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Dynamics and equilibria of thin viscous coating
films on a rotating sphere
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(Received 28 May 2015; revised 8 January 2016; accepted 22 January 2016;
first published online 23 February 2016)

We examine the dynamics of a thin viscous liquid film on the outer surface of a
solid sphere rotating around its vertical axis in the presence of gravity. An asymptotic
model describing the evolution of the film thickness is derived in the rotating frame
based on the lubrication approximation. The model includes the centrifugal and
gravity forces and the stabilizing effect of surface tension. Depending on the values
of the parameters, the problem admits different types of steady states: one with a
uniformly positive film thickness, or those with one or two dry zones on the sphere.
We prove that all steady states are energy minimizers and hence global attractors for
axisymmetric states.
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1. Introduction
The coating process is a means of depositing viscous liquid films of precise

thickness and uniformity on a solid surface. Imperfections in the layer, especially
as the speed of coating is increased or its thickness is decreased, may arise due
to flow instabilities and various wetting and edge effects. That is why stability
analyses of steady states in coating flows attracts industrial interest. In this work,
we consider the problem of coating flows on a rotating sphere, focusing on the case
when the centrifugal forces due to rotation compete with the gravitational draining,
in the presence of surface tension. We examine both the transient dynamics of the
film, and the various steady states that the system may attain, while maintaining an
axisymmetric state.

The flow of a thin fluid film on a flat surface such as an inclined plane in the
presence of gravity has been the subject of numerous investigations over the years;
e.g. Benjamin (1957), Bankoff (1971), Hocking (1990), Tuck & Schwartz (1991),
Giacomelli (1999). Recently a new level of complexity has been added to the flat
surface problem by coupling the flow to a surfactant spreading model (Shearer &
Levy 2006; Levy, Shearer & Witelski 2007; Peterson & Shearer 2011). Including the
effects of rotation, in a combined experimental and theoretical investigation, Parmar,
Tirumkudulu & Hinch (2009) have studied the problem of a viscous liquid film
that coats a rotating vertical disk, obtaining the two-dimensional thickness profile
that captures the effects of gravity, disk rotation and surface tension. Dynamics of
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viscous coating flows on inner and outer surfaces of a horizontally rotating cylinder
have also been studied in a series of publications (Pukhnachev 1977; Johnson 1988;
O’Brien 1998; Benilov, O’Brien & Sazonov 2003; Pukhnachov 2005; Karabut 2007;
Benilov, Benilov & Kopteva 2008; Kelmanson 2009; Sahu & Kumar 2014), after the
pioneering result of Moffatt (1977) which was partially motivated by the process of
keeping honey from spilling from a horizontal knife by rotating it. In that spirit, the
present work can be regarded as a model for coating a rotating cherry with liquid
chocolate. The problem of coating of a sphere with a thin viscous film has previously
been studied by Takagi & Huppert (2010), albeit without consideration of surface
tension and rotational effects.

Different regimes resulting in different steady states emerge due to the competition
between the gravitational field that causes the downward draining of the liquid, the
surface tension that tries to preserve a spherical shape for the coating layer and the
centrifugal force from rotation about the vertical axis that tries to concentrate the
liquid mass around the equator of the rotating sphere. Modelling of thin films on
curved substrates would also have application to tear film dynamics, e.g. Li et al.
(2014).

In our work, we shall derive the lubrication equations in axisymmetric spherical
coordinates. A previous derivation of these equations has been described by Myers,
Charpin & Chapman (2002), who aimed to obtain a very general equation for thin
films on an arbitrary two-dimensional substrate by using two principal coordinates
along the substrate surface, together with the locally normal direction, thereby yielding
a locally orthogonal curvilinear coordinate system. When their general equation is
specialized to a spherical substrate (see their § III.D), the result is an equation that
differs from ours in the placement of the various metric factors. We believe our
derivation to be the proper one since we begin with the exact equations in spherical
coordinates before applying the lubrication approximation.

The paper is structured as follows: in § 2, we describe the physical model and
derive the governing nonlinear partial differential equation for the evolution of the
film profile under the lubrication approximation. The model includes the effects of
gravity, surface tension and centrifugal forces, but ignores those due to Coriolis
forces. In § 3, we examine the energies associated with the three main effects that
are considered, deriving the overall potential energy function that is minimized at
equilibrium. In § 4, we consider the existence and stability of steady states and
describe the numerical approach for solving the transient problem as the film
approaches its energy-minimizing equilibrium. Section 5 provides a summary of
the results and provides the outlook for possible extensions of the model. Some
technical aspects of the lubrication approximation, together with the conditions under
which Coriolis forces can be neglected while centrifugal effects are important, are
provided in appendix A.

2. Model formulation

Consider the flow of a thin liquid film on a sphere of radius R under gravity g,
acting downward along the negative z-axis. The sphere is also allowed to rotate at a
constant angular velocity Ω about the z-axis and the equations of motion are obtained
in the rotating frame of reference. Figure 1 provides a schematic drawing of this
system. Let r denote the radial distance from the origin, θ the polar angle in spherical
coordinates (with θ =0 along the positive z-axis) and let h(θ, t) represent the thickness
of the thin film, with t denoting time. We assume the system to be axisymmetric
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FIGURE 1. A thin liquid film under gravity on a sphere of radius R rotating about
the z-axis.

and use the standard lubrication approximation. We start with the kinematic boundary
condition and the incompressibility condition. The interface r = R + h(θ, t) is the
zero-level set of the function

F (r, θ, t)= r− R− h(θ, t)= 0. (2.1)

The kinematic boundary condition, DF/Dt= 0, then yields

∂h
∂t
= vr − vθr

∂h
∂θ
, (2.2)

at r= R+ h(θ, t).
Next take the continuity equation in spherical coordinates:

1
r2

∂

∂r
(r2vr)+ 1

r sin(θ)
∂

∂θ
(sin(θ)vθ)= 0, (2.3)

multiply it by r2 sin(θ) and integrate it at a fixed θ from r = R to r = R + h(θ, t).
Upon applying the Leibniz rule to bring the θ -derivative outside the integral sign and
the no-penetration condition vr = 0 at r= R, we obtain

sin(θ)
[
(R+ h)2vr

∣∣
R+h − (R+ h)vθ |R+h

∂h
∂θ

]
+ ∂

∂θ

(
sin(θ)

∫ R+h

R
rvθ dr

)
= 0. (2.4)

Using the kinematic boundary condition (2.2) reduces this equation to an evolution
equation for h(θ, t), namely:

∂h
∂t
+ 1
(R+ h)2

1
sin(θ)

∂

∂θ

(
sin(θ)

∫ R+h

R
rvθ dr

)
= 0. (2.5)

If the velocity component vθ can be related to h(θ, t) via the lubrication approximation,
the requisite integral in (2.5) can also be expressed in terms of h(θ, t), allowing one
to track the subsequent evolution of the film thickness from the resulting nonlinear
partial differential equation.
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To that end, consider the r- and θ -components of Navier–Stokes equation under the
lubrication approximation. Since we wish to include the effects of both gravity and
centrifugal forces arising from the rotation of the sphere, it is convenient to introduce
the modified pressure P, which is related to the regular pressure p in the thin film by

P= p− ρg · x− 1
2ρ|Ω × x|2 = p+ ρgr cos θ − 1

2ρΩ
2r2 sin2(θ). (2.6)

Here, x is the position vector, gravity points in the negative z direction, so that
g=−gk̂ and the angular velocity is about the z-axis, so that Ω = k̂Ω . The gradient
of the modified pressure replaces the contributions from the regular pressure gradient
and the body forces resulting from gravity and centrifugal forces in the rotating
frame of reference. In terms of the modified pressure, the r- and θ -components of
the momentum equation read

∂P
∂r
= 0, (2.7)

1
r
∂P
∂θ
= µ

r2

∂

∂r

(
r2 ∂vθ

∂r

)
. (2.8)

Note that as will be shown in appendix A, under the lubrication approximation, the
inertial terms in the Navier–Stokes equation are negligible and it is possible to find
a scaling where centrifugal forces are of the same order of magnitude as gravity
and surface tension, while Coriolis forces remain negligible. As expected, in the thin
(radial) direction, the pressure remains uniform in the film, while along the long
direction (θ ), the pressure gradient balances the dominant viscous term that involves
the second derivative of vθ in r.

Equation (2.7) implies that the modified pressure is independent of r and may only
depend on θ and t. The normal stress balance at r = R + h requires the pressure in
the film to be equal to the uniform pressure po in the external air plus the capillary
contribution associated with the surface tension σ of the interface and its curvature
∇ · n̂, i.e. p|r=R+h = po + σ∇ · n̂. Here, n̂ = ∇F/|∇F | (with F given by (2.1)) is
the unit normal at the interface pointing toward the exterior. When the film thickness
h(θ, t) is much smaller than the sphere radius R, the curvature can be approximated
in a series in h, with the first two terms given by:

∇ · n̂≈ 2
R
− 1

R2

(
2h+ 1

sin(θ)
∂

∂θ

(
sin(θ)

∂h
∂θ

))
. (2.9)

In terms of the modified pressure, the normal stress balance becomes:

P(θ, t)= po + σ∇ · n̂+ ρg(R+ h) cos(θ)− 1
2ρΩ

2(R+ h)2 sin2(θ). (2.10)

This fully determines the modified pressure throughout the film. Its θ -derivative
provides the forcing term in the remaining component of the momentum equation.
Since ∂P/∂θ is independent of r, one can easily integrate the θ -momentum equation
to obtain

vθ = 1
2µ

∂P
∂θ

r− C1

r
+C2. (2.11)

To find C1 and C2, we apply the no-slip boundary condition on the surface of the
solid sphere and take the shear stress at the free surface to be zero. Namely, at r=R,
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vθ = 0 and at r=R+ h, (∂/∂r)(vθ/r)≈ 0. Once the integration constants are obtained,
the flow field is found to be:

vθ = 1
2µ(R− h)r

∂P
∂θ
[(R− h)r2 + (R+ h)R2 − 2R2r]. (2.12)

In the evolution equation (2.5) for h(θ, t) we need the integral
∫ R+h

R rvθ dr. We
evaluate this integral to find∫ R+h

R
rvθ dr=− 1

µ

∂P
∂θ

(2R+ h)h3

6(R− h)
. (2.13)

Substituting this result in the evolution equation for h(θ, t) yields

∂h
∂t
+ 1
(R+ h)2

1
sin(θ)

∂

∂θ

[
−sin(θ)

µ

∂P
∂θ

(2R+ h)h3

6(R− h)

]
= 0. (2.14)

From the expression (2.10) for the modified pressure P, the combination −(1/µ)(∂P/∂θ)
appearing in the above evolution equation can be written as:

− 1
µ

∂P
∂θ
= −ρg

µ

∂

∂θ
[(R+ h) cos(θ)]+ ρΩ

2

2µ
∂

∂θ

[
(R+ h)2 sin2(θ)

]
+ σ

µR2

∂

∂θ

[
2h+ 1

sin(θ)
∂

∂θ

(
sin(θ)

∂h
∂θ

)]
. (2.15)

The combination of equations (2.14) and (2.15) is a fourth-order nonlinear PDE
which fully determines the evolution of the film thickness under the influence of
gravity, rotation and surface tension. We can simplify it somewhat since in the
lubrication limit, h� R, some of the terms can be replaced by their leading-order
approximations. This results in the equation:

∂h
∂t
+ 1

sin(θ)
∂

∂θ

[
sin(θ)h3Q

]= 0, (2.16)

where

Q= ρg
3µR

sin(θ)+ ρΩ
2

3µ
sin(θ) cos(θ)+ σ

3µR4

∂

∂θ

[
2h+ 1

sin(θ)
∂

∂θ

(
sin(θ)

∂h
∂θ

)]
.

(2.17)

2.1. Scaling and non-dimensionalization
In addition to the parameters that have already appeared above, let us define H
to be the characteristic thickness of the liquid film. The lubrication approximation
requires H � R, so we can define the small parameter ε = H/R for later scaling
purposes. To render equations (2.16) and (2.17) dimensionless, choose a time scale
τ (to be specified later) and define a dimensionless time variable t̂ = t/τ and a
dimensionless film thickness ĥ = h/H. Substituting these into (2.16) suggests the
dimensionless counterpart of function Q should be defined by Q̂= τH2Q. Rewriting
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both equations (2.16) and (2.17) in dimensionless form and dropping the hats from
all the variables for notational clarity then yields:

∂h
∂t
+ 1

sin(θ)
∂

∂θ

[
sin(θ)h3Q

]= 0, (2.18)

Q= a sin(θ)+ b sin(θ) cos(θ)+ c
∂

∂θ

[
2h+ 1

sin(θ)
∂

∂θ

(
sin(θ)

∂h
∂θ

)]
, (2.19)

where

a= τρgH2

3µR
, b= τρΩ

2H2

3µ
, c= τH3σ

3µR4
. (2.20a−c)

The no-flux boundary conditions that sin(θ)h3Q= 0 at θ = 0 and θ =π lead to

sin(θ)
∂h
∂θ
= 0 and sin(θ)

∂

∂θ

(
1

sin(θ)
∂

∂θ

(
sin(θ)

∂h
∂θ

))
= 0, (2.21a,b)

at the two end points. Note that while sin(θ) vanishes at these points, the no-flux
conditions would, in principle, allow certain θ -derivatives of h to be singular at the
boundaries as long as their products with sin(θ) approach zero at the two end points.

Since we have assumed that all three effects, namely gravity, centrifugal force and
surface tension, are of comparable magnitude and equally influence the dynamics, the
three dimensionless constants a, b, c should all be of order unity; in practice, we also
explore more extreme regimes when some of these parameters are small or large. We
can always choose the time scale τ so as to make one of these three parameters equal
to 1, and interpret the remaining two parameters as ratios of these effects. For instance,
if we choose the time scale τ based on the gravitational drainage time, i.e. take
τ = 3µR/(ρgH2), the parameters become

a= 1, b= Ω
2R
g
, c= σH

ρgR3
= ε σ

ρgR2
. (2.22a−c)

Parameter b is a measure of the ratio of centrifugal force to gravity while parameter
c is a ratio of surface tension forces to gravity (whose reciprocal is typically called
the Bond number). We note, however, that in order for c to remain of order unity,
surface tension may need to be relatively large, i.e. σ = O(ρgR2/ε). That is indeed
the distinguished limit that we are considering in this work.

At this point it is also useful to point out the scaling for the (modified) pressure P
and the velocity field vθ . From expression (2.10) for the modified pressure, the non-
constant part of the pressure scales as ρgR or ρΩ2R2 or σH/R2, all three of which
are of the same order of magnitude. Call this pressure scale Po, e.g. Po = ρgR. Note
that the constant part of the pressure in (2.10), po + 2σ/R, does not contribute to
the dynamics so its order of magnitude is irrelevant. Then, expression (2.12) for vθ
suggests that the velocity component parallel to the sphere surface should scale as V=
H2Po/(µR). The easiest way to see this is to evaluate vθ at the free surface r=R+ h,
note that h scales with H, and consider the limit H�R. The relation between velocity
scale V and pressure scale Po can be rearranged to give Po = µRV/H2 = µV/(ε2R).
These are the same scalings that arise in standard lubrication theory, as will be shown
in appendix A.
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3. The energy functional
From a physical point of view, one might expect that any equilibrium solution to

the thin-film equation should minimize the total energy of the system. We use the
terms ‘equilibrium’ and ‘steady state’ interchangeably in this work. While in general
it is possible to reach steady-state shape profiles within which one still has a non-zero
flow field, in this work the steady states correspond to cases in which the flow field
and the resultant flux are zero. We shall see that this is the case when we obtain the
solution in the next section. However, it is useful to identify all the contributions to
the potential energy of the system in advance, which is what we undertake in this
section. There are three separate contributions to the overall potential energy in this
system: gravitational energy EG, rotational energy ER and surface energy ES.

The gravitational potential energy can be written as a volume integral of ρgz over
the volume occupied by the fluid:

EG =
∫

V
ρgz dV = ρg

∫ 2π

0

∫ π

0

∫ R+h

R
(r cos θ) r2 sin θ dr dθ dφ. (3.1)

Similarly, the rotational energy is the volume integral of −(1/2)ρΩ2(r sin(θ))2 over
the fluid volume:

ER =−1
2
ρΩ2

∫ 2π

0

∫ π

0

∫ R+h

R
(r sin θ)2r2 sin θdr dθ dφ. (3.2)

Note that this energy is minimized when the mass distribution is as far away from
the rotation axis as possible; hence the negative sign in front of the integral. Finally,
the surface energy is the product of surface tension σ (which can also be interpreted
as the surface energy per unit area) with the total area of the free surface:

ES = σ
∫

S
dS= 2πσ

∫ π

0
sin θ(R+ h)

√
(R+ h)2 + (hθ)2 dθ. (3.3)

While the total potential energy, consisting of the sum of the above three contributions,
will reach a minimum at equilibrium, the total mass of the fluid must remain
conserved, which is equivalent to the statement that

M = ρ
∫ 2π

0

∫ π

0

∫ R+h

R
r2 sin θ dr dθ dφ = const. (3.4)

To be able to quantify the gravitational, rotational and surface energies in
terms of the O(1) dimensionless parameters a, b and c introduced in (2.20),
we non-dimensionalize all three energies by dividing them by the energy scale:
(6πµR5)/(τH2). At the same time, we use the scaled form of the film thickness
ĥ= h/H, so that R+ h= R(1+ εĥ) with ε =H/R� 1 as before. The total potential
energy in the system is thus given by

Ê= EG + ER + ES

(6πµR5)/(τH2)
= a

∫ π

0

(1+ εĥ)3 − 1
3

cos θ sin θ dθ

− b
2

∫ π

0

(1+ εĥ)5 − 1
5

sin3 θ dθ

+ c
ε

∫ π

0
(1+ εĥ)

√√√√(1+ εĥ)2 + ε2

(
∂ ĥ
∂θ

)2

sin θ dθ. (3.5)
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Expanding all the terms on the right-hand side to O(ε) results in:

Ê = a
∫ π

0
ε ĥ cos θ sin θ dθ − b

2

∫ π

0
ε ĥ sin3 θ dθ

+ c
ε

∫ π

0

1+ 2 ε ĥ+ ε2ĥ2 + 1
2
ε2

(
∂ ĥ
∂θ

)2
 sin θ dθ +O(ε2). (3.6)

The potential energy is only determined to within an arbitrary additive constant,
therefore we may omit any part in Ê that is constant. The requirement of mass
conservation (3.4) given above, can be expressed in powers of ε, the first two terms
of which result in ∫ π

0
(εĥ+ ε2ĥ2) sin θ dθ = const. (3.7)

Making use of this result to cancel the constant parts in Ê allows us to express the
non-constant part of Ê as:

Ê= ε
∫ π

0

a ĥ cos θ + b
2

ĥ cos2 θ + c

1
2

(
∂ ĥ
∂θ

)2

− ĥ2

 sin θ dθ +O(ε2). (3.8)

Under the change of variable x = −cos θ , the leading term in the potential energy
functional can therefore be expressed as:

Ê
ε
=
∫ 1

−1

−axĥ+ b
2

x2ĥ+ c

1
2
(1− x2)

(
∂ ĥ
∂x

)2

− ĥ2

 dx. (3.9)

As we shall see in the next section, this energy functional decreases monotonically
as the film thickness evolves in time until the energy achieves its minimum value at
equilibrium.

4. Transient and steady-state computations
The computations can be simplified by removing the singularity in 1/sin(θ) when

θ is 0 or π in (2.18)–(2.19). Upon introducing the change of variable x=−cos θ with
θ ∈ (0,π), so that x ∈ (−1, 1), the evolution equation transforms into

∂h
∂t
+ ∂

∂x

[
h3(1− x2)

(
a− bx+ c

∂

∂x

[
2h+ ∂

∂x

(
(1− x2)

∂h
∂x

)])]
= 0, (4.1)

with dimensionless parameters a, b and c given earlier in (2.20).
The no-flux boundary conditions at the end points x = ±1 take the form (no

boundary conditions would be required if the solution is classical as (1− x2) vanishes
at both poles):

(1− x2)
∂h
∂x
= 0, (4.2)

(1− x2)
∂2

∂x2

(
(1− x2)

∂h
∂x

)
= 0. (4.3)
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At the same time, the equation of mass conservation can be expressed more simply
as

d
dt

∫ 1

−1
h(x, t) dx= 0. (4.4)

4.1. Transient computations
To perform numerical computations, the fourth-order equation (4.1) was replaced by
a system of two second-order equations as follows. Define the function v(x, t) by

v(x, t)= ∂

∂x

(
(1− x2)

∂h
∂x

)
(4.5)

in terms of which (4.1) becomes:

∂h
∂t
+ ∂

∂x

[
h3(1− x2)

(
a− bx+ c

∂

∂x
(2h+ v)

)]
= 0. (4.6)

The appropriate boundary conditions can then be expressed as:

(1− x2)∂h/∂x= 0 at x=±1,
(1− x2)∂v/∂x= 0 at x=±1.

}
(4.7)

This system was integrated numerically using the finite element solver COMSOL
Multiphysics. We used the module for one-dimensional General Form PDE with Direct
UMFPACK Solver and our discretized system contained approximately twenty-five
thousand degrees of freedom. For the initial condition we mainly used symmetric
perturbations of the uniform distribution h(x, 0) = h0 and v(x, 0) = 0 with different
values of the initial layer thickness h0. (Note, however, that it is possible to scale h0
out of the formulation, taking it to be 1, by appropriately modifying the parameters
a, b and c.) Test simulations with decreasing mesh sizes and relative or absolute
tolerances were performed to insure that the results converged to the same steady-state
solutions and thus were robust. We will illustrate the convergence to a steady state by
displaying the asymptotic approach of the energy to a constant.

4.2. Energy-minimizing steady states
Multiplying (4.1) by the expression

ϕ(h)=
(

ax− bx2

2

)
+ c

[
2h+ ∂

∂x

(
(1− x2)

∂h
∂x

)]
(4.8)

and integrating the result over the interval (−1, 1), we obtain the energy dissipation

d
dt

E(h)=−
∫ 1

−1
h3(1− x2)

{
a− bx+ c

[
2
∂h
∂x
+ ∂2

∂x2

(
(1− x2)

∂h
∂x

)]}2

dx 6 0, (4.9)

where the energy functional E(h) is given by:

E(h)=
∫ 1

−1

[
c

(
1
2
(1− x2)

(
∂h
∂x

)2

− h2

)
+
(

bx2

2
− ax

)
h

]
dx, (4.10)
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which is the same as (3.9). It should be noted that in terms of ϕ, the evolution
equation has the ‘gradient flow’ structure

∂h
∂t
+ ∂

∂x

[
h3(1− x2)

∂ϕ

∂x

]
= 0, (4.11)

while for the same ϕ: ∫ 1

−1
ϕ
∂h
∂t

dx=−dE
dt
, (4.12)

leading to the energy-dissipation equation

dE
dt
=−

∫ 1

−1
h3(1− x2)

(
∂ϕ

∂x

)2

dx 6 0. (4.13)

We now establish that the energy functional E(h) has a finite lower bound under
the constraints

h > 0 and
∫ 1

−1
h(x) dx=M. (4.14a,b)

Note that the dimensionless ‘volume’ M on the right-hand side of the last equation is
not an independent parameter and its value is related to the characteristic thickness H
of the film that was introduced earlier. In particular, if H is chosen to be the average
of the initial thickness profile, the dimensionless volume turns out to be M = 2. It
proves convenient to split the energy functional into the sum E(h) = E1(h) + E2(h).
The first term E1(h) is taken to be

E1(h)=
∫ 1

−1
c

(
1
2
(1− x2)

(
∂h
∂x

)2

− h2

)
dx= c (L h, h) (4.15)

in which (φ, ψ)= ∫ 1
−1 φ(x)ψ(x) dx is the standard inner product and the operator L

is related to the second-order Legendre differential operator and is defined by

L h=− 1
2((1− x2)h′)′ − h. (4.16)

The eigenfunctions of this operator are the Legendre polynomials P`(x) with
corresponding eigenvalues `(` + 1)/2 − 1 with ` = 0, 1, 2, . . . . The first few
eigenvalues of L are given by −1, 0, 2, 5, 9, . . . . It follows from the mass
conservation constraint

∫ 1
−1 h(x) dx = M that h̄ = M/2. Let h(x) = h̄ + h1(x) so that

h1(x) has a zero mean, i.e. h1 is orthogonal to any constant. Any series expansion of
h1(x) would thus not include the term corresponding to `= 0 and will start from the
`= 1 term. Therefore, (L h1, h1)> 0. As such,

(L h, h)= (L (h1 +M/2), (h1 +M/2))= (L h1, h1)− M2

2
>−M2

2
. (4.17)

At the same time

E2(h)=
∫ 1

−1

(
1
2

bx2 − ax
)

h(x) dx >− a2

2b
M, (4.18)
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which derives from the fact that the parabola (bx2/2− ax) has the minimum −a2/2b
together with the non-negativity constraint on h(x). As a result

E(h)>− c
2

M2 − a2

2b
M. (4.19)

Since the energy functional E(h)(t) is decaying, bounded from below and lower semi-
continuous it must have a minimizer, h(x), which is continuous on (−1, 1) (Burchard,
Chugunova & Stephens 2012, Lemma 2.1).

Minimizing the energy functional E(h) under the constraints (4.14) and solving the
corresponding Euler–Lagrange equation

−c
[

d
dx

(
(1− x2)

dh
dx

)
+ 2h

]
−
(

ax− bx2

2

)
= λ (4.20)

gives as an explicit λ-parameter dependent expression, obtained by Maple (available
from Maplesoft), for the energy-minimizing steady state

h(x)= c1x+ c2

(
x ln

1− x
1+ x

+ 2
)
+ a x ln(1− x2)

6c
+ b

8c

(
1− x2

)− λ
2c
, (4.21)

which is valid only for uniformly positive parts of the energy minimizer.
We can also show that if the touchdown point x1 ∈ (−1, 1) exists where h(x1)= 0,

the first derivative of h must also be zero at that point. Let h∗(x)>0 with
∫ 1
−1 h∗ dx=M

be the energy-minimizing steady state. Define

hε = M
Mε
(h∗ + ε φ), Mε =

∫ 1

−1
(h∗ + ε φ) dx, (4.22a,b)

where φ(x) is chosen such that hε remains non-negative. We compute the first variation
of the energy functional as

d
dε

E(hε)|ε=0 =
∫ 1

−1

[
c(1− x2)

dh∗

dx
dφ
dx
− 2ch∗φ −

(
ax− bx2

2

)
φ − λφ

]
dx, (4.23)

where

λ= 1
M

(
2E(h∗)+

∫ 1

−1

(
ax− bx2

2

)
h∗ dx

)
. (4.24)

The requirement that the first variation of the energy functional should be non-negative
for any admissible test function means that h∗ must satisfy the following variational
inequality:

c
[

d
dx

(
(1− x2)

dh∗

dx

)
+ 2h∗

]
+
(

ax− bx2

2

)
6 −λ. (4.25)

This inequality implies that there exists a positive constant C such that in the
neighbourhood of a touchdown point x1, the inequality 0 6 h∗(x)6 C (x− x1)

2 holds
(Burchard et al. 2012, Lemma 2.2). Hence h∗ has a zero first derivative (i.e. a zero
contact angle) at the touchdown point and, as a result, it is continuously differentiable
on (−1, 1). The zero contact angle for the energy-minimizing steady state corresponds
to the full wetting regime. To obtain minimizers with non-zero contact angles, one
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FIGURE 2. (a) Film shape at steady state in the absence of rotation (a= 1, b= 0, c= 1).
(b) Uniformly positive steady state in the absence of gravity (a = 0, b = 1, c = 1). The
radius of the sphere is chosen for visualization only.

needs to modify the energy functional by adding terms that account for the energies
of the solid–liquid and solid–gas surfaces; see for example Benilov & Oron (2010).

The energy-minimizing steady states must always have at least one dry zone if the
gravitational term is present, i.e. for a > 0, because in this case the non-negativity
constraint is active. Without this constraint, the energy functional is not bounded from
below and will tend to negative infinity along a family of linear functions of the form:
hα = M/2 + αx corresponding to which E(hα) = Mb/6 − Mc − (2a/3) α→ −∞ as
α→+∞.

4.2.1. Uniformly positive steady states
We consider the special case when the energy-minimizing steady state is strictly

positive: h(x)> 0 (e.g. see figure 2b). Hence the gravity constant a and the coefficient
c2 in (4.21) must both be zero. Value of the constant c1 is undetermined in the absence
of the gravitational field. With an additional assumption that h(x) is symmetric with
respect to x= 0, we will have c1= 0 and the expression for the steady state simplifies
to

h(x)= b
8c
(1− x2)− λ

2c
. (4.26)

From the volume constraint
∫ 1
−1 h(x) dx=M, we obtain that

λ= b− 6Mc
6

. (4.27)

To make sure that h(x) > 0 for all x and in particular at x=±1, it follows that the
total volume M must satisfy the inequality

M >
b
6c

or H >
b

12c
. (4.28a,b)

The faster the rotation, the thicker the original uniform coating needs to be in order
not to develop a second dry zone on the bottom of the sphere. It also follows from
(4.26) that for parameter values a = 0, c = 1, M = 2, the second dry zone appears
when b > 6M or b > 12.
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4.2.2. Steady states with one dry zone
Assume that x1 is the only touchdown point of h(x) (see figure 2a for an example

of a steady state with one dry zone). The energy-minimizing steady state h(x) is a
continuous function on the closed finite interval. Hence it must be bounded h(x)<∞.
The steady state h(x) also satisfies the conditions:

h(x1)= 0, h′(x1)= 0,
∫ 1

x1

h(x) dx=M. (4.29a−c)

It follows from h(x) <∞ that limx→1 h(x) <∞; hence

c2 ln (1− x2)+ a
6c

ln (1− x2)= 0. (4.30)

As such c2 =−a/6c and the expression for the positive part of h(x) simplifies to

h(x)= a
3c
(x ln (1+ x)− 1)+ b

8c

(
1− x2

)+ c1x− λ
2c
. (4.31)

To solve for x1, λ and c1 we apply the constraints (4.29) to this form of the function
h(x) and obtain a system of three nonlinear equations that are not displayed explicitly
here for brevity. The solution to this system can be obtained by Maple. For instance,
for the set of the parameters a = b = c = 1 and M = 0.2, we obtain the following
result: c1 ≈ 0.221, λ ≈ −0.502, x1 ≈ −0.336. The energy value at the steady state
is approximately E(h) ≈ −0.089. Convergence of the energy to this minimal value,
as obtained by performing the transient computations in COMSOL for this set of
parameters, is illustrated in figure 4.

4.2.3. Steady states with two dry zones
For a fixed volume M and with gravity present, i.e. for a > 0, as the speed of

rotation (i.e. parameter b) increases, the energy-minimizing steady state first loses
convexity at the bottom, (i.e. the derivative h′(1) changes sign, going from negative to
positive, so that at that point h′(1)= 0) and, after that, if the rotation rate continues
to increase, a second dry zone appears at the bottom of the sphere (with h(1)= 0 at
and above the threshold). This transition in shape is illustrated in different coordinate
systems in figures 3 and 6.

We can map out the boundaries in parameter space where these transitions take
place. For instance, if we fix the strengths of gravity and surface tension by taking
a= c=1, but allow ‘mass’ M to vary, we can identify how fast the rotation (parameter
b) needs to be for a dimple to develop at the bottom of the interface, and to obtain a
second dry zone at the bottom of the sphere. Figure 7(a) shows these two threshold
values for the parameter b as a function of M. Below the dashed curve, which is
almost linear for large M having a slope 3/2, the steady state is a convex-shaped
drop hanging from the bottom of the sphere; between the dashed curve and the solid
curve, which is almost linear for large M having a slope 6, the steady state has a
dimple, with the dimple depth growing as b increases toward the solid curve, and
above the solid curve the steady-state shape has two dry zones, one above and one
below the rotating sphere. Figure 7(b) shows the nonlinear behaviour of both curves
for extremely small values of M. It should be born in mind that the first touchdown
point x1 also varies, moving toward −1 (the top of the sphere), as M increases.
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FIGURE 3. Change in the steady-state film profile upon increasing the rate of rotation.
The parameters are a= 1, b= 5, c= 1 on (a) and a= 1, b= 20, c= 1 on (b).
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FIGURE 4. Convergence of the energy to a constant value for the parameters a= 1, b= 1,
c= 1 and M = 0.2.
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FIGURE 5. Convergence of the energy to a constant value for the parameters a = 0,
b= 100, c= 1 and M = 0.2.

Alternatively, we can also fix the ‘mass’ M and surface tension parameter c = 1
and examine how these same transitions take place as the ratio b/a of rotational
to gravitational forces increases. Figure 8(b) illustrates the dependence of the ratio
b/a on the value of the touchdown point x1 for a fixed mass. The dashed line
corresponds the loss of convexity and the solid line to the appearance of the second
dry zone. The zoomed picture on the right side illustrates that the steady state has
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FIGURE 6. Shape evolution of the steady state which leads to the development of the
second dry zone due to increase in the speed of the rotation in Cartesian coordinates.
Parameters (a–c) right (a= 1, b= 3, c= 1) , (a= 1, b= 5, c= 1) and (a= 1, b= 10, c= 1).
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FIGURE 7. For a= c= 1, (a) the dashed curve corresponds to the value of b(M) when
the steady state loses convexity and the solid curve corresponds to the value b(M) when
a second dry zone appears at the bottom of the sphere; (b) the zoom-in illustrates the
nonlinear behaviour of both curves when M approaches zero.

a convex shape and only one dry zone on the top of the sphere if c= 1 and b< a
for any mass M. Note that for a fixed c, once a steady solution h(x) is found for a
given set of parameters {a, b, M}, a scaled solution kh(x) also exists for the scaled
parameters {ka, kb, kM}. We can thus fix the mass (e.g. at M= 2) and only the ratio
b/a determines the transitions in the shapes.

Consider the case when two dry zones are present (e.g. see figure 3b), one on the
top and one on the bottom of the rotating sphere. In this case the steady state has
two touchdown points x1 and x2. The set of equations that determine their positions
consists of:

h(x1)= 0, h(x2)= 0, h′(x1)= 0, h′(x2)= 0,
∫ x2

x1

h(x) dx=M, (4.32a−e)

together with the requirement that h should be regular or h(x) <∞. Given, a, b, c
and M, the resulting equations for x1, x2, c1, c2 and λ are nonlinear and lengthy (they
are not displayed here for brevity) and challenging to solve.

However, for the symmetric case with x1 =−x2 which corresponds to the absence
of gravity a= 0, Maple can find the solution to the nonlinear equations numerically.
For instance, for parameters a= 0, b= 100, c= 1 and M= 0.2, the numerical solution
is c1 = 0, c2 ≈ −5.051, λ ≈ 4.091 and x2 = −x1 ≈ 0.518. The energy value at this
steady state is approximately E(h)≈ 0.608. The asymptotic approach of the energy to
this minimal value, obtained via transient computations in COMSOL, is illustrated in
figure 5.
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FIGURE 8. For c= 1, (a) the ratio b/a versus the value of the first touchdown point x1;
the dashed curve corresponds to the value of the ratio b/a when the steady state loses
convexity and the solid curve to the value b/a when the second dry zone starts to appear;
(b) the zoom-in illustrates that for b< a the steady state has a convex shape and only one
dry zone on the top of the sphere for any value of M.

More generally, to obtain non-symmetric steady states with 2 dry zones, one
can proceed as follows. First we note that parameter c can always be set to unity
(provided surface tension is present) by taking the time scale τ to be given by
3µR4/H3σ in (2.20). With that choice for the time scale, parameters a and b both
become proportional to 1/H. Therefore, as the value of H changes, the ratio of a to
b does not change. Also, adjustments to H are equivalent to changing the volume
M in (4.32). We thus proceed by setting b = 1 as well (to be adjusted later). Now,
rather than specifying the parameters and looking for the touchdown points, we
start by specifying the touchdown points and see if we can find the parameters that
correspond to them. So, we choose the two values x1 and x2 for the touchdown points
in the range −1< x1 < x2 < 1. Next we impose three of the constraints

h′(x1)= 0, h′(x2)= 0, h(x1)= h(x2). (4.32a−c)

The constant λ disappears from these three equations. But with c= 1 and b= 1, the
remaining coefficients a, c1 and c2 can be found from the three equations, which are
linear in the three unknowns. At this point, constant λ which simply shifts the profile
h(x) up and down can be found by enforcing that h(x1)= 0 or h(x2)= 0. The portion
of the resulting curve h(x) that lies between x1 and x2 represents the film profile in the
wet zone. To adjust its area to any desired value, we simply calculate the present value
of the integral M′= ∫ x2

x1
h(x) dx and multiply the function h(x) by M/M′. This has the

effect of adjusting the values of parameters a and b (and λ, c1 and c2), while keeping
c= 1. For definiteness, we can choose M= 2, which corresponds to the interpretation
of H as the average of the initial height profile. Our scaled numerical simulations can
thus start with the uniform initial condition h(x, 0)= 1.

As an example, for the arbitrarily chosen case with touchdown points at x1 = 0.25
and x2 = 0.75, the above procedure leads to the parameter values a = 16 084.8, b =
31 785.5 and c= 1 corresponding to M = 2. Transient COMSOL simulations starting
with h(x, 0)= 1 for these parameter values are shown in figure 9, verifying that the
solution approaches the predicted steady profile having those same touchdown points
for long time periods.

5. Discussion
In this work, we have derived the evolution equation for a thin liquid film on

a rotating sphere in the presence of gravity, surface tension and centrifugal forces.
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FIGURE 9. Time evolution of the coating shape in x, θ and polar coordinates is presented
by two time snap shots t= 2× 10−5 on (a,c,e) t= 5× 103 on (b,d, f ).

We have also obtained the overall potential energy functional for this system and
shown that the energy-minimizing steady states of the system are global attractors.

Upon analysing the steady states in various parameter regimes, we can summarize
the results as follows. In the absence of rotation but with gravity and surface tension
both present, the steady state has a convex drop-like shape with a dry zone on the top
of the sphere. If we parameterize this state in terms of the total volume of the liquid
film, we find that as the volume decreases, the dry zone will increase in size and
the wet region occupied by the drop becomes more concentrated near the bottom (i.e.
south pole) of the sphere. By contrast, as the amount of liquid in the system increases,
the dry zone ultimately disappears and the state becomes one with a uniformly positive
film thickness all around the sphere. Adding rotation (or increasing dimensionless
parameter b away from zero) changes the shape of the steady state in the following
way: starting with the convex-shaped hanging drop with a dry zone on the top of
the sphere, as the rotation rate b increases, the drop shape loses convexity and a
dimple appears in the interface at the bottom. As the rotation rate increases even more,
that dimple grows in size and eventually touches down at the south pole, initiating a
second dry zone that grows in size with further increases of the rotation rate.

The steady states on such a rotating sphere are qualitatively different from the ones
that have been studied on a rotating cylinder or vertical disk. In most of these (an
exception being the work of Evans, Schwartz & Roy (2004) who showed that the
centrifugal force can lead to instabilities and drop formation on a rapidly rotating
cylinder), centrifugal forces are not taken into account. Rather, the kinematic effect
of rotation along with the no-slip boundary condition provide an equilibrium film
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thickness with the gravitational draining flow counteracted by the upward motion of
the surface on one half of the region, and assisted by the downward motion on the
other side. In our analysis, in the rotating frame, the sphere surface is completely
stationary. But the centrifugal forces due to rotation drive the fluid toward the
equator. The resulting steady states are shapes with no flow occurring within them
once equilibrium is established.

There are multiple avenues for extending and generalizing the present work. It
would be interesting to relax the assumption of axisymmetry and allow for dependence
on the azimuthal angle. In particular, whether the axisymmetric global attractors
obtained in the present work are stable to azimuthal perturbations is an important
question to address. It is also useful to study cases where Marangoni effects associated
with the dependence of surface tension on temperature or surfactant concentration are
taken into account. One can also study thin films on the inside of rotating spheres,
and consider cases where the effects of Coriolis forces are not negligible.
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Appendix A. Justification of the lubrication approach

Whereas § 2 derives the thin-film equation starting with the simplified dimensional
forms of the momentum and continuity equations, here we present the more rigorous
derivation starting with the complete equations of motion and boundary conditions,
with proper scaling and non-dimensionalization of the variables resulting in the correct
leading-order evolution equation for the film, showing it to be the same as the one
obtained in § 2.

The governing incompressible Navier–Stokes equations describing flow on the outer
surface of the rotating sphere in the rotating frame are given by

∇ · v = 0, (A 1)

ρ
Dv

Dt
=−∇p+ ρg+µ∇2v − 2ρΩ × v − ρΩ × (Ω × r). (A 2)

The last two terms in the momentum equation represent the Coriolis and centrifugal
forces, respectively. We assume that the sphere is rotating with a constant angular
velocity Ω . In this paper, we are interested in the limit where centrifugal and
gravity forces are of comparable magnitudes but the Coriolis forces are negligible in
comparison. The parameter regime where this is possible is described below and it
is only when the Coriolis term is negligible that one can obtain a two-dimensional
axisymmetric flow (with only r- and θ -components) in the rotating frame.

The no-slip boundary condition on the sphere surface in the rotating frame is given
by

v = 0 at r= R. (A 3)

We also need to introduce the dynamical boundary conditions (i.e. the normal and
tangential stress balances) on the free surface of the film, namely

−n̂ · E · n̂= po + σ∇ · n̂, t · E · n̂= 0, at r= R+ h(θ, t), (A 4a,b)
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where, assuming no dependence on the azimuthal angle φ,

n̂= ∇F

|∇F | =
1√

1+ (hθ/(R+ h))2

[
1

hθ/(R+ h)

]
(A 5)

is the unit normal vector,

t =
[

hθ/(R+ h)
−1

]
(A 6)

is the tangent vector and

E =

 2µ
∂vr

∂r
− p µ

(
r
∂

∂r

(vθ
r

)
+ 1

r
∂vr

∂θ

)
µ

(
r
∂

∂r

(vθ
r

)
+ 1

r
∂vr

∂θ

)
2µ
(

1
r
∂vθ

∂θ
+ vr

r

)
− p

 (A 7)

is the stress tensor in the viscous film. Here, hθ ≡ ∂h/∂θ . Therefore we can rewrite
the normal stress balance as

−2µ

1+
(

hθ
R+ h

)2

[
∂vr

∂r
+ hθr

R+ h
∂

∂r

(vθ
r

)
+ hθ
(R+ h)r

∂vr

∂θ
+
(

hθ
R+ h

)2 (1
r
∂vθ

∂θ
+ vr

r

)]

= po − p|R+h + σ∇ · n (A 8)

and the tangential stress balance as(
hθ

R+ h

)2 (
r
∂

∂r

(vθ
r

)
+ 1

r
∂vr

∂θ

)
+ 2hθ

R+ h

(
∂vr

∂r
− vr

r
− 1

r
∂vθ

∂θ

)
− r

∂

∂r

(vθ
r

)
− 1

r
∂vr

∂θ
= 0, (A 9)

at r= R+ h.
We also need the continuity equation in axisymmetric spherical coordinates:

1
r2

∂

∂r
(r2vr)+ 1

r sin(θ)
∂

∂θ
(sin(θ)vθ)= 0. (A 10)

In spherical coordinates, with Ω =Ω k̂ and with g=−gk̂, we can define a modified
pressure P by

P= p− 1
2ρΩ

2r2 sin2(θ)+ ρgr cos(θ), (A 11)

using which the momentum equation can be written simply as

ρ
Dv

Dt
=−∇P+µ∇2v, (A 12)

having dropped the Coriolis term (the justification for which is presented below). The
r-component of the momentum equation reads:

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r
∂vr

∂θ
− v

2
θ

r

)
=−∂P

∂r

+µ
[

1
r2

∂2

∂r2
(r2vr)+ 1

r2 sin θ
∂

∂θ

(
sin θ

∂vr

∂θ

)]
, (A 13)
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while its θ -component is given by

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r
∂vθ

∂θ
+ vrvθ

r

)
=−1

r
∂P
∂θ

+µ
[

1
r2

∂

∂r

(
r2 ∂vθ

∂r

)
+ 1

r2

∂

∂θ

(
1

sin θ
∂

∂θ
(vθ sin θ)

)
+ 2

r2

∂vr

∂θ

]
. (A 14)

We define the scaled non-dimensional variables:

v̂θ = vθV , v̂r = vr

εV
, θ̂ = θ, ŷ= r− R

εR
, t̂= Vt

R
and P̂= P

P0
, (A 15a−f )

where

V = ρgH2

µ
= ε

2P0R
µ

and P0 = ρgR. (A 16a,b)

In terms of these variables, the non-dimensional form of the continuity equation (A 10)
becomes:

εVR2

εR3

1
(1+ εŷ)2

∂
(
(1+ εŷ)2v̂r

)
∂ ŷ

+ V

R sin θ̂

1
1+ εŷ

∂

∂θ̂

(
v̂θ sin θ̂

)
= 0. (A 17)

The r-component of the momentum equation reads:

V2

gR

(
ε
∂v̂r

∂ t̂
+ εv̂r

∂v̂r

∂ ŷ
+ ε v̂θ

1+ εŷ
∂v̂r

∂θ
− v̂2

θ

1+ εŷ

)
=−1

ε

∂P̂
∂ ŷ

+ µV
ρgR2

[
1

ε(1+ εŷ)2
∂2

∂ ŷ2
((1+ εŷ)2v̂r)+ ε

(1+ εŷ)2 sin θ̂

∂

∂θ̂

(
sin θ̂

∂v̂r

∂θ̂

)]
(A 18)

while its θ -component is given by

V2

gR

(
∂v̂θ

∂ t̂
+ v̂r

∂v̂θ

∂ ŷ
+ v̂θ

1+ εŷ
∂v̂θ

∂θ̂
+ v̂rv̂θ

1+ εŷ

)
=− 1

1+ εŷ
∂P̂

∂θ̂
+ µV
ρgR2

[
1

ε2(1+ εŷ)2
∂

∂ ŷ

(
(1+ εŷ)2

∂v̂θ

∂ ŷ

)
+ 1
(1+ εŷ)2

∂

∂θ̂

(
1

sin θ̂

∂

∂θ̂
(v̂θ sin θ̂ )

)
+ 2
(1+ εŷ)2

∂v̂r

∂θ̂

]
. (A 19)

We use the lubrication approximation parameter ε=H/R� 1. Therefore we have V =
ε2P0R/µ∼O(ε2) and Re= ρVR/µ∼O(ε2).

The dimensionless form of the no-slip boundary condition is

v̂θ = 0 at ŷ= 0. (A 20)

After scaling the tangential stress balance boundary condition (A 9), we see that the
r(∂/∂r)(vθ/r) term is dominant; thus this boundary condition can be simplified to

∂v̂θ

∂ ŷ
≈ 0 at ŷ= ĥ. (A 21)
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In the normal stress balance, the terms on the left-hand side of (A 8) have scale no
larger than µV/R while the right-hand side has the scale P0. So the right-hand side
dominates and this boundary condition reduces to

P̂|ŷ=ĥ =
po

ρgR
− Ω

2R
2g

sin2(θ)+ cos(θ)+ σ

ρgR
∇ · n̂. (A 22)

The leading-order form of the continuity equation is

∂v̂r

∂ ŷ
+ 1

sin θ̂

∂

∂θ̂

(
v̂θ sin θ̂

)
= 0. (A 23)

As V2/(gR)= ε2Re=O(ε4), the leading-order form of the r-momentum equation reads:

∂P̂
∂ ŷ
= 0. (A 24)

Finally, the leading-order form of the θ -momentum equation becomes:

∂P̂

∂θ̂
= ∂

2v̂θ

∂ ŷ2
. (A 25)

With regard to the neglect of the Coriolis term, we see that it scales with ρΩV ,
which is negligible compared to the leading-order term ∂P/∂r (with scale ρg/ε) in
the r-momentum equation and the leading-order term ∂P/∂θ (with scale ρgR) in
the θ -momentum equation. In particular, ensuring that the Coriolis term is negligible
compared to gravity means Ω� g/V , while keeping the Coriolis term small compared
to the centrifugal term requires Ω� V/R. The simultaneous inequalities

V
R
�Ω� g

V
(A 26)

can only be achieved if V itself satisfies the inequality

V2� gR. (A 27)

Since the drainage velocity scale V=ρgH2/µ can be quite small for a thin and highly
viscous film, it can be much smaller than the velocity scale

√
gR associated with free

fall through distance R. In terms of this drainage velocity scale, the above requirement
becomes: ε2ρ

√
gR3/µ� 1, and the angular velocity Ω needs to be large compared

to V/R but small compared to g/V .
We now can solve for v̂θ from the θ -momentum equation and (A 20), (A 21):

v̂θ = 1
2
∂P̂

∂θ̂
ŷ(ŷ− 2ĥ). (A 28)

The evolution equation for the thin film, obtained by integrating the continuity
equation at a fixed θ across the radial direction and applying the kinematic boundary
condition at the surface, reads

∂ ĥ
∂ t̂
=− 1

sin θ̂

∂

∂θ̂

(
sin θ̂

∫ ĥ

0
v̂θ dŷ

)
. (A 29)
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By substituting the solution for v̂θ we find

∂ ĥ
∂ t̂
+ 1

sin θ̂

∂

∂θ̂

(
−sin θ̂

3
∂P̂

∂θ̂
ĥ3

)
= 0. (A 30)

To obtain the expression for ∂P̂/∂θ̂ , we use the normal stress balance condition at the
boundary (A 22)

P̂|ŷ=ĥ =
po

ρgR
− Ω

2R
2g

sin2(θ)+ cos(θ)+ σ

ρgR
∇ · n̂, (A 31)

where

∇ · n̂≈ 2
R
− 1

R2

(
2h+ 1

sin(θ)
∂

∂θ

(
sin(θ)

∂h
∂θ

))
. (A 32)

We thus find the leading-order dimensionless pressure gradient to be (dropping the
hats for clarity):

−∂P
∂θ
= sin(θ)+ Ω

2R
g

sin(θ) cos(θ)+ σH
ρgR3

∂

∂θ

[
2h+ 1

sin(θ)
∂

∂θ

(
sin(θ)

∂h
∂θ

)]
, (A 33)

which leads to the leading-order dimensionless evolution equation:

∂h
∂t
+ 1

sin(θ)
∂

∂θ

[
sin(θ)h3Q

]= 0, (A 34)

with

Q= a sin(θ)+ b sin(θ) cos(θ)+ c
∂

∂θ

[
2h+ 1

sin(θ)
∂

∂θ

(
sin(θ)

∂h
∂θ

)]
. (A 35)

where

a= τρgH2

3µR
, b= τρΩ

2H2

3µ
, c= τH3σ

3µR4
, (A 36a−c)

in agreement with the result of § 2. Note that in arriving at this form, we have allowed
for a more arbitrary scaling of the time variable with time scale τ as opposed to the
original R/V .

Appendix B. Navier slip boundary condition

In this paper we restricted our analysis and computations to the no-slip condition
between the surface of the sphere and the coating liquid layer. It is relatively
straightforward to model some degree of slip at that surface. We shall present the
derivation here, working with the dimensional form of the equations. The boundary
condition at r = R changes from no slip (vθ = 0) to one allowing for slip based on
the Navier slip model, namely

vθ = β
µ
τrθ = βR

∂

∂r

(vθ
r

)
at r= R. (B 1)
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Here, τrθ is the shear stress evaluated on the sphere surface. Note that β has units
of length and can be interpreted as a ‘slip length’. We recover the no-slip condition
when β = 0.

Solving the equation for vθ with the new boundary condition given above results in

vθ =
(

R4 + R3(h− 2r)+ R2r2 − Rhr2 − 2βhr2

2(R2 − Rh− 2βh)r

)
1
µ

∂P
∂θ
. (B 2)

Calculating q= ∫ R+h
R rvθ dr then yields

q= h
6

(
3R4

2βh− R(R− h)
+ 3R2 + 3Rh+ h2

)
1
µ

∂P
∂θ
. (B 3)

When β = 0, we recover the no-slip result that

q=−h3(2R+ h)
6(R− h)

1
µ

∂P
∂θ
≈−h3

3
1
µ

∂P
∂θ

for h� R. (B 4)

If we consider the case where β and h are of the same order of magnitude and both
are much smaller than R (i.e. with β/R=O(ε) and h/R=O(ε)), the leading term in
flux q takes the form

q≈−
(

h3

3
+ βh2

)
1
µ

∂P
∂θ

for h≈ β� R, (B 5)

which is the usual result for incorporating the Navier slip model in the thin-film
equations. However, taking the formal limit β →∞, which corresponds to perfect
slip on the sphere surface, would result in

q= h
6
(3R2 + 3Rh+ h2)

1
µ

∂P
∂θ
≈ R2h

2
1
µ

∂P
∂θ

for h� R. (B 6)

We see that the ‘mobility’ factor that relates the flux q to the pressure gradient scales
as h3 for no slip and as h for perfect slip, but it changes sign in the two limits; with
perfect slip, the flux appears to move ‘uphill’ against the pressure! The limit of perfect
slip on the surface does not appear to be physically well posed.

Obviously, one needs to be careful with the scaling of the slip length β. Physically
β is thought to be extremely small, so in all likelihood β�h�R except where h→0
at the touchdown points of the dry zones. On the other hand, to assume perfect slip we
must take β→∞, which would imply that h�R� β (the case that does not appear
to be well posed). One can also consider intermediate regimes when h� β � R, or
as we saw above, cases when β and h are of comparable magnitudes and both small
compared to R.
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