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COMPLEMENTARITY AND
IDENTIFICATION

TATE TWINAM
University of Washington

This paper examines the identification power of assumptions that formalize the no-
tion of complementarity in the context of a nonparametric bounds analysis of treat-
ment response. I extend the literature on partial identification via shape restrictions
by exploiting cross-dimensional restrictions on treatment response when treatments
are multidimensional; the assumption of supermodularity can strengthen bounds on
average treatment effects in studies of policy complementarity. This restriction can
be combined with a statistical independence assumption to derive improved bounds
on treatment effect distributions, aiding in the evaluation of complex randomized
controlled trials. Complementarities arising from treatment effect heterogeneity can
be incorporated through supermodular instrumental variables to strengthen identi-
fication in studies with one or multiple treatments. An application examining the
long-run impact of zoning on the evolution of urban spatial structure illustrates the
value of the proposed identification methods.

1. INTRODUCTION

Complementarities arise naturally in many economic problems, often manifest-
ing as policy interactions or treatment effect heterogeneity among observed sub-
groups of a population. This paper examines how assumptions that formalize
the notion of complementarity can aid in the identification of treatment effects.
The analysis employs a nonparametric bounds approach, where identification
is driven by qualitative restrictions rooted in economic theory or empirical evi-
dence rather than strong functional form or unconfoundedness assumptions. This
approach will yield interval estimates of parameters of interest; however, informa-
tive bounds are often preferable to precise (but wrong) estimates obtained under
incorrect assumptions. Partial identification tools have been fruitfully applied to a
wide range of empirical problems.1

In particular, I explore the identification power yielded by assuming that in-
dividual treatment response functions exhibit supermodularity when treatments
are multidimensional. This assumption allows one to construct more informa-
tive bounds in studies of policy complementarity, which are typically stymied
by the absence of pseudo-experimental variation in the assignment of multiple
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treatments. Complementarities arising from interactions between treatment
effects and observable covariates can be formalized as supermodular instrumental
variables to improve bounds on average treatment effects. This novel instrumental
variable approach is broadly applicable to studies with one or multiple treatments.
Complementarity is frequently invoked in economics, but studies of its identifi-
cation power have been limited to very specific contexts. This paper develops
general results applicable to program evaluation in a wide range of empirical sit-
uations, and their value is illustrated by an empirical application on the long-run
effects of zoning on urban spatial structure.

Typically, empirical studies seek to estimate the effect of a single treatment
on one or more outcome variables. However, the effect of a treatment may vary
substantially with the value of other (endogenously-determined) treatment vari-
ables. When policymakers have multiple tools at their disposal, understanding
how different policies enhance or offset each other is crucial. If the positive im-
pact of some policy intervention is substantially larger when combined with a
second (costly) intervention, a measure of the magnitude of this difference is nec-
essary for a proper cost-benefit analysis. The supermodularity and submodularity
assumptions proposed here can aid in quantifying how policy impacts differ with
the associated policy environment.

For example, unemployment relief is a multidimensional policy, involving a
choice of both potential benefit duration and the wage replacement rate. Lalive,
Van Ours, and Zweimüller (2006) show both theoretically and empirically that
these two dimensions are complementary, with simultaneous increases in both
the replacement rate and potential benefit duration leading to an increase in un-
employment duration substantially larger than the sum of the effects measured
individually for particular subgroups. The Lalive et al. study exploits variation in
both dimensions of unemployment relief that has the characteristics of a natural
experiment, but such opportunities are very rare. Pseudo-experimental variation
along multiple policy dimensions is far less common than similar variation in in-
dividual policies. This has arguably led to the overwhelming focus on the effects
of policies in isolation. The partial identification tools developed here, which are
applicable in the absence of any unusual pseudo-experimental policy variation,
should enhance the ability of researchers to measure treatment effect heterogene-
ity due to policy complementarities in a wide range of contexts.2

Relatedly, responses to a treatment may differ among subpopulations defined
by observable covariates. Many recent experimental studies have discussed the
importance of treatment effect heterogeneity between subgroups (Bitler, Gelbach,
and Hoynes, 2006, 2008, 2014; Djebbari and Smith, 2008; Feller and Holmes,
2009). Qualitative information about such treatment effect heterogeneity leads
naturally to supermodular instrumental variables, which can help narrow the
bounds on average treatment effects in the same manner as a traditional instru-
mental variable or a monotone instrumental variable.3 Supermodular instrumental
variables can be applied in the case of a single treatment or multiple treatments,
making them a potentially valuable addition to the range of identifying assump-
tions available to applied researchers.
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While the bulk of the paper focuses on identification using non-experimental
data, the assumptions developed in this paper can be applied in the evaluation
of complex randomized controlled trials (RCTs) involving multiple treatments.
The structural assumptions introduced can be used to obtain stronger bounds on
the (partially identified) distribution of treatment effects. Since average treatment
effects are identified in this context, the supermodularity or submodularity of av-
erage effects can be established, and this can be used to provide some justification
for the stronger structural assumptions. Similarly, the validity of supermodular
instrumental variable assumptions can be established and used to justify stronger
quantile supermodular instrumental variable assumptions, which can also be
applied in the case of a single treatment.

The literature on partial identification is extensive.4 Many of the contributions
of Charles Manski and coauthors are relevant to the results developed below and
are reviewed as appropriate. The literature on complementarity and identifica-
tion is relatively small. Molinari and Rosen (2008) connect supermodularity to
identification in the context of game estimation. They show that the approach
of Aradillas-Lopez and Tamer (2008) applies to games with supermodular payoff
functions. Eeckhout and Kircher (2011) find that they cannot identify (using wage
data alone) whether or not the technology of a firm is supermodular, i.e., whether
or not more productive workers sort towards more productive jobs. Graham,
Imbens, and Ridder (2014) analyze how reallocations of indivisible heteroge-
neous inputs across production units (leaving a potentially complementary input
fixed) may affect average output. They discuss identification and estimation of
the effects of a variety of correlated matching rules. Lazzati (2015) uses mono-
tone comparative statics to partially identify treatment response in the presence of
endogenous social interactions. The shape restrictions proposed have previously
been used in the context of estimation to improve efficiency; Beresteanu (2005,
2007) considers the efficiency gains from imposing a variety of restrictions,
including supermodularity and submodularity.

2. NOTATION AND SETUP

Individuals are drawn from a population I . The set I , the Borel σ -algebra of subsets
of I denoted by I, and the probability measure P together form a probability space
(I,I, P). Every individual i ∈ I is associated with a vector of covariates xi ∈ X
and a vector of realized treatments zi ∈ T , where T is the treatment set.5 Since I
focus on the identification of treatment effects in the presence of multiple treat-
ments, the following assumption is imposed on the structure of the treatment space:

Assumption. The treatment space T is such that

• T ⊆ RL with L ∈ N,

• T is partially ordered under the product order,6 and

• T is a nonempty lattice.
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The lattice assumption means that, for any t1, t2 ∈ T , T contains the join (least
upper bound) of t1 and t2, denoted by t1 ∨ t2, as well as the meet (greatest lower
bound) of t1 and t2, denoted by t1 ∧ t2.7 Examples of lattices include R2, Z×R,
and {0,1}n for n ∈ N. An element t1 of a lattice T is the top (bottom) of T if
t2 ≤ t1 (t1 ≤ t2) for all t2 ∈ T ; if t1 is not the top or bottom, it is in the inte-
rior. If the top (or bottom) of a lattice exists, it is unique. A subset S ⊆ T is
a sublattice of T if, for any t1, t2 ∈ S, S contains the meet and join of t1 and
t2 in T . The advantage of the lattice assumption is the notational clarity it pro-
vides when employing supermodularity and submodularity assumptions. In this
paper, I restrict attention to discrete treatments, as these are most commonly en-
countered in practice. Dimensions of the treatment may be binary or multivalued
(Cattaneo 2010).

Every individual i is associated with a (measurable) response function yi (·) :
T → Y ∈ R mapping treatments into outcomes yi(t).8 zi ∈ T is the treatment
that i actually receives, so yi (zi ) is individual i ’s realized outcome, {yi (t)}t 	=zi

are individual i ’s counterfactual outcomes, and {yi(t)}t∈T are individual i ’s
potential outcomes.9 Throughout, I assume that there exist K , K ∈ R such that
K ≤ y(t) ≤ K for all t; these are global bounds on response functions. In the
absence of these global bounds, the results below will generally be uninformative.
All well-defined expectations are assumed to exist.10

3. SHAPE RESTRICTIONS

In this section, I explore the identifying power of shape restrictions that formalize
complementarity and substitutability, with an emphasis on the identification of
average treatment effects. Shape restrictions proposed in the previous literature
are reviewed before moving on to the novel restrictions proposed here. Using
these assumptions, I derive bounds on average treatment effects for both simple
and complex treatment spaces.

Manski (1989) introduced the no-assumption bounds on E[ y(t) ]. The no-
assumption upper bound is the average of E[ y(t) | z = t ] and the global upper
bound K , weighted, respectively, by P(z = t) and P(z 	= t); likewise for the lower
bound. Since they are typically wide, research has focused on other credible as-
sumptions that yield additional identifying power.

Manski (1997) studied the identification power of assumptions on the shape
of individual response functions; in particular, he considered restricting response
functions to be monotone, semimonotone, or concave-monotone. Semimonotone
treatment response (SMTR), which I employ below, requires response functions
to be weakly increasing in t . SMTR has the same identification power regardless
of whether T ⊆ R or T ⊆ RL for L > 1, except that in the latter case, it is pos-
sible that t1 ‖ t2. Bhattacharya, Shaikh, and Vytlacil (2008) derives bounds using
SMTR without assuming a particular direction of monotonicity. Tsunao and Usui
(2014) study the identification power of concave-monotone treatment response
combined with monotone treatment selection (discussed in Section 4).
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SMTR is a within-dimension restriction on the response functions. Additional
identification power can be obtained from cross-dimension restrictions, where the
marginal effect of a change in some dimensions of the treatment variable depends
on the values of the other dimensions:

Assumption SPM (Supermodularity). Response functions are supermodular
on a sublattice S ⊆ T if, for all t1, t2 ∈ S,

y(t2)+ y(t1) ≤ y(t1 ∨ t2)+ y(t1 ∧ t2). (3.1)

Assumption SBM (Submodularity). Response functions are submodular on a
sublattice S ⊆ T if, for all t1, t2 ∈ S,

y(t2)+ y(t1) ≥ y(t1 ∨ t2)+ y(t1 ∧ t2). (3.2)

SPM is a formalization of the notion of complementarity. If two dimensions
of a treatment t = (t1, t2) are complementary, then the magnitude of the change
in the response variable due to an increase in the first dimension t1 is increasing
with t2. Thus, each component of the treatment amplifies the marginal effect of
the other component. In the case of a linear model

y = α +βt1 + δt2 +γ t1t2, (3.3)

supermodularity is equivalent to the sign restriction γ ≥ 0. More generally, if y is
a (sufficiently smooth) nonlinear function of the treatment, supermodularity can

be interpreted as a nonnegativity restriction on the cross-partial derivative ∂2 y
∂t1∂t2 .

SBM is a formalization of substitutability, the case where elements of the treat-
ment may mitigate each others effects. In the linear model above, submodularity is
equivalent to the sign restriction γ ≤ 0. If both supermodularity and submodular-
ity hold, response functions are said to be modular. Since assumptions SPM and
SBM can be applied on sublattices of T , it is possible to allow some dimensions
of a treatment to be complements while those same dimensions are substitutes
with other dimensions.

Neumark and Wascher (2011) provide an example of policy complementarity
in a study on the interaction between the Earned Income Tax Credit (EITC) and
the minimum wage. They find that a higher minimum wage enhances the positive
effect of the EITC on the labor supply of single mothers; they find the opposite
effect for childless individuals, suggesting a crowding-out effect. These findings
suggest that assumptions SPM and SBM, respectively, for each subgroup, could
be applied in other studies on how the effect of minimum wage changes are in-
fluenced by the EITC or similar programs. Another naturally multidimensional
policy is zoning. Zoning laws typically regulate many aspects of the built envi-
ronment; most broadly, they regulate both what types of uses are allowed (com-
mercial, industrial, etc.) and how densely land can be developed (lot coverage of
buildings, maximum height, etc.). The effects of specific zoning policies may vary
with the overall policy bundle, which I explore further in the empirical application
in Section 6.
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The amount one can learn about E[ y(t1) ] or E[ y(t1) − y(t2) ] from the data
alone depends on P(z = t1) and, in the latter case, P(z = t2). If P(z = t1)
is small, the data are practically uninformative about E[ y(t1) ].11 Thus, the re-
searcher faces a trade-off where richer treatment spaces (which entail a larger
number of treatments) allow for more interesting questions but generally lead to
less precise answers. Adding “nuisance” dimensions to the treatment space that
allow for the application of additional SPM or SBM assumptions will generally
not aid in the identification of treatment effects of interest.

In Propositions 1 and 2, I show how SPM and SBM can be used to compute
bounds on the expectations of average treatment effects. In general, these bounds
will improve upon the no-assumption bounds in the case of multidimensional treat-
ments; with only a single treatment, SPM and SBM have no identifying power.
The simplest nontrivial lattice treatment space is T = {(0,0),(1,0),(0,1),(1,1)},
which corresponds to two binary treatments. The following result shows the impli-
cations of supermodularity for identification on this simple treatment space:

PROPOSITION 1. Assume that T = {(0,0),(1,0),(0,1),(1,1)}. Assume that
SPM holds on T . Then, the bounds

E[ y(1,0) | z = (1,0) ]P(z = (1,0))+ K P(z 	= (1,0))

− E[ y(0,0) | z = (0,0) ]P(z = (0,0))− K P(z 	= (0,0))

≤ E[ y(1,0)− y(0,0) ]

≤ E[ y(1,1) | z = (1,1) ]P(z = (1,1))

+E[ y(1,0) | z = (1,0) ]P(z = (1,0))

+ K P(z ∈ {(0,0), (0,1)})−E[ y(0,1) | z = (0,1) ]P(z = (0,1))

−E[ y(0,0) | z = (0,0) ]P(z = (0,0))− K P(z ∈ {(1,0), (1,1)}) (3.4)

and

E[ y(1,1) | z = (1,1) ]P(z = (1,1))+ E[ y(1,0) | z = (1,0) ]P(z = (1,0))

+ K P(z ∈ {(0,0),(0,1)})− E[ y(0,1) | z = (0,1) ]P(z = (0,1))

− E[ y(0,0) | z = (0,0) ]P(z = (0,0))− K P(z ∈ {(1,0),(1,1)})
≤ E[ y(1,1)− y(0,1) ]

≤ E[ y(1,1) | z = (1,1) ]P(z = (1,1))+ K P(z 	= (1,1))

− E[ y(0,1) | z = (0,1) ]P(z = (0,1))− K P(z 	= (0,1)) (3.5)

are sharp.12 The no-assumption bounds remain sharp for E[ y(1,1) − y(0,0) ],
E[ y(1,0) − y(0,1) ], E[ y(0,1)− y(1,0) ], and each average potential outcome
E[ y(·) ] defined on T .

Proof of Proposition 1. First, I show that SPM does not improve upon the
no-assumption bounds on potential outcomes. SPM implies that

y(1,0)+ y(0,1) ≤ y(1,1)+ y(0,0).
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For each i , exactly one of these outcomes is observed. The unobserved terms
may take any value in [K , K ]. Consider bounding the average potential outcome
E[ y(1,0) ]. When z 	= (1,0), there are three cases to consider. If z = (1,1), then
SPM implies

y(1,0) ≤ K ≤ y(1,1)+ K − K .

If z = (0,1), then

y(1,0) ≤ K ≤ K + K − y(0,1).

If z = (0,0), then

y(1,0) ≤ K ≤ K + y(0,0)− K .

All three of these inequalities are implied without SPM, so the assumption is
nonbinding. Thus, it follows that

y(1,0) ∈
{

{y(1,0)} if z = (1,0)

[K , K ] if z ∈ {(0,0),(0,1),(1,1)}.
Taking expectations yields the no-assumption bounds. A similar argument applies
to the other elements of T .

The SPM inequality does permit strengthened identification results for treat-
ment effects. In the no-assumption case, if z = (1,1) or z = (0,1), then
y(1,0) − y(0,0) ∈ [K − K , K − K ]. Under SPM, the fact that we observe one
of {y(1,1), y(0,1)} allows us to further reduce this upper bound. Sharp bounds
for the treatment effects y(1,0)− y(0,0), y(1,1)− y(0,1), and y(1,1)− y(0,0)
are given below:

y(1,0)− y(0,0) ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[K − y(z), K − y(z)] if z = (0,0)

[y(z)− K , y(z)− K ] if z = (1,0)

[K − K , K − y(z)] if z = (0,1)

[K − K , y(z)− K ] if z = (1,1)

, (3.6)

y(1,1)− y(0,1) ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[K − y(z), K − K ] if z = (0,0)

[y(z)− K , K − K ] if z = (1,0)

[K − y(z), K − y(z)] if z = (0,1)

[y(z)− K , y(z)− K ] if z = (1,1)

, (3.7)

y(1,1)− y(0,0) ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[K − y(z), K − y(z)] if z = (0,0)

[K − K , K − K ] if z = (1,0)

[K − K , K − K ] if z = (0,1)

[y(z)− K , y(z)− K ] if z = (1,1)

. (3.8)

Taking expectations in equations (3.6) and (3.7) yields the bounds in (3.4) and
(3.5), respectively. Equation (3.8) shows that the no-assumption bounds remain
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sharp for E[ y(1,1)− y(0,0) ]. A similar analysis establishes that the no-assumption
bounds remain sharp for E[ y(0,1)− y(1,0) ] and E[ y(1,0)− y(0,1) ]. �

In Proposition 1, assumption SPM improves the upper bound on E[ y(1,0) −
y(0,0) ] and the lower bound on E[ y(1,1) − y(0,1) ] by establishing a mono-
tonicity relationship between the two treatment effects. Similar bounds for the
treatment effects E[ y(0,1)− y(0,0) ] and E[ y(1,1)− y(1,0) ] can be obtained by
permuting the order of the treatments and applying the result. As stated in the
proposition, the no-assumption bounds on E[ y(1,1) − y(0,0) ], E[ y(1,0) −
y(0,1) ], and E[ y(0,1)− y(1,0) ] remain sharp under SPM. In the special case
where y is bounded between zero and one, SPM can establish that E[ y(1,0)−
y(0,0) ] ∈ [−1,0] or E[ y(1,1)− y(0,1) ] ∈ [0,1] if the observed expectations in
(3.4) and (3.5) take certain boundary values. In general, however, SPM is not suffi-
cient to identify the sign of a treatment effect in the absence of other assumptions.

Sharp bounds can be derived on more general treatment spaces using the same
approach. For any t1 and t2,

E[ y(t1)− y(t2) ] =
∑
t3∈T

E[ y(t1)− y(t2) | z = t3 ]P(z = t3).

Thus, bounds can be derived for E[ y(t1)− y(t2) ] by bounding E[ y(t1)− y(t2) |
z = t3 ] for each t3. Bounds on E[ y(t1)− y(t2) | z = t3 ] will differ depending on
the data, the ordering of the three treatments, and whether SPM and/or SBM hold
on any sublattices containing the treatments. To capture all of the information im-
plied by the data and assumptions, one must examine every sublattice containing
t1, t2, and t3, determine which of SPM and SBM hold on the sublattice, and derive
the implied bounds given the ordering of t1, t2, and t3.

To this end, I formally define a collection of sets of treatments (indexed by t1
and t2) which will allow for a derivation of the bounds on E[ y(t1)− y(t2) | z = t3 ]
by identifying which assumptions (if any) imply tightened bounds and the form
those bounds will take. Let {Sγ }γ∈� be the collection of all sublattices of T such
that, for every γ ∈ �, |Sγ | = 4 and Sγ is not a chain. These are the minimal
sublattices on which SPM and SBM can have any implications for identification.
Let �t1,t2 denote the set of γ such that t1, t2 ∈ Sγ , and let �SPM

t1,t2 refer to the subset
of �t1,t2 for which SPM (but not SBM) holds on Sγ ; likewise, let �SBM

t1,t2 refer to
the subset where only SBM holds on Sγ . Let �MOD

t1,t2 refer to the subset where both
SPM and SBM hold. Then, one can define the following sets:

	1 = {
t3 | t2 < t1 < t3 and either ∃γ ∈ �MOD

t1,t2 s.t. t3 ∈ Sγ

or ∃γ ∈ �SPM
t1,t2 ,γ ′ ∈ �SBM

t1,t2 s.t. t3 ∈ Sγ ∩ Sγ ′
}
,

	2 = {
t3 | t2 < t1 < t3,�γ ∈ �MOD

t1,t2 ∪�SBM
t1,t2 s.t. t3 ∈ Sγ ,

and ∃γ ∈ �SPM
t1,t2 s.t. t3 ∈ Sγ

}
,

	3 = {
t3 | t2 < t1 < t3,�γ ∈ �MOD

t1,t2 ∪�SPM
t1,t2 s.t. t3 ∈ Sγ ,

and ∃γ ∈ �SBM
t1,t2 s.t. t3 ∈ Sγ

}
,
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	4 = {
t3 | t3 < t2 < t1 and either ∃γ ∈ �MOD

t1,t2 s.t. t3 ∈ Sγ

or ∃γ ∈ �SPM
t1,t2 ,γ ′ ∈ �SBM

t1,t2 s.t. t3 ∈ Sγ ∩ Sγ ′
}
,

	5 = {
t3 | t3 < t2 < t1,�γ ∈ �MOD

t1,t2 ∪�SBM
t1,t2 s.t. t3 ∈ Sγ ,

and ∃γ ∈ �SPM
t1,t2 s.t. t3 ∈ Sγ

}
,

	6 = {
t3 | t3 < t2 < t1,�γ ∈ �MOD

t1,t2 ∪�SPM
t1,t2 s.t. t3 ∈ Sγ ,

and ∃γ ∈ �SBM
t1,t2 s.t. t3 ∈ Sγ

}
,

	7 = {
t3 | t3 < t1, t3 ‖ t2, and ∃γ ∈ �MOD

t1,t2 s.t. t3 ∈ Sγ

}
,

	8 = {
t3 | t3 < t1, t3 ‖ t2, and ∃γ ∈ �SPM

t1,t2 s.t. t3 ∈ Sγ

}
,

	9 = {
t3 | t3 < t1, t3 ‖ t2, and ∃γ ∈ �SBM

t1,t2 s.t. t3 ∈ Sγ

}
,

	10 = {
t3 | t2 < t3, t3 ‖ t1, and ∃γ ∈ �MOD

t1,t2 s.t. t3 ∈ Sγ

}
,

	11 = {
t3 | t2 < t3, t3 ‖ t1, and ∃γ ∈ �SPM

t1,t2 s.t. t3 ∈ Sγ

}
,

	12 = {
t3 | t2 < t3, t3 ‖ t1, and ∃γ ∈ �SBM

t1,t2 s.t. t3 ∈ Sγ

}
,

	13 =
⎛
⎝ 12⋃

j=1

	j

⎞
⎠

c

\{t1, t2}. (3.9)

These partition the set of sublattices of T containing t1, t2, and t3 based on the
ordering of the treatments and the assumptions imposed. These sets are mutually
exclusive and exhaustive, so each t3 will belong to exactly one. For an example
of how the sets can be used, consider 	5. If t3 ∈ 	5, then t1, t2, and t3 belong
to one or more sublattices on which SPM holds, but none on which SBM holds.
The required ordering implies that

K − y(t3) ≤ y(t1)− y(t2)

and thus

y(t1)− y(t2) ∈ [K − y(t3), K − K ],

which implies that

K − E[ y(t3) | z = t3 ] ≤ E[ y(t1)− y(t2) | z = t3 ] ≤ K − K .

The following result uses the above sets to derive sharp bounds on E[ y(t1)−
y(t2) ] under arbitrary combinations of supermodularity and submodularity.

PROPOSITION 2. Let {Sγ }γ∈� be the collection of all sublattices of T such
that, for every γ ∈ �, Sγ is not a chain and |Sγ | = 4. Define �SPM ⊆ � to be the
set of γ such that SPM holds on Sγ and SBM does not hold on Sγ iff γ ∈ �SPM;
likewise, define �SBM ⊆ � to be the set of γ such that SBM holds on Sγ and SPM
does not hold on Sγ iff γ ∈ �SBM. Define �MOD ⊆ � to be the set of γ such that
SPM and SBM hold on Sγ iff γ ∈ �MOD. Let �SPM

t1,t2 ⊆ �SPM be the set of γ such
that t1, t2 ∈ Sγ and γ ∈ �SPM; likewise for �SBM

t1,t2 and �MOD
t1,t2 . Then, for t2 < t1,
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[E[ y(t1) | z = t1 ] − K ]P(z = t1)+ [K − E[ y(t2) | z = t2 ]]P(z = t2)

+
∑

t3∈
⋃

j∈{1,3,7,8} 	j

[E[ y(t3) | z = t3 ] − K ]P(z = t3)

+
∑

t3∈⋃
j∈{4,5,10,12} 	j

[K − E[ y(t3) | z = t3 ]]P(z = t3)

+
∑

t3∈⋃
j∈{2,6,9,11,13} 	j

[K − K ]P(z = t3)

≤ E[ y(t1)− y(t2) ]

≤ [K − E[ y(t2) | z = t2 ]]P(z = t2)+ [E[ y(t1) | z = t1 ] − K ]P(z = t1)

+
∑

t3∈⋃
j∈{1,2,7,9} 	j

[E[ y(t3) | z = t3 ] − K ]P(z = t3)

+
∑

t3∈⋃
j∈{4,6,10,11} 	j

[K − E[ y(t3) | z = t3 ]]P(z = t3)

+
∑

t3∈
⋃

j∈{3,5,8,12,13} 	j

[K − K ]P(z = t3). (3.10)

These bounds are sharp.

Proof of Proposition 2. By the Law of Iterated Expectations,

E[ y(t1)− y(t2) ] =
∑
t3∈T

E[ y(t1)− y(t2) | z = t3 ]P(z = t3). (3.11)

Sharp bounds for the partially identified expectations on the right hand side of
(3.11) will yield sharp bounds on E[ y(t1)− y(t2) ]. I proceed by finding the sharp
identification region for an arbitrary y(t1) − y(t2) and every possible value that
z may take. These can be averaged to find sharp bounds on E[ y(t1)− y(t2) | z ]
for all z. SPM and SBM provide identifying power by establishing monotonicity
relationships between treatment effects, so for each possible value of z, it must
be determined which of the following inequalities are implied by the maintained
assumptions:

y(t1)− y(t2) ≤ y(z)− K , (3.12)

y(t1)− y(t2) ≤ K − y(z), (3.13)

y(z)− K ≤ y(t1)− y(t2), (3.14)

K − y(z) ≤ y(t1)− y(t2). (3.15)

I show that 1) the union of these sets is T \ {t1, t2}, 2) these sets are mutually
exclusive, and 3) they allow for a characterization of the identification region for
E[ y(t1)− y(t2) ].

⋃12
j=1 	j = T \ {t1, t2} follows from the definition of 	13. Due

to the orderings required for membership, the sets 	1 ∪	2 ∪	3, 	4 ∪	5 ∪	6,
	7 ∪	8 ∪	9, and 	10 ∪	11 ∪	12 are mutually exclusive.
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The sets 	1, 	2, and 	3 collect those sublattices where t2 is the bottom and t1
is in the interior. 	1, 	2, and 	3 are mutually exclusive because 	1 requires ei-
ther the existence of a four-point sublattice containing t1, t2, and t3 on which both
SPM and SBM hold or the existence of at least two distinct sublattices containing
t1, t2, and t3 where SPM holds on one while SBM holds on the other. 	2 rules out
both of these possibilities, only allowing for the existence of a sublattice contain-
ing t1, t2, and t3 on which SPM holds; similarly, 	3 only allows for the existence
of a sublattice containing t1, t2, and t3 on which SBM holds. An identical argu-
ment establishes that 	4, 	5, and 	6 are mutually exclusive; these sets are defined
identically to 	1, 	2, and 	3, respectively, with the modification that t3 < t2 < t1
rather than t2 < t1 < t3, so t2 is in the interior and t1 is the top of each sublattice.

The set construction is complicated in the above cases because the orderings
t2 < t1 < t3 and t3 < t2 < t1 are compatible with multiple four-point sublattices
containing t1, t2, and t3. This results from the fact that there may be multiple t4
such that t1 ∨ t4 = t3 and t1 ∧ t4 = t2 (in the former case) and t2 ∨ t4 = t1 and
t2 ∧ t4 = t3 (in the latter case). When exactly two of t1, t2, and t3 are incompara-
ble, there can be at most one four-point sublattice containing t1, t2, and t3, since
the incomparable treatments define a unique meet and join. This simplifies the
construction of the sets 	7, . . . ,	12. By the above argument and the fact that

�MOD
t1,t2 ∩�SPM

t1,t2 = �MOD
t1,t2 ∩�SBM

t1,t2 = �SPM
t1,t2 ∩�SBM

t1,t2 = ∅,

the sets 	7, 	8, and 	9 are mutually exclusive. The same argument establishes
that 	10, 	11, and 	12 are mutually exclusive.

The sets 	1, . . . ,	12 define every sublattice membership pattern for t1 and
t2 for which SPM and SBM may have any implications; this follows from
Proposition 1 and its straightforward extension to the case of SBM. I now out-
line the implications for the identification of y(t1)− y(t2) when z ∈ 	j for each
j ∈ {1, . . . ,12}.

If z ∈ 	1, then both SPM and SBM hold on one or more sublattices containing
t1, t2, and z, and the required ordering implies that both (3.12) and (3.14) hold.
Thus,

y(t1)− y(t2) ∈ [y(z)− K , y(z)− K ]. (3.16)

If z ∈ 	2, then t1, t2, and z belong to one or more sublattices on which only SPM
holds. The required ordering implies that (3.15) holds and thus

y(t1)− y(t2) ∈ [K − K , y(z)− K ]. (3.17)

If z ∈ 	3, then t1, t2, and z belong to one or more sublattices on which only SBM
holds. The required ordering implies that (3.14) holds and thus

y(t1)− y(t2) ∈ [y(z)− K , K − K ]. (3.18)

If z ∈ 	4, then both SPM and SBM hold on one or more sublattices containing t1,
t2, and z, and the required ordering implies that both (3.13) and (3.15) hold. Thus,

y(t1)− y(t2) ∈ [K − y(z), K − y(z)]. (3.19)
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If z ∈ 	5, then t1, t2, and z belong to one or more sublattices on which only SPM
holds. The required ordering implies that (3.15) holds and thus

y(t1)− y(t2) ∈ [K − y(z), K − K ]. (3.20)

If z ∈ 	6, then t1, t2, and z belong to one or more sublattices on which only SBM
holds. The required ordering implies that (3.13) holds and thus

y(t1)− y(t2) ∈ [K − K , K − y(z)]. (3.21)

If z ∈ 	7, then both SPM and SBM hold on the only sublattice containing t1, t2,
and z, and the required ordering implies that both (3.12) and (3.14) hold. Thus,

y(t1)− y(t2) ∈ [y(z)− K , y(z)− K ]. (3.22)

If z ∈ 	8, then SPM holds on the only sublattice containing t1, t2, and z, and the
required ordering implies that (3.14) holds and thus

y(t1)− y(t2) ∈ [y(z)− K , K − K ]. (3.23)

If z ∈ 	9, then SBM holds on the only sublattice containing t1, t2, and z, and the
required ordering implies that (3.12) holds and thus

y(t1)− y(t2) ∈ [K − K , y(z)− K ]. (3.24)

If z ∈ 	10, then both SPM and SBM hold on the only sublattice containing t1, t2,
and z, and the required ordering implies that both (3.15) and (3.13) hold. Thus,

y(t1)− y(t2) ∈ [K − y(z), K − y(z)]. (3.25)

If z ∈ 	11, then SPM holds on the only sublattice containing t1, t2, and z, and the
required ordering implies that (3.13) holds and thus

y(t1)− y(t2) ∈ [K − K , K − y(z)]. (3.26)

If z ∈ 	12, then SBM holds on the only sublattice containing t1, t2, and z, and the
required ordering implies that (3.15) holds and thus

y(t1)− y(t2) ∈ [K − y(z), K − K ]. (3.27)

The set 	13 contains those t3 that obey one of the orderings from 	1, . . . ,	12
but do not belong to a sublattice on which SPM or SBM hold; thus, the no-
assumption bounds [K − K , K − K ] will hold for these. It also contains t3 such
that t2 < t3 < t1, and any four-point sublattice containing these treatments must
have t2 as the bottom and t1 as the top; on these sublattices, SPM and SBM have
no implications for identification. Additionally, 	13 contains t3 such that t3 ‖ t1
and t3 ‖ t2; SPM and SBM have no identifying power in these circumstances, as
t1, t2, and t3 do not share a four-point sublattice.

The focus on four-point sublattices is without loss of generality, since the im-
plications of assumptions SPM and SBM only appear on four-point sublattices.
SPM and SBM have no implications on chains, so sublattices that are chains can
be ignored. Restricting attention to elements of {Sγ }γ∈�t1,t2

⊆ {Sγ }γ∈� is without
loss of generality as well. This follows from the fact that SPM and SBM have no
implications for potential outcomes under the maintained assumptions, and any
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implications for the treatment effect y(t1) − y(t2) from another treatment effect
which are mediated by a third treatment effect are realized directly on a sub-
lattice containing the treatments from the first two treatment effects. To see this
concretely, suppose that Sγ = {t2, t1, t3, t4} and Sγ ′ = {t3, t4, t5, t6} where t1 ‖ t3,
t4 ‖ t5, t2 = t1 ∧ t3, t4 = t1 ∨ t3, t3 = t4 ∧ t5, and t6 = t4 ∨ t5. Suppose that SPM
holds on both Sγ and Sγ ′ . This implies

y(t1)− y(t2) ≤ y(t4)− y(t3) ≤ y(t6)− y(t5)

=⇒ y(t1)− y(t2) ≤ y(t6)− y(t5).

The fact that {t2, t1, t5, t6} ∈ {Sγ }γ∈�SPM
t1,t2

follows from Lemma 1 below and the

definition of �SPM
t2,t1 :

LEMMA 1. Assume that t1 ‖ t3, t4 ‖ t5, t2 = t1 ∧ t3, t4 = t1 ∨ t3, t3 = t4 ∧ t5, and
t6 = t4 ∨ t5. Then, t5 ∧ t1 = t2 and t5 ∨ t1 = t6.

Proof. See appendix. �
The argument in the SBM case simply reverses the inequalities.
The results from (3.16)–(3.27) are summarized below:

y(t1)− y(t2) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[K − y(z), K − y(z)] if z ∈ {t2}∪	4 ∪	10

[y(z)− K , y(z)− K ] if z ∈ {t1}∪	1 ∪	7

[K − K , y(z)− K ] if z ∈ 	2 ∪	9

[K − K , K − y(z)] if z ∈ 	6 ∪	11

[y(z)− K , K − K ] if z ∈ 	3 ∪	8

[K − y(z), K − K ] if z ∈ 	5 ∪	12

[K − K , K − K ] if z ∈ 	13

. (3.28)

Since the sets {t1},{t2},	1, . . . ,	13 are mutually exclusive and exhaustive,
(3.28) characterizes the sharp identification region for y(t1) − y(t2) and each
possible z. Averaging the bounds in (3.28) across i yields sharp bounds on
E[ y(t1)− y(t2) ] via (3.11). These are given in (3.10). �

Proposition 2 generalizes Proposition 1 by allowing for a much richer set of
treatments. The treatment may have any finite number of dimensions, and each
may be binary or multivalued. Some dimensions of the treatment may be comple-
ments while others are substitutes; the result allows for arbitrary combinations of
SPM and SBM as appropriate. The complexity of the result is due to two factors.
First, the treatment pair t1, t2 may belong to multiple sublattices. Second, the po-
sition of the treatment pair within a lattice, i.e., whether it includes the top and/or
bottom of the sublattice, differs across sublattices. The position of the treatment
pair within a sublattice combined with the assumptions that hold on the sublattice
determine whether the upper and/or lower bound (or neither) are improved. While
the result appears complicated, defining the 	 sets in practice seems to be fairly
straightforward.
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I have focused on bounding expectations of treatment effects using only super-
modularity and submodularity assumptions. However, in applications these will
often be paired with other assumptions, such as monotonicity. The next result
modifies Proposition 2 by adding Manski’s assumption of semimonotone treat-
ment response:

PROPOSITION 3. Assume the conditions of Proposition 2 and that SMTR
holds on T . Then, for t2 < t1,

0 ≤ E[ y(t1)− y(t2) ]

≤ [K − E[ y(t2) | z ≤ t2 ]]P(z ≤ t2)+ [E[ y(t1) | z ≥ t1 ] − K ]P(z ≥ t1)

+
∑

t3∈
⋃

j∈{7,9} 	j

[E[ y(t3) | z = t3 ] − K ]P(z = t3)

+
∑

t3∈∪⋃
j∈{10,11} 	j

[K − E[ y(t3) | z = t3 ]]P(z = t3)

+
∑

t3∈{t3|t1�t3 and t3�t2}∩⋃
j∈{8,12,13} 	j

[K − K ]P(z = t3). (3.29)

These bounds are sharp.

Proposition 3 shows that bounds computed under combinations of SMTR and
SPM/SBM will generally be narrower than bounds computed under the assump-
tions separately. In particular, SPM and SBM may tighten the SMTR upper bound,
and SMTR at least weakly improves the SPM/SBM lower bound and may tighten
the upper bound as well. (B.1) shows that when z ∈ 	7 ∪	9, SBM will improve
the SMTR upper bound, and when z ∈ 	10 ∪	11, SPM will improve the SMTR
upper bound. The SMTR lower bound at zero cannot be improved by using SPM
or SBM. In the empirical application in Section 6, I show how the addition of
SBM improves the SMTR bounds with real data.

4. INSTRUMENTAL VARIABLES

Traditional instrumental variable (IV) analysis of treatment response relies on the
existence of a variable that is correlated with the treatment variable of interest
but is mean-independent or independent of the distribution of response functions.
Whether or not such independence assumptions are justified in a particular con-
text is often the subject of vigorous debate. This has motivated researchers to
find weaker and more credible forms of these assumptions that still retain some
identification power. A leading example is the notion of a monotone instrumental
variable (MIV): A variable x is an MIV if average potential outcomes conditional
on x are monotone in x (Manski and Pepper, 2000, 2009). MIV and its gener-
alizations impose restrictions on functionals of potential outcome distributions.
Restrictions can also be imposed directly on functionals of treatment effect
distributions:
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Assumption SPMIV (Supermodular instrumental variable). xk is a supermod-
ular instrumental variable for E[ y(t1)− y(t2) | xk,x−k ] with t2 ≤ t1 if

xk
1 ≤ xk

2 =⇒ E
[

y(t1)− y(t2)
∣∣xk

1 ,x−k ] ≤ E
[

y(t1)− y(t2)
∣∣xk

2 ,x−k ]
(4.1)

for all x−k .13

SPMIV is an alternative formulation of complementarity where average treat-
ment effects vary monotonically with an observed covariate xk .14 An advantage
of these assumptions is that evidence for their validity may be provided by pre-
vious studies where strong identifying assumptions are credible due to controlled
randomization or a natural experiment. This evidence can motivate the applica-
tion of these assumptions in other contexts where similar identification strategies
are not available. This contrasts with traditional IV assumptions, which tend to be
highly context-specific.

The Djebbari and Smith (2008) study of the heterogeneous impacts of the PRO-
GRESA conditional cash transfer program provides some examples of potential
SPMIVs. PROGRESA provided payments to households conditional on regular
school attendance by the household’s children as well as visits to health centers.
Djebbari and Smith find that the impact of this program on per capita consumption
is substantially larger for poorer households and households in more “marginal”
villages, i.e., villages with greater rates of illiteracy, more limited infrastructure,
and a greater dependence on agricultural activities. Evaluations of cash transfer
programs in other contexts could make use of this information by using household
poverty or village marginality as SPMIVs.

Further examples are provided by the Bitler et al. (2014) study of the impact
of the Connecticut Jobs First experiment. This program substantially lowered the
marginal tax rate on earnings below the poverty line for families on relief, relative
to the existing Aid to Families with Dependent Children (AFDC) program. In
the Jobs First program, the entire benefit package is terminated once earnings
rise above the poverty line; this is in contrast to the AFDC, where benefits decline
linearly with earnings. Labor supply theory clearly suggests that the impact of this
alternative budget scheme should boost earnings and employment much more for
those who were previously out of work or whose earnings left them far below
the poverty line. These hypotheses are strongly borne out by the data, suggesting
that measures of pre-program earnings and employment could serve as SPMIVs
in studies of similar programs which are not implemented experimentally.

Manski and Pepper (2000) considered a specific case of an MIV where the
average potential outcomes are monotone in the realized treatment; they referred
to this as the monotone treatment selection assumption. A similar assumption can
be developed in this context:

Assumption SPMTS (Supermodular treatment selection). The supermodular
treatment selection assumption holds for E[ y(t1)− y(t2) ] with t2 ≤ t1 if

E[ y(t1)− y(t2) | z = t1 ] ≥ E[ y(t1)− y(t2) | z = t2 ]. (4.2)
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The bounds under this assumption will be analogous to those under SPMIV
derived below. Let B(t,x) and B(t,x) be defined as

B(t,x) = E[ y(t) | z = t,x ]P(z = t | x)+ K P(z 	= t | x) ∀t ∈ T,x ∈ X

and

B(t,x) = E[ y(t) | z = t,x ]P(z = t | x)+ K P(z 	= t | x) ∀t ∈ T,x ∈ X.

The following bounds can be derived using SPMIV:

PROPOSITION 4. Assume that xk is an SPMIV for E[ y(t1)− y(t2) | xk,x−k ]
with t1, t2 ∈ T . Then, the bounds

sup
xk

2≤xk
1

{
B

(
t1,xk

2 ,x−k)− B
(
t2,xk

2 ,x−k)}
≤ E

[
y
(
t1

)− y
(
t2

) | xk
1 ,x−k ]

≤ inf
xk

1≤xk
2

{
B

(
t1,xk

2 ,x−k)− B
(
t2,xk

2 ,x−k)} (4.3)

are sharp.

As is the case for bounds derived under IV or MIV assumptions, inference is
complicated by the sup and inf operators in equation (4.3) (Manski and Pepper,
2009). Analog estimators of the bounds in (4.3) are consistent but biased in fi-
nite samples; the estimated bounds will generally be too narrow. Fortunately, the
methods developed by Chernozhukov, Lee, and Rosen (2013) can be applied to
find bias-corrected estimates and associated confidence intervals. Chernozhukov
et al. discuss in detail the special cases of estimating nonparametric bounds using
instrumental variables and MIVs; the bounds in (4.3) are essentially identical for
the purposes of estimation, so their results can be applied directly to my estimation
problem. The theoretical extension allowing for multiple SPMIVs is straightfor-
ward, and presents no novel estimation challenges besides those associated with
high-dimensional nonparametric conditioning.

Returning to assumption SPMIV: If the second inequality in (4.1) is reversed,
xk becomes a submodular instrumental variable. If xk is a supermodular and sub-
modular instrumental variable, i.e., average treatment effects are constant across
different values of xk , then xk is a modular instrumental variable. While this
may seem like a strong assumption, it is routinely employed in applied work that
models treatment effects without allowing for interactions.

SPMIVs may also improve the bounds on functionals of potential outcome
distributions, as the following corollary illustrates:

COROLLARY 1. Assume that xk is an SPMIV for E[ y(t1)− y(t2) | xk,x−k ]
with t1, t2 ∈ T . Then, the bounds
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max
{

B
(
t1, xk

1 , x−k), sup
xk

2 ≤xk
1

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}+ B
(
t2, xk

1 , x−k)}
≤ E

[
y
(
t1

) | xk
1 , x−k ]

≤ min
{

B
(
t1, xk

1 , x−k), inf
xk

1 ≤xk
2

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}+ B
(
t2, xk

1 , x−k)} (4.4)

and

max
{

B
(
t2, xk

1 , x−k), B
(
t1, xk

1 , x−k)− inf
xk

1 ≤xk
2

{
B
(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}}
≤ E

[
y
(
t2

) | xk
1 , x−k ]

≤ min
{

B
(
t2, xk

1 , x−k), B
(
t1, xk

1 , x−k)− sup
xk

2 ≤xk
1

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}} (4.5)

are sharp.

The proof of this result is straightforward, requiring only verification that these
potential outcome bounds do not imply that the bounds in (4.3) can be tightened.
As in the case of Proposition 4, the Chernozhukov et al. approach to inference can
be applied here. It is natural to consider the application of this IV assumption in
concert with the shape restrictions considered above. Proposition 5 below shows
how SPMIV can be combined with SPM and SMTR:

PROPOSITION 5. Assume the conditions of Proposition 2 and assume that
xk is an SPMIV for E[ y(t1) − y(t2) | xk,x−k ]. Let 
B(t1, t2,xk,x−k) and

B(t1, t2,xk,x−k) denote the conditional upper and lower bounds, respectively,
for E[ y(t1)− y(t2) | xk,x−k ] from (3.10). Then, the bounds

sup
xk

2≤xk
1

{

B

(
t1, t2,xk

2 ,x−k)} ≤ E
[

y(t1)− y(t2) | xk
1 ,x−k ]

≤ inf
xk

1≤xk
2

{

B(t1, t2,xk

2 ,x−k)
}

(4.6)

are sharp. Under the additional assumption of SMTR, these bounds are sharp
when 
B(t1, t2,xk,x−k) and 
B(t1, t2,xk,x−k) denote the conditional upper
and lower bounds, respectively, from (3.29).

This result, combining SPMIV with SMTR and the new shape restrictions pro-
posed above, will be applied in the empirical exercise below.

5. INDEPENDENCE

Independence assumptions have been used to operationalize the belief that indi-
viduals’ realized treatments are unrelated to any individual characteristics which
may influence responses. This should be the case, for example, in a randomized
controlled trial. I show how statistical independence can be combined with shape
restrictions and instrumental variables assumptions to narrow the bounds on entire
treatment effect distributions.
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The familiar assumption of statistical independence of treatments and response
functions is defined in my notation as follows:

Assumption SI (Statistical independence). Potential outcomes are statistically
independent of realized treatments if

P(y(t) | z) = P(y(t)) ∀t ∈ T .

Assumption SI implies that the marginal distribution of y (t), denoted Ft , is
point identified for all t ∈ T such that P (z = t) > 0. However, the distribution of
y (t1)− y (t2), whose cumulative distribution function is denoted by Ft1,t2 , is only
partially identified. Makarov (1982) was the first to derive pointwise sharp bounds
on the distribution of the sum of two random variables with fixed marginal distri-
butions. Frank, Nelsen, and Schweizer (1987) derived these bounds in a simpler
manner and extended them to allow for other operations such as differences and
products as well as more than two variables. However, as Kreinovich and Ferson
(2006) show, these bounds are not sharp in the case of more than two variables.
The following result, taken from Theorem 2 of Williamson and Downs (1990),
gives the sharp bounds on the distribution of y (t1)− y (t2) for any t1, t2 ∈ T :

Ft1,t2 (w) = sup
u+v=w

{
max

{
Ft1 (u)− Ft2 (−v) ,0

}}
≤ Ft1,t2 (w) ≤ 1 + inf

u+v=w

{
min

{
Ft1 (u)− Ft2 (−v) ,0

}} = Ft1,t2 (w)

Fan and Park (2010) discuss consistent nonparametric estimation of these bounds.
This result can be applied to derive sharp bounds on the quantile function of
y (t1) − y (t2), F−1

t1,t2 (q), where F−1
t1,t2 denotes the generalized inverse of the cdf

Ft1,t2 . Define the following functions:

F−1
t1,t2(q) =

⎧⎨
⎩

inf
u∈[q,1]

[F−1
t1 (u)− F−1

t2 (u − q)] if q 	= 0

F−1
t1 (0)− F−1

t2 (1) if q = 0
,

F
−1
t1,t2(q) =

⎧⎨
⎩

sup
u∈[0,q]

[F−1
t1 (u)− F−1

t2 (1 + u − q)] if q 	= 1

F−1
t1 (1)− F−1

t2 (0) if q = 1
. (5.1)

Then, F
−1
t1,t2 (q) ≤ F−1

t1,t2 (q) ≤ F−1
t1,t2 (q). SI can be combined with SPM to refine

these bounds, as the following result shows:

PROPOSITION 6. Assume that SI holds and that T = {t1 ∧ t2, t1, t2, t1 ∨ t2}
with t1 ∧ t2 < t1, t2 < t1 ∨ t2. Assume that SPM holds on T . Then, the bounds

max
{

F
−1
t1∨t2,t1(q), F

−1
t2,t1∧t2(q)

} ≤ F−1
t1∨t2,t1(q) ≤ F−1

t1∨t2,t1(q)

and

F
−1
t1,t1∧t2 (q) ≤ Ft1,t1∧t2 (w) ≤ min

{
F−1

t1,t1∧t2 (q) , F−1
t1∨t2,t2 (q)

}
are sharp.
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Similar results can be derived for SBM. These shape restrictions could be jus-
tified by theoretical arguments; alternatively, since average treatment effects are
point-identified in this context, the supermodularity or submodularity of average
effects could be used to provide some justification for stronger structural assump-
tions. Extending these results to general lattices is problematic due to the fact
that sharp bounds on the distribution function of a sum of more than two vari-
ables are an open question. Nonetheless, it is straightforward to collect all pos-
sible stochastic dominance relations implied by the maintained assumptions, and
bounds which contain the true value (but are not necessarily sharp) can be obtained
in a manner similar to that in Proposition 6. Such bounds may be useful in policy
evaluation.

A reformulation of the SPMIV assumption can also be applied in this
setting:15

Assumption Q-SPMIV (Quantile supermodular instrumental variable). xk is
a quantile supermodular instrumental variable for y (t1)− y (t2) if

xk
1 ≤ xk

2 =⇒ F−1
t1,t2

(
q | xk

1 ,x−k) ≤ F−1
t1,t2

(
q | xk

2 ,x−k)
for all x−k .

Giustinelli (2011) analyzes the returns to education in Italy using a similar
restriction on the quantile function of potential outcomes. Blundell, Gosling,
Ichimura, and Meghir (2007) impose monotonicity in a covariate on the condi-
tional cdf of a potential outcome. Their bounds are simplified by the fact that the
distribution of potential outcomes is partially observed, while the distribution of
treatment effects is never observed, necessitating the use of the Williamson and
Downs (1990) bounds. The following proposition computes the bounds derived
under Q-SPMIV:

PROPOSITION 7. Assume that SI holds. Assume that xk is a Q-SPMIV for
y (t1)− y (t2) with t1, t2 ∈ T . Then, the bounds

sup
xk

2≤xk
1

{
F

−1
t1,t2

(
q | xk

2 ,x−k)} ≤ F−1
t1,t2

(
q | xk

1 ,x−k) ≤ inf
xk

1≤xk
2

{
F−1

t1,t2

(
q | xk

2 ,x−k)}

are sharp.

Again, since conditional average treatment effects are point-identified, they
can provide some evidence to support the validity of the stronger Q-SPMIV
assumption.

6. EMPIRICAL ILLUSTRATION

To illustrate the use of the identification results developed in this paper, I re-
analyze data from Shertzer, Twinam, and Walsh (2016b). That study examines
the extent to which Chicago’s first zoning ordinance, passed in 1923, influenced
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the evolution of the spatial distribution of commercial, industrial, and residen-
tial activity in the city. Evidence of substantial treatment effect heterogeneity
was found, motivating the use of SBM and SPMIV assumptions in the analysis
below.

Chicago’s 1923 zoning ordinance regulated land by restricting uses and
density.16 Here, I bound the effects of 1923 commercial zoning on the probability
that a city block will contain any commercial activity in 2005. Zoning for each
type of use (commercial, industrial, single/multi-family residential) was coupled
with an allowed maximum density level. Focusing on four different allowed den-
sity levels and an indicator for whether or not a block received commercial zon-
ing yields eight distinct treatments and four distinct commercial zoning treatment
effects.

Formally, the outcome variable y (·) is an indicator equal to 1 iff city block
i contains any commercial activity in 2005. y is a function of a treatment
t ∈ T = {0,1} × {1,2,3,4}. The first dimension of t is equal to 1 if the block
received any commercial zoning in 1923 and 0 otherwise. The second dimen-
sion of t is equal to 1 if the block was zoned for the lowest density development
(3 or fewer stories), 2 if it was zoned for higher densities suitable for apartment
buildings (8–10 stories), 3 if it was zoned for high-rise commercial buildings,
and 4 if it was zoned for the tallest commercial skyscrapers (this latter zon-
ing was reserved for the central business district and immediately surrounding
area).

Since numerous other factors, such as pre-zoning land use, property values,
and demographics, shaped both the initial zoning ordinance as well as the fu-
ture development of the city, the exogenous treatment selection (ETS) assumption
is likely too strong. As an alternative, I employ mixtures of SBM, SMTR, and
SPMIV in the empirical analysis. SBM implies that the commercial zoning treat-
ment effect will be larger when paired with lower density zoning. This is mo-
tivated by the fact that areas zoned for lower densities will be more residential
in character and contain a larger proportion of single-family homes (Shertzer
et al., 2016b). It is well documented that residential property owners (espe-
cially single-family homeowners) generally oppose the encroachment of com-
mercial uses and have substantial power to block such development (Fischel,
2001). It is likely that the early establishment of commercial activity through
zoning will be a more important determinant of future commercial land use in
areas also zoned for lower densities.17 This assumption is also consistent with
previous literature showing that mixed use areas are more likely to see conver-
sion to completely nonresidential use than strictly residential use (McMillen and
McDonald, 1991).

While the effect of commercial zoning is likely to be larger in low-density
areas, it is generally the case that commercial uses appear more often in denser
areas. Commercial uses can afford the higher rents that prevail in dense areas,
benefit more from agglomeration economies, and are compatible with residen-
tial development through mixed-use structures. This, combined with the fact that
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commercial zoning is unlikely to lower the likelihood of commercial develop-
ment, suggests that SMTR is an appropriate assumption in this context. Table 1
shows how the upper and lower bounds on the average treatment effect of com-
mercial zoning, E[ y (1,d)− y (0,d) ], vary under different shape restrictions;
bounds on the ATE are obtained for each density level d ∈ {1,2,3,4}. Appendix
Figure 1 depicts the results from Table 1 graphically.

The results in Table 1 show how the imposition of the shape restrictions SBM
and SMTR can separately and jointly improve upon the no assumption upper and
lower bounds on treatment effects. The no assumption bounds are very wide due
to the large number of treatments. The imposition of SBM establishes monotonic-
ity of the upper and lower bounds as expected; upper bounds on the commercial
zoning effects are smaller in higher density areas, while lower bounds are higher
in low density areas. SMTR restricts the lower bound to be zero but its effect on
upper bounds is theoretically ambiguous. Upper bounds on the potential outcomes
treated with commercial zoning are monotone increasing with density:

E[ y(1,1) ] ≤ E[ y (1,2) ] ≤ E[ y (1,3) ] ≤ E[ y (1,4) ] .

However, the same is true of lower bounds on potential outcomes of observations
not treated with commercial zoning:

E[ y (0,1) ] ≤ E[ y (0,2) ] ≤ E[ y (0,3) ] ≤ E[ y (0,4)] .

In this case, the SMTR upper bounds on treatment effects are increasing with den-
sity; however, with the addition of SBM, this is reversed, since SBM implies that

TABLE 1. Bounds on the effects of commercial zoning on future commercial use

Assumptions

Treatment effect ETS None SBM SMTR SBM/SMTR

Lower Upper Lower Upper Lower Upper Lower Upper

E[ y (1,1)− y (0,1) ] 0.579 −0.702 0.932 −0.271 0.932 0 0.754 0 0.754
(0.557, 0.601) −0.710 0.936 −0.277 0.936 0 0.761 0 0.761

E[ y (1,2)− y (0,2) ]
0.503 −0.664 0.858 −0.569 0.790 0 0.803 0 0.738

(0.483, 0.524) −0.672 0.863 −0.578 0.796 0 0.809 0 0.745

E[ y (1,3)− y (0,3) ]
0.311 −0.936 0.957 −0.905 0.747 0 0.923 0 0.732

(0.269, 0.354) −0.941 0.961 −0.910 0.754 0 0.927 0 0.739

E[ y (1,4)− y (0,4) ]
0.341 −0.969 0.982 −0.969 0.729 0 0.957 0 0.729

(0.266, 0.417) −0.972 0.984 −0.972 0.736 0 0.960 0 0.736

Observations 14,690 14,690 14,690 14,690 14,690 14,690 14,690 14,690 14,690

Bounds on the effect of 1923 commercial zoning on the probability of commercial use in 2005 under different shape
restrictions. Commercial zoning effect is estimated separately for all four levels of 1923 density zoning. Upper and
lower bounds are accompanied below by bootstrapped upper and lower 95% confidence intervals. Column 1 presents
point estimates assuming exogenous treatment selection (ETS), along with 95% confidence intervals. Columns 2–3
present the no assumption bounds. Columns 4–5 add the assumption of submodularity (SBM). Columns 6–7 add the
assumption of semimonotone treatment response (SMTR). Columns 8–9 combine SBM and SMTR.
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the commercial zoning effect will be larger in areas also zoned for low densities.
Under both SMTR and SBM, the results indicate that commercial zoning in 1923
increases the probability of commercial activity in 2005 by at most roughly 0.75
on the entire sample. While this still leaves a sizable range of possible values,
it shows that historical zoning is not necessarily decisive, a fact which is not
discernible from the uninformative no assumption bounds or the SMTR bounds
in high density areas.

While SBM cannot establish the nonnegativity of the treatment effects on the
whole sample, an analysis of the impact of commercial and low density zoning on
the subsample of blocks which were not treated with commercial zoning is more
informative. Table 2 shows that SBM alone establishes a lower bound of −0.068
on E[ y (1,1)− y (0,1)]. This can be strengthened using the fraction of the
block’s population that are not at least 3rd generation native white as an SPMIV.
The argument here is that native whites were a politically powerful group relative
to blacks and recent immigrants, especially those from Eastern Europe. These
latter groups would have less power to alter zoning ex post, and so one would
expect the 1923 zoning effect to be larger if more of the population belongs to
these politically marginalized groups.18 Computing the average treatment effect
conditional on 40% of the population being white using this SPMIV yields a
lower bound of −0.01, so these two assumptions alone nearly identify the sign of
the treatment effect.

Table 3 presents a further analysis of the upper bounds of the commercial zon-
ing effect. The sample is restricted to blocks that fall into the bottom quartile
of pre-zoning development; development is measured using a continuous index

TABLE 2. Bounds on the effect of commercial zoning on future commercial use:
subsample not treated with commercial zoning

Assumptions

Treatment effect None SBM SBM/SPMIV

Lower Upper Lower Upper Lower Upper

E[ y (1,1)− y (0,1) ]
−0.509 0.991 −0.068 0.991 −0.01 0.992
−0.521 0.994 −0.075 0.994 −0.0213 0.994

Observations 6,072 6,072 6,072 6,072 6,027 6,027

Sample No comm. zoning No comm. zoning No comm. zoning

Bounds on the effect of 1923 commercial zoning on the probability of commercial use in 2005 when paired with
the most restrictive 1923 density zoning. Sample is restricted to blocks not treated with commercial zoning. No
assumption and SBM upper and lower bounds are reported with bootstrapped upper and lower 95% confidence
intervals. The average treatment effect in the final two columns is conditional on 40% of the population being white
(3rd gen. and above) with the SPMIV assumption that conditional average treatment effects are monotone increasing
in the percentage of the population that are non-3rd gen. white. SPMIV bounds are half-median unbiased estimates
with associated 95% confidence intervals calculated using the Chernozhukov, Kim, Lee, and Rosen (2015). Stata
implementation of the inference methods of Chernozhukov et al. (2013).
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TABLE 3. Bounds on the effect of commercial zoning on future commercial use:
undeveloped subsample

Assumptions

Treatment effect ETS None SMTR SBM/SMTR SBM/SMTR/SPMIV

Upper Upper Upper Upper

E[ y (1,1)− y (0,1) ]
0.51 0.846 0.806 0.806 0.661

(0.469, 0.550) 0.862 0.825 0.825 0.688

E[ y (1,2)− y (0,2) ]
0.425 0.921 0.918 0.769 0.628

(0.352, 0.496) 0.931 0.928 0.786 0.656

Observations 3,669 3,669 3,669 3,669 3,669

Sample Undeveloped Undeveloped Undeveloped Undeveloped Undeveloped

Bounds on the effect of 1923 commercial zoning on the probability of commercial use in 2005 when paired with
the two most restrictive levels of 1923 density zoning. Estimation is on a subset of blocks that were largely unde-
veloped in 1923; since these areas exclusively received zoning for either density level 1 or 2, I only discuss those
treatment effects. Average treatment effects are conditional on 40% of the population being white (3rd gen. and
above). The bounds are computed under no assumptions, SBM/SMTR, and SBM/SMTR/SPMIV. No assumption
and SBM/SMTR upper bounds are reported with upper 95% confidence intervals from a kernel-weighted local poly-
nomial smoother. SPMIV bounds assume that conditional average treatment effects are monotone increasing in the
percentage of the population that are non-3rd gen. white. SPMIV bounds are half-median unbiased estimates with
associated 95% confidence intervals calculated using the Chernozhukov et al. (2015) Stata implementation of the
inference methods of Chernozhukov et al. (2013).

which is a function of population density, building heights, commercial and man-
ufacturing establishment density, and distance to the central business district and
Lake Michigan. The blocks in this sample lie in the outlying areas of the city
which were largely undeveloped in 1923, with many vacant lots, very low popu-
lation density, and few business establishments.19 This is the area where the effect
of commercial zoning should be the largest, as these areas also received the most
restrictive density zoning and the pattern of future development was essentially
undetermined.

The results in Table 3 show that commercial zoning in 1923 increases the prob-
ability of commercial activity in 2005 by at most 0.66 in areas zoned for the
lowest density and 0.63 in areas zoned for higher densities. While still compatible
with a range of magnitudes, these results show that historical zoning was limited
in its ability to direct future development, leaving a large role for market-driven
rezonings to alter the initial plan.

7. CONCLUSION

In this paper, I contribute to the literature on the partial identification of treat-
ment effects by developing and applying assumptions that formalize the notion
of complementarity. I examine the identification power of these assumptions
and discuss how they can be justified. The supermodularity and submodularity
assumptions proposed can be used to narrow bounds on treatment effects in stud-
ies of policy complementarity, which have traditionally been stymied by a lack of
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pseudo-experimental variation in multiple policies simultaneously. Proposition 1
shows how these shape restrictions can improve bounds on average treatment
effects in the simple case of two binary treatments. Proposition 2 extends this
result to a more general treatment set with an arbitrary finite number of (possibly
multivalued) treatments and the possibility of complex combinations of super-
modularity and submodularity. Proposition 3 combines the supermodularity and
submodularity assumptions with the semimonotone treatment response assump-
tion of Manski (1997).

Complementarity may also stem from differential treatment response among
subpopulations defined by observed covariates. Subgroup heterogeneity in treat-
ment effects is an increasingly widely recognized phenomenon, and can often
be motivated directly from economic theory (see, e.g., Bitler et al., 2014).
Proposition 4 and Corollary 1 show how qualitative information about treat-
ment effect heterogeneity embodied in supermodular instrumental variables can
be used to improve bounds on average treatment effects and average potential
outcomes, respectively. Proposition 5 combines supermodular IVs with the new
shape restrictions as well as semimonotone treatment response. Supermodular
instrumental variables can be used in studies with one or many treatments, making
them a versatile and potentially powerful addition to the arsenal of applied
econometricians.

The assumptions developed here can be useful in the experimental context
as well. Proposition 6 shows how supermodularity can be combined with an
assumption of statistical independence between assigned treatments and responses
to yield improved bounds on the cumulative distribution function of a treatment
effect. These results can be applied to the evaluation of outcomes in complex
(multitreatment) randomized controlled trials, which are increasingly prevalent in
many fields, including development economics. Since average treatment effects
are point-identified in this context, one can determine if average responses ex-
hibit supermodularity or submodularity. This can provide evidence that individ-
ual response functions are supermodular or submodular. Similarly, the behavior
of (point-identified) conditional average treatment effects can motivate the use
of a quantile supermodular instrumental variable; Proposition 7 shows how this
assumption can strengthen the bounds on the quantile function of a treatment effect
distribution.

Bounds derived under the assumptions I propose here are of interest only to
the extent that such assumptions are considered credible. Where might evidence
for their validity come from? Arguments for policy complementarity may be pro-
vided by economic theory, as in Lalive et al. (2006), or they may come from
multitreatment randomized controlled trials. Evidence on subgroup heterogeneity
in treatment effects may be provided by previous studies where strong identify-
ing assumptions are credible due to controlled randomization or a natural exper-
iment. In such studies, conditional average treatment effects are point-identified,
so the validity of the proposed assumptions can be established. This can motivate
their use in other contexts where similar identification strategies are not available.
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This distinguishes supermodular IV assumptions from traditional IV assumptions,
since the latter tend to be context-specific.

The empirical illustration in Section 6 employs submodularity, semimonotone
treatment response, and supermodular IVs to study the impact of historical zoning
on the evolution of land use in Chicago. In some cases, I am able to essentially
rule out the possibility of a negative commercial zoning effect using only submod-
ularity and a supermodular IV. I am also able to show that the effect of commercial
zoning was far from decisive even in the areas of the city that were undeveloped
at the time of zoning, demonstrating the potentially sizable role of market-driven
zoning revisions.

NOTES

1. Examples include: Giustinelli (2011) and Tsunao and Usui (2014) on the returns to education,
Kreider and Pepper (2007) on disability and employment, Bhattacharya, Shaikh, and Vytlacil (2008,
2012) on the mortality effects of Swan–Ganz catheterization, Kreider and Hill (2009) on the effect
of universal health insurance on medical expenditures, Pepper (2000) on the intergenerational trans-
mission of welfare receipt, Manski and Nagin (1998) on sentencing and recidivism, and Gundersen,
Kreider, and Pepper (2012) on the health effects of the National School Lunch Program.

2. The sensitivity of effects to the surrounding policy environment may partly explain the wide
variation in estimates of treatment effects for similar policies in different contexts found in many
literatures; see, for example, the discussion in Lalive et al. (2006) on the effects of unemployment
benefit policies on re-employment rates.

3. See Manski and Pepper (2000) and Section 4.
4. See Manski (2003) for a comprehensive overview.
5. I reserve superscripts to refer to vector components.
6. If t1 and t2 are incomparable, I write t1 ‖ t2.
7. The meet and join operations depend on the particular order imposed on the lattice; for example,

the join of (2,0) and (1,1) in R2 is equal to (2,1) under the product order and (2,0) under the
lexicographic order.

8. I suppress i when referring to arbitrary response functions, covariates, or realized treatments.
9. The stable unit treatment value assumption (alternatively referred to as noninterference by Cox

(1958) and individualistic treatment response by Manski (2013)) is maintained throughout the paper;
this states that individuals’ potential outcomes {y(t)}t∈T do not depend on other individuals’ realized
treatments (Rubin, 1978).

10. If an expectation E[ y(t1) | z = t2 ] is ill-defined because the event z = t2 is off the support of z,
I establish the convention that E[ y(t1) | z = t2 ]P(z = t2) ≡ 0.

11. In the case where one or more of the dimensions of the treatment are continuous, the data
are necessarily uninformative about almost all of the treatments. This motivates my restriction to
discretely-valued treatments.

12. There is no guarantee that these bounds will be nonempty; if an assumption implies that the
bounds on the parameter of interest are empty, the assumption can be falsified by the data. This caveat
applies to all the results that follow.

13. The weak inequality in (4.1) can be reversed, in which case xk would be a submodular instru-
mental variable (SBMIV). If the inequality is replaced with equality, xk becomes a modular instru-
mental variable (MODIV).

14. The SPM/SPMIV distinction is analogous to the MTR/MIV distinction; see Manski and Pepper
(2009).

15. SPMIV itself is unhelpful, since conditional average treatment effects are point-identified.
16. For details on the ordinance, consult Shertzer et al. (2016b).
17. Shertzer et al. (2016b) provide direct evidence of the veracity of this assumption.
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18. This is consistent with the historical record as well as the results of Shertzer, Twinam, and Walsh
(2016a), which provide direct evidence of discrimination against blacks and recent immigrants in the
drafting of the 1923 ordinance in Chicago. An alternative approach could involve including recent Irish
immigrants with native whites, as the Irish became politically influential early in Chicago’s history;
experimenting with this alternate approach yielded similar results.

19. These blocks had a median of two residents and zero commercial/industrial uses per acre.
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APPENDIX A: Figures

FIGURE 1. Bounds on the effects of commercial zoning on future commercial use.
Bounds on the effect of 1923 commercial zoning on the probability of commercial use in 2005 under
a variety of shape restrictions. The commercial zoning effect is estimated separately for all four levels
of 1923 density zoning; colors denote the level of density zoning. Upper and lower bounds are ac-
companied by upper and lower 95% confidence bounds, respectively. Confidence intervals estimated
using a standard bootstrap. Point estimates from a naive OLS regression are included along with 95%
confidence intervals. Panel A shows the no assumption bounds. Panel B adds the assumption of
submodularity (SBM). Panel C adds the assumption of semimonotone treatment response (SMTR).
Panel D combines SBM and SMTR.
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APPENDIX B: Proofs
Proof of Lemma 1. I first show that t1 ∧ t5 = t2:

t5 ∧ t4 = t3
=⇒ t1 ∧ (t4 ∧ t5) = t1 ∧ t3
=⇒ (t1 ∧ t4)∧ t5 = t2

=⇒ t1 ∧ t5 = t2,

where the last implication follows from the fact that t1 ≤ t4. Now, I show that t1 ∨ t5 = t6:

t4 ∨ t5 = t6
=⇒ (t1 ∨ t3)∨ t5 = t6
=⇒ t1 ∨ (t3 ∨ t5) = t6

=⇒ t1 ∨ t5 = t6,

where the last implication follows from the fact that t3 ≤ t5. �

Proof of Proposition 3. This proof requires only a minor modification of the proof of
Proposition 2. Following Manski (1997), SMTR implies y(t4) ≤ y(t3) and thus y(t3) −
y(t4) > 0 for all t4 < t3, and this lower bound is sharp under SMTR alone. The lower
bounds in (3.28) take the form y(z) − K , K − y(z), and K − K ; these are necessarily
weakly negative regardless of the value of y(z), so they do not improve upon the SMTR
lower bound. Thus, a sharp lower bound for the individual treatment effect of interest is

y(t1)− y(t2) ≥ 0.

Turning to the upper bounds, if z ≥ t1, then SMTR implies

y(t1)− y(t2) ≤ y(z)− K .

This is the same upper bound implied by SPM when z ∈ 	1 ∪	2, so SMTR has no ad-
ditional identification power in this case. If z ≥ t1 and z ∈ 	3 ∪ 	13, SMTR generally
improves upon the no-assumption upper bound K − K . If z ≤ t2, then SMTR implies

y(t1)− y(t2) ≤ K − y(z).

If z ∈ 	4 ∪	6, SBM implies the same upper bound, so SMTR has no additional identifying
power. If z ≤ t2 and z ∈ 	5 ∪	13, SMTR improves upon the no-assumption upper bound.
If z ∈ 	10 ∪	11, then SMTR has no implications for the upper bound on y(t1)− y(t2), but
SPM does via 3.28. If z ∈ 	7 ∪	9, SMTR also has no implications for the upper bound on
y(t1)− y(t2), but SBM weakly improves upon it, again via 3.28. Combining these results
yields

y(t1)− y(t2) ∈

⎧⎪⎨
⎪⎩

[0, K − y(z)] if z ∈ {t3 | t3 ≤ t2}∪	10 ∪	11

[0, y(z)− K ] if z ∈ {t3 | t1 ≤ t3}∪	7 ∪	9

[0, K − K ] if z ∈ {t3 | t1 � t3 and t3 � t2}∩ (	8 ∪	12 ∪	13)

.

(B.1)

Averaging over i yields the result in (3.29). �
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Proof of Proposition 4. In the absence of other assumptions, the bounds

B(t1, x) ≤ E[ y(t1) | x ] ≤ B(t1, x)

and

B(t2, x) ≤ E[ y(t2) | x ] ≤ B(t2, x)

and thus

B(t1, x)− B(t2, x) ≤ E[ y(t1) | x ]−E[ y(t2) | x ] ≤ B(t1, x)− B(t1, x)

are sharp for all x ∈ X . The assumption that xk is an SPMIV for E
[

y(t1)− y(t2) | xk , x−k ]
implies that

B
(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k ) ≤ E
[

y(t1)− y(t2) | xk
1 , x−k ]

for all xk
2 ≤ xk

1 and

E
[

y(t1)− y(t2) | xk
1 , x−k ] ≤ B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)
for all xk

1 ≤ xk
2 . The result follows. �

Proof of Proposition 1. Proposition 4 implies that the bounds

sup
xk

2≤xk
1

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}

≤ E
[

y(t1)− y(t2) | xk
1 , x−k ]

≤ inf
xk

1≤xk
2

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}
are sharp. Thus, E[ y(t1) | x ] and E[ y(t2) | x ] must simultaneously satisfy the no-
assumption bounds

B(t1, x) ≤ E[ y(t1) | x ] ≤ B(t1, x) (B.2)

and

B(t2, x) ≤ E[ y(t2) | x ] ≤ B(t2, x) (B.3)

as well as

sup
xk

2≤xk
1

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}+E[ y(t2) | xk
1 , x−k ]

≤ E
[

y(t1) | xk
1 , x−k ]

≤ inf
xk

1≤xk
2

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}+E[ y(t2) | xk
1 , x−k ] (B.4)

and

E
[

y(t1) | xk
1 , x−k ]− inf

xk
1 ≤xk

2

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}
≤ E

[
y(t2) | xk

1 , x−k ]
≤ E

[
y(t1) | xk

1 , x−k ]− sup
xk

2≤xk
1

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}
. (B.5)
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From (B.2)–(B.5), it is clear that

max
{

B
(
t1, xk

1 , x−k)
, sup

xk
2≤xk

1

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}+ B(t2, xk
1 , x−k )}

≤ E
[

y(t1) | xk
1 , x−k ]

≤ min
{

B
(
t1, xk

1 , x−k)
, inf

xk
1≤xk

2

{
B(t1, xk

2 , x−k )− B
(
t2, xk

2 , x−k)}+ B
(
t2, xk

1 , x−k)}
and

max
{

B
(
t2, xk

1 , x−k)
, B

(
t1, xk

1 , x−k)− inf
xk

1≤xk
2

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}}
≤ E

[
y(t2) | xk

1 , x−k ]
≤ min

{
B

(
t2, xk

1 , x−k)
, B

(
t1, xk

1 , x−k)− sup
xk

2≤xk
1

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}}
must hold. I show that these bounds are feasible, i.e., consistent with (4.3), whence it
follows that they are sharp. Consider the following events:

max
{

B
(
t1, xk

1 , x−k)
, sup

xk
2≤xk

1

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}+ B
(
t2, xk

1 , x−k)}

= sup
xk

2≤xk
1

{B
(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}+ B
(
t2, xk

1 , x−k)
> B

(
t1, xk

1 , x−k)
, (B.6)

min
{

B
(
t1, xk

1 , x−k)
, inf

xk
1≤xk

2

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}+ B
(
t2, xk

1 , x−k)}
= inf

xk
1≤xk

2

{
B

(
t1, xk

2 , x−k )− B
(
t2, xk

2 , x−k)}+ B
(
t2, xk

1 , x−k)
< B

(
t1, xk

1 , x−k)
, (B.7)

max
{

B
(
t2, xk

1 , x−k)
, B

(
t1, xk

1 , x−k)− inf
xk

1≤xk
2

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}}
= B

(
t1, xk

1 , x−k)− inf
xk

1≤xk
2

{
B

(
t1, xk

2 , x−k )− B
(
t2, xk

2 , x−k)}
> B

(
t2, xk

1 , x−k)
, (B.8)

min
{

B
(
t2, xk

1 , x−k)
, B(t1, x)− sup

xk
2 ≤xk

1

{
B

(
t1, xk

2 , x−k)− B
(
t2, xk

2 , x−k)}}

= B
(
t1, xk

1 , x−k)− sup
xk

2≤xk
1

{
B

(
t1, xk

2 , x−k )− B
(
t2, xk

2 , x−k)}
< B

(
t2, xk

1 , x−k)
. (B.9)

It is easy to show that (B.6) =⇒ ¬ (B.8); thus, the lower bounds in (4.4) and (4.5) are
consistent with (4.3). Similarly, (B.7) =⇒ ¬ (B.9), and so the upper bounds in (4.4) and
(4.5) are consistent with (4.3). �

Proof of Proposition 5. The proof of this result is analogous to that of Proposition 9.2
of Manski (2003), where he derived sharp bounds on average potential outcomes using
monotone treatment response and a monotone instrumental variable. Addressing the first
portion of the claim, Proposition 2 shows that


B
(
t1, t2, xk

1 , x−k) ≤ E[ y(t1)− y(t2) | xk
1 , x−k ] ≤ 
B

(
t1, t2, xk

1 , x−k)
(B.10)
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and SPMIV implies that

E
[

y(t1)− y(t2) | xk
2 , x−k ] ≤ E

[
y(t1)− y(t2) | xk

1 , x−k ] ≤ E
[

y(t1)− y(t2) | xk
3 , x−k ]

,

(B.11)

when x2 ≤ x1 ≤ x3. The result follows. The derivation is analogous for the second portion
of the claim. �

Proof of Proposition 6. For a lattice T = {t1, t2, t1 ∨ t2, t1 ∧ t2} which is not a chain,
SPM implies the following inequalities:

y(t2)− y(t1 ∧ t2) ≤ y(t1 ∨ t2)− y(t1),

y(t1)− y(t1 ∧ t2) ≤ y(t1 ∨ t2)− y(t2).

Since these inequalities hold for all individuals, they imply the following first-order
stochastic dominance relationships:

Ft1∨t2,t1(w) ≤ Ft2,t1∧t2(w),

Ft1∨t2,t2(w) ≤ Ft1,t1∧t2(w).

These imply the following bounds on quantile functions:

F−1
t2,t1∧t2(q) ≤ F−1

t1∨t2,t1(q), (B.12)

F−1
t1,t1∧t2(q) ≤ F−1

t1∨t2,t2(q). (B.13)

Combining (B.12) and (B.13) with the bounds from Williamson and Downs (1990) yields
the result. �

Proof of Proposition 7. Trivial. �
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