f; Rg]1: (4.5)

Hence R is symmetric on D(T ). Since R is continuous on D(U ) and D(T ) is dense
in D(U ), R is self-adjoint in D(U).

In the following, k¢k and k¢k1 denote the norms associated with the Hilbert-space
inner products on K and on D(U ), respectively.

Theorem 4.2. Let the notation and hypotheses of theorem 4.1 hold. Then, for each
¶ 2 C n f0g, ¶ 2 ¼ (T ) if and only if 1=¶ 2 ¼ (R).

Proof. Let ¶ 6= 0 be an eigenvalue of T . Then there is a y 2 D(T ), y 6= 0, such that
T y = ¶ y. Then y; T y 2 D(T ) ³ D(R) and y = ¶ Ry. Thus 1=¶ is an eigenvalue
of R.

Conversely, let ¶ 6= 0 be an eigenvalue of R. Then there is y 2 D(U ), y 6= 0, such
that Ry = ¶ y. Then y; Ry 2 R(R) ³ D(T ) and y = ¶ T y. Thus 1=¶ is an eigenvalue
of T .

Now, let ¶ 2 » (T ) n f0g. By what we have already shown, R ¡ 1=¶ is injective.
Let f 2 D(U ). Since T ¡ ¶ is surjective, there is a g 2 D(T ) ³ D(U ) such that
(T ¡ ¶ )g = ¡ ¶ T f , which implies that

µ
R ¡ 1

¶

¶
g =

µ
T ¡1 ¡ 1

¶

¶
g = f: (4.6)

This shows that R ¡ 1=¶ is also surjective, and hence 1=¶ 2 » (R).
Finally, let ¶ 2 » (R)nf0g. From the ­ rst part of the proof, it follows that T ¡ 1=¶

is injective. Let g 2 K and put h = ¡ ¶ T ¡1g 2 D(T ). Since R ¡ ¶ is surjective,
there is an f 2 D(R) such that (R ¡ ¶ )f = h. Since f = (Rf ¡ h)=¶ 2 D(T ), we
have that

T f =
1

¶
f ¡ 1

¶
T h =

1

¶
f + g: (4.7)

This shows that T ¡ 1=¶ is also surjective and hence 1=¶ 2 » (T ).

The importance of theorem 4.2 is due to the fact that KT = (D(U ); [¢; ¢]1) may
be a Pontryagin space or a Hilbert space.

Corollary 4.3. Under the assumptions and with the notation of theorem 4.1,
suppose that ¼ (S)\(¡ 1; 0) consists of at most ¯nitely many negative eigenvalues of
¯nite multiplicity. Let m > 0 be the total multiplicity of these negative eigenvalues.
Then KT is a Pontryagin space with Pontryagin index m, and ¼ (T ) n R consists of
at most ¯nitely many eigenvalues of total multiplicity not exceeding 2m.

Proof. Let (Et)t2 R be the spectral family of S. Then

(I ¡ E0)D(U ) © E0D(U ) (4.8)
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is a fundamental decomposition of the Krein space KT , and E0D(U ) = R(E0) has
dimension m. Since 0 62 ¼ (S), there is " > 0 such that

¼ (S) \ ( ¡ 1; ") = ¼ (S) \ ( ¡ 1; 0)

consists of ­ nitely many eigenvalues of ­ nite multiplicity. By theorem 3.3, ¼ (T ) n R
consists of at most ­ nitely many eigenvalues with total multiplicity not exceed-
ing 2m. A routine modi­ cation of the proof of theorem 4.2 yields that the multi-
plicities of the eigenvalues 1=¶ 2 ¼ (S) and ¶ 2 ¼ (T ) coincide.

Remark 4.4. It would be desirable to have an estimate of the magnitude of the
non-real eigenvalues of T , or at least of their imaginary parts, in terms of the
negative eigenvalues of S. The following example shows that, in general, such an
estimate does not exist.

Example 4.5. For c > 0, d > 0, let

T =

µ
c c + d

¡ (c + d) ¡ c

¶
; J =

µ
1 0

0 ¡ 1

¶

on C2. Then S = J T is self-adjoint with eigenvalues 2c + d, and ¡ d, whereas the
eigenvalues of T are §i

p
2cd + d2. Note that, for ­ xed d and c varying in (0; +1),

the negative eigenvalue of S is bounded, but the imaginary parts of the non-real
eigenvalues of T are not bounded.

5. Proof of theorems 1.1 and 1.3

We now proceed with the proof of theorem 1.1, using the notation from previous
sections.

Proof of theorem 1.1. In view of corollary 4.3, ¼ (T ) is real and the space KT from
theorem 4.1 is a Hilbert space. In terms of the operator R from theorems 4.1 and 4.2,
we have to show that ¼ (R)\ ( ¡ "; 0) 6= ; and ¼ (R)\ (0; ") 6= ; for all " > 0. Assume
there is some " > 0 such that ¼ (R) \ ( ¡ "; 0) = ; or ¼ (R) \ (0; ") = ;. This means
that, for ¶ = ¡ 2=" or ¶ = 2=", the estimate

°°°°

µ
R ¡ 1

¶

¶
f

°°°°
1

> 1

j¶ j kfk1

holds for all f 2 D(R). This is equivalent to
·µ

R ¡ 1

¶

¶
f;

µ
R ¡ 1

¶

¶
f

¸

1

> 1

¶ 2
[f; f ]1:

An application of part (2) of theorem 4.1 shows that

[( ¶ ¡ T )f; ( ¶ R ¡ I)f ] > [T f; f ]

for f 2 D(T ). This leads to

¶ 2[f; Rf ] ¡ 2¶ [f; f ] > 0
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for all f 2 D(T ). Since R is a restriction of T ¡1 and T ¡1 is invertible in L2(J; w),
it follows, by continuity, that

¶ 2[f; T ¡1f ] ¡ 2¶ [f; f ] > 0

for all f 2 L2(J; w). Putting g = T ¡1f , it follows that

¶ 2[T g; g] ¡ 2 ¶ [T g; T g] > 0 (5.1)

for all g 2 D(T ).
Now let T + be the minimal operator associated with (1.1) on L2(J + ; w). Note

that L2(J+ ; w) is a Hilbert space and that T + is unbounded above. Hence there is
y 2 D(T+ ) » D(T ) such that kT yk = kT + yk > ¶ kyk for ¶ = 2=". Then

¶ 2[T y; y] ¡ 2¶ [T y; T y] 6 ¶ 2kT ykkyk ¡ 2¶ kT yk2

= kT yk( ¶ 2kyk ¡ 2¶ kT yk)

< ¡ ¶ 2kT ykkyk
< 0;

which contradicts (5.1) for ¶ = 2=".
Let T¡ be the minimal operator associated with (1.1) on L2(J¡; ¡ w). Note that

L2(J + ; ¡ w) is a Hilbert space and that T¡ is unbounded below. Hence there is
y 2 D(T¡) » D(T ) such that kT yk = kT¡yk > ¡ ¶ kyk for ¶ = ¡ 2=". Then

¶ 2[T y; y] ¡ 2¶ [T y; T y] 6 ¶ 2kT ykkyk + 2¶ kT yk2

= kT yk( ¶ 2kyk + 2¶ kT yk)

< ¡ ¶ 2kT ykkyk
< 0;

which contradicts (5.1) for ¶ = ¡ 2=".

Proof of theorem 1.3. Let Tk, k = 1; : : : ; n, be the minimal operators associated
with the restriction of (1.1) to Jk. Then the direct sum T1 © ¢ ¢ ¢© Tn on L2(J1; w)©
¢ ¢ ¢ © L2(Jn; w) can be identi­ ed with an operator ~T » T . Since each of the Tj is
a minimal operator in the Hilbert space L2(Jk; jwj) (we may replace ¶ with ¡ ¶ , if
necessary), ¼ e(Tj) » R. That is, Tk ¡ ¶ is a Fredholm operator for all ¶ 2 CnR. Thus
(T1 ¡ ¶ ) © ¢ ¢ ¢ © (Tn ¡ ¶ ) is also Fredholm, and so is ~T ¡ ¶ . Since ~T » T , T ¡ ¶ has
a ­ nite-codimensional, and thus closed, range for ¶ 2 C n R (see [7, IV.1.3]). This,
together with N (T ¡ ¶ ) = R(T ¡ ·¶ )?, shows that T ¡ ¶ is a Fredholm operator for
¶ 2 C n R.
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