
TLP 17 (4): 365–407, 2017. C© Cambridge University Press 2017

doi:10.1017/S1471068417000126 First published online 27 June 2017

365

Contractibility for open global constraints

MICHAEL J. MAHER

Reasoning Research Institute, Canberra, Australia

(e-mail: michael.maher@reasoning.org.au)

submitted 20 December 2016; revised 20 December 2016; accepted 28 February 2017

Abstract

Open forms of global constraints allow the addition of new variables to an argument

during the execution of a constraint program. Such forms are needed for difficult constraint

programming problems, where problem construction and problem solving are interleaved, and

fit naturally within constraint logic programming. However, in general, filtering that is sound

for a global constraint can be unsound when the constraint is open. This paper provides a

simple characterization, called contractibility, of the constraints, where filtering remains sound

when the constraint is open. With this characterization, we can easily determine whether a

constraint has this property or not. In the latter case, we can use it to derive a contractible

approximation to the constraint. We demonstrate this work on both hard and soft constraints.

In the process, we formulate two general classes of soft constraints.

KEYWORDS : global constraints, open constraints, soft constraints.

1 Introduction

Constraint Logic Programming (CLP) (Jaffar and Maher 1994) provides the ability to

add variables and constraints to a constraint store during the course of an execution.

In this it is not alone: linear and integer programming solvers and solvers presented

as libraries for an underlying programming language also allow the introduction of

new variables and constraints in an incremental way. In some problems, it is natural

for the presence of some variables to be contingent on the value of other variables.

This is true of configuration problems and scheduling problems that involve process-

dependent activities (Mittal and Falkenhainer 1990; Barták 2003). More generally,

for difficult problems the intertwining of problem construction and problem solving

provides a way to manage the complexity of a problem, and thus new variables and

constraints may arise after solving has begun. Thus, CLP is particularly well suited

for such problems, in contrast to compilation-based modelling languages, such as

MiniZinc (Nethercote et al. 2007), where all variables and constraints must be fixed

at compilation time.

CLP also supports global constraints, which have been an important part of

the success of constraint programming. However, most implementations of global

constraints adopt a non-incremental approach: the variables constrained by a

global constraint are fixed when the constraint is imposed. Thus, the collection

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

366 M. J. Maher

of variables they constrain is closed, rather than open. This restricts the exploitation

of incrementality that is available in CLP languages. Delaying the imposition of a

global constraint until all variables it might involve have been generated can leave

the filtering effect of the global constraint until too late in the execution, resulting

in a large search space. Open global constraints remove this limitation by allowing

variables to be added dynamically.

A major difficulty in implementing open constraints is that a propagator for a

closed constraint may be unsound for the corresponding open constraint. That is, the

propagator may make an inference that turns out to be unjustified, once the sequence

of variables is extended. In this paper, we focus on the issue of identifying constraints

for which a closed propagator is sound as an open propagator. These constraints have

a simple characterization, which we call contractibility, and which allows us to easily

determine whether a given constraint has this property. This characterization is also

convenient for finding the tightest contractible approximation of an uncontractible

constraint, which can be the basis for an open propagator of the constraint. We

illustrate our results with a wide variety of global constraints, including both hard

and soft constraints.

As part of our treatment of soft constraints, we formulate two very general classes

of soft constraints based, respectively, on constraint decomposition and edit distance.

These classes unify and generalize several different proposals in the literature. Using

these formulations, we introduce general results and techniques for establishing that a

constraint is contractible. It turns out that finding a tightest contractible approxima-

tion is more difficult for soft constraints than for hard constraints. In particular, while

we can mathematically characterize the tightest approximation, and define some

pragmatic generic non-tight approximations, we show that the tightest contractible

approximation cannot always be represented in the edit-distance framework.

This paper is arranged as follows. After some preliminaries in Section 2 and a

discussion of open constraints in Section 3, we introduce contractibility in Section 4.

We show that it characterizes those constraints for which closed propagators remain

sound when the constraint is open, and develop an algebra for constructing

contractible constraints. We conclude Section 4 by characterizing contractibility

in language-theoretic terms, and use that characterization to identify contractible

constraints (Section 5) and tight approximations of uncontractible constraints

(Section 6). We show that, with a tight approximation, a proposal of Barták for

implementing open uncontractible constraints achieves an appropriate consistency.

We then address the same issues for soft constraints (Sections 7 and 8).

This paper incorporates results announced in Maher (2009b,c,d, 2010). It includes

unpublished proofs, strengthened results, new results, and some additional discussion.

2 Background

The reader is assumed to have a basic knowledge of constraint programming,

constraint satisfaction problems (CSPs), global constraints, and filtering, as might

be found in Dechter (2003), Rossi et al. (2006), and Beldiceanu et al. (2005).

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 367

For the purposes of this paper, a global constraint is a relation over a single

sequence of variables. Other arguments of a constraint are considered parameters

and are assumed to be fixed before execution. Throughout this paper, a sequence

of variables will be denoted, interchangeably, by �X or [X1, . . . , Xn]. We make no a

priori restriction on the variables that may participate in the sequence except that, in

common with most work on global constraints, we assume that no variable appears

more than once in a single constraint.

There are some specific global constraints that we define for completeness. These

and other global constraints are discussed more completely in Beldiceanu et al.

(2005) and the references therein. As with variables, a sequence of values vi is

expressed by �v. The constraint AllDifferent([X1, . . . , Xn]) (Régin 1994) states

that the variables X1, . . . , Xn take distinct values. The global cardinality constraint

GCC(�v,�l,�u, [X1, . . . , Xn]) (Régin 1996) states that, for every i, the value vi occurs

between li and ui times in the list of variables. The constraint NValue([X1, . . . , Xn], N)

(Pachet and Roy 1999) states that there are exactly N distinct values in X1, . . . , Xn.

The constraint Regular(A, [X1, . . . , Xn]) (Pesant 2004) states that the value of the

list of variables, when considered as a word, is accepted by the automaton A.

Similarly, the constraint CFG(G, [X1, . . . , Xn]) (Quimper and Walsh 2006; Sellmann

2006) (called Grammar in Quimper and Walsh (2006)) states that the value of

the list of variables, when considered as a word, is generated by the context-free

grammar G.

The constraint Sequence(l, u, k, [X1, . . . , Xn],�v) (Beldiceanu and Contejean 1994)

states that any consecutive sequence of k variables Xj, . . . , Xj+k−1 contains between

l and u occurrences of values from�v. The constraint SlidingSum(l, u, k, [X1, . . . , Xn])

(Beldiceanu and Carlsson 2001) states that the sum of any consecutive sequence of k

variables lies between l and u. The constraint Contiguity([X1, . . . , Xn]) (Maher 2002)

states that the variables Xi take values from {0, 1} and the variables taking the value 1

are consecutive. The lexicographical ordering constraint [X1, . . . , Xn] �lex [Z1, . . . , Zn]

(Frisch et al. 2002) states that the sequence of X variables is lexicographically less

than or equal to the sequence of Z variables, where we assume some ordering on

the underlying values. The precedence constraint s ≺�X t (Law and Lee 2004) states

that if t appears in the sequence �X, then s appears at a lower index.

For some constraints, like AllDifferent, GCC, and NValue, the order of

variables is immaterial to the semantics of the constraint. We say a constraint

C is order-free if

C([X1, . . . , Xn]) ↔ C([Xπ(1), . . . , Xπ(n)])

for every permutation π of 1..n. The other constraints mentioned above are not

order free.

We assume that the argument �X of a use of a global constraint has a static type

T that assigns, for every position i, a set of values. Thus, every variable X in �X has a

static type T (X) of values that it may take. We will also view T as a unary predicate

on the variables of �X, where T (X) is true iff X takes a value from its static type. In

addition, generally, each variable has an associated set S ⊆ T (X) of values, called

its domain. We will view this simultaneously as: a function D : �X → 2Values, where

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

368 M. J. Maher

D(X) = S and Values =
⋃
Xin�X T (X), a unary relation D(X), which is satisfied only

when the value of X is some s ∈ S , and the pointwise extension of D to sequences

of variables.

We formalize the semantics of a global constraint C as a formal language

LC . A word d1d2 . . . dn appears in LC iff the constraint C([X1, X2, . . . , Xn]) has a

solution X1 = d1, . . . Xn = dn. Thus, for example, the semantics of AllDifferent

is {a1 . . . an | ∀i, j i 	= j → ai 	= aj , n ∈ �} and the semantics of Regular(A, �X) is

L(A), the language accepted by A. When it is convenient, we will describe languages

with Kleene regular expressions (Hopcroft and Ullman 1979). For a given use of a

constraint C(�X), we write T (�X) for the language defined by the static type of C(�X).

The following definitions will be important later. Let P (L) = {w | ∃u wu ∈ L}
denote the set of prefixes of a language L, called the prefix-closure of L. We say L

is prefix-closed, if P (L) = L. We say two languages L and L′ are prefix-equivalent if

P (L) = P (L′).

3 Open constraints

There are many problems that are dynamic in nature but to which we would

like to apply constraint techniques. Barták (1999) describes a class of complex

processing environments, where there may be alternative processing routes, different

production formulas, and alternative raw materials. In addition to the core products

of the processes, there may be by-products and co-products, which require additional

processing. Some instances of products may be re-processed or recycled. Because of

storage limits and/or a necessity to work with the instances while they are still in an

amenable state, such instances might need to be re-processed or recycled promptly.

In such environments, process scheduling must be dynamic: additional tasks may

arise from re-processing, and additional raw materials may arise.

Many production processing environments have these characteristics. Consider, for

example, sugar cane processing. Juice is extracted from the sugar cane and clarified

before it is refined. Refining involves repeated crystallization and centrifuging

processes, with molasses produced as a by-product. Usually, three repetitions of

these processes are performed but, through natural variation of the raw materials,

an additional repetition may be needed. Such a need can be identified through

monitoring the refinement process.

Now, consider a constraint-based approach to the problem of the on-going

scheduling of these processes. We might use a Cumulative constraint to express the

limited availability of centrifuges. When a batch requires an additional repetition,

a new task must be added to that constraint and additional constraints concerning

the task must be added to the problem. Thus, we require that Cumulative be an

open constraint – able to accept additional tasks.

Open constraints pre-suppose the existence of a meta-program that can impose

constraints, close an open constraint, add variables to an open constraint, (possibly)

create new variables, and interact with the execution of the constraint system,

possibly controlling it. In this paper, we will abstract away the details of the meta-

program so that we can focus on the open constraints. We assume that the collection

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 369

of variables forms a sequence, to which variables may be added at the right-hand

end only1. The scope of constraints changes during the execution, and we refer to

the state of the constraint at some point in the execution as an occurrence of the

constraint. In open global constraints C , the length of the sequence of variables

varies and consequently the semantics in terms of the language LC is particularly

appropriate.

There are three models of open constraint that have been proposed2. Barták (2003)

first formulated this issue and described a straightforward model: the constraint

involves a sequence of variables to which variables may be added. Thus, the arity and

type of the constraint are unchanged, whether the constraint is open or closed. Barták

(2003) outlined a generic implementation technique to make open versions for the

class of monotonic global constraints. Barták focussed on a specific implementation

of the open AllDifferent constraint. This is an order-free constraint, and details

of the model, such as where variables are added to the sequence, are left unspecified.

The remaining models extend this model by incorporating more details about the

possible extension of the sequence; for these models the constraint has a different

arity or type.

The model of van Hoeve and Régin (2006) only applies to order-free constraints

expressed in the form C(S). It uses a set variable S describing a set of object

variables, rather than a sequence, to represent the collection of variables in the

constraint3. The lower bound of S is the set of variables that are committed to

appear in the constraint; the upper bound is the set of variables that are permitted

to appear in the constraint. Thus, there is a finite set of variables that might appear

in the constraint, and these are fixed in advance. The authors refer to the constraint

as open “in a closed world”, since the set of variables that might be added to the

constraint is closed. The model makes elegant use of existing implementations of

set variables and their associated bounds. However, the use of a constraint in this

model requires knowing all the variables that might appear before imposing the

constraint. As a result, it cannot deal well with contingent variables. They create

a similar problem to the one faced by closed constraints: the constraint may be

imposed late in the execution, creating a larger search space.

The third model (Maher 2009b) is, in some ways, intermediate between that of

Barták (2003) and van Hoeve and Régin (2006). Under this model, a constraint

C(�X,N) acts on both a sequence of variables �X and an integer variable N,

representing the length of the sequence once it is closed. Variables can only be

added at the right-hand end of the sequence. This is a more detailed model than

Barták’s. In one sense, this model is an abstraction of the model of van Hoeve and

1 There is a brief discussion of the effect of alternatives in Section 9.
2 The terminology “open constraint satisfaction problem” was introduced by Faltings and Macho-

Gonzalez (2002, 2005). However, that use refers to problems in which the set of variables is closed
but the domains are open, that is, extra values can be added to variable domains. That work is not
technically related to “open constraints” as used in this paper, but it shares with this paper an interest
in constraint problems that may change over time.

3 A set variable S ranges over sets and is constrained by two fixed finite sets L and U, which are a lower
and upper bound on the value of the variable: L ⊆ S ⊆ U. See Gervet (1997).

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

370 M. J. Maher

Régin (2006): if N is subject only to lower and upper bounds, then the bounds on

N correspond to the cardinalities of the bounds of S . It does not have the weakness

of that model that the variables that might appear are fixed in advance. On the

other hand, the van Hoeve-Regin model has more information about how �X might

be extended, and so might be able to perform stronger propagation.

The model, we employ here is Barták’s model, where we specify that variables

may be added only at the right-hand end of the sequence. It is equivalent to a weak

form of the model of Maher (2009b), where there are no restrictions on N. However,

the notion of contractibility, to be introduced in the next section, is relevant for

other models of open constraints. Some results are given in Maher (2009b) for the

model treated there. We will assume that the only operations that can be applied to

an open constraint are adding a variable and designating the constraint closed, so

that no more variables may be added.

Constraint programming with open constraints is a special case of dynamic CSPs

in the broad sense described in Dechter and Dechter (1988). Work on dynamic

CSPs has focussed on the addition and retraction of constraints (Bessière 1991;

Hentenryck and Provost 1991; Georget et al. 1999; Debruyne et al. 2003). It does

not directly address the addition of variables to a constraint, although that can

be viewed as a combined retraction and addition of constraints. See Verfaillie and

Jussien (2005) for a survey on dynamic constraint solving. Work on conditional

CSPs, initiated in Mittal and Falkenhainer (1990), addresses contingent variables by

explicitly embedding the contingent nature within a CSP, but that work does not

address the addition of variables to constraints.

Other forms of dynamism have been addressed in the context of constraints by

allowing variable domains to be initially incomplete and expand over time (Faltings

and Macho-Gonzalez 2005; Gavanelli et al. 2005), or by formulating constraints

over a stream of values (Lallouet et al. 2011). That work is not technically related

to the work in this paper.

We take filtering or propagation to refer to any algorithm f that reduces domains,

that is, ∀X f(D)(X) ⊆ D(X). A filtering algorithm f for a constraint C is sound,

if every solution of C in D also appears in f(D). Some filtering algorithms

are characterized by consistency conditions. For closed constraints, the strongest

filtering/consistency condition that addresses each constraint separately is domain

consistency. A closed constraint C(X1, X2, . . . , Xn) is domain consistent if for every i,

where 1 � i � n and every d ∈ D(Xi), there is a word d1 . . . dn in LC , such that di = d

and dj ∈ D(Xj) for j = 1, . . . , n.

Because some of the variables in an open constraint will be unspecified during

part of the execution, we need to adapt the definition of consistency. The following

is an appropriate form of domain consistency for Barták’s model.

Definition 1

Given a domain D, an occurrence of a constraint C(�X) is open D-consistent if, for

every Xi ∈ �X and every d ∈ D(Xi), there is a word d1 . . . dm in LC , such that di = d,

|�X| � m, and dj ∈ D(Xj) for j = 1, . . . , |�X|.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 371

When C is closed, the only words of interest in LC are those of length |�X|. In that

case, open D-consistency reduces to domain consistency.

4 Contractibility

We want to extend a constraint C([X1, . . . , Xn]) with an extra variable Y to

C([X1, . . . , Xn, Y]). We would like to do filtering on the smaller constraint without

knowing, whether it will be extended to Y , or further, and without creating a

choicepoint. When we can do this, we have a kind of monotonicity property of C .

Definition 2

We say a constraint C([X1, . . . , Xn]) is contractible if there is a number m such that

for all n � m we have

C([X1, . . . , Xn, Y]) → C([X1, . . . , Xn])

The least such m is called the contractibility threshold.

For this paper, we consider only constraints with a contractibility threshold of 0.

Thus, C is contractible iff every solution of C([X1, . . . , Xn, Y]), when restricted to

X1, . . . , Xn, where m � n, is a solution of C([X1, . . . , Xn]). The property is akin to

the “optimal substructure” property that is a prerequisite for the use of dynamic

programming in optimization problems (Cormen et al. 2001), which requires that

optimal solutions of a problem also solve subproblems optimally. Here, it is only

satisfiability, and not optimality, that is involved.

It follows that any sound form of filtering (such as arc consistency or bounds

consistency) on a contractible constraint C([X1, . . . , Xk]) is safe in the sense that any

values deleted from domains in that process could also be deleted while filtering on

C([X1, . . . , Xn]) for any n � k. Recall that we use �X and [X1, . . . , Xn] interchangeably.

Proposition 1

Let C be a contractible constraint. Suppose a sound filtering algorithm for

C([X1, . . . , Xn]) reduces the domain D for �X to D′. Then,

D(�X) ∧ C([X1, . . . , Xn, Y]) ↔ D′(�X) ∧ C([X1, . . . , Xn, Y])

Furthermore, if this property holds for all domains and all sound filterings, then C

must be contractible.

Proof

Let σ be a solution of D(�X) ∧ C([X1, . . . , Xn, Y]). By contractibility of C , σ satisfies

C([X1, . . . , Xn]). By the soundness of the filtering, σ satisfies D′(�X). Hence, σ satisfies

D′(�X) ∧ C([X1, . . . , Xn, Y]). Since σ is an arbitrary solution,

D(�X) ∧ C([X1, . . . , Xn, Y]) → D′(�X) ∧ C([X1, . . . , Xn, Y])

Since D′ results from filtering D, D′(�X) → D(�X), and hence the reverse direction

also holds.

Now, suppose this property holds for all sound filterings D � D′ but C is not

contractible. Because C is not contractible, there must be a number n and a valuation

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

372 M. J. Maher

σ that satisfies C([X1, . . . , Xn, Y]) but not C([X1, . . . , Xn]). Let D be the domain that

defines σ and D′ be the empty (unsatisfiable) domain. Then, the reduction of D to

D′ is sound for C([X1, . . . , Xn]) and so, by the previous supposition

D(�X) ∧ C([X1, . . . , Xn, Y]) → D′(�X) ∧ C([X1, . . . , Xn, Y])

However, D(�X) ∧ C([X1, . . . , Xn, Y]) is satisfiable by σ, while D′(�X) is unsatisfi-

able, which contradicts this statement. This contradiction shows that C must be

contractible. �

Consequently, for contractible constraints, filtering does not need to be undone, if

the list is lengthened. That is, algorithms for filtering a closed contractible constraint

are valid also for the corresponding open constraint.

Conversely, any constraint that is not contractible might need to undo the effects

of filtering, if the list is lengthened. If σ is a solution of C([X1, . . . , Xn, Y]), but not of

C([X1, . . . , Xn]), then propagation on C([X1, . . . , Xn]) might eliminate σ. For example,

a constraint
∑

i Xi = 5 would propagate X1 = 5, if the sequence �X contains just

one variable, thus eliminating solutions, such as X1 = 2, X2 = 3. When the second

variable is added, all propagation that is a consequence of the inference X1 = 5

must be undone.

The second part of this proposition shows that contractibility exactly characterizes

the guarantee that closed filtering is safe for open constraints. That is, it is exactly

the contractible constraints for which it is always sound to interleave closed filtering

and addition of new variables.

Furthermore, the proof of the second part requires very little of the filtering

algorithm. Hence, whether we maintain arc consistency or weaker consistencies

like bounds consistency or forward checking, contractibility is necessary to soundly

interleave closed filtering and the addition of new variables.

We say a domain D defines an assignment if ∀X |D(X)| = 1; in that case, the

assignment maps each X to the element of D(X). We say filtering performs complete

checking if, whenever D defines an assignment, the result of filtering with a constraint

C is D iff the assignment satisfies C . Complete checking can be considered a minimal

requirement for filtering methods (Schulte and Tack 2009). Any filtering method that

satisfies this minimal requirement requires contractibility to guarantee that closed

filtering is sound for an open constraint.

Corollary 2

Let C be a constraint, and consider a sound filtering method that performs complete

checking. It is always sound to interleave filtering and the addition of new variables

iff C is contractible.

The notion of contractibility is a variation of Barták’s monotonicity (Barták 2003),

where we do not explicitly discuss variable domains. Before proceeding, we make

this claim precise. We formulate Barták’s monotonicity as follows.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 373

Definition 3

Let D be a domain. We say a constraint C is monotonic with respect to D if, for any

pair of disjoint sequences of variables �X and �Y

{�X | C(�X�Y) ∧ D(�X) ∧ D(�Y)} ⊆ {�X | C(�X) ∧ D(�X)}

Contractibility differs from monotonicity in that the definition is based entirely

on the constraint, independent of the domains of variables. Hence, it is not tied to

domain-based reasoning; it is equally compatible with the more general framework

of Maher (2009a). On the other hand, monotonicity is more flexible in reasoning

about constraints that are only “partly contractible”. The close relationship between

monotonicity and contractibility is clear.

Proposition 3

If C is contractible, then for any domain D, C is monotonic with respect to D.

Conversely, if C is monotonic with respect to every domain D, then C is contractible.

Proof

By repeated application of the definition of contractibility, we have that

C([X1, . . . , Xn, �Y]) → C([X1, . . . , Xn]). It follows immediately that C is monotonic

with respect to any particular D.

In the reverse direction, any valuation for �X�Y can be represented by a domain

D, where each D(Xi) and D(Yi) is a singleton. Then, monotonicity with respect to

D implies C(�X�Y) → C(�X) under that valuation. If C is monotonic with respect to

every domain D, then C(�X�Y) → C(�X) holds under every valuation. That is, C is

contractible. �

We, now turn to ways a constraint can be constructed to ensure it is contractible.

As a trivial case, a constraint C of fixed arity k, when applied to a sequence of

variables �X, is assumed to be applied only to the initial segment X1, . . . , Xk , or not

at all if �X is shorter than k. With this definition, C is contractible.

The Slidej meta-constraint (Bessiere et al. 2008) can be used to define several

constraints on a sequence of variables. We use a variant of Slidej that starts

applying the constraint at the pth position, rather than the first. Slide
p
j (C,

�X) holds

iff C(Xij+p, . . . , Xij+p+k−1) holds for i = 0, 1, . . . , n−p−k+1
j

�, where C has arity k. Slidej

is equal to Slide
1
j .

Constraints defined directly with Slide
p
j are contractible.

Proposition 4

Any constraint C defined by the Slide
p
j meta-constraint as C(�X) ↔ Slide

p
j (C

′, �X),

for some fixed arity constraint C ′, is contractible.

Proof

Let k be the arity of C ′. The relationship between C([X1, . . . , Xn, Y]) and

C([X1, . . . , Xn]) divides into cases, using the definition of C . If n − p − k + 2 is

non-negative and divisible by j, then

C([X1, . . . , Xn, Y]) ↔ C([X1, . . . , Xn]) ∧ C ′([Xn−k+2, . . . , Xn, Y])

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

374 M. J. Maher

If, n−p−k+2 is negative or not divisible by j, then there is no additional application

of C ′ and

C([X1, . . . , Xn, Y]) ↔ C([X1, . . . , Xn])

Thus, in both cases, C([X1, . . . , Xn, Y]) → C([X1, . . . , Xn]), and hence C is

contractible. �

Since the Sequence and SlidingSum constraints can each be defined as

Slide1(C
′, �X), for appropriate constraint C ′, it follows that they are both contractible.

For order-free constraints, we can define a meta-constraint analogous to Slide,

which we will call Splash. Like Slide, it takes a fixed arity constraint C ′ and a

sequence of variables �X as arguments. Let C ′ have arity k, and �X have length n, and

let Sk(�X) = {[Xi1 , . . . , Xik] | ij < ij+1 for j = 1, . . . , k − 1} be the set of subsequences

of �X of length k. Then, we define Splash(C ′, �X) ↔
∧
�Y ∈Sk(�X) C

′(�Y). Splash(C ′, �X)

applies C ′ to every subsequence of �X of length k. For example, we can define

AllDifferent(�X) as Splash(=, �X) and InterDistance(�X) as Splash(C ′, �X), where

C ′(Z1, Z2) ↔ |Z1 − Z2| � p. Thus, by the following proposition, AllDifferent and

InterDistance are contractible.

Proposition 5

Any constraint C defined by the Splash meta-constraint as C(�X) ↔ Splash(C ′, �X),

for some fixed arity constraint C ′, is contractible.

Proof

Let k be the arity of C ′. It is straightforward to see that

C([X1, . . . , Xn, Y]) ↔ C([X1, . . . , Xn]) ∧
∧

�Z∈Sk−1(�X)

C ′([Z1, . . . , Zk−1, Y])

It follows immediately from the definition that C is contractible. �

Once, we have some contractible constraints, there are many ways to build

other contractible constraints, as the following proposition demonstrates. These are

expressed as logic operators, but they can also be viewed as operators on formal

languages: ∧ and ∨ are intersection and union of languages, negation is complement,

existential quantification projects out a variable, and universal quantification retains

words that appear for all values of the relevant variable.

Proposition 6

Let C1(�X) and C2(�X) be contractible constraints on the same sequence of variables.

Let C(X1, . . . , Xk) be a constraint of fixed arity. Then,

• C is contractible

• C1 ∧ C2 is contractible

• C1 ∨ C2 is contractible

• ∃Xi C1 is contractible

• ∀Xi C1 is contractible

where Xi is a variable in �X.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 375

Proof

We can view C as a constraint C ′ on the sequence �X, where C ′([X1, . . . , Xn]) ↔ true

if n < k and C ′([X1, . . . , Xn]) ↔ C(X1, . . . , Xk) if n � k. Note that C(X1, . . . , Xk)

→ true and hence C ′([X1, . . . , Xk−1, Y]) → C ′([X1, . . . , Xk−1]). When n 	= k − 1, we

clearly have C ′([X1, . . . , Xn, Y]) ↔ C ′([X1, . . . , Xn]).

Suppose, Ci([X1, . . . , Xn, Y]) → Ci([X1, . . . , Xn]) for i = 1, 2. Then, by propositional

logic,
∧

i

Ci([X1, . . . , Xn, Y]) →
∧

i

Ci([X1, . . . , Xn])

and
∨

i

Ci([X1, . . . , Xn, Y]) →
∨

i

Ci([X1, . . . , Xn])

Similarly, using standard arguments, for any i we can conclude

∀Xi C1([X1, . . . , Xn, Y]) → ∀Xi C1([X1, . . . , Xn])

and

∃Xi C1([X1, . . . , Xn, Y]) → ∃Xi C1([X1, . . . , Xn])

�

In general, the negation of a contractible constraint and implication between two

contractible constraints are not contractible. See Example 2, later.

The previous results give us an algebra for constructing complex contractible

constraints, and can be used to demonstrate that some existing constraints are

contractible. For example, Contiguity is implemented in Maher (2002) essentially

as

∃�L,�R SLIDE2
3 (C

′, [L1, X1, R1, L2, . . . , Xn, Rn])

where C ′ has arity 7. Similarly, (�X �lex �Y) is encoded in Bessiere et al. (2008)

essentially as

∃�B SLIDE3(C
′, [B1, X1, Y1, B2, . . . , Xn, Yn])

where C ′ has arity 4. By the previous propositions, Contiguity and �lex are

contractible.

Similarly, we can define a weak version of GCC, where there are no lower bounds

GCC(�v,�0,�u, [X1, . . . , Xn]) as
∧
vi∈�v Splash(C ′

i ,
�X), where C ′

i has arity ui + 1 and states

that not all its arguments are equal to vi. By the previous propositions, this weak

form of GCC is contractible.

However, it is notable that the Regular constraint is not contractible, despite the

implementation in terms of Slide outlined in Bessiere et al. (2008).

Example 1

Let A be an automaton that accepts the language a+b2. Then, Regular(A, [X1]) →
X1 = a but Regular(A, [X1, Y]) → X1 = b. Thus, Regular is not contractible.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

376 M. J. Maher

The discrepancy arises because Regular is not constructed from the operations

in the above propositions. Essentially, the implementation defines

Regular(A, [X1, . . . , Xn]) ↔
∃�Q Slide2(Transition, [Q0, X1, Q1, . . . , Xn, Qn])

∧ Start(Q0) ∧ Final(Qn)

where the 3-ary constraint Transition expresses the state transitions of A, Start

defines the start state(s) and Final defines the final state(s). It is the constraint on

the final variable Qn that leads to uncontractibility; the remainder is expressible

within the algebra.

We now make a simple observation that provides a useful characterization of

contractible constraints. If A defines a prefix-closed language, then Regular(A, �X)

is contractible. This claim holds more generally.

Proposition 7

Let C(�X) be a constraint over a sequence of variables. Then, C is contractible iff LC
is prefix-closed.

Proof

Suppose C is contractible. If σ is a solution of C([X1, . . . , Xn, Y]), then, by con-

tractibility, the restriction of σ to X1 . . . Xn is a solution of C([X1, . . . , Xn]). Thus, the

set of solutions is prefix-closed.

Suppose S is prefix-closed. For any solution σ of C([X1, . . . , Xn, Y]), we know

that the restriction of σ to X1 . . . Xn is a solution of C([X1, . . . , Xn]). Since, this

holds for any solution σ, we have C([X1, . . . , Xn, Y]) → C([X1, . . . , Xn]), that is, C is

contractible. �

This result applies to constraints based on formal languages, such as Regular

and CFG, but it also applies to constraints that are formulated differently. Thus, for

example, the solutions of Sequence and AllDifferent are prefix-closed. Conversely,

we see that constraining the final variable in a sequence, as in Final(Qn), is not

contractible.

This characterization allows us to substantiate the claim, made earlier, that in

general the negation or implication of contractible constraints is not contractible.

Example 2

Suppose, we have an alphabet {a, b}. If LC is a∗, then L¬C contains aab, but not its

prefix aa. Hence, ¬C is not contractible. Hence, also, C → false is not contractible

that is, implication of contractible constraints is not, in general, contractible. To take

another example, if LC1
is a∗b∗a∗ and LC2

is a∗b∗, then LC1→C2
contains bab (since

bab /∈ LC1
), but not its prefix ba (since ba ∈ LC1

but ba /∈ LC2
). Hence, C1 → C2 is

not contractible.

We can use the prefix-closed characterization both to determine, whether a con-

straint is contractible or not, and as the basis for approximations of uncontractible

constraints. We explore these possibilities in the following sections.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 377

5 Classifying constraints

It is not within the scope of this paper to determine the contractibility of every

global constraint. Nevertheless, we can outline and demonstrate some principles that

make it easy, in most cases, to classify a global constraint as contractible or not.

In general, constraints based on counting with a lower bound (or equality) are

not contractible. We can see this by noting that any non-trivial lower bound on the

number of things in a sequence (or satisfied by a sequence) may be violated by a

prefix of the sequence. This was already touched upon in Barták (2003), where the

Sum constraint
∑n

i=1Xi = N was shown to be non-monotonic, but the argument

holds for a wide range of constraints.

For example, Peak counts the number of peaks in a sequence, but a prefix of

the sequence may have fewer peaks. Similarly, Stretch places lower bounds on

the span of stretches, so that 1122 might be a solution, while 112 is not. By a

similar argument, constraints identifying properties of an extreme element in a

sequence, such as HighestPeak, are not contractible. On the other hand, NoPeak

is contractible since, to the extent that there is counting, there is no lower bound –

only an upper bound of 0.

We can generalize and formalize these observations. A function f is a non-

decreasing accumulation function, if it maps sequences of values to numbers such

that, for every sequence �X and value Y , f(�XY) � f(�X). We can similarly define

the non-increasing functions. Among non-decreasing accumulation functions are

counting the number of elements in a sequence with a fixed property, counting the

number of different elements, identifying the highest peaks, and summing (some)

non-negative elements of a sequence. Note that summing possibly negative elements

of a sequence is not non-decreasing. The first part of the following proposition is an

almost direct consequence of the definitions of contractibility and non-decreasing

function.

Proposition 8

Let C be a global constraint.

• Suppose C can be expressed as f(�X) � Z . Then, C is contractible iff f is a

non-decreasing accumulation function.

• Suppose C can be expressed as f(�X) � Z . Then, C is contractible iff f is a

non-increasing accumulation function.

• Suppose C can be expressed as f(�X) = Z . Then, C is contractible iff f is a

constant function.

Proof

If f is a non-decreasing accumulation function, whenever f(�XY) � Z, we must have

f(�X) � Z . Thus, C(�XY) → C(�X).

If f is a not a non-decreasing accumulation function, there is a sequence of values
�X and a value Y , such that f(�XY) < f(�X). Choose Z such that f(�XY) � Z > f(�X).

Then, C(�XY) holds but C(�X) does not. Thus, C is not contractible.

The proof of the second and third parts is similar. �

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

378 M. J. Maher

Thus, the constraints
∑n

i=1Xi = N and
∑n

i=1 |Xi| = N are not contractible.

Similarly,
∑n

i=1Xi � N is not contractible, while
∑n

i=1 |Xi| � N is contractible. This

result can be used to establish that Peak, and HighestPeak are not contractible

and that NoPeak is contractible, but it also applies to many other counting and

summing constraints in Beldiceanu et al. (2005).

Notice that in constraints like Sequence and SlidingSum, the use of a lower

bound in the description of the constraint C ′ to which Slide is applied does

not prevent contractibility. Each lower bound applies only to a small part of

the sequence. However, the RelaxedSlidingSum constraint, which weakens the

SlidingSum constraint by putting bounds on the number of times the C ′ constraint

is satisfied, is not contractible, because counting is an accumulation function that is

not non-increasing and the lower bound applies to the entire sequence.

Some constraints can be recognized as contractible, based only on their informal

semantics. For example, Diffn and Disjunctive enforce that objects represented by

the variables are non-overlapping. Clearly, if �XY forms a non-overlapping set, then

so does �X alone. Thus, contractibility follows directly from Definition 2. Similarly,

Cumulative
4, BinPacking, and Disjoint are contractible.

For other constraints, their informal semantics lead easily to counterexamples

to contractibility. Constraints that involve computing the minimum, maximum,

mean/average, median, mode, standard deviation, etc. of the sequence are not

contractible. This is easily recognized, since these statistics are not, in general,

preserved after eliminating part of the sample set, and hence are not prefix-closed.

Alternatively, we could recognize that these functions are not non-increasing, nor

non-decreasing and apply Proposition 8.

The idea of contractibility is not useful for all global constraints. For exam-

ple, it appears irrelevant to cyclic constraints like the cyclic Regular, cyclic

Sequence, and cyclic Stretch constraints. In these constraints, the sequence of

variables is representing a cycle or circular list and there is no natural end at

which to add variables. Thus, it is not surprising that these constraints are not

contractible.

There is sometimes a fine line between contractible and uncontractible constraints.

For example, while �lex is contractible, <lex is not. To see the latter, observe that

111 <lex 112, but the corresponding prefixes are not strictly smaller – they are

equal. If the precedence constraint s ≺�X t also required that t appear in �X, then

the constraint would not be contractible (because rst satisfies this constraint, but rs

does not). Finally, notice that the Sequence constraint is contractible, but it has the

form Slide(C ′, �X), where C ′ is essentially a fixed-arity Among constraint; however,

the (variable-arity) Among constraint is not contractible.

A quick survey of Beldiceanu et al. (2005) suggests that most current global

constraints are not contractible, although we have noted several useful constraints

that are contractible. In the next section, we address how to propagate uncontractible

open constraints.

4 Under the assumption that activities can only consume resources (and not produce resources).

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 379

6 Approximating constraints

When a constraint is not contractible, the closed propagator for that constraint is

unsound as a propagator for the open constraint. However, following a proposal

of Barták (2003), we can implement an uncontractible open constraint C(�X) by

executing a safe contractible approximation Capp of C until �X is closed, and then

replacing Capp by C for the remainder of the execution. To employ this approach,

we need to identify a contractible language containing the language of C , and a

propagator Capp that implements it.

A language L is an approximation of a constraint C if LC ⊆ L. An approximation

L is contractible iff L is prefix-closed. A contractible approximation La to a language

L is tight if for all contractible languages L′; if La ⊇ L′ ⊇ L, then L′ = La. By

Proposition 7, there is a unique contractible approximation that is tighter than all

others: the prefix-closure of LC gives the tightest contractible approximation5.

The prefix-closure P (L) of a language L often appears to be simpler than L. For

example, if L1 is {an2 | n ∈ �}, then P (L1) is a∗. But in general the prefix-closure is no

simpler than the original language. For example, if L2 is {an2

b | n ∈ �}, then P (L2)

is a∗ ∪L2. In some cases, it is easy to represent P (L) when given a representation of

L. In particular, when L is defined by a finite automaton the automaton accepting

P (L) is easily computed.

Proposition 9

Let A be a (possibly non-deterministic) finite state automaton, and let A′ be the

finite state automaton obtained from A by making final all states on a path from

the start state to a final state. Then, L(A′) = P (L(A)). A′ can be computed in

linear time.

Proof

Consider any prefix w of a word wu ∈ L(A). wu describes a path in A that ends

at a final state. Hence, w describes a path in A that ends at a state on a path to a

final state. Hence, w is accepted by A′. Thus, L(A′) ⊇ P (L(A)).

Conversely, suppose w is accepted by A′. By the construction of A′, w describes

a path in A that ends at a state Q on a path to a final state of A. Let u be a word

corresponding to a path from Q to a final state. Then, wu is accepted by A and

hence w is a prefix of a word in L(A). Thus, L(A′) ⊆ P (L(A)).

We can construct A′ as follows. Treat the automaton A as a directed graph with

the states as vertices and where each transition from Q1 to Q2 is represented by an

edge from Q1 to Q2. Perform depth-first search and mark all states reachable from

the start state. Now, consider the graph with the edges reversed. Perform depth-first

search from the reachable final states, marking each visited reachable state as a

final state. A′ is the automata A with these additional final states. The cost of the

construction is O(V + E), where V is the number of states, and E is the number

of transitions. (Note that we could ignore reachability and define a variation of A′

that may have some unreachable final states.) �

5 Consequently, tight and tightest contractible approximations are synonyms.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

380 M. J. Maher

Similarly, we can use the structure of a context-free grammar to construct a

grammar for its prefix-closure.

Proposition 10

Given a context-free grammar G defining a language L, a context-free grammar G′

for P (L) can be generated in quadratic time, and in linear time if G is in Chomsky

normal form.

Proof

(Sketch) We show only the construction when G is presented in Chomsky normal

form, and leave the generalization to arbitrary grammars and the verification of its

correctness to the reader.

Let G = (N,T , R, S), where N is a set of non-terminal symbols, T is a set of

terminal symbols, R is the set of production rules, and S is the start symbol. In

Chomsky normal form, production rules have the form A → BC or A → a or S → ε,

where A, B, and C are non-terminal symbols, a is a terminal symbol, and ε is the

empty word. We define G′ = (N ′, T , R′, S ′), where N ′ = N ∪ {S ′} ∪ {Ap | A ∈ N} and

R′ = R ∪ {S ′ → ε} ∪ {S ′ → Sp} ∪ {Ap → a | (A → a) ∈ R} ∪
{Ap → Bp | (A → BC) ∈ R} ∪ {Ap → BCp | (A → BC) ∈ R}

For each non-terminal A ∈ N, Ap generates all non-empty prefixes of words generated

by A, including the words generated by A. It is clear that G′ is larger than G by a

factor of 3 or less. For an arbitrarily structured grammar, the size of G′ can grow

quadratically.

R′ is not in Chomsky normal form, but it is easily simplified to that form. Non-

terminals Ap, which are strongly connected by edges corresponding to productions

of the form X → Y can be replaced by a single equivalent nonterminal, to give

R′′. Remaining productions X → Y can be replaced by a set of productions

{X → ψ | (Y → ψ) ∈ R′′}. In general, repeated replacements are necessary to

eliminate all X → Y productions. A naive representation can increase the size of

the grammar, but a more careful representation can share the right-hand side of

productions so that the Chomsky normal form is not larger than G′. �

Thus, the tightest contractible approximation of Regular(A, �X,N) is imple-

mented by Regular(A′, �X,N), and the tightest contractible approximation of

CFG(G, �X,N) is implemented by CFG(G′, �X,N).

As a corollary to Proposition 9, we can check in linear time whether a language

defined by a deterministic finite automaton is prefix-closed: we simply check whether

the construction of A′ in Proposition 9 made any new final states. This improves

on a result of Brzozowski et al. (2009). Unfortunately, recognizing when a language

defined by a nondeterministic finite automaton A is prefix-closed is not so simple; A
need not have the property that all states on a path from start to final state are final.

It is shown in Brzozowski et al. (2009) that this problem is PSPACE-complete. The

problem is undecidable for languages defined by context-free grammars (Brzozowski

et al. 2009). However, the decision problem is much less important than the ability

to construct (the representation of) the prefix-closure, so these negative results are

not significant.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 381

Regular and CFG are complicated by flexible parameters, but approximations to

simpler constraints are often correspondingly simpler to recognize. As discussed in

Barták (2003), a constraint
∑n

i=1Xi = N, where the Xi’s must be non-negative

is not monotonic but is approximated by the constraint
∑n

i=1Xi � N. Using

Proposition 8, we can recognize this as the tightest contractible approximation.

Similarly, for a counting constraint such as Peak(�X,N), which states that there

are exactly N peaks in �X, the tightest contractible approximation states that N is

an upper bound on the number of peaks. In the same way, NValue(�X,N) is best

approximated by treating N only as an upper bound. The tightest approximation

of the GCC is the weak form of GCC discussed in Section 4. In all these cases,

since counting is a non-decreasing accumulation function, the tightest contractible

approximation is to eliminate the lower bounds. In HighestPeak(�X,Z), the height

of the highest peak is a non-decreasing accumulation function and so the tightest

approximation states that Z is an upper bound on the height of the highest

peak.

On the other hand, for some constraints where the accumulation function

is neither non-increasing nor non-decreasing there appear to be no non-trivial

approximations. For example, consider a constraint Average(�X,M) stating that

M is the mean/average of the values of �X. Given a fixed M, any sequence of

values can be a prefix of a sequence with mean M. Hence, the tightest contractible

approximation of Average is the constraint that accepts any sequence, that is, the

constraint true. For such a constraint, there is no propagation until the constraint is

closed.

However, as the previous discussion shows, for many constraints the tightest

contractible approximation is not only non-trivial, it has a clear and simple

expression. For these constraints, a propagator for the approximation Capp is

almost ready-made, given a propagator for the original constraint C . Furthermore,

the transition of propagator from Capp to C when the constraint closes can

be smooth and simple because, in the cases above, the propagator for Capp is

simply a weakened form of the propagator for C . Some more detailed analysis

of this similarity of propagators for C and Capp, for several constraints C , ap-

pears in Maher (2009c) and (for a slightly different model of open constraint)

(Maher 2009b).

If we have domain consistent closed propagators and a tight contractible ap-

proximation, then we can obtain an open D-consistent propagator from Barták’s

proposal. Recall that under Barták’s proposal (Barták 2003), a closed propagator for

Capp is dynamized to handle extensions of the sequence of variables (possibly through

his generic dynamization). This propagator is then executed until the sequence of

variables is closed, at which point the propagator is replaced by a closed propagator

for C .

Theorem 11

Let Capp be the tightest contractible approximation to C , and suppose we have

closed propagators for Capp and C that maintain domain consistency for �X. Then,

Barták’s proposal maintains open D-consistency for C .

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

382 M. J. Maher

Proof

Since Capp is contractible, domain consistency of Capp for �X is equivalent to open

D-consistency on C(�X). This follows because Capp is the prefix-closure of C and

so every support for domain consistency of Capp(�X) for �X corresponds to a longer

word that is a support for D-consistency on C(�X), and vice versa every support

for open D-consistency on C(�X) has a corresponding prefix that is a support for

domain consistency of Capp(�X) for �X. Once �X is closed, domain consistency for �X

is identical to D-consistency on C(�X). �

We can obtain similar results for consistency conditions other than domain

consistency. All that is required is to define the appropriate corresponding open

consistency. For example, consider bounds consistency. Let min(X) (max(X)) denote

the smallest (largest) value in D(X). The appropriate form of bounds consistency

for open constraints is open B-consistency.

Definition 4

Given a domain D, an occurrence of a constraint C(�X) is open B-consistent, if

for every Xi ∈ �X, and for di = min(Xi) and di = max(Xi), there is a word d1 . . . dm
in LC , such that |�X| � m, and dj ∈ min(Xi)..max(Xi) for j = 1, . . . , |�X|.

We can now express the corresponding result for bounds consistency. The proof

is essentially the same as that for the previous theorem.

Corollary 12

Let Capp be the tightest contractible approximation to C , and suppose we have

closed propagators for Capp and C that maintain bounds consistency for �X. Then,

Barták’s proposal maintains open B-consistency for C .

Notice that we still require a tightest contractible approximation. Any weakening

of this requirement can lose open B-consistency, as is clear from Corollary 2.

7 Contractibility of soft constraints

We consider “soft” global constraints in the style of Petit et al. (2001). In such

constraints, there is a violation measure6, which measures the degree to which an

assignment to the variables violates the associated “hard” constraint, and solutions

are assignments that satisfy an upper bound on the violation measure. Thus, such

soft constraints have the form m(�X) � Z , where m is the violation measure. We refer

to the hard constraint as C(�X), and the corresponding soft constraint as Cs(�X,Z).

Assessing the contractability of such constraints is made easier by Proposition 8,

which says that a constraint m(�X) � Z is contractible iff m is non-decreasing. Given

this characterization, we will refer to non-decreasing accumulation functions as

contractible functions. To evaluate whether or not soft constraints are contractible,

we must consider the form of the violation measure, and whether it forms a

contractible function.

6 Also called violation cost (Petit et al. 2001).

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 383

Definition 5

A violation measure for a sublanguage L of a language L′ is a function m, which

maps L′ to the non-negative real numbers, such that if w ∈ L, then m(w) = 0. m is

proper for L if for all words w ∈ L′, m(w) = 0 iff w ∈ L. A violation measure for a

constraint C(�X) is a violation measure for LC as a sublanguage of the static type

T (�X).

For example, a use of AllDifferent might give the set � of integers as the static

type of each variable. A violation measure might then be the number of disequalities

Xi 	= Xj, i 	= j violated by a valuation for �X, or the number of variables equal to

another variable under the valuation, or the minimum absolute value of the sum

over i of values ci such that, for each i and j with i 	= j, Xi + ci 	= Xj + cj
7. It is

easy to see that each of these defines a violation measure. The third is not a proper

violation measure because, for example, the word 11, 233 can have perturbations ci
of 0,−1, 0, 0, 1. Thus, m(11233) = 0 but 11233 	∈ LC . (Summing the absolute value

of the ci, on the other hand, would lead to a proper measure.)

Proper violation measures for a language L are a refinement of the characteristic

function of L8. Most violation measures in the literature are proper for their intended

language. Although any function from words to non-negative reals can be considered

a proper violation measure by appropriate choice of language L, in practice the hard

constraint determines L and the violation measure is then designed to be proper. A

non-proper measure can be considered misleading because a word w that violates

the language L can have a violation measure of 0. We admit non-proper violation

measures mainly because contractible approximations considered in Section 8 can

be non-proper. However, we make some effort in this section to identify proper

violation measures.

There are three broad classes of violation measures (Maher 2009d): those based

on constraint decomposition, edit distance, and graph properties. We address the

first two classes in the following subsections. The richness of the graph property

framework (Beldiceanu and Petit 2004) makes it difficult to obtain broad results

on contractibility. A somewhat narrow sufficient condition for contractability of

soft constraints defined by graph property-based violation measures is presented in

Maher (2009d). For each of the classes we consider, we will incorporate a weighting

that adds greater flexibility and expressiveness to the class.

7.1 Decomposition-based violation measures

Many hard constraints can be decomposed into elementary constraints, whether

naturally (such as the decomposition of AllDifferent into disequalities) or by a

construction, as in Bessiere et al. (2009). Violation measures can be constructed by

combining the violations of each elementary constraint. We define a general class of

7 This latter measure expresses the smallest perturbation�c of the values for the variables needed to satisfy

the AllDifferent constraint. More formally, m(�X) = min�c{|
∑n

i=1 ci| | ∀j j 	= i → Xi + ci 	= Xj + cj}.
8 Indeed, for any proper violation measure m, the corresponding hard constraint can be recovered as

m(�X) � 0.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

384 M. J. Maher

decomposition-based violation measures that includes as special cases: primal graph

based violation costs (Petit et al. 2001), decomposition-based violation measures of

van Hoeve et al. (2006), the value-based violation measure for GCC (Petit et al.

2001; van Hoeve et al. 2006), the measures used for the soft Sequence constraint

(Maher et al. 2008), and the soft Cumulative constraint (Petit and Poder 2009), the

weighted measures for AllDifferent and GCC (Métivier et al. 2007, 2009), and

the class of decomposition-based measures discussed in Maher (2009d). We begin

with several definitions.

A weighted set is a pair (S, w), where S is a set and w is a function mapping each

element of S to a non-negative real number or ∞. Values not in S have weight 0. If

these are the only values of weight 0 we say (S, w) is proper. A weighted set is a minor

generalization of a multiset. A weighted set (S1, w1) is a sub-weighted set of weighted

set (S2, w2) if, for every element s ∈ S1, w1(s) � w2(s). Union of weighted sets is

defined by (S1, w1) ∪ (S2, w2) = (S1 ∪ S2, w1 +w2), where (w1 +w2)(x) = w1(x) +w2(x).

When a weighted set contains things with variables that are subject to substitution,

the application of a substitution might unify elements of the set. Hence, (S, w)θ

denotes (Sθ, w′) where w′(s) is the sum of w1(s
′) over all s′ ∈ S such that s′θ ≡ s.

We need to carefully formalize the notion of decomposition. The definition takes

as a parameter a class of elementary constraints. Usually the constraints in such a

class have bounded arity.

Definition 6

A decomposition is a function that maps a constraint C with a given type T and

a sequence of variables �X to a tuple (�X, �U,T ′, S , w), where �U is a collection of

new variables, T ′ is an extension of T to �U, and (S, w) is a proper weighted set of

elementary constraints over �X�U, such that C(�X) ↔ ∃�U T ′(�U) ∧
∧
s∈S s.

The weights in this definition are used only to emphasize some constraints in a

decomposition over others; in particular, the infinite weight allows us to specify

elementary constraints that must not be violated. An unweighted decomposition is

one where all constraints in S have the same, non-zero weight. In that case, we may

omit w. We write decomp(C(�X)) to express the weighted set (S, w), or simply S when

the decomposition is unweighted.

This definition of decomposition is very broad, perhaps too broad, since it allows

the set of elementary constraints and/or their weights to vary radically as the length

of �X changes. For example, it permits using the decomposition of AllDifferent(�X)

into disequalities when |�X| is odd, and a decomposition from Bessiere et al. (2009)

(see Example 6) when |�X| is even. However, we will see in Example 5 a constraint

whose expression requires some of the flexibility offered by this broad definition.

An error function e maps an elementary constraint and a valuation to a non-

negative real number, representing the amount of error (or violation) of the

constraint by the valuation. We require that e(v, c) = 0 iff c is satisfied by v.

We extend e to weighted sets of constraints by defining e(v, (S, w)) = (S ′, w′), where

S ′ = {e(v, s) | s ∈ S} and w′(x) =
∑

s|v(s)=x w(s).

A combining function maps a weighted set of numbers to a single number. A

combining function comb is monotonic if, whenever (S1, w1) is a sub-weighted set

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 385

of (S2, w2), comb(S1, w1) � comb(S2, w2). The function comb is disjunctive if for all

weighted sets of reals (S, w), comb(S, w) = 0 iff S = {0}. We say comb has unit 0

if, for every (S, w) and w′, comb((S, w) ∪ ({0}, w′)) = comb(S, w). Counting non-zero

values, summation, sum of squares, and maximization are examples of monotonic,

disjunctive combining functions with unit 0; product and minimization are neither

monotonic nor disjunctive nor have unit 0.

Definition 7

A decomposition-based violation measure m for a constraint C(�X) with type T is based

on a decomposition (�X, �U,T ′, S , w) of C(�X), an error function e, and a combining

function comb and is defined by, for each valuation v of �X,

m(v(�X)) = min
v′
comb(e(v′,decomp(C(�X))))

where, we minimize over all extensions v′ of v to �U that satisfy T ′.

This definition was inspired by the formulation of hierarchical constraints in

Borning et al. (1992, 1989). The violation counting decomposition measures of Petit

et al. (2001); van Hoeve et al. (2006) can be obtained when the error function

e(v, c) returns 0 if v satisfies c and 1 otherwise, and the combining function is

summation. The value-based measures of Petit et al. (2001), van Hoeve et al. (2006),

Maher et al. (2008), Petit and Poder (2009) also use summation as the combining

function, but use an error function that returns the amount by which the constraint

c is violated by the valuation v. If we use maximization or the sum of squares in

place of summation, we have new violation measures similar to the worst-case-better

and least-squares-better comparators of Borning et al. (1989, 1992). Clearly, many

violation measures are available for a constraint by making different choices for the

decomposition and the error and combining functions.

There is a powerful sufficient condition for a decomposition-based violation

measure to be proper.

Proposition 13

Let m be a decomposition-based violation measure for a constraint C , as defined in

Definition 7 with combining function comb. m is proper for LC if comb is disjunctive.

Proof

Let v be a valuation for �X. Suppose comb is disjunctive.

m(v(�X)) = 0

iff minv′ comb(e(v′,decomp(C(�X)))) = 0

iff for some v′ extending v, comb(e(v′,decomp(C(�X)))) = 0

iff for some v′ extending v, and some w, e(v′,decomp(C(�X))) = ({0}, w)

iff for some v′ extending v, v′ satisfies every c ∈ decomp(C(�X))

iff v satisfies C(�X)

iff v(�X) ∈ LC .

Thus, for any valuation v, m(v(�X)) = 0 iff v(�X) ∈ LC . Hence, m is proper for

LC . �

We now turn to the problem of recognizing contractibility. We say that one

formula (�X, �U,T1, S1, w1) is covered by another formula (�W, �V , T2, S2, w2), if there is

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

386 M. J. Maher

a substitution θ that maps �X into �W and �U into �V ∪ �W ∪ Σ, where Σ is a set of

constants, such that T1(�X) = T2(�Xθ), (S1, w1)θ is a sub-weighted set of (S2, w2) and

T2(�Uθ) ⊆ T1(�U). Covering has some similarity to characterizations of containment

of conjunctive relational database queries (Chandra and Merlin 1977), (constraint)

logic programming rule subsumption (Maher 1988, 1993), and sufficient conditions

for query containment under bag semantics (Chaudhuri and Vardi 1993; Ioannidis

and Ramakrishnan 1995).

Example 3

The decomposition of AllDifferent(�X) into an unweighted set of disequalities is

formalized as (�X, ∅, T , S , w), where S is the set of disequalities and w gives every

disequality a weight of 1. It is clear that the decomposition of AllDifferent(�X) is

covered by that of AllDifferent(�XY) where the substitution is the identity.

Example 4

Contiguity is implemented in Maher (2002) essentially by the decomposition

Contiguity(�X) ↔ ∃�L,�R
n−1∧

i=2

C ′(Xi−1, Ri−1, Li, Xi, Ri, Li+1, Xi+1)

for a constraint C ′. This decomposition is formalized as (�X,�L�R,T , S, w), where T

gives all variables a type of {0, 1}, S is the set of C ′ constraints, and w gives every

constraint a weight of 1. Alternatively, if contiguity is more important for variables

nearer the right end of the sequence �X, we might weight each C ′ constraint by the

largest index of a variable appearing in it. The decomposition of Contiguity(�XY)

covers that of Contiguity(�X), where the substitution is the identity on �X, �L, and �R.

We can now provide a sufficient condition for a soft constraint with a decomposition-

based violation measure to be contractible.

Proposition 14

Let Cs be a soft constraint with a decomposition-based violation measure defined

using a monotonic combining function. Let (�X, �U,T1, S1, w1) be the decomposition

of C(�X) and (�XY , �V , T2, S2, w2) be the decomposition of C(�XY). If (�X, �U,T1, S1, w1)

is covered by (�XY , �V , T2, S2, w2) via a substitution that is the identity on �X, then Cs
is contractible.

Proof

By the covering condition, there is a substitution θ that is the identity on �X

and maps �U to �V ∪ �XY ∪ Σ such that (S1, w1)θ is a sub-weighted set of (S2, w2).

Consider any assignment v to �XY ∪ �V . Then, v ◦ θ is an assignment9 to �X ∪ �U.

Furthermore, v((S1, w1)θ) is a sub-weighted set of v(S2, w2) and hence e(v◦θ, (S1, w1)) =

e(v, (S1, w1)θ) is a sub-weighted set of e(v, (S2, w2)). Consequently, since the combining

function comb is monotonic, comb(e(v ◦ θ, (S1, w1))) � comb(e(v, (S2, w2))). It follows

that m(v(�X)) � m(v(�XY)). Thus, since v is arbitrary, m is non-decreasing and, by

Proposition 8, Cs is contractible. �

9 We define (v ◦ θ)(x) = v(xθ) for any term x.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 387

It follows that the constraints in Examples 3 and 4 are contractible. More generally,

if an unweighted decomposition is defined via part of the algebra discussed in

Section 4 (that is, using Slide or Splash meta-constraints, constraints on a fixed

finite prefix of the variable sequence, conjunction, and existential quantification)

and a monotonic combining function, then Proposition 14 is sufficient to establish

contractibility. However, covering is not a necessary condition for contractibility, as

the following example demonstrates.

Example 5

Consider the definition of a rising sawtooth relation rs on variables �X. In such

a relation, the subsequence of values in even numbered positions forms a non-

decreasing sequence, and every value in odd numbered positions is greater than or

equal to its immediately adjacent neighbours10. This relation can be decomposed

into elementary constraints as follows. The decomposition is defined recursively, but

notably requires two recursive cases, corresponding to the distinction between odd

and even length sequences.

decomp(rs([])) = true

decomp(rs([X1])) = true

decomp(rs([X1, X2])) = X1 � X2

decomp(rs([X1, . . . , X2n, X2n+1])) =

decomp(rs([X1, . . . , X2n])) ∧X2n+1 � X2n

decomp(rs([X1, . . . , X2n, X2n+1, X2n+2])) =

decomp(rs([X1, . . . , X2n])) ∧X2n+1 � X2n+2 ∧X2n+2 � X2n

Consider the soft constraint derived from this decomposition by counting the

number of violations. It is clear that the sufficient condition of Proposition 14

does not apply because there is no covering. Nevertheless, we can verify that

a decomposition-based soft rs constraint is contractible. Note first that when �X

has even length decomp(rs(�X)) ⊆ decomp(rs(�XY)) and consequently the violation

measure is non-decreasing in this case. When �X has odd length the relationship is

less obvious. However, we know that

(X2n+1 � X2n+2) ∧ (X2n+2 � X2n) → (X2n+1 � X2n)

and its contrapositive

¬(X2n+1 � X2n) → ¬(X2n+1 � X2n+2) ∨ ¬(X2n+2 � X2n)

Hence, any valuation for the variables that gives rise to a violation of X2n+1 � X2n

will also give rise to a violation of X2n+1 � X2n+2, or X2n+2 � X2n, or both. Thus, the

violation measure is non-decreasing in this case also. Since the violation measure is

non-decreasing, the decomposition-based soft rs constraint is contractible.

Similarly, the violation measures derived from summing the amount of violation

or taking the maximum amount of violation of any elementary constraint lead to

contractible soft rs constraints.

10 This is an artificial constraint, designed to demonstrate the point. However, the pricing of goods with
volume discounts can have a similar rising sawtooth behaviour.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

388 M. J. Maher

This example demonstrates a major limitation of the sufficient condition in

Proposition 14: it addresses only the syntactic structure of the decomposition.

However, some constraints, such as rs, require reasoning about the semantics of

the elementary constraints in order to recognize that the decomposition-based soft

constraint is contractible. (For rs we exploited the knowledge that � forms a total

order.)

A second example is given by a decomposition of AllDifferent given in Bessiere

et al. (2009).

Example 6

Consider the AllDifferent constraint with type T that maps each Xi to 1..d, which

we denote by AllDifferentT . To define the decomposition we need to introduce

variables Ailu of type {0, 1} and constraints as follows.

For 1 � i � n and 1 � l � u � d we have the constraints

Ailu = 1 ↔ Xi ∈ [l, u] (7.1)

n∑

i=1

Ailu � u− l + 1 (7.2)

This decomposition is formalized as (�X,�A, T ′, S , w), where T ′ extends T to the Ailu
variables, S consists of the constraints (7.1) and (7.2) and w gives all constraints the

same weight. It is easy to establish that AllDifferentT (�X) ↔ ∃�A ∈ T ′(�A) (7.1) ∧
(7.2).

When �X is extended by Y , the decomposition contains extra variables A(n+1)lu,

extra constraints of type (7.1) involving Y and the new variables, and replaces

constraints (7.2) by
n+1∑

i=1

Ailu � u− l + 1 (7.3)

Now, for each l and u, (7.3) ∧ (0 � A(n+1)lu � 1) → (7.2). Thus, every valuation

that violates (7.2) will also violate (7.3). It follows that the soft constraint based on

counting violations in this decomposition of AllDifferent is contractible. Similarly,

soft constraints based on summing violation amounts or taking the maximum are

also contractible, because
∑n+1

i=1 Ailu �
∑n

i=1 Ailu.

On the other hand, the decomposition of AllDifferent(�XY) cannot be a covering

of the decomposition of AllDifferent(�X), because each constraint (7.2) is not

covered by the corresponding constraint (7.3). Thus, again, the sufficient condition

of Proposition 14 cannot be used.

To redress the weakness of covering in addressing Examples 5 and 6, we need

to incorporate knowledge of the semantics of the elementary constraints and, more

generally, the error function. We begin with some definitions.

A division of a weighted set (S, w) is a collection of sub-weighted sets (Si, wi), such

that ∪i (Si, wi) = (S, w). When all Si are singleton sets, we refer to this as division into

singletons. Given a weighted set (S, w), we write wθ to denote the weight function of

(S, w)θ.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 389

Definition 8

A semantic embedding of (�X, �U,T1, S , w) in (�XY , �V , T2, S
′, w′) is a pair 〈φ, θ〉, where

φ is a function and θ is a substitution, such that

• θ is the identity on �X and maps �U into �XY ∪ �V ∪ Σ, where Σ is a set of

constants, such that T2(�Uθ) ⊆ T1(�U);

• φ is an injective function from (S, w)θ to a division of (S ′, w′); and

• for every valuation v and every elementary constraint c ∈ Sθ, e(v, ({c}, wθ)) �
comb(e(v, φ(c))).

In a semantic embedding, the substitution θ shows how variables local to the

first decomposition are represented in the second and the function φ shows how

elementary constraints in the first decomposition are represented in the second. The

third condition requires that these representations respect the semantics expressed

by the error function e.

Covering is essentially a syntactic form of semantic embedding: a semantic

embedding, where (S ′, w′) is divided into singletons and any constraint cθ in Sθ

is mapped to cθ in S ′.

We are now in a position to state a much broader sufficient condition for

contractibility than Proposition 14.

Theorem 15

Let Cs be a soft constraint with a decomposition-based violation measure m

defined using a monotonic combining function comb. Let (�X, �U,T1, S1, w1) be the

decomposition of C(�X) and (�XY , �V , T2, S2, w2) be the decomposition of C(�XY).

Suppose there is a semantic embedding of (S1, w1) in (S2, w2). Then, Cs is contractible.

Proof

Consider the extension of �X to �XY and a valuation v on �XY �V . Let 〈φ, θ〉 be the

semantic embedding. Then, for every elementary constraint c ∈ S1θ, e(v, ({c}, w1θ))

� comb(e(v, φ(c))). Hence, e(v ◦ θ, (S1, w1)) = e(v, (S1, w1)θ) = comb(
⋃
c∈S1θ

e(v, ({c},
w1θ))) � comb(

⋃
c∈S1θ

e(v, φ(c))) � comb(e(v, (S2, w2))).

Since comb is monotonic, comb(e(v ◦ θ, (S1, w1))) � comb(e(v, (S2, w2))). It fol-

lows that minv comb(e(v, (S1, w1))) � minv comb(e(v, (S2, w2))), and hence m(C(�X)) �
m(C(�XY)). Thus, Cs is contractible. �

For (unweighted) violation counting measures, the third condition of semantic

embedding reduces to D |= (T2(�V) ∧ φ(c)) → cθ, where D expresses some properties

of the elementary constraints. Thus, for these measures, we can reason about

contractibility using conventional logic. In Example 5, θ can be the identity

substitution, since no additional variables are used in the decomposition, and

φ maps (X2n+1 � X2n) to (X2n+1 � X2n+2) ∧ (X2n+2 � X2n). We know that

(X2n+1 � X2n+2)∧ (X2n+2 � X2n) → (X2n+1 � X2n) so, applying the previous theorem,

a violation counting soft constraint of rs is contractible. In Example 6, using the

natural choice of φ and θ (which maps variables Ailu in decomp(C(�X)) to variables of

the same name in decomp(C(�XY)), constraints (7.1) to themselves, and constraints

(7.2)–(7.3)), the validity of (7.3) ∧ (0 � A(n+1)lu � 1) → (7.2), and the previous

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

390 M. J. Maher

theorem, we establish that the violation counting soft version of AllDifferent

based on this decomposition is contractible.

There are two possible generalizations of the notion of semantic embedding that

might be used to create a broader sufficient condition for contractibility. The first

is to change the domain of φ from (S, w)θ to an arbitrary division of (S, w)θ. The

current definition essentially only applies to the division of (S, w)θ into singletons

{c}. This generalization would allow the embedding to hold for some grouping

of constraints in the first decomposition, even when the individual constraints

cannot be embedded in the second. A second possible generalization is to employ

multiple pairs 〈φ, θ〉 with a disjunctive condition. Such a generalization has been

shown necessary to characterize conjunctive query containment/rule subsumption

when queries/rules involve pre-defined relations (i.e. constraints) (Klug 1988; Maher

1993). These generalizations are left for future research.

7.2 Edit-based violation measures

The edit-based violation measures use a notion of edit distance, which is the

minimum number of edit operations required to transform a word into a word

of LC . There are many possible edit operations but the common ones are: to

substitute one letter for another, to insert a letter, to delete a letter, and to transpose

two adjacent letters11. This class includes the variable-based violation measures

(Petit et al. 2001; van Hoeve et al. 2006), since such measures are simply edit

distances, where substitution is the only edit operation. The object-based measures

of Beldiceanu and Petit (2004) are edit distances, where deletion is the only edit

operation. In van Hoeve et al. (2006), an edit-based measure involving substitution,

insertion, and deletion is used.

To address a wide range of edit-based measures, we generalize the measures. We

allow non-negative weights α, β, γ, δ for the edit operations substitution, insertion,

deletion, and transposition, respectively, and let ns, ni, nd, nt be the number of the

respective operations used in an edit. Then, we define mL(w) = minedits αns + βni +

γnd + δnt to be the minimum, over all edits that transform w to an element of P (L),

of the weighted sum of the edit operations. We refer to all measures of this form as

edit-based. Measures based on a subset of the four edit operation can be captured

by giving effectively infinite weights to the other operations.

The edit-based violation measures used for closed constraints are not appropriate

for open constraints, because they fail to take into account that the current sequence

of variables may be extended with more variables.

For example, consider an open constraint C , where LC = abc + defghi and an

occurrence of the constraint C([X1, X2, X3]). If X1 = d, X2 = e and X3 = f, then

the unweighted edit distance of this instance to LC is 3, even though this instance is

completely accurate if the sequence of variables is extended. Similarly, if LC = abc

11 Edit distance based on counting these operations is known as Damerau–Levenshtein distance. Other
well-known edit distances are defined using a subset of these operations.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 391

and we have an occurrence C([X1, X2]) with X1 = a and X2 = b, then the unweighted

edit distance is 1, even though there is no violation.

To take account of the possibility that a sequence of variables may be extended,

we employ the edit distance to P (LC), the prefix-closure of LC . In Section 6, the

prefix-closure was used to approximate a constraint so that constraint propagation

is sound when the constraint is open. The use of the prefix closure here is somewhat

different from its use in that section: rather than using P (LC) as an approximation

to LC , P (LC) is used here to formulate what it means to be an (edit-based) open

soft constraint.

Definition 9

An open edit-based violation measure for a language L is an edit-based violation

measure mP (L) for P (L). An open edit-based violation measure m for L is proper

if m(w) = 0 iff w ∈ P (L). Since, in this paper, we only consider open edit-based

measures they will simply be referred to as edit-based violation measures, except in

the statement of theorems.

As a result of this definition, prefix-equivalent languages have the same possible

edit-based (proper) violation measures. When L is clear from the context, we simply

write m rather than mL.

We can characterize when an open edit-based violation measure is proper.

Roughly, m is improper iff some edits have zero cost and these are able to edit

some w ∈ L′\P (L) to w′ ∈ P (L).

Proposition 16

Let m be an open edit-based violation measure for L, where P (L) is a sublanguage

of L′, with weights α, β, γ, and δ.

m is proper iff one of the following conditions holds:

• min{α, β, γ, δ} > 0

• α = 0, min{β, γ} > 0 and L′ ∩ SameLength(P (L)) ⊆ P (L)

• β = 0, min{α, γ, δ} > 0 and L′ ∩ SubSeq(P (L)) ⊆ P (L)

• γ = 0 and L′ ⊆ P (L)

• δ = 0, min{α, β, γ} > 0 and L′ ∩ Perm(P (L)) ⊆ P (L)

• α = β = 0, γ > 0 and L′ ⊆ Shorter(P (L))

• β = δ = 0, min{α, γ} > 0 and L′ ∩ Subset(P (L)) ⊆ P (L)

where, for any language L,

SameLength(L) is the set of all words of the same length as a word of L,

Shorter(L) is the set of all words the same length or shorter than a word of L,

Perm(L) is the set of all permutations of words of L,

SubSeq(L) is the set of all subsequences of a word of L, and

Subset(L) is set of all words whose letters form a submultiset of the letters of a word

of L.

Proof

Looking at the different constraints on the weights, it is easy to see that the conditions

are mutually exclusive and they cover all possible combinations of weights. Thus to

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

392 M. J. Maher

prove the characterization, it is sufficient to show, in each case, that m is proper iff

the remaining condition in the case holds.

If min{α, β, γ, δ} > 0, then m(w) = 0 iff no edits are required to transform w to a

word of P (L) iff w ∈ P (L). Thus, in this case, m is proper.

Let α = 0, and min{β, γ} > 0. Then, for any word w ∈ L′, m(w) = 0 iff w can be

edited by substitutions (and possibly transpositions if δ = 0) to a word of P (L) iff

w is the same length as a word of P (L). From the definition of proper, m is proper

iff P (L) ∩ L′ = SameLength(P (L)) ∩ L′, that is L′ ∩ SameLength(P (L)) ⊆ P (L).

Let β = 0 and min{α, γ, δ} > 0. Then, for any word w ∈ L′, m(w) = 0 iff w can

be edited by insertions to a word of P (L) iff w is a subsequence of a word of P (L).

Hence, m is proper iff P (L) ∩ L′ = Subseq(P (L)) ∩ L′.

If γ = 0, then for every word w ∈ L′, m(w) = 0 because w can be edited by

deletions to the empty word, which is in P (L). Hence, m is proper iff L′ = P (L) ∩L′,

that is L′ ⊆ P (L).

Let δ = 0 and min{α, β, γ} > 0. Then, for any word w ∈ L′, m(w) = 0 iff w can

be edited by transpositions to a word of P (L) iff w is a permutation of a word of

P (L). Hence, m is proper iff P (L) ∩ L′ = Perm(P (L)) ∩ L′.

Let α = β = 0 and γ > 0. Then, for any word w ∈ L′, m(w) = 0 iff w can be edited

by insertions and substitutions to a word of P (L) iff w can be obtained by deletions

and substitutions from a word of P (L) iff w is shorter than a word of P (L). Hence,

m is proper iff P (L) ∩ L′ = Shorter(P (L)) ∩ L′.

Let β = δ = 0 and min{α, γ} > 0. Then, for any word w ∈ L′, m(w) = 0 iff

w can be edited by insertions and transpositions to a word of P (L) iff w can be

obtained by deletions and transpositions from a word of P (L) iff the letters of

w form a submultiset of the letters of a word of P (L). Hence, m is proper iff

P (L) ∩ L′ = Subset(P (L)) ∩ L′. �

Before presenting the main result on contractibility of edit-based soft constraints,

we need to introduce some preliminary results on weighted edit distance.

We say a sequence of edit operations is in normal form if the edit operations are

grouped by type so that all deletions are performed before all transpositions, which

are performed before all substitutions, before all insertions, and no letter is subject

to two or more substitutions. It is not difficult to show that any edit sequence has

a corresponding sequence in normal form that achieves the same result at lower or

equal cost.

Lemma 17

Consider a weighted edit-distance and a word �a. For any edit sequence that maps �a

to �b, there is an edit sequence in normal form that also maps �a to �b with a shorter

or equal weighted edit distance.

It is straightforward to see that, for any edit sequence not involving transposition

and any weighted edit measure, there is an equivalent edit sequence where each

letter is edited at most once. Provided the edit weights satisfy a simple property, this

result extends to edit sequences involving transposition.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 393

Proposition 18

Consider an edit-based violation measure, where β + γ � 2δ. Suppose, we wish to

edit a word �a so that it appears in a language L. Then, there is an edit of minimal

cost where no letter is subject to more than one edit operation.

Proof

Suppose β + γ � 2δ and consider any edit sequence that maps �a to �b ∈ L. We can

assume (Lemma 17) that edit operations are grouped: deletions, then transpositions,

substitutions, and finally insertions.

Suppose a letter a that participates in a transposition also participates in another

edit operation. Then, the second operation is either another transposition or a

substitution.

In the former case, consider all transposition operations that are applied to a. The

effect of these edits is to move a from some position i to a position j. This sequence

can be replaced by the deletion of a at position i and the insertion of a at position

j. The revised edit sequence has a lower or equal cost because β + γ � 2δ, and we

assumed that at least two transpositions are involved.

In the latter case, aa′ is edited to a′a and later a is changed to b, for some a′ and

b. We can achieve the same effect by substituting a′ for a and b for a instead of the

transposition and substitution. The revised edit sequence has lower or equal cost

if α � δ. Alternatively, we can replace the original edit operations by the deletion

of a and the insertion of b on the right of a′. This revised edit sequence has lower

or equal cost if δ � α, because β + γ � 2δ � α + δ. Thus, independent of whether

α � δ or δ � α, a lower cost edit sequence is obtained with fewer instances of a

letter involved in two edit operations.

The remaining possibility is that a substitution operation is applied twice to a

letter. It is clear that the first substitution operation can be omitted.

Repeatedly applying normal form transformations and the edit modifications

described above, all occurrences of a letter being edited twice can be removed. �

In particular, this lemma holds when the edit operations are unweighted (that

is, when α = β = γ = δ). The property that each letter is edited at most once is

important for network flow implementations of propagators such as the propagators

for soft Regular in van Hoeve et al. (2006) and Maher (2009d).

Edit-based violation measures are monotonic with respect to both the weights

and the language.

Lemma 19

Let m (m′) be edit-based violation measures with weights α, β, γ, δ (respectively,

α′, β′, γ′, δ′) for the same language. If α � α′, β � β′, γ � γ′, and δ � δ′, then, for all

words w, m(w) � m′(w).

Proof

For every word w, consider an edit that achieves the minimum violation m′(w).

Let ns, ni, nd, nt be the number of the respective operations used in the edit. Then,

m′(w) = α′ns + β′ni + γ′nd + δ′nt � αns + βni + γnd + δnt � m(w). Hence, m(w) �
m′(w). �

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

394 M. J. Maher

Lemma 20

Let m1 and m2 be edit-based violation measures with the same weights, for languages

L1 and L2, respectively. If L1 ⊆ L2, then for all words w, m1(w) � m2(w).

Proof

For every word w, any edit to L1 is also an edit to L2. Since an edit-based violation

measure minimizes over all edits, we must have m1(w) � m2(w). �

In many cases, edit-based violation measures lead to contractible soft constraints.

Theorem 21

Let Cs be a soft constraint with an open edit-based violation measure, and suppose

min{α, β, γ} � δ.
Then, Cs is contractible.

Proof

Consider the sequence of edits that transforms an instance �aa′ of �XY into an

element �b of P (LC) at minimum cost. By Lemma 17, we can assume that all

deletions occur before any transpositions, and all insertions and substitutions occur

after all transpositions. We now identify modifications of this sequence of edits that

transform �a into an element of P (LC) at lower (or equal) cost than the original

sequence.

If a′ is deleted in the original sequence, then the sequence of edits omitting this

deletion transforms �a to �b at lower or equal cost. Otherwise, if a′ is not involved in

a transposition, then the subsequence of edits that do not involve a′ transforms �a

into a prefix of �b (which is an element of P (LC)). The subsequence has a lower or

equal cost, since it involves a subset of the edits.

The remaining possibility is that a′ is involved in a transposition. Let p be

the position of a′ after all transpositions. The sequence of edits that omits all

transpositions involving a′ and then inserts a′ at position p transforms�a to�b. These

edits have a lower or equal cost if β � δ.
Alternatively, let the length of �aa′ after all deletions be n + 1 (so that a′ is in

position n+ 1). Every transposition involving position n+ 1 in the original sequence

can be replaced by a substitution that replaces the letter at position n by the letter

at position n + 1 at the corresponding stage of the original transformation. This

transforms �a into a prefix of �b at lower or equal cost if α � δ.
Finally, let �a1a

′�a2 be the result of deletions and transpositions on �aa′. The length

of �a2 is a lower bound for number of transpositions involving a′ in editing �a into �b.

The sequence of edits that deletes all letters of �a2 and applies all substitutions and

insertions that apply to �a1 transforms �a into a prefix of �b. These edits have a lower

or equal cost if γ � δ, since transpositions are replaced by deletions and some edits

might now be omitted.

In each case, for all words�aa′, we find that�a has a smaller weighted edit distance

to P (LC) than �aa′. This demonstrates that the violation measure is non-decreasing

and hence, by Proposition 8, Cs is contractible. �

Example 7 below shows that this theorem cannot be strengthened without

imposing extra conditions on Cs.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 395

It follows from the theorem that edit-based measures that only involve substitu-

tions, insertions and deletions provide contractible constraints. Thus, the variable-

based measures (Petit et al. 2001; van Hoeve et al. 2006), the object-based measures

(Beldiceanu and Petit 2004), and the edit-based measures of van Hoeve et al. (2006)

induce contractible soft constraints.

For order-free constraints, transposition is not needed in an edit and can be

effectively given infinite weight. Thus, by Theorem 21, we have

Corollary 22

If C is an order-free constraint and the corresponding soft constraint Cs is based on

an open edit-based violation measure m, then Cs is contractible.

We also have the following curious result.

Corollary 23

Let Cs be a soft constraint based on an open edit-based violation measure m with

weights α, β, γ, δ for the hard constraint C . If any of α, β, γ, or δ is 0, then Cs is

contractible.

Proof

If α, β, or γ is 0, then the condition of Theorem 21 is satisfied and consequently Cs
is contractible. If δ is 0, then transpositions can place the letters in a word in any

order, at no cost. Let

C ′([X1, . . . , Xn]) ↔
∨

π

C([Xπ(1), . . . , Xπ(n)])

where the disjunction is over all permutations π of 1..n. Then, the violation measure

m of C is equal to the violation measure m′ of C ′, where m′ uses the same weights

as m. C ′ is order-free and, by Corollary 22, is contractible. �

From these results, we see that soft constraints based on a wide range of edit-based

measures are contractible. However, when transpositions are allowed and have a

comparatively low cost, an edit-based violation measure can lead to a soft constraint

that is not contractible.

Example 7

Consider a constraint C with LC = (ab)∗ + (ab)∗a, which is a prefix-closed language,

and consider the corresponding soft constraint Cs that uses an edit-based violation

measure. Suppose δ < min{α, β, γ}. The word abba has edit distance δ, by transposing

the last two letters, but its prefix abb has edit distance min{α, β, γ}, since we could

either substitute a for b, insert a before the second b, or delete a b. Thus, the weighted

edit-based violation measure is not non-decreasing and hence, by Proposition 8, Cs
is not contractible.

This example reinforces a point made earlier: the introduction of P (LC) to the

definition of edit-based violation measure plays a different role than its use for hard

constraints; in this case, its use does not ensure contractibility.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

396 M. J. Maher

8 Contractible approximations of soft constraints

Although we have identified powerful sufficient conditions for soft constraints to

be contractible, we must also be able to support uncontractible soft constraints.

As with hard constraints, when a soft constraint is uncontractible, we can use a

contractible approximation as the basis for filtering while the constraint is open.

We reformulate the notion of tight approximation for soft constraints of the form

m(�X) � Z as follows. A violation measure m1 is an approximation of the violation

measure m if, for all words �a, m1(�a) � m(�a). We order violation measures with the

pointwise extension of the ordering on the reals: m1 � m2 iff ∀�a m1(�a) � m2(�a). A

contractible approximation m1 to a violation measure m is tight if, for all contractible

functions m2, if m1 � m2 � m, then m2 = m1. Given two contractible approximations

m1 and m2 to a violation measure m, we say m2 is tighter than m1 if m1 � m2. We

write m∗ to denote the tightest contractible approximation of m.

We can characterize the tightest contractible approximation of a violation measure,

independent of how the violation measure is formulated.

Proposition 24

Let m be a violation measure. The tightest contractible approximation to m is

characterized by m∗(�a) = inf�b m(�a�b), where the infimum is taken over all finite

sequences �b.

Proof

By definition, m∗(�a) � m(�a), so m∗ approximates m. Consider a sequence �a and a

letter c. m∗(�ac) = inf�b m(�ac�b) � inf
c�b
m(�ac�b) � inf{m(�a), inf

c�b
m(�ac�b)} = m∗(�a). Thus,

m∗ is contractible.

Suppose some function k is a strictly tighter contractible approximation than m∗.

Then, for some �a, k(�a) > m∗(�a), that is, k(�a) > inf�b m(�a�b). Hence, there is a �d such

that k(�a) > m(�a�d). But, for any �c, k(�a�c) � k(�a). Thus, we have m(�a�d) > m(�a�d). This

contradiction shows that k cannot exist; m∗ is the tightest contractible approximation

to m. �

This proposition only provides a mathematical characterization; it does not

suggest an implementation. Indeed, it appears very difficult to implement this

tightest contractible approximation, in general, in contrast to the tightest contractible

approximation of hard constraints. Nevertheless, we can identify some contractible

approximations.

8.1 Decomposition-based violation measures

One way to obtain a contractible approximation to a decomposition-based soft

constraint is to ignore parts of a decomposition that cause incontractibility. A

weakening of a decomposition of a constraint C(�X) is a function that, for every

sequence �X, maps the decomposition (�X, �U,T , S, w) to (�X, �U,T , S ′, w′), where (S ′, w′)

is a sub-weighted set of (S, w). For this weakened decomposition, we can apply the

sufficient condition of Theorem 15.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 397

Proposition 25

Consider a decomposition-based violation measure m for a constraint C(�X) and a

weakeningW of the decomposition. Suppose m is defined via a monotonic combining

function. If, for every sequence �X, the weakening of the decomposition of C(�X) can

be semantically embedded in the weakening of the decomposition of C(�XY), then

the measure m′ defined by using the weakened decompositions is a contractible

approximation of m.

Proof

m′ is an approximation of m because the combining function is monotonic and the

weakened decomposition employs a sub-weighted set of the original decomposition.

m′ is contractible by application of Theorem 15. �

This result shows an approach to finding a contractible approximation to Cs(�X).

However, there is no guarantee that it will find a good approximation; in the worst

case, it might provide only the trivial approximation, where all of C(�X) is ignored.

Nevertheless, it appears to be useful.

The next example presents an uncontractible decomposition-based soft constraint.

It employs a decomposition of the global cardinality constraint GCC given in

Bessiere et al. (2009).

Example 8

Consider the global cardinality constraint GCC(�X,�l,�u) with type T that maps each

Xi to 1..d, which we denote by GCCT . This constraint expresses that, for each value

t in 1..d, the number of occurrences of t in �X lies between lt and ut (ut may be

infinite).�l and �u are fixed. To define the decomposition of Bessiere et al. (2009), we

need to introduce variables Ailu of type {0, 1} and Nlu of type non-negative integers,

and elementary constraints as follows. Let n = |�X|.
For 1 � i � n, 1 � l � u � d, and 1 � k < u, we have the constraints

Ailu = 1 ↔ Xi ∈ [l, u] (8.1)

Nlu =

n∑

i=1

Ailu (8.2)

N1u = N1k +N(k+1)u (8.3)

u∑

j=l

lj � Nlu �
u∑

j=l

uj (8.4)

Formally, the decomposition of GCCT is (�X,�A, �N,T ′, S , w), where T ′ is the extension

of T to �A and �N, S is the collection of (8.1), (8.2), (8.3), and (8.4), and w is a constant

function. It is easy to establish that GCCT (�X,�l,�u) ↔ ∃�A ∈ T ′(�A) ∃�N ∈ T ′(�N) S .

When �X is extended by Y , the decomposition contains extra variables A(n+1)lu,

extra constraints of type (8.1), involving Y and the new variables, and replaces

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

398 M. J. Maher

constraints (8.2) by

Nlu =

n+1∑

i=1

Ailu (8.5)

Consider an occurrence of the constraint GCCT ([X1, X2], [0, 1, 0, 0], [2, 2, 2, 2]),

where T (Xi) is 1..4. Consider a valuation v where X1 = 1, X2 = 1. For all extensions

of v to �A and �N, there will be an elementary constraint violated (fundamentally

because the lower bound for occurrences of the domain value 2 has not been

satisfied). If �X is extended by X3 and v has X3 = 2, then v can be extended to �A

and �N in the obvious way to satisfy all elementary constraints. Thus, any proper

violation measure for GCC based on this decomposition is not contractible.

Let m be a proper violation measure that is defined with a combining function

that is monotonic and has unit 0. If we weaken the decomposition by ignoring the

lower bounds in (8.4), then we have a contractible approximation m′ of m. (This is

essentially the same as for the tight contractible approximation of the hard GCC

constraint, which is also obtained by ignoring lower bounds. This point is not so

surprising when we recall that the hard constraint is a special case of the soft

constraint.) We can see this using the natural semantic embedding (which maps all

constraints to themselves, except that (8.2) is mapped to (8.5)) and Proposition 25.

We conjecture that the weakening of the soft GCC constraint in this example is

its tightest contractible approximation. However, the many variables and constraints

in the decomposition make it difficult to confirm this conjecture.

8.2 Edit-based violation measures

Recall that an edit-based violation measure m is contractible if δ � min{α, β, γ}
(Theorem 21). If δ < min{α, β, γ}, then m might be uncontractible and we must

consider contractible approximations. We can provide generic contractible approxi-

mations for edit-based soft constraints by modifying the weights to accord with the

sufficient conditions of Theorem 21 and Corollary 23.

Proposition 26

Let m be an open edit-based violation measure for a constraint C with weights

α, β, γ, δ, where δ < min{α, β, γ}. Then, the following violation measures are con-

tractible approximations of m for C .

1. m1 based on weights δ, β, γ, δ (that is, α := δ)

2. m2 based on weights α, δ, γ, δ (that is, β := δ)

3. m3 based on weights α, β, δ, δ (that is, γ := δ)

4. m4 based on weights α, β, γ, 0 (that is, δ := 0)

5. m5 defined by m5(w) = max{m1(w), m2(w), m3(w), m4(w)}

Proof

By Lemma 19, for any w, m1(w) � m(w), m2(w) � m(w), m3(w) � m(w), and

m4(w) � m(w). It then follows from the definition of m5 that m5(w) � m(w). Thus

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 399

,m1, m2, m3, m4, and m5 are approximations of m. By Theorem 21, m1, m2, and

m3 are contractible and, by Corollary 23, m4 is contractible. For any word w and

letter a,

m5(wa) = max{m1(wa), m2(wa), m3(wa), m4(wa)}
� max{m1(w), m2(w), m3(w), m4(w)}
= m5(w)

using the contractibility of m1, . . . , m4.

Thus, m5 is contractible. �

Note that, by Lemma 19, other uses of Corollary 23 yield only measures that are

not as tight as m1, m2, or m3. Clearly, m5 is the tightest of these approximations.

However, in general, this approximation is not tight, as the following example shows.

Example 9

Let L = (abc)∗, so that P (L) = L∪La∪Lab. Let α = β = γ = 4 and δ = 1. Consider

w = bbb(abc)3ca. Two kinds of edits are needed, addressing the initial b’s and the

trailing ca. Then, m(w) = 12 from substituting for the first and third b, and deleting

the last c. m(wb) = 10 using the same substitutions and two transpositions on c.

Thus, m is not contractible.

Notice that the initial b’s in w are too far from the end of w to be cheaply

addressed by transpositions. For example, the cost of moving the third b to the

trailing ca is 6, which is more expensive than addressing it by substitution. The

other b’s are even more expensive to address by transposition. Thus, the minimal

cost of addressing the initial b’s is 8. The minimal cost of addressing the trailing

ca arises when a b is appended to the end of w and c is transposed twice. This

has a cost of 2, and it is easy to see that no word appended to w will allow ca to

be addressed by a single transposition. Thus, the tightest approximation to m has

m∗(w) = 10.

Now consider the approximations in Proposition 26. If we reduce α to 1, then

m1(w) = 4 by applying four substitutions. If we reduce β to 1, then m2(w) = 8 by

inserting a and c around each initial b and inserting ab before the last c. If we

reduce γ to 1, then m3(w) = 4 by deleting the three b’s and the last c. If we reduce δ

to 0, then m4(w) = 4 by applying transpositions to reorder w to (abc)4bb and then

substituting a for b. Thus, m5(w) = 8.

This shows that m5 is not the tightest contractible approximation to m, since

m5(w) 	= m∗(w).

The question now arises: how to express m∗ in edit-based terms so that a closed

propagator for m(�X) � Z might be adapted to implement m∗(�X) � Z , as was done

for hard constraints in Section 6. Disappointingly, this turns out to be impossible,

in general.

We first establish a straightforward lemma that gives a simple way of identifying

the value of m∗(w) in some cases.

Lemma 27

Let m∗ be the tightest contractible approximation to an edit-based violation measure

m. Let w be a word. If, for all words u, m(wu) � m(w), then m∗(w) = m(w).

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

400 M. J. Maher

Proof

If, for all words u, m(wu) � m(w), then infu m(wu) � m(w). Thus, m∗(w) � m(w).

Since m∗ approximates m, m∗(w) � m(w). Hence, m∗(w) = m(w). �

Now, we show that, in general, the tightest contractible approximation m∗ to an

edit-based violation measure m cannot be expressed as a proper edit-based violation

measure.

Theorem 28

There is an open edit-based violation measure m for a language L such that its

tightest contractible approximation cannot be expressed as a proper edit-based

violation measure on any language.

Proof

Consider the alphabet Σ = {a, b, c, d}. As in Example 9, let L = (abc)∗ (so P (L) =

L ∪ La ∪ Lab), consider P (L) as a sublanguage of Σ∗, and let m be the edit-based

violation measure for L, where α = β = γ = 4 and δ = 1. As shown in Example

9, m is not contractible. Note that m is proper. Let m∗ be the tightest contractible

approximation to m. Suppose m∗ can be expressed as a proper edit-based violation

measure m′ on some language L′.

Suppose there is some word w such that w ∈ L′\P (L). Then, m′(w) = 0. Hence,

m∗(w) = 0 and, from Proposition 24, there is a word u such that m(wu) = 0. Since m

is proper, wu ∈ P (L) and hence, w ∈ P (L). This contradiction shows that no such w

exists and hence L′ ⊆ P (L).

For every w ∈ L, m(w) = 0. Hence, m∗(w) = 0 and m′(w) = 0. Hence, w ∈ L′, since

m′ is proper. Hence, L ⊆ L′.

There are weights α′, β′, γ′, and δ′ used to define m′. We now consider different

words w of Σ∗ and derive conditions on the weights of m′. We use the fact that every

edit of w to P (L) must have cost greater than or equal to m∗(w). Because L′ ⊆ P (L),

the conditions we derive about editing a word to P (L) also apply to L′.

w = d.

m(w) = 4 by deleting d and no word wu has a smaller violation measure because d

must be deleted or substituted. Thus, by Lemma 27, m∗(w) = 4. w might be edited

to L (and hence also L′) by deleting d or substituting a for d. This gives rise to the

conditions γ′ � 4 and α′ � 4, since, for example, if γ′ = 3, then m′(w) = 3 	= m∗(w).

w = bc(abc)3.

m(w) = 4, by inserting a at the beginning of w. No word wu has a lower cost because

the initial bc is too far from the end of w to use transposition from u at a lower

cost. Thus, m∗(w) = 4. From this, we obtain the condition β′ � 4, among others.

w = ba.

m(w) = 1 by transposition and we find that m∗(w) = 1. Because we know that α′ � 4,

β′ � 4 and γ′ � 4, we must have δ′ = 1.

[We can now establish that L′ ⊆ (a+b+c)∗. For any word w involving d, m(w) � 4,

since the d must be deleted or substituted. That includes wu, for any u, and hence

m∗(w) � 4 for any word containing d. Consequently, also m′(w) � 4 and, since m′ is

proper, L′ does not contain a word involving d.]

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 401

w = adc.

m(w) = 4 = m∗(w). Given that δ′ = 1 and the small size of w, no word is edit

distance 4 from w using transposition alone. But α′ � 4, β′ � 4, and γ′ � 4, so

the minimum cost edit from w to L′ does not involve transposition and the edit

consists of a single operation. Since L′ does not contain words involving d, the only

candidates are deletion or substitution of d. The deletion results in ac which is not

in L′ since it is not in P (L). Hence, the only edit that can achieve this cost is a

substitution of b for d, and α′ = 4.

w = d(abc)3.

As with w = d, m∗(w) = m(w) = 4. Given that α′ � 4, only deletion of d can achieve

this cost. Hence, γ′ = 4.

w = bc(abc)3, again.

Given that α′ � 4 and γ′ � 4, the only edit that can achieve m∗(w) = 4 is an insertion.

Hence, β′ = 4.

Thus, the weights for m′ are exactly the same as the weights for m. For every

word w, m′(w) � m(w), by Lemma 20. From the definition of m∗, m(w) � m∗(w). But

m′ = m∗, by assumption, and hence m∗ = m. But this is a contradiction, because by

definition m∗ is contractible, while m is not. Thus, the assumption that m∗ can be

expressed as an edit-based violation measure is false. �

The language and violation measure demonstrating this claim are those from

Example 9. Given that the language is so simple, we can expect that many

uncontractible edit-based violation measures cannot be tightly approximated by

a contractible edit-based violation measure. This contrasts markedly with our work

on hard constraints in Section 6, where tight contractible approximations of several

uncontractible hard constraints were formulated in terms of the original hard

constraint.

It suggests some difficulties in implementing tight contractible approximations.

It seems that the edit-based implementation of the closed constraint is not a

suitable basis for implementing the tight approximation. At least, we need a different

framework if we are to have a comprehensive method to derive open D-consistent

propagators for incontractible soft constraints.

It is demonstrated in He et al. (2013) that using an approximation of the violation

measure of a closed edit-based soft constraint can lead to incorrect answers to

constraint problems. However, using a non-tight contractible approximation in an

open constraint is less serious, assuming the correct violation measure is used for the

closed constraint: the search may perform less-than-optimal pruning, leading to a

greater search space than for a tight contractible approximation, but not to incorrect

answers. Thus, Theorem 28 does not represent a failure of correctness, only a degree

of inefficiency if a non-tight edit-based contractible approximation is used.

9 Discussion

We have discussed open constraints, where variables are added to the right-hand

end of the sequence. This directly affects the characterization of contractibility

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

402 M. J. Maher

and the definition of open D-consistency. If, instead, variables are added to the

left-hand end, then the appropriate characterization of contractibility is suffix-

closure. If additions may be made at either end, then contractibility requires both

closures, which corresponds to closure under taking subwords12. Constraints like

Sequence and Contiguity are subword-closed. Of course, all order-free constraints

are subword-closed. On the other hand, the lexicographic ordering constraint �lex
and the precedence constraint s ≺�X t are prefix-closed but not suffix-closed, that is,

they are contractible if variables are added on the right, but not if variables are

added on the left.

If additional variables may be inserted anywhere within the sequence, then

contractibility corresponds to closure under taking subsequences13. Apart from

the order-free constraints, it is not clear whether there is any useful constraint that

is closed under taking subsequences.

In Maher (2009b), a dual notion to contractibility, called extensibility, is in-

vestigated. In contrast to contractibility, in general there is no closure operation

corresponding to extensibility and consequently no tightest extensible approximation.

We have seen some differences between contractibility for hard and soft con-

straints. For hard constraints, contractibility depends on the relation, whereas for

soft constraints it depends on the violation measure. For example, the soft Regular

constraint is contractible under the edit-based measure of van Hoeve et al. (2006)

but not under decomposition-based measures. We have also seen that many tight

contractible approximations of hard constraints are similar to, though weaker than,

the hard constraint. On the other hand, for many soft constraints it appears that the

tight contractible approximations cannot be expressed in the same way as the soft

constraint. This suggests that it may be difficult to formulate full open D-consistent

propagators, for example, for uncontractible open soft constraints.

There are several similarities between violation measures and other treatments of

soft constraints. For example, the Valued CSP (Schiex et al. 1995) and the Semi-

Ring CSP (Bistarelli et al. 1997) frameworks define a soft constraint essentially as a

function from valuations to an ordered set (the set may be partially ordered in the

case of SCSPs) that might be considered a violation measure. Both frameworks use

a combining function to extend this definition to a collection of constraints, and so

they are, in many ways, like decomposition-based violation measures. However, both

frameworks consider only closed constraints and focus on finite relations defined

extensionally.

Weighted violation measures are used in Métivier et al. (2007, 2009). As noted

earlier, the decomposition measures presented here generalize the weighted decom-

position measures for Σ-AllDifferent and Σ-GCC (Métivier et al. 2007, 2009).

However, the edit-based violation measures presented here do not generalize the

weighted edit distance for Σ-AllDifferent and Σ-Regular of Métivier et al.

12 A word w is a subword of a1 . . . an if w is empty or has the form aiai+1 . . . aj for some 1 � i � j � n.
13 A word w is a subsequence of a1 . . . an if w is empty or has the form ai1 . . . aik for some k � n where

1 � i1 < i2 < · · · < ik � n.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 403

(2007, 2009). These measure use only substitution edits but they assign weights to

each variable.

Violation measures play a similar role to query measures (Maher and Stuckey

1989) that were used to specify preferences on query solutions in a CLP system.

In this context, contractible violation measures are similar to pruning measures in

Maher and Stuckey (1989) in that both are non-decreasing functions, although over

different domains, and both permit the safe pruning of search trees.

Contractible global soft constraints are amenable to a nested representation

(Bessiere et al. 2014) in a distributed constraint optimization setting, which has

significant performance gains over other representations (Bessiere et al. 2014).

Finally, we note that the semantics of soft constraints are examples of quantitative

languages, in the terminology of Chatterjee et al. (2010). From this point of view, an

approximation of a violation measure is a quantitative language inclusion. However,

Chatterjee et al. (2010) focuses on languages of infinite words defined via automata,

so the results of Chatterjee et al. (2010) do not seem to have application to the

subject of this paper. In Colcombet (2009), a notion of cost function on languages

of finite words is used but this is only used to define equivalence classes and is not

related to this paper.

10 Conclusions

We have introduced the notion of contractibiliity of global constraints, which ensures

that constraint propagation for closed constraints is safe for open constraints,

and characterized it in language-theoretic terms. The concept of contractibility

is remarkably robust. It is based only on the relation, or language, defining the

constraint. Thus, it is independent of the form of propagator used (monolithic

or decomposed) and the consistency condition (if any) that characterizes the

propagation.

Contractibility appears to be central to the re-use of closed constraint propagators

for open propagation. When a constraint is contractible, we only need to modify

a closed propagator to support the addition of variables. When a constraint is

incontractible, we also need a contractible approximation of the propagator, for use

while the constraint is open, in addition to the closed propagator. We showed that the

use of a tight contractible approximation and domain consistent closed propagators

achieves open D-consistency of the resulting open propagator. Furthermore, for

many hard constraints (Regular, CFG, GCC, and many others), we showed that

the tightest contractible approximation has a similar form to the original constraint,

and hence can be propagated by the same techniques. This suggests that a close

integration of the two propagation phases will be easy for these constraints.

To address soft constraints, we formulated two general classes of soft constraints

that include most previous proposals of soft constraints. For the two classes –

based on decomposition and edit-distance, respectively – we identified properties

and developed mathematical tools for reasoning about them, which we used to

demonstrate the contractibility of a wide range of soft constraints. We identified

pragmatic contractible approximations of soft constraints in these classes. However,

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

404 M. J. Maher

we also established that the tightest contractible approximation of an edit-based soft

constraint is not expressible, in general, as an edit-based constraint. This suggests

difficulties in designing open D-consistency propagators in the general case, but

fortunately many edit-based soft constraints are contractible.

These results provide a good basis for adapting existing algorithms and imple-

mentations of global constraint propagators to open constraints.

Acknowledgements

The author thanks the referees of this paper and previous conference papers, whose

thorough reviews and detailed comments improved this paper. The work in this

paper was mostly conducted while the author was employed by NICTA.

References

Barták, R. 1999. Dynamic constraint models for planning and scheduling problems. In New

Trends in Constraints, Joint ERCIM/Compulog Net Workshop, Paphos, Cyprus, October

25–27, 1999.

Barták, R. 2003. Dynamic global constraints in backtracking based environments. Annals of

Operations Research 118, 1–4, 101–119.

Beldiceanu, N. and Carlsson, M. 2001. Revisiting the cardinality operator and introducing

the cardinality-path constraint family. In Proc. of 17th International Conference on Logic

Programming, ICLP, Paphos, Cyprus, November 26–December 1, 2001, 59–73.

Beldiceanu, N., Carlsson, M. and Rampon, J.-X. 2005. Global constraint

catalog. Technical Report T2005:08, SICS. Current version available at

http://sofdem.github.io/gccat/.

Beldiceanu, N. and Contejean, E. 1994. Introducing global constraints in CHIP.

Mathematical Computer Modelling 20, 12, 97–123.

Beldiceanu, N. and Petit, T. 2004. Cost evaluation of soft global constraints. In Proc.

of Integration of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems, 1st International Conference, CPAIOR 2004, Nice, France, April

20–22, 2004, 80–95.

Bessière, C. 1991. Arc-consistency in dynamic constraint satisfaction problems. In Proc. of

the 9th National Conference on Artificial Intelligence, Anaheim, CA, USA, July 14–19, 1991,

vol. 1, 221–226.

Bessiere, C., Brito, I., Gutierrez, P. and Meseguer, P. 2014. Global constraints in

distributed constraint satisfaction and optimization. Computer Journal 57, 6, 906–923.

Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z. and Walsh, T. 2008. SLIDE: A useful

special case of the CARDPATH constraint. In Proc. of 18th European Conference on

Artificial Intelligence, ECAI, Patras, Greece, July 21–25, 2008, 475–479.

Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C. and Walsh, T. 2009.

Decompositions of all different, global cardinality and related constraints. In Proc. of the

21st International Joint Conference on Artificial Intelligence, IJCAI, Pasadena, California,

USA, July 11–17, 2009, 419–424.

Bistarelli, S., Montanari, U. and Rossi, F. 1997. Semiring-based constraint satisfaction and

optimization. Journal of the ACM 44, 2, 201–236.

Borning, A., Freeman-Benson, B. N. and Wilson, M. 1992. Constraint hierarchies. Lisp and

Symbolic Computation 5, 3, 223–270.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 405

Borning, A., Maher, M. J., Martindale, A. and Wilson, M. 1989. Constraint hierarchies

and logic programming. In Proc. of 6th International Conference on Logic Programming,

Lisbon, Portugal, June 19–23, 1989, 149–164.

Brzozowski, J. A., Shallit, J. and Xu, Z. 2009. Decision problems for convex languages.

In Proc. of Language and Automata Theory and Applications, 3rd International Conference,

LATA, 2009, Tarragona, Spain, April 2–8, 2009, 247–258.

Chandra, A. K. and Merlin, P. M. 1977. Optimal implementation of conjunctive queries in

relational data bases. In Proc. of the 9th Annual ACM Symposium on Theory of Computing,

May 4–6, 1977, Boulder, Colorado, USA, 77–90.

Chatterjee, K., Doyen, L. and Henzinger, T. A. 2010. Quantitative languages. ACM

Transactions on Computational Logic 11, 4.

Chaudhuri, S. and Vardi, M. Y. 1993. Optimization of Real conjunctive queries. In Proc. of

the 12th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

May 25–28, 1993, Washington, DC, USA, 59–70.

Colcombet, T. 2009. The theory of stabilisation monoids and regular cost functions. In Proc.

of Automata, Languages and Programming, 36th Internatilonal Colloquium, ICALP Part II,

Rhodes, Greece, July 5–12, 2009, 139–150.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. 2001. Introduction to Algorithms,

2nd ed. The MIT Press and McGraw-Hill Book Company.

Debruyne, R., Ferrand, G., Jussien, N., Lesaint, W., Ouis, S. and Tessier, A. 2003.

Correctness of constraint retraction algorithms. In Proc. of the 16th International Florida

Artificial Intelligence Research Society Conference, May 12–14, 2003, St. Augustine, Florida,

USA, 172–176.

Dechter, R. 2003. Constraint Processing. Elsevier Morgan Kaufmann.

Dechter, R. and Dechter, A. 1988. Belief maintenance in dynamic constraint networks. In

Proc. of the 7th National Conference on Artificial Intelligence, St. Paul, MN, August 21–26,

1988, 37–42.

Faltings, B. and Macho-Gonzalez, S. 2002. Open constraint satisfaction. In Proc. of

Principles and Practice of Constraint Programming - CP 2002, 8th International Conference,

CP 2002, Ithaca, NY, USA, September 9-13, 2002, 356–370.

Faltings, B. and Macho-Gonzalez, S. 2005. Open constraint programming. Artificial

Intelligence 161, 1–2, 181–208.

Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I. and Walsh, T. 2002. Global constraints

for lexicographic orderings. In Proc. of Principles and Practice of Constraint Programming –

CP 2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September 9–13, 93–108.

Gavanelli, M., Lamma, E., Mello, P. and Milano, M. 2005. Dealing with incomplete

knowledge on clp(FD) variable domains. ACM Transactions on Programming Languages

and Systems 27, 2, 236–263.

Georget, Y., Codognet, P. and Rossi, F. 1999. Constraint retraction in CLP(FD): Formal

framework and performance results. Constraints 4, 1, 5–42.

Gervet, C. 1997. Interval propagation to reason about sets: Definition and implementation

of a practical language. Constraints 1, 3, 191–244.

He, J., Flener, P. and Pearson, J. 2013. Underestimating the cost of a soft constraint

is dangerous: Revisiting the edit-distance based soft regular constraint. Journal of

Heuristics 19, 5, 729–756.

Hentenryck, P. V. and Provost, T. L. 1991. Incremental search in constraint logic

programming. New Generation Computing 9, 3/4, 257–276.

Hopcroft, J. and Ullman, J. 1979. Introduction to Automata Theory Languages and

Computation. Addison-Wesley.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

406 M. J. Maher

Ioannidis, Y. E. and Ramakrishnan, R. 1995. Containment of conjunctive queries: Beyond

relations as sets. ACM Transaction on Database System 20, 3, 288–324.

Jaffar, J. and Maher, M. J. 1994. Constraint logic programming: A survey. Journal of Logic

Programming 19/20, 503–581.

Klug, A. C. 1988. On conjunctive queries containing inequalities. Journal of ACM 35, 1,

146–160.

Lallouet, A., Law, Y. C., Lee, J. H. and Siu, C. F. K. 2011. Constraint programming

on infinite data streams. In Proc. of the 22nd International Joint Conference on Artificial

Intelligence, IJCAI 2011, Barcelona, Catalonia, Spain, July 16–22, 2011, 597–604.

Law, Y. C. and Lee, J. H. 2004. Global constraints for integer and set value precedence. In

Proc. of Principles and Practice of Constraint Programming - CP 2004, 10th International

Conference, CP 2004, Toronto, Canada, September 27–October 1, 2004, 362–376.

Maher, M. J. 1988. Equivalences of logic programs. In Foundations of Deductive Databases

and Logic Programming. J. Minker (Ed). Morgan Kaufmann, 627–658.

Maher, M. J. 1993. A logic programming view of CLP. In Proc. of 10th International

Conference on Logic Programming, Budapest, Hungary, June 21–25, 1993, 737–753.

Maher, M. J. 2002. Analysis of a global contiguity constraint. In Proc. of Workshop on

Rule-Based Constraint Reasoning and Programming.

Maher, M. J. 2009a. Local consistency for extended CSPs. Theoretical Computer

Science 410, 46, 4769–4783.

Maher, M. J. 2009b. Open constraints in a boundable world. In Proc. of Integration of AI

and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th

International Conference, CPAIOR 2009, Pittsburgh, PA, USA, May 27–31, 2009, 163–177.

Maher, M. J. 2009c. Open contractible global constraints. In Proc. of the 21st International

Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009,

578–583.

Maher, M. J. 2009d. SOGgy constraints: Soft open global constraints. In Proc. of Principles

and Practice of Constraint Programming - CP 2009, 15th International Conference, CP 2009,

Lisbon, Portugal, September 20–24, 2009, 584–591.

Maher, M. J. 2010. Contractibility and contractible approximations of soft global constraints.

In Proc. of Technical Communications of the 26th International Conference on Logic

Programming, ICLP 2010, July 16–19, 2010, Edinburgh, Scotland, UK, 114–123.

Maher, M. J., Narodytska, N., Quimper, C. and Walsh, T. 2008. Flow-based propagators

for the SEQUENCE and related global constraints. In Proc. of Principles and Practice

of Constraint Programming, 14th International Conference, CP 2008, Sydney, Australia,

September 14–18, 2008, 159–174.

Maher, M. J. and Stuckey, P. J. 1989. Expanding query power in constraint logic

programming languages. In Proc. of the North American Conference 1989, Cleveland, Ohio,

USA, October 16–20, 1989, vol. 2, 20–36.

Métivier, J., Boizumault, P. and Loudni, S. 2007. All different: Softening alldifferent

in weighted CSPs. In Proc. of 19th IEEE International Conference on Tools with

Artificial Intelligence (ICTAI 2007), October 29–31, 2007, Patras, Greece, vol. 1, 223–

230.

Métivier, J., Boizumault, P. and Loudni, S. 2009. Softening GCC and regular with

preferences. In Proc. of the 2009 ACM Symposium on Applied Computing (SAC), Honolulu,

Hawaii, USA, March 9–12, 2009, 1392–1396.

Mittal, S. and Falkenhainer, B. 1990. Dynamic constraint satisfaction problems. In Proc. of

the 8th National Conference on Artificial Intelligence, Boston, Massachusetts, July 29–August

3, 1990, vol. 2, 25–32.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

Contractibility for open global constraints 407

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J. and Tack, G. 2007.

Minizinc: Towards a standard CP modelling language. In Proc. of Principles and Practice

of Constraint Programming - CP 2007, 13th International Conference, CP 2007, Providence,

RI, USA, September 23–27, 2007, 529–543.

Pachet, F. and Roy, P. 1999. Automatic generation of music programs. In Proc. of Principles

and Practice of Constraint Programming - CP’99, 5th International Conference, Alexandria,

Virginia, USA, October 11–14, 1999, 331–345.

Pesant, G. 2004. A regular language membership constraint for finite sequences of variables.

In Proc. of Principles and Practice of Constraint Programming - CP 2004, 10th International

Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, 482–495.

Petit, T. and Poder, E. 2009. The soft cumulative constraint. CoRR abs/0907.0939.

Petit, T., Régin, J. and Bessière, C. 2001. Specific filtering algorithms for over-constrained

problems. In Proc. of Principles and Practice of Constraint Programming - CP 2001, 7th

International Conference, CP 2001, Paphos, Cyprus, November 26–December 1, 2001, 451–

463.

Quimper, C. and Walsh, T. 2006. Global grammar constraints. In Proc. of Principles and

Practice of Constraint Programming - CP 2006, 12th International Conference, CP 2006,

Nantes, France, September 25–29, 2006, 751–755.

Régin, J. 1994. A filtering algorithm for constraints of difference in CSPs. In Proc. of the 12th

National Conference on Artificial Intelligence, Seattle, WA, USA, July 31–August 4, 1994,

vol. 1, 362–367.

Régin, J. 1996. Generalized arc consistency for global cardinality constraint. In Proc. of

the 13th National Conference on Artificial Intelligence and Eighth Innovative Applications of

Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon, August 4–8, 1996,

vol. 1, 209–215.

Rossi, F., van Beek, P. and Walsh, T., Eds. 2006. Handbook of Constraint Programming.

Foundations of Artificial Intelligence, vol. 2. Elsevier.

Schiex, T., Fargier, H. and Verfaillie, G. 1995. Valued constraint satisfaction problems:

Hard and easy problems. In Proc. of the 14th International Joint Conference on Artificial

Intelligence, IJCAI 95, Montréal Québec, Canada, August 20–25 1995, vol. 2, 631–639.

Schulte, C. and Tack, G. 2009. Weakly monotonic propagators. In Proc. of Principles and

Practice of Constraint Programming - CP 2009, 15th International Conference, CP 2009,

Lisbon, Portugal, September 20–24, 2009, 723–730.

Sellmann, M. 2006. The theory of grammar constraints. In Proc. of Principles and Practice

of Constraint Programming - CP 2006, 12th International Conference, CP 2006, Nantes,

France, September 25-29, 2006, 530–544.

van Hoeve, W. J., Pesant, G. and Rousseau, L. 2006. On global warming: Flow-based soft

global constraints. Journal of Heuristics 12, 4-5, 347–373.

van Hoeve, W. J. and Régin, J. 2006. Open constraints in a closed world. In Proc.

of Integration of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems, 3rd International Conference, CPAIOR 2006, Cork, Ireland, May

31–June 2, 2006, 244–257.

Verfaillie, G. and Jussien, N. 2005. Constraint solving in uncertain and dynamic

environments: A survey. Constraints 10, 3, 253–281.

https://doi.org/10.1017/S1471068417000126 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000126

