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ABSTRACT

We propose a nonhomogeneous Poisson hidden Markov model for a time series 
of claim counts that accounts for both seasonal variations and random fl uc-
tuations in the claims intensity. It assumes that the parameters of the intensity 
function for the nonhomogeneous Poisson distribution vary according to an 
(unobserved) underlying Markov chain. This can apply to natural phenomena 
that evolve in a seasonal environment. For example, hurricanes that are subject 
to random fl uctuations (El Nino-La Nina cycles) affect insurance claims. The 
Expectation-Maximization (EM) algorithm is used to calculate the maximum 
likelihood estimators for the parameters of  this dynamic Poisson hidden 
Markov model. Statistical applications of this model to Atlantic hurricanes 
and tropical storms data are discussed.
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1. INTRODUCTION

There is a tendency for the cost of hurricane insurance to increase and the 
coverage to be dropped because of the bigger-than-expected number of hur-
ricane-related claims and the increase in related reinsurance costs. In order for 
insurers to keep competitive in their property-casualty insurance business, it 
becomes important to have a better estimation of both the frequency and the 
severity of damages incurred by hurricanes as well as tropical storms. Pielke 
et al. (2008) study the total economic damage related to 207 tropical storm and 
hurricane landfalls along the U.S. Gulf and Atlantic coasts from 1900-2005. 
According to their two normalization methods, the average annual normalized 
damage over 106 years is about $10 billion (2005 values), with most recent 
estimates being over $150 billion in years 2004 and 2005, based on a total of 
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12 hurricanes. This paper intends to discuss the stochastic modeling of claims 
generated from these catastrophic events, with a focus on the claim counts 
(number of occurrences). 

Homogeneous Poisson processes are commonly used to model the claim 
counts in the risk theory literature. These sometimes give a crude representation 
as their claim intensity rate l is constant over time. Beard et al. (1984) and 
Daykin et al. (1994) suggest that the risk process is often subject to continual 
changes in risk propensity. The model to be employed must then suitably defi ne 
a time-dependent function or a stochastic process for the claims intensity, 
instead of the constant Poisson parameter l. Grandell (1991) also points out 
that the former can be used to model “size fl uctuations” in the claim intensity 
of a risk such as the seasonality, while the latter can be used to characterize 
the underlying “risk fl uctuations” in the claims intensity. The corresponding 
claim counting processes are the Nonhomogeneous Poisson (NHP) process and 
the Cox process or the doubly stochastic Poisson process, respectively. 

In practice, natural phenomena evolving in a periodic environment, or under 
seasonal conditions, affect insurance claims. For example, weather factors
are known to affect automobile or fi re insurance claims, while seasonal snow 
storms in the north and hurricanes or fl oods in the south affect property-
casualty insurance. A periodic time-dependent intensity rate is a reasonable 
model for the claim frequency in such situations. Garrido and Lu (2004) propose 
a NHP process with a doubly periodic intensity rate, where periodicity does not 
repeat the exact same pattern in each short-term period; rather, its peak intensity 
varies over a longer period. A double-beta type intensity function was proposed. 
Lu and Garrido (2005) further derive the Maximum Likelihood Estimation 
(MLE) of the model parameters, and discuss the application of the model to 
the dataset of Atlantic hurricanes affecting the United States (1899-2000).

Moreover, Lu and Garrido (2007) propose a regime-switching NHP pro-
cess which accounts for both, the seasonal variations and the random fl uctua-
tions in the claims intensity, in which the intensity process is of the form 

 0(( ) ) ( ), ,t t t tS $=l l q  (1)

 
where lS(t) is a deterministic short-term intensity function with periodicity 
and {q(t); t  $  0} is a stochastic level process governed by a m-state Markov chain. 
Here, m different levels represent different risk conditions. In practice, such 
conditions can be slippery roads, foggy days, stormy weather, years affected 
by the El Nino phenomenon and so on, which affect through the claim fre-
quency the insurance business. Under certain risk classifi cations, the transition 
probabilities of underlying Markov chain can be empirically estimated, and 
the MLEs of other model parameters (level parameters and the parameters 
for the periodic short-term intensity function) can be obtained through the 
partial likelihood function.

In some cases when there is no preclassifi cation available for the underlying 
risks (or environmental factors), the number of states in the Markov chain and 
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transitions between these states cannot be observed. The Poisson Hidden 
Markov Model (PHMM) can be used to model the dynamics of  the claim 
counts which are affected by unobservable underlying processes. Moreover,
it can address some common characteristics of count data such as serial cor-
relation and over-dispersion. In the literature the PHMM has been used in 
many areas, such as cryptanalysis, speech recognition and bioinformatics (e.g., 
Leroux and Puterman 1992, Albert 1991, Juang and Rabiner 1991, Cooper 
and Lipsitch 2004, and Altman and Petkau 2005). Paroli et al. (2000) suggest 
a PHMM for time series of overdispersed insurance counts in non-life insur-
ance. The MLEs of the model parameters are obtained and the application to 
the data of the injury frequencies are discussed. Hughes and Guttorp (1999) 
also suggest a nonhomogeneous hidden Markov model for precipitation occur-
rences where the time-dependent transition probabilities of the hidden Markov 
model associate with other atmospheric data at that time.

Various approaches have been proposed for modeling time series of counts, 
which can account for discreteness, serial correlation and over-dispersion. 
Depending on how serial dependence structure is introduced, the distinction 
is often made between observation-driven models, where the lagged values of 
observed counts are directly incorporated into the mean function, and parame-
ter-driven models, where a latent (unobserved) dynamic process is assumed to 
govern the conditional mean function (Cox 1981 and Jung et al. 2006). 

Popular members of the class of observation-driven models include inte-
ger-valued autoregressive moving average (INARMA) models, where a certain 
type of thinning operation is used to replace the scalar multiplications in the 
Gaussian ARMA framework for the integer-valued case (see McKenzie 2003 
and Weiß 2008 for recent overviews). However, this class of models has limita-
tions in dealing with the presence of over-dispersion and seasonality (Quddus 
2008), and the methods of estimation can be very complex and only a limited 
range of models has been systematically analyzed in terms of their practical 
applicability (Heinen 2003, Weiß 2009). Another group of observation-driven 
models, recently proposed by Heinen (2003) and Ferland et al. (2006), are 
autoregressive conditional Poisson models (ACP) where a Poisson distribution 
is specifi ed for the counts and their mean is autoregressive conditional on past 
observations. In contrast to the INARMA models, the ACP models can describe 
integer-valued process with over-dispersion and are well suited for both point 
and density forecasts. Note that the ACP(p, q) models are also referred to as 
the INGARCH(p, q) models (Ferland et al. 2006, and Weiß 2009). This class 
of models can also account for the seasonal variation in the mean by adding 
a combination of sine and cosine terms into the link function (Höhle and Paul 
2008, and Freeland and McCabe 2004). 

In the class of parameter-driven models, Zeger (1988) adopts the generalized 
linear models framework and introduces a latent multiplicative autoregressive 
term into the conditional mean function to account for both autocorrelation 
and over-dispersion. Despite the popularity of this model, especially in biomet-
rics applications, the estimation procedure is not straightforward and often 
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very challenging because the likelihood function requires high-dimension 
 integration. Alternatively, as mentioned earlier, the PHMMs have been used 
for analyzing time series of count data (MacDonald and Zucchini 1997, and 
Paroli et al. 2000). It is assumed that the mean of the Poisson distribution 
changes according to a latent multi-state Markov chain. This class of models 
allows for over-dispersion relative to a Poisson distribution and for serial 
 correlation between observed counts. It is most appropriate when the serial 
correlation is thought to arise through a largely unobserved process and there 
is a natural interpretation for what might constitute a suitable process.

For our particular interests in modeling the Atlantic hurricane and tropical 
storm counts, it has been suggested that there is a signifi cant connection 
between the frequency of  hurricanes and the El Nino phenomenon (Gray 
1984, Pielke and Landsea 1999, and Katz 2002). In addition, the El Nino 
phenomenon can be classifi ed into one of three states, La Nina, neutral and 
El Nino, according to Trenberth (1997). We are particularly interested in under-
standing the dynamic of the hurricane and tropical storm counts and making 
inferences about the unobserved process generating the autocorrelation. More-
over, the hurricane and tropical storm counts exhibit the repeated patterns of 
seasonality and over-dispersion which need to be taken into account (details 
see Section 2). These motivate us to consider the PHMM. 

In this paper, we generalize the PHMM by introducing a nonhomogeneous 
component in the intensity to account for both seasonal variations and ran-
dom fl uctuations for a time series of claim counts. By choosing the continuous 
short-term intensity functions over piecewise constant ones, our model can 
better capture the continuous changing external environment. The Expectation 
Maximization (EM) algorithm is used for the parameters estimation and it is 
compared to the direct maximization approach. Statistical applications of the 
model to the dataset of Atlantic tropical storms and hurricanes affecting the 
U.S. (1899-2007) will be discussed, which would help fi ne-tune the model and 
make it more accurate and applicable for use by insurance companies exposed 
to climatological risks.

The rest of the paper is organized as follows. A brief description of U.S. 
Atlantic hurricanes and tropical storms dataset is given in Section 2. A Non-
homogeneous Poisson Hidden Markov Model (NPHMM) with a beta-type 
short-term periodic intensity function is introduced in Section 3. Section 4 
presents the MLE of the model parameters through the EM algorithm. The 
application of  the model to the datasets is given in Section 5, followed by 
concluding remarks given in Section 6.

2. DATA AND MODELING BACKGROUND

Most of our data was obtained from Landreneau (2003), which included 409 
hurricanes and tropical storms (168 hurricanes) that crossed or passed imme-
diately adjacent to the Unites States coastline (Texas to Maine), for the years 
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1899-2002. Additional data for the years 2003-2007 were obtained from the 
National Oceanic and Atmospheric Administrations (NOAA), Climate Prediction 
Center web site1 using the annual Atlantic Hurricane Season Climate Summary 
which contains 26 additional hurricanes and tropical storms (13 hurricanes) 
for the years 2003-2007. From the data sources above, we obtain not only the 
total annual counts but also the monthly counts for which the hurricanes
and tropical storms made landfall. Henceforth, we call these two combined 
datasets “the U.S. Atlantic hurricanes and tropical storms (H&TS) data” and 
“the U.S. Atlantic hurricanes (HONLY) data”, respectively. Thus, over the 
109-year period 1899-2007, a total of  435 tropical storms and hurricanes 
(including 181 categories 1-5 hurricanes) crossed the Atlantic U.S. coastline at 
one or more points. 

The offi cial Atlantic hurricane season runs from June 1 to November 30 
according to the NOAA. Note that over the 109 years, no hurricanes occurred 
in the non-hurricane season, and only two tropical storms occurred in the 
months of February and May respectively, and one in December. Our focus 
hence lies in characterizing the intensity of  the counts during the offi cial 
Atlantic hurricane season and excludes those fi ve tropical storms from the 
analysis. We can easily extend our analysis by modeling the intensity of hur-
ricane and tropical storm counts throughout the whole year and including these 
fi ve data points; this will not make too much of a difference for the estimations 
with the intensity level being nearly zero for the time intervals [0, 5/12) and 
[11/12,1). 

The average annual number of  hurricanes and tropical storms is 3.99
(1.66 for hurricanes only) over the entire period, which is about an average of 
four hurricane and tropical storm (one to two hurricanes) landfalls per year. 
The years with a maximum number of 6 hurricanes were 1916 and 1985, while 
21 out of the 109 years had no hurricanes. Furthermore, the hurricane and 
tropical storm season peaks from mid-August to October, with September 
having the most major hurricanes and tropical storms (e.g., 39.2 % of all hur-
ricanes). In this paper, we are interested in modeling the monthly hurricane 
and tropical storm data, not the aggregated yearly data. Figure 1 is a run chart 
of the monthly 435 Atlantic hurricanes and tropical storms (grey lines) with 
181 hurricanes (black lines), while Figure 2 plots histograms of the monthly 
H&TS counts (black bars) and the HONLY counts (grey bars), reporting 
small counts and high percentages of  zeros (61 % and 76 % months, respec-
tively, without observations). The empirical mean and variance of  the two 
monthly datasets are 0.6651 and 1.1021 for the H&TS data and 0.2768 and 
0.2954 for the HONLY data, which suggest that the H&TS counts are over-
dispersed compared to the HONLY counts. It should be noted that there is
no formal test for over-dispersion seen in the literature when the counts show 
some dependence. (Tests of over-dispersion for i.i.d. counts can be found, for 
example, in Rao and Chakravarti 1956.) 

1 http://www.cpc.ncep.noaa.gov/products/outlooks/hurricane-archive.shtml 
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FIGURE 1: The U.S. Atlantic H&TS and the HONLY (1899-2007) monthly counts.

FIGURE 2: The U.S. Atlantic H&TS and the HONLY (1899-2007) monthly histograms.

Figure 3 gives their monthly frequencies (solid bars for hurricane-only data), 
showing clearly a left-skewed short-term (6-month) intensity pattern. The 
autocorrelation plots of the monthly counts from two datasets are provided 
in Figure 4. These graphs reveal signifi cant autocorrelation in counts and a 
distinct cyclic pattern in the sign of the autocorrelation that alternates between 
positive and negative. The spectral plot shows a dominant peak at a period of 
six months which is the length of the offi cial hurricane season (see Figure 5). 
All these clearly show the violation of randomness assumption and imply that 
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FIGURE 3: The monthly frequencies of the U.S. Atlantic H&TS and the HONLY data.

FIGURE 4: The ACFs for the U.S. Atlantic H&TS and the HONLY (monthly) data.

FIGURE 5: The periodograms of the monthly H&TS and the HONLY datasets.
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the time series of monthly claim counts during the offi cial hurricane season is 
characterized by seasonal fl uctuations but less linear trend. 

Climatological studies suggest that the intensity for hurricanes and tropical 
storms does not repeat the exact same short-term pattern every year. Rather, 
it varies from year to year, as in alternating the El Nino-La Nina cycles. For 
example, research on the tropical cyclones affecting the coast of Texas, during 
the El Nino/La Nina years between 1900 and 1996, shows that the highest per-
centage of all major hurricanes which have affected the coast of Texas occurred 
when El Nino was present for at least part of the given year [see Cole and Pfaff  
(1997)], which implies the possible variation of the annual counts over time. 
See, also, Pielke and Landsea (1999), for their study on the strong connection 
between the Atlantic hurricane landfalls in the U.S. and the El Nino Southern 
Oscillation (ENSO) phenomena. 

The NOAA uses the Accumulated Cyclone Energy (ACE) index, in combi-
nation with the numbers of named storms, hurricanes, and major hurricanes, 
to categorize North Atlantic hurricane seasons as being above-normal, near-
normal and below-normal. We understand that the NOAA uses a deterministic 
modeling approach to classify different hurricane seasons and to estimate the 
transmission probabilities between these states, based on the ACE index and 
other known information. A further generalization could be to consider a hidden 
process which affects the hurricane seasons, where the exact number of states 
of the hidden process and the movement between states are unobservable. 

We propose a NPHMM for the analysis of  the monthly hurricane and 
tropical storm counts during the hurricane season. This approach not only 
enables one to account for serial correlation and over-dispersion via a latent 
dynamic process but also to address the seasonality. As mentioned in Section 1, 
those who are interested in making inferences about the latent process may 
fi nd this modeling approach appealing. Here we presume that the seasonality 
of  the Atlantic hurricanes and tropical storms repeats a similar short-term 
pattern every year. Meanwhile, the average intensity, affected likely by the El Nino-
La Nina cycles and other unknown (random) phenomena which are not clearly 
observed, varies over time. That is, the natural environment presumably makes 
transitions between states according to a stochastic process. In this paper, we 
assume a simple Markovian process. 

3. A NONHOMOGENEOUS POISSON HIDDEN MARKOV MODEL

In this section, we fi rst recall the PHMM defi ned, in MacDonald and Zucchini 
(1997), then generalize it by considering the seasonality in the Poisson intensity 
to form a NPHMM. Some characteristics of the latter model are also presented.

For a two-dimension discrete time stochastic process {(Jt,  Nt); t  !  N+}, let 
{Jt; t  !  N+} be an unobservable Markov chain process with fi nite state space 
E  =  {1, 2,  …,  m} and {Nt; t  !  N+} be the observed sequence of counts depend-
ing on {Jt; t  !  N+}, where Jt denotes the state of the background environment 
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process at time interval [t  –  1, t) and Nt represents the corresponding counts 
within that interval. We assume that the unobserved process {Jt; t  !  N+} is a 
discrete, homogeneous, aperiodic, irreducible Markov chain on the fi nite state 
space E with an unknown transition probability matrix P  =  [ pi, j ] i, j ! E, where 
pi,  j  =  P{Jt  =  j  | Jt  – 1  =  i}, i,  j  !  E, such that ,i jj E!

.p 1=/  The initial distribu-
tion which is also the stationary distribution is denoted by p  =  (p1, …, pm)�.

Given {Jt; t  !  N+}, we assume that {Nt; t  !  N+} is a sequence of inde-
pendent random variables. Moreover, we assume that for every t (the time 
index), given Jt  =  j, Nt is Poisson distributed with intensity rate lj, that is, the 
conditional distribution of Nt, t  !  N+, is given by 

 k= lj,k
j

! , ,q N e k k j EP Nt t
j

! != = = -
kl

Jj ,# -

with ,k jk N!
.q 1=/  These defi ne the so-called PHMM, and the process

{Jt; t  !  N+} can be called the (external) environment or background process.
Following from the above assumptions, the marginal distribution of Nt, 

t  !  N+, then takes the form 

 j k{ }=k jj} J= = t{ ,k j , ,N J q kP P P Nt
j

m

t t
j

m

1 1
!p= = =

= =

N# -/ /

which is a fi nite mixture of Poisson distributions with a fi nite mean given by 
jj 1= j[E t p l=]N m/  as a weighted average of Poisson intensity parameters.

Now, as indicated in Sections 1 and 2, the seasonality may also affect the 
claim frequency within each year; in this case, we assume that, given Jt  =  j  !  E, 
t  !  N+, the number of counts within the time interval [t  –  1, t) follows a NHP 
process with a time dependent intensity function  

 j( j 1s) ( ), 1 ,t t s t1#= + -l l b s -  (2)

in which bj (s) is assumed to be a continuous short-term intensity function defi ned 
on [0,1) to refl ect the seasonality. Furthermore, we assume that jb1

0
# (s) ds  =  1 

so that the parameter lj is the average intensity within the time interval [t  –  1, t). 
Hence for every t  !  N+ the total number of counts between t  –  1 and t, Nt, is 
also Poisson distributed with parameter Lj  = 

1

t
l

t -
# (s) ds  =  lj and the uncondi-

tional distribution of Nt follows a fi nite mixture of Poisson’s with probabilities 

 jp lk= j{ } ! , ,k kP Nt
j

m j

1
!=

=

-e
kl

N /

and a fi nite mean jj 1= j[E t p l=]N m/ .

In order to precisely describe the seasonality and random fl uctuation, we further 
divide the time interval [t  –  1, t) into I sub-intervals [t  –  1 +  (l  –  1) / I, t  –  1  +  l  / I ), 
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l  =  1, 2, …, I. For example, in practice, if  t indexes a year, then I can be the 
number of months in a year. Let Nt

l denote the number of counts in the lth 
sub-interval, and Nt  =  (Nt

1,  Nt
2,  …,  Nt

I) is then the vector of observed monthly 
counts from the t-th year. Again, we assume that given {Jt; t  !  N+}, Nt depends 
only on Jt, and Nt

1,  Nt
2,  …,  Nt

I are conditionally independent random variables. 
Moreover, for every t and l, given Jt  =  j, Nt

l is Poisson distributed with an 
expected value  

 j (
)

j j 1, 2, , , .s l I j E
( /

l

l

l

1
fL = =

-
) ,ds

I
!

/I
l b#  (3)

Then the probability of observing nt
l events in the time interval [t  –  1  +  (l  –  1) / I, 

t  –  1  +  l / I) is 

 
 t

l
jL

t
t

t
jj

t

t

!

[ ]
, , .q N n e

n
n j EP N,n j t

n
l

! !

L
= = = = -

l

l
l

l
lJl$ .  (4)

Hence, we obtain a NPHMM with bj (s) as the short-term (e.g., annum) inten-
sity function.

In this paper, similar to Lu and Garrido (2005, 2007) we consider a beta 
density function for bj (s), with parameters mj, nj $  1, defi ned on [0, 1), that is,

 ( j

s

js B)
, 0 1

0,
,

s( , )
( )

j

s 1 1

otherwise

j j

1#
= m

- n- -1
n

m

b *  (5)

where 1 1
j sj( ) ( )B s ds

1 j j- n-, 1 -n = m
0

m #  is the (complete) beta function. It fol-
lows that (3) can be written as

 

1
j

j

j
j j

s

;

j

j
,

j

j
j j

(

( ) , ;

B s ds

B B I
l B I

l 1

l 1j
l

I
l

1
L = -

= - -

-
-

l

l
n

I

j

, )

,

1 -

n

n m n

m n

m ,

m

m

^

a c

h

k m; E

#
 (6)

where 

 1
j sj( ) , ( 1)B t s ds t

t

0

1j
!= -- j, ; 0,1 -n m nm ^ h#

is the incomplete beta function, and consequently = jj jl 1= .lL LI = l/

Note that here the shape of the beta function varies according to an underlying 
environment process to refl ect the impact of the El Nino-La Nina phenomena. 

95371_Astin42-1_08_Lu.indd   19095371_Astin42-1_08_Lu.indd   190 5/06/12   13:565/06/12   13:56

https://doi.org/10.2143/AST.42.1.2160740 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160740


 A NONHOMOGENEOUS POISSON HIDDEN MARKOV MODEL 191

The choice of the beta function allows the fl exibility in the shape (the skew-
ness) of the intensity function. In addition, it is computationally tractable and 
convenient due to the ready-to-use complete and incomplete beta functions.
It has been shown to be a suitable candidate for the short-term period intensity 
function for hurricane counts (Lu and Garrido 2005, 2007). 

Following the above defi nitions, given the environment process {Jt; t  !  N+}, 
the number of claim counts up to (integer) time t, s

t
s 1= l 1=

I Nl// , can be seen 
as a nonhomogeneous Poisson random variable with intensity function 

 

(

(

(

J J
(

J J

J

t

2 2

J

)

), 0 1

1), 1 2

1), 1

.s

s s

s s

s t t s tt

1 1

gg

1

1

1

#

#

#

l =
-

- + -

l

l

l

b

b

b

Z

[

\

]
]
]

]
]
]

Furthermore, we can also calculate the joint conditional probability function 
of Nt  =  (Nt

1,  Nt
2,  …,  Nt

I), given that t=t l 1=N N nt
I l =/  as follows:

 t tt jn p
l

t t
t

tn
= 1= 1

j
, , ,

! !
!

N n N n N n
n n

P t t t
j

m

t

j

l

I
1

1 1
f

g L
= = =

= =

I
I

LI ,22 N f p> H$ . %/

which is a fi nite mixture of  multinomial distributions with parameters nt  =
tl 1= nlI/  and Lj

1/Lj , …, Lj
I /Lj, for j  !  E.

4. MAXIMUM LIKELIHOOD ESTIMATIONS

The method of the MLE can be used to estimate the parameters in the NPHMMs 
described above. The parameters to be estimated are the transition probabilities 
pi, j for i,  j  !  E, the initial (stationary) distribution p  =  (p1,  …,  pm)�, the average 
intensity parameters l  =  (l1,  l2,  …,  lm)�, and the parameters for beta-type 
function bj (s), gj  =  (mj, nj)�, for j  !  E.

Note that the diagonal element, pi, i, of  the transition matrix P can be  
evaluated by the formula, pi, i  =  1  –  , ,i j1j i!= ,pm

j/  i  !  E, and the stationary 
 distribution p can be either obtained from the equation p�  =   p� P using the 
estimated transition matrix P, or estimated directly by the following EM algo-
rithm. We now denote by c the vector of parameters to be estimated, that is,

 ,m1 2,m m 1-
�

,1 3 �( , , , , , , , , )c p p p l g,1 2 f fg g= l l l

and by C the corresponding parameter space.
Suppose that in total T (years) random vectors of Nt  =  (Nt

1,  Nt
2,  …,  Nt

I) 
are observed as nt  =  (nt

1,  nt
2,  …,  nt

I ), t  =  1,  2,  …, T. If  we also observe the 
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underlying state information of the Markov chain {Jt; t  !  N+} up to time T, 
say, J1  =  j1,  …,  JT  =  jT, then by applying the Markovian property of process 
{Jt; t  !  N+} and the conditional independence of random vectors {Nt; t  !  N+} 
we can write the complete likelihood function Lc

T as follows:
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=
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 (7)

where ,nq
t tjl  is the Poisson parameter for the time interval [t  –  1  +  (l  –  1) /I,

t  –  1  +  l / I ) with Jt  =  jt given by (4). Since the state information of  Markov
chain {Jt; t  !  N+} up to time T is actually missing, the summing of variables
j1, j2, …, jT over E yields the likelihood function for observed data in the form

 ,jj
1

T j, ,1
( ) .c q qL

obs

j E j E l

I

l

I

t

T

1 12T
t t t t

1

1
p

! ! = ==
-n j n j1 l lp= g f fp p> H% %%/ /  (8)

Further let qnt, jt be the Poisson probability for time interval [t  –  1, t) with obser-
vation nt and Jt  =  jt, that is,

 L j-

t

t

,
j

( !

[ ]
q q e

n,n j
l

I l

l

I

1 1
t t t t

t
t

L
= =

nl

n j l )= =

l ,% %  (9)

where l
j = j ,t tL Ll 1

I
=/  and l

jtL  is defi ned by (3). Denote by M1  =  [pj1 qn1, j1] j1!E , 
an 1 ≈ m vector, and by Mt  =  [ pjt  –  1, jt qnt, jt ] jt  –  1, jt!E , an m ≈ m matrix. Then (8) 
can be rewritten as the following matrix form

 M�
T M( )c 1L
obs t

t

T
1

2=

,= _ i > H%  (10)

where 1 is an m ≈ 1 column vector with all components being 1.
The MLE of parameters in c can be found by directly maximizing the 

observed likelihood function TL
obs , given by (10). However, the EM algo-

rithm has been proposed as an alternative and widely utilized for fi tting the 
PHMM. In fact, since its introduction, the EM algorithm has become the 
most popular method in the literature because the calculation of the derivatives 
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of the log-likelihood of PHMM has historically been problematic and needs 
to be done numerically. Although criticized for being computationally slow, 
the EM algorithm appears to work in a broad selection of PHMM applications. 
In this paper, we consider both maximizing the observed log-likelihood directly 
through a quasi-Newton algorithm and the maximum likelihood via the EM algo-
rithm. Note that the regularity conditions of Wu (1983) for the convergence of EM 
algorithm to stationary values can be similarly verifi ed as in Paroli et al. (2000).

The EM algorithm performs fi rst an E-step, which calculates an expecta-
tion of the complete log-likelihood function given the observed data under cur-
rent estimate of parameters, and then an M-step, which updates the estimates 
by maximizing the expected log-likelihood obtained at the E-step. The estima-
tion of parameters can be obtained iteratively between the E-step and M-step 
until convergence. Let js

t  =  (ns, ns  +  1,  …,  nt)�, with nr  =  (nr
1,  nr

2,  …,  nr
I) for s  #  r  #  t, 

be the observation of  the random column vector Ns
t  =  (Ns,  Ns  +  1 …,  Nt)�, 

between (years) s and t. Then j1
T is the observations up to time T. Further, for 

implementing the EM algorithm, we need the expression of the log-likelihood 
function, log Lc

T (c), obtained from (7) as follows:

     logT j , log( ) .Cc clog log qL ,
c

l

I

t

T

t

T

j j
11 2

t t t t1 1
!= +

== =
-n j +p l ,p// /  (11)

The log-likelihood function consists two parts: the log-likelihood for a Markov 
chain depending on the transition probabilities pi, j,  i,  j  ! E and its stationary 
distribution pj,  j  ! E, and the log-likelihood for independent vectors of obser-
vations depending only on the parameters lj, mj, nj, j  !  E. Note that the 
 stationary distribution p can also be estimated from the estimation of  the 
transition probability matrix by the relationship p  =  pP.

Let c(k) be the vector of estimates obtained at the kth iteration. Then given 
c(k), the (k  +  1)th iteration of the EM algorithm is given in the following.

E-step: computer the expectation of the log-likelihood function (11), given by
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M-step: fi nd c(k  +  1) which maximizes the expectation (12), that is,

 T T( , ,c (
1 1
T T( ) .j c c j cmax logE E L

c c=
Cc!

) ( ) ( )k k k1+ )log L8 8B B% /

Baum et al. (1970) introduced the forward and backward probabilities 
which can be used to fi nd the estimators of the parameters in the M-step of the 
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algorithm. The so-called forward and backward probabilities for time t 
(1  #  t  #  T) and state j ( j  ! E) at time t, denoted by at( j) and bt( j), respectively, 
are defi ned as 

 
j

j

1 ,j
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.

Here at( j) is the joint probability of the “past” observations (up to current 
time t) and the current state of the Markov chain, while bt( j) is the conditional 
probability of the “future” observations given the current state information. 
The forward and backward probabilities can be calculated forward and back-
wards, respectively, as follows:

 
1,t T= -

(

(

2, 3, , ,j i t T

i

f=j

,j

(

j

,i j

1, bt 1

) ) ,

( )

j

j

1

i

= ( ,

) ( , 2, ,1, ,

a q a q a p E

q T j E

, ,

,

n n

n

j t j t
i E

T t
i E

i

1 t

t

1

1
f

!

!

=

= -

!

!

-

+ +

p , )

=)

j

bb p

/

/

 
where qnt, j, given by (9), depends only on parameters lj, mj and nj, j  !  E.

Now in the M-step of the (k  +  1)th iteration, given c(k) obtained from the 
kth iteration, we are able to compute at

(k)( j) and bt
(k)( j) for 1  #  t  #  T and j  !  J. 

Then maximizing the fi rst and second terms respectively in (12) by the stand-
ard maximization approach yields the MLE’s for the stationary distribution 
and the transition probabilities, given by
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Write Lj
l  =  lj Bj(l ) in (6) with Bj(l) equal to
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for j  !  E and l  =  1,  …,  I. Now let Bj
(k)(l ) be the corresponding function to

(13) with parameters mj
(k) and nj

(k) obtained from the kth iteration of the EM 
algorithm. Further let ( =m l )jB

(l

j

j

2
�

2

m
B )

 and ( =ln )jB
(l

j

j

2
�

2

n
B )

, and denote by (lm )(
jB )k�

and (l )(
nB )k

j
� , the corresponding terms with parameters mj

(k) and n j
(k). Let
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(lm m )( (
j jl 1=B B) )k k=� �I/  and (l ) .( (

n nl 1=
IB B) )k k

j j=� �/  Since the third summation in 
(12) can be written as
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then by taking the partial derivatives with respect to lj, mj and nj, respectively, 
we have the following system of equations for l j

(k  +  1), mj
(k  +  1) and nj

(k  +  1), j  !  E:

       
(

(

t

t

t

( )

( )

( )

j

i
l

i
l

m
m

j

j

)

)

(

t

:

:
n

(

(

t

t

t

t

j

j
( (

( (

( ( (
(

(

( ( (
(

(

j

j

j

n

i

it

1

11

=

==

t 1=

)

)

k
l

k
l

1
1

1
1

+

=

+

=
T

( )

( ) ( )
,

( )
(

( )
(

a b

n a j b

B a b i n
B

B

B a b i n
B

B

)
) )

) )

) ) )
)

)

) ) )
)

)

j
k

k
t
T k

tt
k k

k k kT
k

k

k k k
k

k

1

1

1

1
1

1

1
1

1

j

$
l =

=

=

+

=

=

+
+

+

+
+

+

l

l

T

l

l

�
�

�
�

l

l

m

m

i

i

)

)

I

I

,

,

a

a

k

k

Z

[

\

]
]
]
]
]

]
]
]
]]

/
/

// /

// /

 (14)

where :nl  denotes the total number of observations in the lth month. Solving 
numerically, the system of  equations (14) yields the estimations of  lj

(k  +  1), 
mj

(k  +  1) and nj
(k  +  1) for the (k  +  1)th iteration of the EM algorithm.

In this way, the E-step and M-step are repeated alternatively until the log-
likelihood values {L

obs
T (c(k))} converge as k becomes suffi ciently large. A typical 

criterion for stopping the iterations of the EM algorithm is when the succes-
sive estimations of c are smaller than a pre-set adequately small value. Then the 
MLE of the parameter set c is obtained.

5. APPLICATION TO HURRICANE AND THE TROPICAL STORM DATA

With the assumption that the periodic short-term intensity function for season-
ality is of the beta-type for all the states, we fi t to both datasets the NPHMM. 
As explained in Section 2, we consider the observed counts to lie within the time 
interval [5/12,11/12) (i.e., from the beginning of June to the end of November) 
for all years as it is reasonable to assume that the short-term intensity function 
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takes positive values only in this interval. The modifi ed beta-type function 
bj  (s) with parameters mj, nj  $  1 can be defi ned as 

 (j
D

1

j j
-(B)

,

0, otherwise

1
,s

d s d0 1, D
s d

D
s d1

1 2
j j

1 1
# # # #

b = $ n

n- - -1

)m

-m
` `j j

*  (15)

where D  =  d2  –  d1. As in this case, (d )s ds 1j
1

2 =b
d
# , the average intensity rate for 

that year (D portion of the year) is actually Dlj. Apparently, for our datasets, 
d1  =  5/12, d2  =  11/12 and D  =  1/2. Furthermore, observations (counts) nv  =
(nv

1,  nv
2,  …,  nv

I ) for 1  #  v  #  T with I  =  6 and T  =  109 are now considered as the 
observations within the interval [5/12, 11/12).

The MLEs are obtained both by maximizing the observed log-likelihood 
function directly and by maximizing the likelihood via the EM algorithm. 
Since multiple local maxima are often possible for PHMM likelihoods, the 
estimation procedure is sensitive to the choice of starting values. Our starting 
values are chosen via a grid search over a set of reasonable values. Overall, the 
two approaches result in comparable parameter estimates. The direct maximiza-
tion of the likelihood produces MLE more quickly than the EM algorithm, but 
it encounters convergence problems with some initial values. See, Section 3 in 
Zucchini and MacDonald (2009), and especially Bulla and Berzel (2008), for 
details and discussions on this issue. The computation time for the EM algorithm 
is reasonable since our dataset is not large and our model is not too complex.

TABLE 1

THE MLES OBTAINED BY THE EM ALGORITHM FOR THE H&TS AND THE HONLY DATA* 

m
Transition
Probability

Stationary 
Distribution

Intensity Rates 
l m n 

1 1 1 3.9909 2.4618 2.5783

1 1 1.6606 3.2251 3.1894

2 .5428 .4572 .6311 3.9386 1.6215 2.0581
.7823 .2177 .3689 4.0804 10.4825 7.8189

.5392 .4608 .6846 1.5650 6.7364 5.5373
1 0 .3154 1.8683 1.5917 2.1655

3 .2713 .6651 .0636 .4339 2.9943 1.2341 1.7782 
.4148 .3072 .2780 .4213 3.9836 8.7806 6.7634
.9772 .0226 0 .1448 7.0033 2.0747 2.3575

.1297 .8703 0 .2490 0.6520 1.8661 2.8134 
0 .5945 .4055 .5343 1.7567 7.4127 5.9769
1 0 0 .2167 2.5834 1.8154 2.2064

* Roman font for the H&TS data and Italic font for the HONLY data.
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The MLEs of the model parameters obtained by the EM algorithm are 
presented in Table 1 when the number of  states of  the underlying Markov 
chain are m  =  1, 2, and 3, respectively, while the corresponding estimations 
obtained by the direct maximization are showed in Table 2. In each case, the 
upper part with Roman fonts is for the H&TS data, while the lower part with 
Italic fonts is for HONLY data. It is clear that when assuming a one-state 
underlying environment process (m  =  1) there are no hidden effects and the 
values for m  =  1 in Table 1 are estimated based on direct method and are listed 
for comparison. 

It can be observed from Tables 1-2 that the estimations by both methods 
for m  =  1, 2 are very close and for m  =  3 are reasonably close. In particular, 
estimates of the (m, n) pairs vary in all cases, implying that the shape of fi tted 
beta function does change depending on the underlying Markov chain state. 

While the occurrence of  tropical storms and hurricanes shows a strong 
yearly seasonality, the estimated average intensity parameter lj’s for different 
states reveals the infl uence or consequence from some unpredictable effects. 
For example, in Table 1, the m  =  2 case for HONLY data, with probability 
0.5392 the chain remains in the low-occurrence state with an average yearly 
occurrence of approximately 1.5, while with a near zero probability the chain 
remains in the high-occurrence state with average yearly occurrences close to 2. 
It is also estimated that 68.46% (31.54%) of the total observed years are rec-
ognized as the low-occurrence (high-occurrence) years.

The use of the ACE index by the NOAA for classifying the North Atlantic 
hurricane seasons, explained in Section 2, motivates our choice of number of 

TABLE 2

THE MLES OBTAINED BY DIRECT MAXIMIZATION FOR THE H&TS AND THE HONLY DATA* 

m
Transition
Probability

Stationary 
Distribution

Intensity Rates 
l m n 

1 1 1 3.9909 2.4618 2.5783

1 1 1.6606 3.2251 3.1894

2 .5422 .4578 .6306 3.9392 1.6209 2.0577
.7815 .2185 .3694 4.0792 10.4788 7.8168

.5410 .4590 .6854 1.5649 6.7337 5.5355
1 0 .3146 1.8693 1.5894 2.1641

3 0 1 0 .3127 2.9195 1.0347 1.6482
.2981 .3922 .3097 .5145 3.8454 6.9465 5.5688
.9225 0 .0775 .1728 6.3645 1.8347 2.1795

0 1 0 .2055 0.5806 1.4885 2.3382 
0 .6512 .3488 .5891 1.7058 6.9730 5.7368
1 0 0 .2055 2.6137 1.7612 2.1826

* Roman font for the H&TS data and Italic font for the HONLY data.
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states m taking values up to 3. Here we apply two commonly used penalized 
likelihood methods, the Akaike Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC) suggested respectively in Akaike (1974) and 
Schwarz (1978), to better rank models with different number of  the hidden 
Markov chain states m  =  1, 2, 3. The new likelihoods by AIC is – 2 log Lc

T  +  2dm, 
where dm is the number of  parameters in the model, and by BIC is – 2 log 
Lc

T  +  2dm  log K, where K is the total number of observations.
Since loglikelihoods are very close in both estimation methods, Table 3 

displays only values calculated based on the ones obtained by the EM estimation. 
For the U.S. Atlantic H&TS data, the AIC suggests m  =  3 as the best model, 
while the BIC suggests m  =  2 as the best model. For the U.S. Atlantic HONLY 
data, the AIC and BIC yield the minimum penalized likelihood values for 
m  =  2 and m  =  1, respectively. The “m  =  1” result here for the HONLY data is 
somewhat consistent with the over-dispersion observed in Section 2. It is worth 
mentioning the point made in MacKay (2002), that the use of both the AIC 
and BIC methods in the hidden Markov model context methods has not been 
justifi ed theoretically. See also Katz (1981) for the discussion on estimating the 
order of a Markov chain using the AIC and BIC. 

As expected, the over-dispersion of the U.S. Atlantic H&TS that motivated 
the model choice now yields a good fi t for the NPHMM. Meanwhile the
lack of over-dispersion of the U.S. Atlantic HONLY data suggests a relatively 
poorer NPHMM where the average intensities in the 2-state model (preferred 
by the AIC) are not signifi cantly different (1.56 and 1.87, respectively). Overall, 
the fi tting results seem in favor of our initial model choice which is essentially 
the compound of two components: the nonhomogeneous beta-type intensity 
function describing the seasonality within the year, and the hidden Markov 
chain capturing the fl uctuations from year to year due to the underlying envi-
ronmental process.

Figure 6 shows three estimated lj bj (t), for 5/12  #  t  #  11/12 and j  =  1,  2,  3, 
in the 3-state model (preferred by AIC) for the U.S. Atlantic H&TS data using 
the EM estimation method, where states 1, 2, 3 correspond to low-, moderate-, 

TABLE 3

THE LIKELIHOODS OF MODELS FOR THE H&TS AND THE HONLY DATA*

m
Number of 
Parameters 

EM Algorithm
Log-likelihood

AIC BIC

1 3 –  705.9197 1417.8394 1431.2887 
2 8 –  677.0744 1370.1488 1406.0137 
3 15 –  666.8919 1363.7838 1431.0304

1 3 –  389.2729 784.5458 797.9951 
2 8 –  382.9192 781.8384 817.7033 
3 15 –  377.1822 784.3644 851.6110

* Roman font for the H&TS data and Italic font for the HONLY data.
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FIGURE 6: Intensity functions in the 3-state model for the H&TS data.

and high-occurrence years. As we can see the shapes of these three intensity 
functions are quite different. When the background process is in state 1, the 
solid line in Figure 6 shows a low-occurrence of the hurricanes and tropical 
storms with an estimated yearly average count of 2.99, and they occur near 
evenly in the early months of the season from June to September. When it is 
in an moderate-occurrence year (state 2), the dotted line implies that most 
events occur centrally in three months from August to October and the esti-
mated average number of  yearly occurrences is around 3.98. In state 3, the 
dashed line indicates a high-occurrence of these hurricanes and tropical storms 
with an estimated annual average count of  7 and they occur mostly in the 
middle four months of the season. The estimated conditional monthly counts 
and their corresponding proportions for each state are displayed in Table 4. 
The estimated unconditional yearly average count, given by j jp lj 1=

3/ , is 3.992, 
which is very closed to the empirical one from the data. 

TABLE 4

THE ESTIMATED MONTHLY COUNTS IN THE 3-STATE MODEL FOR THE H&TS DATA

Month
Low-occurrence 

Estimated Counts (%)
Moderate-occurrence 
Estimated Counts (%)

High-occurrence 
Estimated Counts (%)

JUN 0.592 (19.77) 0.001 (.02) 0.592 (8.45)

JUL 0.688 (22.99) 0.124 (3.12) 1.486 (21.21) 

AUG 0.640 (21.36) 1.067 (26.79) 1.836 (26.21)

SEP 0.533 (17.79) 1.945 (48.83) 1.671 (23.87)

OCT 0.379 (12.65) 0.815 (20.46) 1.096 (15.66) 

NOV 0.163 (5.44) 0.031 (.78) 0.322 (4.60)

Total 2.995 (100) 3.983 (100) 7.003 (100)
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We should mention the identifi ability issue with respect to the model 
parameters encountered while running the EM or the direct maximizing 
 estimation algorithms. There were cases when the system could not clearly 
identify between states and returned estimation results, for example, with the same 
average intensity rate for different states. This practically affects only the compu-
tational effi ciency, and for prediction, the impact could be technically ignored. 

6. CONCLUDING REMARKS

From the statistical application point of view, we conclude that the PHMMs 
are more realistic in practice than the classical Poisson processes, as they take 
into account the unobservable underlying environmental effect, which affects 
the (claim) counts. This seems to be the case for hurricane and tropical storm 
landfalls. Moreover, the PHMMs with a short-term claim intensity can be useful 
in modeling claim counts that evolve in a periodic environment. By considering 
the impact of seasonality, the proposed beta-type periodic claim intensity gen-
eralizes the Poisson models with constant intensity rate. The fl exibility in shape 
of the beta function, as well as the tractability of the statistical estimation of 
model parameters, should make these nonhomogeneous beta-featured PHMMs 
easy to use in practice. We hope that the illustration of  the hurricane and 
tropical storm dataset serves to show that NPHMMs can also be tractable if  
properly parameterized.

The model presented allows for over-dispersion relative to a Poisson distri-
bution and for correlation between observations. This gives an alternative 
method to study the U.S. Atlantic hurricane and tropical storm data as we try 
to explain the role the variability of random environments plays in possibly 
inducing the El Nino/La Nina phenomena, which in turn affect the count 
distribution or process.

This dynamic NPHMM can be extended by considering the general dth 
order Markov process instead of  the ordinary Markov chain for the state 
process and also the nonhomogeneous transitions for the hidden Markov chain. 
The Markov-modulated Poisson process or the two-step dependent PHMM
in the sense of Rydén (1994) can also be studied where the distribution of the 
claim counts depends on the current state as well as on the previous one.
By combining the loss or damage incurred from these (claim) counts, the mod-
els presented in this paper could be further developed to estimate the total 
insurance and/or reinsurance costs.
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