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Abstract. In this article, we extend, with a great deal of generality, many results regarding
the Hausdorff dimension of certain dynamical Diophantine coverings and shrinking target
sets associated with a conformal iterated function system (IFS) previously established
under the so-called open set condition. The novelty of the result we present is that it
holds regardless of any separation assumption on the underlying IFS and thus extends
to a large class of IFSs the previous results obtained by Beresnevitch and Velani [A
mass transference principle and the Duffin—Schaeffer conjecture for Hausdorff measures.
Ann. of Math. (2) 164(3) (2006), 971-992] and by Barral and Seuret [The multifractal
nature of heterogeneous sums of Dirac masses. Math. Proc. Cambridge Philos. Soc. 144(3)
(2008), 707-727]. Moreover, it will be established that if S is conformal and satisfies mild
separation assumptions (which are, for instance, satisfied for any self-similar IFS on R with
algebraic parameters, no exact overlaps and similarity dimension smaller than 1), then the
classical result of Hill-Velani regarding the shrinking target problem associated with a
conformal IFS satisfying the open set condition (and for which the Hausdorff measure was
later computed by Allen and Barany [On the Hausdorff measure of shrinking target sets
on self-conformal sets. Mathematika 67 (2021), 807-839]) can be extended.

Key words: Diophantine approximation approximations, fractal geometry, dynamical
coverings
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1. Introduction

Estimating the Hausdorff dimension of points falling infinitely often in sets U, having
some algebraic or dynamical meaning is a question which arises naturally in Diophantine
approximation as well as in dynamical systems. Given a metric space (X, d), a measurable
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2 E. Daviaud

mapping 7 : X — X, and an ergodic probability measure p, a classical question consists
in estimating, for u-typical points x, the Hausdorff dimension of points falling infinitely
often in balls B(T" (x), ¢ (n)), centered in 7" (x) and with radius ¢ (n). Such problems
have been studied for instance in [1, 2, 10, 17, 23, 27, 30] and are called ‘dynamical
Diophantine approximation problems’.

Estimating these dimensions often relies on establishing mass transference principles
for the ergodic probability measure . Given a sequence of balls (B, := B(xy, n))neN,
these theorems usually aim at giving lower bounds for the dimension of sets of points of
the form lim sup,_, , , Uy, where U, C B, (typically, U, = Bﬁ = B(xp, r,‘f)), provided
that the sequence of balls (B;),en satisfies w(lim sup, _, o, By) = L.

Let m > 2 be an integer and S = {f1, ..., fu} be a weakly conformal family of mC!
contracting maps from RY — R? (see Definition 2.4). Denote by K the attractor of S,
that is, the unique non-empty compact set satisfying K = (J/_; fi(K), A ={1,...,m},
A* =g AX.and, fork e Nyi = (i1, .. ., ix) € A¥, write f; = fi, 0+ -0 f;,.

In this article, we prove that if dimgy (K) = dim(S), where dim(S) is the conformality
dimension, defined by Definition 2.8, then for any xo € K, for any § > 1,

) _ dimH(K).

dimy (1im sup B(f;(x0), |fi(K)I") :

IEA*

(1

In other words, the set of points x for which the orbit of x¢, (f;(x0))ica*, satis-
fies infinitely many often that d(x, f;(xo)) < |fi(K )|5, has dimension dimg(K)/5. We
mention that this dimension result regarding this dynamical Diophantine approximation
problem can be deduced from the mass transference principle [7] in the case where the
iterated function system (IFS) is conformal and satisfies the open set condition. One
emphasizes that the condition dimy (K) = dim(S) is much weaker than the open set
condition. For instance, this condition is satisfied for self-similar systems in R, as soon
as Hochman’s exponential separation condition (given by [24, Theorem 1.4]) is verified,
which provides a large number of examples.

An other classical problem in Diophantine approximation on fractals is the so-called
shrinking target problem, which was originally introduced by Hill and Velani in [23].
Consider S = {f1, . . ., fm} as a self-similar IFS satisfying the strong separation condition
and let K be its attractor. It is classical that K can be viewed as the attractor of an expending
map. This is done by defining F' : K — K by setting

F(x) = f'(x) ifxe fi(K).

Let ¢ : N — R be a mapping such that ¢ (n) — 0, then the shrinking target set
associated with xg € K, F, and ¢ is defined as

W(x0, ¢) ={z € K : F"(z) € B(xp, ¢(n)) for infinitely many n € N}.
Writing 0 < ¢; < 1 as the contraction ratio of f;, one can write

W (xo, ¢) = lim sup B(f;(xo), cip(|i])).

ieA*
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This naturally leads to further investigate the dimension of limsup sets generated by balls
of the form B(f;(xo0), | fi (K)|¢(|i])). In the case where the IFS satisfies the open set
condition, the dimension of such sets was computed by Hill and Velani in [23], and the
Hausdorff measure by Allen and Barany [1]. In this article, we extend the dimension result
established in [23] to a large class of overlapping conformal IFSs.

As an application of our approach, a complement of some results established in [2] are
also given (see Theorem 3.3).

An important tool to establish equation (1) is Theorem 5.11, which is a mass transference
principle for projection of quasi-Bernoulli measures (without assuming any separation
condition on the underlying IFS) and strongly relies on the techniques developed in [10].

Before stating our main results, we make some general recalls about contracting iterated
function systems. We also recall some known results in the case were the IFS is weakly
conformal.

2. Recalls on geometric measure theory and definition of weakly conformal IFSs
Let us start with some notation.

Let d € N. For x € R?, r > 0, B(x, r) stands for the closed ball of (Rd, I lloo) of
center x and radius r. Given a ball B, | B| stands for the diameter of B. For r > 0, § € R,
and B = B(x, r), t B stands for B(x, tr), that is, the ball with same center as B and radius
multiplied by 7, and the 8-contracted ball B? is defined by B® = B(x, r%).

Given a set E C RY, E stands for the interior of the E, E its closure, and 0F = E\ E
its boundary. If E is a Borel subset of R?, its Borel o -algebra is denoted by B(E).

Given a topological space X, the Borel o-algebra of X is denoted B(X) and the space of
probability measure on B(X) is denoted M (X).

The d-dimensional Lebesgue measure on (R4, B(RY)) is denoted by 4.

For u € M(R?), supp(u) = {x € [0, 1] : forallr > 0, w(B(x,r)) > 0} is the topo-
logical support of w.

Given E C R?, dimy (E) and dimp(E) denote respectively the Hausdorff and the
packing dimension of E.

2.1. Dimension of measures and Hausdorff content.

Definition 2.1. Let¢ : RT — R™. Suppose that ¢ is increasing in a neighborhood of 0 and
£(0) = 0. The Hausdorff outer measure at scale ¢ € (0, +oo] associated with the gauge ¢
of a set E is defined by

’Hf(E) = inf {Z C(IBnl) : |Bn| <t, B, closedball and E C U B,,}. 2)
neN neN

The Hausdorff measure associated with ¢ of a set E is defined by
HE(E) = lim H:(E). 3)
t—0t
For t € (0,4+00], s >0, and ¢ :x+ x%, one simply uses the usual notation
Hf(E) = H3(E) and Hé(E) = H*(E), and these measures are called s-dimensional

Hausdorff outer measure at scale t € (0, +00] and s-dimensional Hausdorff measure,
respectively. Thus,
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4 E. Daviaud

Hi(E) = inf {Z |B,|* : |B,| <t, B,closedballand E C U Bn}. @)
neN neN

The quantity H{_(E) (obtained for ¢ = +-o00) is called the s-dimensional Hausdorff content
of the set E.

Definition 2.2. Let u € M(R?). For x € supp(u), the lower and upper local dimensions
of 1 at x are defined as

log(u(B(x, 1)) and  dimioe (11, x) = lim sup log(u(B(x, 1))

dim , x) = lim inf
dimy . (1, x) mom log(r) e log(r)

Then, the lower and upper Hausdorff dimensions of u are defined by

dim; () = ess inf,, (dimy,. (i1, x)) and  dimp (1) = ess sup,, (dimiee (1, x)),  (5)

respectively.

It is known (for more details, see [16]) that
dimy, (1) = inf{dimg (E) : E € BRY), u(E) > 0},
dimp(n) = inf{dimp (E) : E € BRY), w(E) = 1}.
When dimg (1) = dimp (1), this common value is simply denoted by dim(u) and pw is

said to be exact dimensional.

2.2. Weakly conformal IFS.

2.2.1. Generalities about contracting IFS. Let m > 2 be an integer. An IFS is a set

S={f1,..., fm} of mappings f; : X — X, where X C RY is a closed set. Moreover,
one says that f is differentiable on X if there exists an open set U D X on which f is
differentiable.

Given an open set U ¢ R? and f : U — R? a differentiable map, for any x € U:

e  f/(x) is the differential of f at x;
e let k € N be an integer, we write E(Rk, R4 ) the set of linear maps from R¥ to R?. For
le ﬁ(Rk, Rd), one denotes

1€Moo 4 Ie] = min 1£CH oo ©)

€l =
xeRE£0  [1x]loo xeRF£0  [[X]loo

Let us recall the following result.

PROPOSITION 2.3. (Hutchinson [25]) Let m > 2 be an integer, X C RY a closed set,
and S ={f1,..., fu} a system of C' maps from X to X. Assume that S is uniformly
contracting, i.e.,

max sup || f/(x)|| < 1.
I<ism yex
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Dynamical Diophantine approximation 5

Then, there exists a unique non-empty compact set K satisfying

k= |J r®.
1<i<m
Moreover, for any (pi1, ..., pm) € (0, 1), there exists a unique measure | € M(Rd)
supported on K satisfying
w= Y pin(f ). (7)
1<i<m

From now on, an IFS designates a uniformly contracting system of C' maps.
The following notation is used throughout the manuscript.
e AS)={l,...,m}and A(S)* = Uk>0 A(S)k. When there is no ambiguity on the
system S involved, one simply writes A(S) = A.
K denotes the attractor of S (or simply K when the context is clear).
Fori = (iy,...,ix) € A, the cylinder [i] is defined by

(1= 1{G1,...,ikx1,X2,...): (x1,x2,...) € AN}

Moreover, if (o, ),enN 1S a sequence of real numbers, one sets

Q=0 X X o,
and

fi=fiyo o fi.
For example, given the probability vector (p1, ..., pm), pi = Pi; X = -+ X Di.

e The set AV is endowed with the topology generated by the cylinders. The set of
probability measures on the Borel sets with respect to this topology is denoted
M(AN).

e The shift operator o : AN — AN is defined for any (i1, iz, ...) € AN by

o((ir,iz,...)) = (i2,13,...). ®)
e The canonical projection of AN on K will be denoted 75 (or simply 7= when there is
no ambiguity) and, fixing any x € K, is defined, for any (i, iz, ....) € AN, by
K >n(@,...))= lm fio- -0 fi(x). 9)
k—+00

It is easily verified that 7 is independent of the choice of x.

2.2.2. Weakly conformal IFS and pressure function associated with weakly conformal
IFSs. Let us recall the definition of a weakly conformal map.

Definition 2.4. [19] Let m > 2 be an integer, U C R4 an open set, S = {f; ;”:1, where
fi : U — UisaC! contraction and K the attractor of S.
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6 E. Daviaud

One says that S is weakly conformal when, recalling equation (6),

lim ——iienetleomt” 770 B o) T R O T (s _
k—+o00 k
(10)

In this case, a measure defined by equation (7) is called a weakly conformal measure.

Example 2.5.
e If the maps fi,..., fn are affine similarities or conformal maps (i.e., verify
L' YD = If/ Gl - N1yl for every x € U, y € RY), the system S = {f1, . . ., f)

is weakly conformal. In this case, the IFS is called self-similar or self-conformal
and the measures satisfying equation (7) are respectively called self-similar and
self-conformal measures. Note that this class of IFSs contains, for instance, every
system of holomorphic contracting mappings.

e Assumethatforany 1 <i <m, f; : R? - R is defined by f;(x) = A;x + b;, where
forany 1 <i <m, b; € R4 and A; € GL4(R) has its eigenvalues equal in modulus
o0<ri<l,andforany 1 <i,j <m, AjA; = AjA;. Then, S={f1,..., fu}is
weakly conformal.

The pressure function associated with a weakly conformal IFS is naturally related to the
dimension of the attractor. It is defined by the following proposition.

PROPOSITION 2.6. Let m > 2 be an integer, S = {f1, . . ., fu} be a C' weakly conformal
IFS, and let K be its attractor.

Let us fix s > 0 and z € K. The following quantity is well defined and independent of
the choice of 7 :

1
P:s) = lim - log 3 I f/ @I (11)

ieAk

Remark 2.7. Let us mention that the proof of Proposition 2.6 is very standard and does
not diverge much from the standard proofs made in [8, 34], but strictly speaking, due
to the weakly conformal settings, unfortunately, one cannot recover the result from these
references. So, for the sake of completeness, a proof is given in §4.

Since P, (s) does not depend on z, one writes

) 1
P.(s) = P(s) = kl:r-ir-loo % log (

DK |S> :
ie Ak
As said above, the pressure function is naturally connected to the dimension of the attractor

K associated with the underlying IFS. More precisely, the following quantity is a natural
candidate to be the Hausdorff dimension of K.

Definition 2.8. Letm > 2 be an integer. Let S = {f1, ..., f} be a C! weakly conformal
IFS and K its attractor.

The unique real number dim(S) satisfying P (dim(S)) = O is called the conformality
dimension of S.
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Remark 2.9. If the mappings f1, ..., fm are affine similarities, then the conformality
dimension is called the similarity dimension. It is the real number solution to

m
Y=, (12
i=1

where ¢; is the contraction ratio of f; (thatis, ¢; = || /).

3. Statement of the main results
3.1. Dimension of weakly conformal dynamical Diophantine set. Our main result is the
following.

THEOREM 3.1. Let m > 2 be an integer. Let U be an open set and let S = {f1 : U —

U,..., fu:U— U} beaC" weakly conformal IFS with attractor K. For every § > 0,
set
W (x0, 8) = lim sup B(fi(xo), | fi(K)°). (13)
ieA*

Then, we have the following.

(1) Foranyxg € U, forany$ < 1,
W(xg,8) =K.

(2) Assume in addition that dimy (K) = dim(S), then for any xo € K, for any § > 1,
dimg (K)
5 .

Remark 3.2. In[10, Theorem 2.14], the Hausdorff dimension of sets defined as in equation
(13) is estimated for a self-similar IFS satisfying the so-called dimension regularity
assumption, meaning that the dimension of every self-similar measure does not drop
by projecting it on the attractor (see Definition 4.17 below). In the self-similar case,
Theorem 3.1 extends this result to any IFS satisfying the weaker assumption that the
similarity dimension and the dimension of the attractor agree. We would like to further
mention that, even in the self-similar case, Theorem 3.1 currently applies to strictly more
cases than the result in [10, Theorem 2.14]. Let 0 < A < %, T € R,andset S = {g1, g2, &3},
where g1(x) = Ax, g2(x) = Ax + 1 and g3(x) = Ax + 7. Due to a result of Rapaport and
Varju established in [32], outside a set of parameters (A, 7) € (0, %) x R of Hausdorff
dimension 0, the IFS § satisfies that dimg K = dim(S), so Theorem 3.1 applies to S.
Note also that every IFS S = {f1, f2, f3} on R is affinely conjugated to the IFS S for
some X, T € (0, 1) x R. It is worth mentioning that for the IFS S corresponding to good
parameters, the dimensions of all self-similar measures associated with S are not known,
in general. In particular, such cases are not covered by [10].

dimy W(xo, 8) =

Let us provide concrete examples of IFSs for which Theorem 3.1 applies and examples
of IFS to which the conclusion of Theorem 3.1 does not hold.

e Theorem 3.1 applies to any self-similar IFS S on R satisfying the exponential
separation condition [24, Theorem 1.4] or having algebraic contraction ratio and no
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exact overlaps (i.e., for every k € N, every i # j € A, fi # fj) with dim(S) <1

(due to a result of Rapaport [31]). For instanc_e, define g1, g», and g3 as three

mappings R — R by setting for every x € R, g;(x) = }tx, g2(x) = ;}(x + 1), and

g3(x) = ;lt(x + 1), where t € R\ Q. Then, Theorem 3.1 applies to S = {g1, g2, g3}-
e Letm >2beanintegerand 0 < cy, ..., ¢, < 1 be m real numbers satisfying

cr+---4+com < 1.

Then (due to a result of Hochman, [24]), for Lebesgue-almost every choice of
at, . ..,apy € R, Theorem 3.1 applies to the IFS S = {fi, ..., fin} where, for every
1<i<m, fi(x) =cix +a.

e Itis relatively easy to see that Theorem 3.1 cannot hold when dim(S) > d. One could
take, for instance, so many similarities so that for every 1 <6 < 2,

dimgy (lim sup B(f; (x0). |fL(K)|‘S)> —d.

1eA*

To be more explicit, fix ¢ a badly approximable (by rationals) number and define
$1(x) =x/2, p2(x) = (x +1)/2, ¢p3(x) = (x +1)/2, ¢pa(x) = (x +1+1)/2, and
A ={1,...,4} Then, itis proved in [2, Theorem 2.10] that for every x¢ € [0, 1 + ],

1
dimy <lim sup B(q&,-(xo), —|>) =1.
éGA* - 4l,

In §3.1, we establish that the result applies to a large class of weakly conformal IFSs,
namely the weakly conformal IFS satisfying the asymptotically weak separation condition
(AWSC).

3.2. An application in the case of homogeneous self-similar IFS. In Theorem 3.1, the
choice of the radii of the balls plays an important role on the hypothesis that one needs to
assume to be able to estimate dimy W (x, §). In the case of homogeneous IFSs, we will be
able to treat the general case where the radii are simply given by a mapping ¢ : N — R,
In our settings, we will call a system of affine similarities S = { f; }1<i<m» homogeneous if
forevery 1 <i, j <m,

LA 1= 1£71.

THEOREM 3.3. Let S be an homogeneous self-similar IFS of common contraction ratio
0<c<1. Let ¢ : N — RT be such that lim,_, o ¢ (n) = 0 and set

s¢ = inf {s >0:) > gk im® < +oo}. (14)
k>0 jeAk
Assume that dimyg K = dim(S). Then,
dimp W (xo, ¢) := dimg lim sup B(f;(xo), ¢(|i])) = min{l, s¢} dim(S).
ieA*

Remark 3.4. If lim,_, ;o0 ¢(n) # 0, since K is compact, W (x¢, ¢) contains a ball, and
hence dimyg K =d.
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Let us provide a short application to Theorem 3.3. Let # € (0, 1) be a transcendental
number and A = {q; =0, ...,gn} C Q, where N > 2 satisfies log N < — log . Define
S={fix)=tx+4q1,..., fn(x) =tx + gn}. It is established in [32] that, denoting K
as the attractor of S, one has
log N
—logt

dimyg K =dim § =

In addition, one has

n

Parn = {P(I) = Zaiti 1ag,...,a, € .A} ={fi0),iefl,... ,myt.
k=0

So, given ¢ : N — R, writing
Wa (@) = {x e R : |x — P(1)| < ¢(deg P) for infinitely many P € U PA,,,,,},
n>0
a direct application of Theorem 3.3 yields that

log N
—logt’

dimpy W4,(¢) = min{l, sy}

where s4 is defined as in equation (14). Finally, we mention that, for the sake of clarity,
the present article deals with the case of IFSs without exact overlaps, but one easily
could extend the results to the case where the IFS has exact overlaps under suitable
assumption (related to the Garcia entropy of the IFS). In particular, dimy W 4,(¢) can
also be estimated for ¢ algebraic. The short note [11] has been made available to explain
how one should proceed in this case.

3.3. The classical shrinking target problem. As mentioned in §1, thanks to the
techniques developed in this article, we are able to extend the dimension results established
by Hill and Velani in [23] with a great deal of generality. Let us explain first why one needs
a different hypothesis to extend the result of [23] than in Theorem 3.1. Reading the rest
of the article, the reader will find that the proof of Theorem 3.1 is almost completely
geometrical (that is, the proof is essentially non-symbolic). The combination of this fact
and the fact that establishing dimension results in the context of self-similar IFSs is,
in general, difficult and relies on deep ideas (see [19, 24, 31, 32, 36]), which makes it
somewhat surprising that Theorem 3.1 holds under the rather weak hypothesis that the
similarity dimension and the dimension of the attractor agree. This is completely due to
the specific choice of the radii. More precisely, the choice of the necessary hypotheses in
Theorem 3.1 are made with regard to the analyzing measures one will need to consider
to solve this specific Diophantine problem. In the case of the classical shrinking target
problem, these analyzing measures will be Gibbs measures, so the hypothesis one will
require to deal with it will be made to ensure that the projections of Gibbs measure have
the expected dimension on K. For the sake of simplicity, we will place ourselves in the
case where the IFS is conformal and satisfies the so-called bounded distortion property,
which we recall.
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Definition 3.5. Let S ={f1,..., fm} be a conformal IFS. We say that S satisfies the
bounded distortion property if there exists x > O such that for every n € N, for every
ief{l,...,m}" andevery x, y € K, one has

I
< — <k. (15)
1A I

Before stating our main theorem, we recall the following result (see for instance
[1, equation (2.6), p. 7]).

THEOREM 3.6. Let s > 0 be a real number. Assume that S = {f1, . .., fm} is conformal
and satisfies the bounded distortion property, then there exists a unique ergodic measure
vy € M(AN) satisfying that for every n € N and for every i € A", one has

L v
© =R pero =C (10

where C > 1 is a constant independent of i. We will write j1; = vy o w~! as the projection
of vs on the attractor of S.
Remark 3.7. By ergodicity, one easily proves that there exists Ay > 0 such that for
vg-almost every i = (ip)neN € {1, . .. , m}N, one has
log VS([ih LR ln])
n—+oo log | fiy,...i,) (K)|

Our main result regarding the Hausdorff dimension of shrinking targets set for
overlapping conformal IFSs is the following.

= hs.

THEOREM 3.8. Let S be a conformal IFS satisfying the bounded distortion property, given
by equation (15), and let ¢ : N — R™T be a mapping satisfying ¢ (n) — 0. Set

.o —loge(n)
o = lim inf ——=
n—0 n

and denote s the solution to P(s) = sa /5. Assume that dimgyus = hy and 0 < o < 400,
then for every § > 1, one has

dimy lim sup B(f;(xo). | fi(K)I"$ (i) = 5.

1eN*

Remark 3.9.

e If o = 0, then for every ¢ > 0, there exists an increasing sequence of integers (ny)xeN
such that for every k € N, for every i € A", one has

AT < 1B PG < /K.
In that case, using the same argument as in the proof of Theorem 3.1, we conclude that
dim §

dimp 1imlfilp B(fi(xo0), | fi(K)°p (i) = 5
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e If o = 400, then for every 8’ > 0, there exists N € N such that for every n > N and
for every i € A", we have

o) < |f;(K)IY,

and hence, | f; (K)|’¢(n) < | f;(K)|**%". By Theorem 3.1, this implies that

dimy lim sup B(fj(xo0), | fi (K)|°¢(|i])) = T
ieA* +8

Letting 8’ — +o00 yields

dimy lim sup B(f;(xo), | fi (K)°$(|i])) = O.

ieA*

e In the case where S is a self-similar IFS on R satisfying the exponential separation
condition due to a result established by Jordan and Rapaport in [33], for every s > 0,
one has

dimy pus = min{l, hg}.

As a consequence, Theorem 3.8 applies to any ¢ satisfying that the root s of
P(s) — s(a/d) is such that hy < 1.

To provide a large class of IFSs to which Theorem 3.8 applies, we start by recalling the
definition of the so-called multifractal scaling function of a measure. Let p € M(R?) and
define

®,(q, r) = inf {Z 1(B(x;, 1)) }
iel
where the infimum is taken over all countable collections of balls {B(x;, r)};cs satisfying
the following two properties:
(1) x; € supp(p) foreveryi € I; and
(2) B(xi,r)NB(xj,r)=9¥fori # j.
Then, the multifractal scaling function of u is defined as

log(®u(g. 7))

a7
logr

7,(q) = lim inf
r—>0

Such mappings were first considered in the context of turbulence by Frisch and Parisi
in [21]. The mapping 7, is often connected to the so-called multifractal spectrum of .
More precisely, for 4 > 0, denote by E,, 5 the set of points of lower j-local dimension A,
that is,

Eyp = {x :dim(u, x) = h}.
Many natural measures satisfy for every 2 > 0 that

dimp Epp = T (h),
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where r;: (h) = inf ecr{gh — 7,,(q)}. We refer, for instance, to [9] for a complete math-
ematical foundation and to [18, 29, 36] for results regarding the multifractal analysis of
self-similar measures.

When S is conformal and satisfies the bounded distortion property, it is classical (see [1]
for instance) that there exists a unique ergodic measure vy on {1, ..., m}N such that for
every k € N, foreveryi € {1, . .. ,m}k, one has

(i
e ¢ (18)
| fi (K)|4im(S)
where C > 0 is independent of ;. In addition, when the IFS is self-similar, vy is simply the
self-similar measure corresponding to the similarity dimension (see Remark 2.9). We now
introduce the following condition.

Definition 3.10. Let S be a conformal IFS satisfying equation (15), let K be its attractor,
let vg be as in equation (18), and set po = vy o 7~!, where 7 is the canonical projection
from {1, ..., m}N to K. We say that S satisfies condition (A) if for every g > 1,

Tuo(q) = (g — 1) dim($).

We mention that condition (A) has been proved by Barral and Feng in [4] to be equiv-
alent to the so-called asymptotically weak separation condition without exact-overlaps
mentioned at the end of §3.1 (see Proposition 4.11 thereafter).

Thus (due to Remark 4.22 below), the following result holds true.

LEMMA 3.11. Assume that S is a conformal IFS satisfying the bounded distortion property
and condition (A). Then, for every s > 0, dimy us = hg. In particular, Theorem 3.8
applies to every ¢ : N — R,

Remark 3.12.

e As mentioned above, the advantage of the formulation of condition (A) is that the
multifractal spectrum of self-similar measures, Gibbs measures, etc. is a topic well
studied. For instance, as a consequence of the estimates regarding the L9 spectrum of
self-similar measures on R, established by Shmerkin in [36], Theorem 3.8 applies
to any self-similar IFS satisfying the exponential separation condition on R with
similarity dimension smaller than 1 (which, for instance, is ensured as soon as the
parameters defining the IFS are algebraic and the IFS has no exact-overlaps). In
addition, should these estimates have an analog in higher dimension under suitable
assumptions, then Theorem 3.8 would apply to IFSs satisfying the same conditions.

e We also emphasize that if condition (A) is satisfied, every projection of ergodic
measure has the dimension one would expect (see Remark 4.22), so, although the
class of IFSs satisfying condition (A) is large, condition (A) is somewhat an overkill
for our problem.

In §4, we recall and establish some geometric properties of a weakly conformal IFS. We
also establish Proposition 4.10, which justifies that one can apply Theorem 3.1 to weakly
conformal IFS satisfying the AWSC.
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The mass transference principle for weakly conformal measures, which is key to prove
Theorem 3.1, is established in §5.

In §6, Theorem 3.1 is established.

Section 7 is dedicated to the proof of Theorem 3.3.

4. Geometric properties of weakly conformal IFS

In this section, all the basic geometric properties of a weakly conformal IFS needed in
the rest of this article are recalled or established. More precisely, in §4.1, we recall the
key Lemma 4.1, which will be used instead of an usual bounded distortion property one
often requires when dealing with conformal IFSs. Section 4.2 is dedicated to the proof of
Proposition 2.6. In §4.3, we recall the definition of the Lyapunov exponent in the case of
a weakly conformal IFS and some basic properties of this exponent. Finally, in §4.4, we
recall some facts about the asymptotically weak separation condition.

4.1. Some general estimates. Let m > 2 be an integer. One collects some useful
geometric results on a C! weakly conformal IFS.

Consider a C! weakly conformal IFS S = {fi, ..., f,} with attractor K and for every
xeK,keNandi = (i1, ..., i;) € A¥, write

ci(x) = |Lf ).
Let us recall the following result established as [19, Lemma 5.4].

LEMMA 4.1. [19] For any ¢ > 1, there exists a constant D(c) > 0 such that, for every
k €N, foreveryi € A* and every x, y € K,

DO MA@ Ix =yl < i) — LI < DEOENF N - Ix =yl (19)
D)~ eTHIA @I < fiK)| < De)t|Lf (). (20)

Remark 4.2. Let X C U be a compact set and U as in §2.2.2 (that is, as in the definition
of a weakly conformal IFS). It is proved in [19] that equation (19) actually holds for any
(x,y) € X%

Note that for every k € N and every x € K, one has

14-(£k log ¢/1 !
AN = 1 o)) T o erioe 0D,

Moreover, since there exists two constants Cj, C2 > 0 such that for every 1 <i <m
and every x € K,

Ci = I @I = I @I = Ca,

there also exists two constants 0 < #; < f, such that

n< ————<n.
log [ f{ ()l
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Combining this fact with Lemma 4.1, for any 6 > 0, there exists 59 > 0 such that for every
k € N,everyi € A, andevery x, y € K,

Co i)' lx =yl < 1) = finl = Cocr)'~llx =yl @)
In particular, there also exists Cy such that for every i € A* and every x € K, one has
Cy e WIK| < 1 f;(K)| < Coe] P (0)IK]. (22)

Let us remark that equation (22) also implies that there exist 0 <o < 8 < 1 as well as
Cq, Cg > 0 such that, for any k € N,

Cod® < |f:(K)| < Cpp*. (23)

4.2. Proof of Proposition 2.6.  As mentioned in §2, the proof of Proposition 2.6 is very
standard and does not diverge much from the proof in the conformal case. Unfortunately,
one cannot derive directly the result from classical cases (see [8, 34], for instance) and
those computations in the weakly conformal case do not seem to be written explicitly in
the literature so for the seek of completeness, it is done below.

Proof. Assume first that the limit exists in RU {—o0}, and let us show that it is
independent of the choice of z and that the limit is > —oo. Let ¢ > 1 be a real number.
Recalling Lemma 4.1, for any k£ € N, one has

log (Z D(c)—sc—fﬂfi(K)V) < log (Z IIf,-’(z)IIS)
ek

e Ak

< log (Z D(C)SCSk|fi(K)|S)~ (24)

€Ak

Since equation (24) holds for any ¢ > 1, one gets that

) 1 ENTANE
o (5 )

which proves that this quantity does not depend on z. Moreover, there exists b > 0 so that
forany k € N, any i € A¥, and any x € K,

> |ﬁ<K>|S>) =0, (25)

ie Ak

LA oyl = b*.

This implies that if P,(s) is well defined, then P,(s) > —oo.
Let us now prove that the limit exists. For k € N, write

gk = log <Z Ifi(K)IS)- (26)

€Ak

As in the conformal case, the existence of the pressure relies on a sub-additivity argument.
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LEMMA 4.3. For any ¢ > 0, there exists a constant My > 0 such that for any n,m € N,
one has

&ntm < Mg +me + gy + gm- 27)

Furthermore, any sequence (gn)neN Vverifying equation (27) is such that (g,/n)neN
converges in R U {—o0}.

Proof. Let us start by proving the second statement. Let (g,),en be a sequence satisfying
equation (27). Fix ¢ > 0 and M, satisfying equation (27). For any g € N*, b € N*,
0 <r < g, one has

8bg+r < bgq + gr +(bg +r)e + b+ 1)M,
8bg+r < bq ) 8q b+1)M, + g,

bg+r ~“bg+r g bg+r

Fixing ¢ large enough independently of » so that ((b 4+ 1)M./bg) < e, for any large
b € N*, one has

8bg+r

8q
<1 +8)=* +2e.
bg+r ( )q

This implies that

lim sup &% < (1 + &) lim inf & + 2¢.

n—+oo N n—>+00 n
Letting ¢ — 0 proves the statement.
One now shows that g, satisfies equation (27).
Letk € Nand i € AX. Let us begin by the following lemma.
LEMMA 4.4. Let D(c) be again defined as in Lemma 4.1, then one has, for any j € A*,
1 -2 ~2k| ¢ _ | 2 2k ¢ ‘
D@ e [il(K) - 1 fj (KO = 1 fij (K| = 2D(e) ¢ | fi(K)| - 1 fi (K| (28)

Proof. Let us start by establishing the lower bound. Let x, y € K be such that

1) = 00 < LT < 21150 = £ (29)

By Lemma 4.1, one has

DO IS - 156 = [N < 1) = DI < 1f (K (30)

and

LA (f5eNl = D) e | fi(K)I. 31)
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Combining equations (29), (30), and (31), one obtains
ID@ M AHEO - 1 f (K < 1 fij (K-
Let us focus now on the upper bound. Let x, y € K be such that
1fij ) = fij DI = 31 fij (K. (32)

Using again Lemma 4.1, one has

1fij ) = fij O < D@ IF Nl - 1£500) = £
< D> fi(K)| - | fi (K. (33)

The upper bound is obtained by combining equations (32) and (33). ]

By Lemma 4.4, for any ¢ > 1 and any n, n’ € N, one has

Bntn = log< > Ifi(K)IS>=10g( > |fl-,-<1<>|5>
ieArt ieAnjeAr
< 10g< > 2SD<c)2Sc2S"|fl-(1<>|‘?|fj<1<)|“)
ieAn,jeA
= n-2s log(c) + log(2 D(c)*) + log ((Z |fi(K>|S> x (Y |f,~(1<>|5)>
e A" lEA”/
< 2snlog(c) + 10g(2° D(©)**) + gn + gu'-

Fixing ¢ = ¢°/?*, one has 2slog(c) = ¢ and setting M, = log(2°D(c)?*) shows that

(gn)nen satisfies the condition of Lemma 4.3. O]

Lemma 4.3 together with equation (25) concludes the proof of Proposition 2.6.

4.3. Lyapunov exponent and dimension of weakly conformal measures. Let m > 2 and
let us fix a C! weakly conformal IFS S = {f1, .. ., fin} with attractor K.

Given x = (x,)nen € AL, the following quantity, called Lyapunov exponent of S at x,
defines a logarithmic shrinking rate associated with S at x. See [19, Proposition 5.6].

PROPOSITION 4.5. [19] For x = (x,)nen € AV, the Lyapunov exponent of S at x is
defined, when the following limit exists, as

A(xX) = — lim loglfx1°"'°fx,,(K)|.

n——+o0o n

(34)

Moreover, for every ergodic measure v € M(AN) (with respect to the shift o ), there exists
Ay = 0 such that for v-almost any x = (Xp)neN,

Ax) = f A(y) dv(y) = Ay. (35)
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Remark 4.6.

e By equation (23), the Lyapunov exponents are uniformly bounded above and below by
some positive constant.

e When S is self-similar and 0 < ¢y, ..., ¢, < 1 are the contracting ratios associated
with the similarities fi, . .., fu, the Lyapunov exponent of v as in Proposition 4.5 is
simply

Ay = — Z pPi 10gci~

1<i<m

The following consequence of Proposition 4.5 will be useful later (see Proposition 6.7).

COROLLARY 4.7. Let ((pik), ce pf,f)))keN € ([0, 11N be a sequence of probability
vectors such that (pgk), R p,(,]f>) — (p1, - -+, Pm)- Denote fork € Nv, v, € M(AN) the

measures defined for any cylinder [(i1, . . . i,)] by

(G- i) = pi e p and v((G, L)) = piy Pi-

Then, vy — v weakly, so that
k—+o00

lim A, =A,.
k——+00
Let us also recall the following fundamental result established by Feng and Hu [19,
Theorem 2.2].

THEOREM 4.8. [19] Let (p1,..., pm) € [0, 11" be a probability vector, v € M(AN)
defined for any i € A* by v([i]) = pjandu =vo x L

There is an h > 0 such that for p-almost every x € K, there exists u”il({X}) e M(AY)

such that:
M w" D@ (1) = 1
2) for ,u”il({X})—almosty =Vlseves Ve )
.
—1 T ({xD o
og 1 ([y1 Ynl) S (36)
n

(3) forevery Borel set A C AN,
v(A) = / WD) du; (37)
K

(4) denoting ) as the Lyapunov exponent associated with v as in equation (35), |4 is
exact-dimensional (Definition 5) and

—h — leifm pi log p;

dim(p) = .

4.4. The AWSC condition.

4.4.1. Definition and known results. To provide a larger class of weakly conformal IFSs
to which Theorem 3.1 applies, we recall the definition of the AWSC [18]. First, given an
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IFS § = {fi}iea, let us define
AR =t{i=(1,. .., 0 e A 275 < fi(K)| < 27F). (38)

Definition 4.9. One says that S = {fi}ica satisfies the AWSC [18] when, writing for

k eN,
1($) = max #{f; :i € A and fy(K) N B(x.275) £ 0, (39)
one has
M — 0.
k

Let us also note here that when the IFS § has no exact overlaps (i.e., forany i # j € A*,
fi # fj), one also has

1(S) = max #{i : i € A® and £;(K) N B(x,27%) # @). (40)

xeRd

The introduction of the AWSC condition is motivated by the following result.

PROPOSITION 4.10. Let S be a weakly conformal IFS satisfying the AWSC with no exact
overlaps. Then, its attractor K satisfies

dimyg K = dim(S).

As mentioned in §3.3, the advantage of the ASWC is that it can be reformulated in
terms of a condition regarding the multifractal spectrum of some natural measures (given
by Lemma 4.21) associated with a weakly conformal IFS.

The following proposition was established by Barral and Feng in [4] in the case of
self-similar measures but readily adapts in the case of weakly conformal measures.

PROPOSITION 4.11. [4] Let S ={f1,..., fm} be a conformal IFS and let K be its
attractor. Assume that there exists a measure vy € M({1, ..., m}N) such that for every
iefl,... , m}¥, one has

o1~ volliD

where C > 0 is independent of i. Set jug = vg o w~ . If for every g > 1, one has
Tuo(q) = (g — 1) dim($),

where 1, is the scaling function defined by equation (17), then dimpyuo = dim(S), S
satisfies the AWSC, and S has no exact-overlaps.
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Proposition 4.11 combined with a well-known result established by Shmerkin in
[36] regarding the multifractal spectrum of self-similar measures on R satisfying the
exponential separation yields the following result established as [4, Theorem 1.3].

THEOREM 4.12. [4] Let S be a self-similar IFS on R satisfying the exponential separation
condition [24, Theorem 1.4]. Then, S satisfies the AWSC if and only if dim(S) < 1.

4.4.2. Some technical results regarding the AWSC. For k € N and x € RY, recall
equation (38) and define

AR ={i= (i1, ..., i) € A 1K) <278 < | fa i (KO (42)
Moreover, for x € K, we set

Ti(x) ={fi: fi(K)NBx,27%) %0, i e AP},
T{(x) ={fi: fi(K)NB(x, 27My 29, i e AP

Note that S satisfies AWSC if and only if limy_, 4 oo max, cge (log #T;(x)/k) = 0.
PROPOSITION 4.13. One has

log #T; log #T/ (x
lim maxOg—k(x):O < lim maxg—k():O
k—+400 xeRd k k—>+00 xeR? k

Proof. By equation (23), there exists 0 < o < % < B < 1 such that for every k € N,

ok < (k)| < gr.

Remark 4.14.
(1) Forevery k € Nandeveryi = (i1,...,i,) € A®, one has
—log 2 —log 2
Cla Bk k=22 41 <n < %22 < C(a, Bk,
log B log o
(2) Forevery ¢ > 1,by Lemma 4.4, forevery i = (i1, ..., i) € 7\(]‘),

D(c)™? min |f;(K)|e™2C@PRo~k < £ (k)| <27
1<j<m

In particular, for any k € N large enough, one has

c_]/zc(a,ﬂ)kz—k S |fL(K)| S 2_k~ (43)

LEMMA 4.15. For every gy > 0, there exists ke € N such that for every k > kg, for every
i=(1,...,In) € A® there exists 0 < p < gok such that (i, . . . ,i,—p) € A®,

Proof. Fix & = g9/2C(a, B) and ¢ > 1 such that ¢'~¢8¢ < 1. By Lemma 4.4, for any
(i],~”7in)€A*and0§p§n’
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In particular, for p > ne,
D(c)~2c= (=P N D(c)~2 _
| fli it iy KO 77 (c1EpE)"
This yields, for k large enough and p = |eC(w, B)k] + 1 < 2C(«, B)ek, that
| Fitroinpy (K| > 275,

As a consequence, there must exist p < 2C(a, B)&k such that (iy, . .., i,—p) € AR O

[ ftirsensin—p) (KD =

LEMMA 4.16. Forevery c > 1, for every ¢ > 0, for every k large enough (depending on c)
and every x € R4, one has

#T1.(x)

<k { (C(a, B)/2) log CJCdckd(C(a,ﬁ)/Z)
log 2

max max #7},(y)
k<k"<k(14+[((C(a,B)/2) log c)/log 2]) yeRd

(44)
and  #T}(x) < m*#Ti(x).

Proof. Remark that, for each k’ such that
c~(1/DC@Pky—k < 2K <27k,
there exists a constant C4 (which depends on d, «, and B) so that each ball B(x, 2_") can
be covered by less than
Cyckd(Cp)/2)

balls of radius 27X, This implies that

#fis i€ TN AW} < CocMCCD max 475, (3).
y

Since one has
k(1+[((C(a,B)/2) log c)/log Z])

AW ¢ U AW,
K=k
it holds that
#T1 (x)
<k (C(a, B)/2) log ¢ Cckd(Cep)/2) max max #T,(y).
log 2 k<k"<k(1+[((C(a,B)/2) log c)/log 2]) yeRd

(45)
Moreover, by Lemma 4.15, there exists ¢ : Tk’ (x) = Tx(x) defined by

Gr((it, . oo sin)) = (1, ... in—p)
with 0 < p < ke. The mapping ¢y verifies that, for every (iy, . . . i) € Tx(x),

#o (G - - in))) < mPe.
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This implies that

#T)(x) < mF¥#T(x). O

Taking the log of the estimates of Lemma 4.16 and letting k tend to infinity concludes
the proof. O

4.4.3. AWSC and dimension regularity. The following notion was introduced by Barral
and Feng in [4].

Definition 4.17. [4] Let S={f1,..., fm} be a weakly conformal IFS. For P =
(p1s - - -5 pm) €10, 1] a probability vector, denote again by vp € M(A*) the measure
satisfying for every (i1,...,i,) € A*, vp([i1,...,ix]) =pi;, X --- X p;, and up =

vp o w . The IFS S is said to be dimension regular if, for every probability vector P,

_ . 1o .
dim(ip) = min { Zlflfm Di g(pl),d}, (46)
Aup

where A, is defined by equation (35).

Remark 4.18.

e When S is self-similar, calling 0 < cy,...,c, <1 the contraction ratios of the
similarities f1, ..., fm, for any probability vector (pi,..., pm), 4, and v as in
Definition 4.17, one has

— . - lo i) ; i 1o i
dim() = min { Zlgzsm pi log(pi ,d} — min {Z]gﬂ;gm bi g(Pz)’ d}. @7
Ay > ity pilog(ci)

e As proved in [24], any self-similar IFS on R satisfying the exponential separation
condition [24, Theorem 1.4] is dimension regular.

We will prove the following result which implies Proposition 4.10.

PROPOSITION 4.19. Assume that S = {f1,..., fm} satisfies the AWSC without exact
overlaps. Then, S is dimension regular and dim(S) = dimgy (K).

Had the IFS been conformal and satisfying some bounded distortion properties, the
proof of Proposition 4.19 would follow directly from the existence of appropriated Gibbs
measures. Unfortunately, such measures do not always exist in the weakly conformal case,
but some measures that are close enough from satisfying the desired properties still exist
as established by the following lemma.

LEMMA 4.20. Lete > 0 and s > 0 be real numbers. There exists k € N and a probability
vector (pi)ienk such that the weakly conformal measure v associated with S ={fi Yieak

and (pi)jepr verifies, forany p € Nandiy, ... i, € Ak,
| fii (KIS | fii, (KDI°
—kpe 271 p - 7 e kpe “71 " "p
e opipe =V D =e SPEPE) (48)

Proof. Fix ¢ > 0 and ¢ > 1 small enough so that 8s log ¢ < .
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By Lemma 4.3, there exists k € N so large that the constant named D(c) in Lemma 4.1
verifies (log D(c)/k) < log ¢ and

1
‘z log Y Ifi(K)I — P(s)| < % (49)

ienk

Writing again g; = log Z;e Ak [fi(K)I*, let us define the probability vector (p;);eak
by setting

_ EOP

L e8k

Let v be the weakly conformal measure associated with S’ = { filiear and (pi)icpk-

Applying Lemma 4.4, forany p e N, i, .. ., i, € Ak,

fiy 00 fi (K)
1, ()

D(c) 2Pc=2kr < < D(c)*Pc*kr, (50)

Also,

D(C)ZSPCZSkp — ekaS-((log D(c)/k)+log c) < e(e/2)pk. (51)

As a consequence, forany p € Nand any i, . . . ,Lp € A, one has

o b1, )P b1 )P
v(liy - iD= piyeee pi, = = -
Lol i) i oPSk kP (g /)~ P(5)) g Pk P (s)
Using equations (49), (50), and (51) concludes the proof. O

Remark 4.21. The measure v can be extended over AN by the usual arguments. Moreover,
for any i = (i1, ...,in) € A*, write ny = k|n/k] and ny = k(|n/k] + 1). Consider
l € A" such that [i] C [l] and £ = (41, ..., €y,—n) € A", one has

[f G osin sty ) (KO T [ firoin ) (KO
—nNHE bl stns £l » n2 n . . . ne £l v"l
e o2 PG) =v(ilD) = v([iD) = v([jD =™ RO

(52)

By Lemma 4.4, there exists a constant C > 0 such that, uniformly on i, j, i£, one has

<

O . {If;(K)I |f,-(K)|} {If,;(K)I |f,-(K)|}
C™" <min R < max ,
[fi (K)| ™ | fie(K)| |fi (K)| ™ | fie(K)|

Hence, there exists a constant y; . such that for any i = (i, . . ., iy) € A*, one has

1 —ne [i(B)P . [fi(K)I®
Vse € MW <v(iD = Vs,s€n8W~ (53)

Let us now prove Proposition 4.19.
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Proof. Call K the attractor of S. Let us show first that if any system § satisfying the
AWSC also verifies that, for any weakly conformal measure u € M(R?) associated with
a probability vector (pi, ..., py) and S,

_Zlgigm pi log p;

dim(u) = 3
Y

) (54)

where v is the measure associated on AN, then dim(S) = dimg (K).

Fix ¢ > 0 and consider k € N, §’ = {fi}icak> and v as in Lemma 4.20 applied with
s = dim(S). Note that, since S satisfies the AWSC, so does S’. Then, considering the
measure ;& = v ot !, where 7 is the canonical projection, one has

—deAk pi log pi
Ay

This proves that dimy (K) > dim(S) — ¢. Since it always holds that dimgy (K) < dim(S)
(see [15]) and ¢ is arbitrary,

dim(S) — e < dim(u) = < dim(S) + €.

dimpy (K) = dim(S).

Let us show that, for any system satisfying the AWSC, equation (54) holds for every
weakly conformal measure p.

Let u € M(R?) be a weakly conformal measure associated with S and a probability
vector (p1, ..., pm)and v € M(AN) such that u = vo L.

It comes from the proof of Theorem 4.8 [19] (applied to w) that for any ¢ > 0,
for p-almost any x € K such that /ﬂfl({x” exists and satisfies the two first items of
Theorem 4.8, there exists ng large enough so that, for any n > ny, there exists i, ..., 1 N,
such that:

e foranyl < j <N,
e "0 < | fi (K)| < e, (55)
e one has
_ 1
7 ({xD) ; —;
“ ( LJuﬂ>zz, (56)
lfijn
e foranyl < j < N,,
o) < Mn_l({x})([ij]) < g nh—e) (57)

Assume that 4 > 0 and take 0 < & < min{h/2, A/2}.
Combining equations (56) and (57), one gets

Ny = Lent=) (58)

Note that #{k : e 1) < 27k < ¢=1(4=8)} < (2n¢/log 2). As a consequence, there exists
k € [n(A —¢)/log 2, n(: + €)/log 2] such that
N, (1/2)e™/?
hsjzn, = = > :
2ne/log2 — 2ne/log 2

#A0 N (i (59)
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Since for any < j < N, [Lj] N7~ ({x}) # ¥, one also has fii (K) C B(x, e "=8)) 5o
that, writing n’ = [n(A — ¢)/log 2], one has '

: , 1/2)e"/?
#ie A" f(K)NB(x,27")) > &. (60)
- 2ne/log 2
In particular, recalling equation (40) and Proposition 4.13,
1
8% o
k
and S does not satisfy the AWSC. As a consequence, S satisfies the AWSC implying & = 0,
which, recalling the last item of Theorem 4.8, concludes the proof. O

Remark 4.22. For simplicity, we established the result for weakly conformal measures,
but Theorem 4.8, that is, [19, Theorem 2.1], is actually stated for ergodic measures and a
careful reader will notice that the same proof combined with [19, Theorem 2.1] actually
shows that if the IFS S satisfies AWSC, for every ergodic measure v € M(AY) (with
respect to the shift o), one has

1 h(v)

dimgvon = s
Ay

where A, is the Lyapunov exponent associated with v and h(v) is defined as the positive
number for which, for v-almost (x;),cN, one has

hv) = lim —logv([(x1, ..., xn]).

n—+00 n

We also state the following corollary, which will be useful later in the manuscript.

COROLLARY 4.23. If S is weakly conformal, then any weakly conformal measure |
satisfies equation (54). So by Corollary 4.7, dimyg w depends continuously on the choice
of the probability vector.

5. Mass transference principle and quasi-Bernoulli measures

The classical mass transference principle of Beresnevitch and Velani [7] (and many
others [14, 22, 26]) relies on the fact that the ambient measure is Ahlfors-regular.
However, to establish Theorem 3.1, one needs a comparable theorem when the measure
is inhomogeneous (that is, not Ahlfors-regular).

Such theorems were first established by Barral and Seuret [5] and a general version
(in terms of the measure involved) was given in [10, Theorem 2.2]. The key geometric
notion developed in [10] to handle inhomogeneous mass transference principles is the
following.

Definition 5.1. Let u € M(RY) and s > 0. The s-dimensional p-essential Hausdorff
content of a set A C B(R?) is defined as

Hos' (A) = inf{H(E) : E C A, w(E) = n(A)}. (61)
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As in the self-similar case treated in [10, Theorem 2.6], precise estimates of HA:' (A)
are established when 1 is a C! weakly conformal measure in Theorem 5.5 below.

We will need the following notion of asymptotically covering sequences of balls,
developed in [13] (and also used in [10]), to establish the desired mass transference
principle.

Definition 5.2. Let u € M(RY). The sequence B = (By)nen of closed balls of R?
satisfying |B,| — 0 is said to be p-asymptotically covering (u-a.c.) when there exists a
constant C > 0 such that for every open set 2 C R? and g € N, there is an integer N € N
aswellas g <nj <--- < nyg such that:

(i) forall 1 <i < Ngq, B,, CQ;

(i) forall 1 <i # j < Ngq, By, ﬂB,,j =@,
(iii) also,

No

u( U B) = Cu(Q). (62)

i=1

The following proposition is proved in [13], the second item will be used to apply our
main theorem to self-conformal measures. For more details about this notion derived from
a covering property proved in the KGB lemma in [7], one refers to [13].

PROPOSITION 5.3. Let € M(R?) and B = (B, := B(xn, rn))nen be a sequence of

balls of RY with lim,,_, o0 7 = 0.

(1) IfBis p-a.c., then p(limsup,_, , , By) = 1.

(2) Ifthere exists v < 1 such that p(lim sup,,_, , ,(vBy)) = 1, then B is p-a.c.

(3) If n is doubling, then B is p-a.c. if and only if there exists 0 < v <1 such that
pu(im sup, ,  (vBy)) = 1.

The mass transference principle associated with these notions is the following [10,
Theorem 2.2].

THEOREM 5.4. [10] Let u € M(R?), B = (B,)nen be a p-a.c. sequence of closed balls
of R such that | B,| — 0, andU = (U,),en a sequence of open sets such that U, C B, for
alln € N. Let 0 < s < dimy (u) such that for every n large enough, HES(U,) = w(By).

Then,

dimy <lim sup Un) > 5. (63)
n—+o00

To apply Theorem 5.4, precise estimates of essential contents of open sets must
be achieved. The next subsection is dedicated to this problem when the measure is
self-conformal and in the last subsection of §5, the mass transference principle for weakly
conformal measures is established.

5.1. Essential content for weakly conformal measures. Estimates on essential contents

for weakly conformal measures are now established. These estimates are similar to that
established in [10, Theorem 2.6] for self-similar measures, but the introduction of the
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weakly conformal settings brings a number of geometrical difficulties, so for the sake of
completeness, we provide all the details regarding these estimates.

THEOREM 5.5. Let S be a C' weakly conformal IFS of R.
Let K be the attractor of S and | be a measure on K which satisfies that, for every

i€ Ukzl{l’ cooom¥ o fi_1 is absolutely continuous with respect to . Then, we have
the following.
For any 0<s <dimy(un), for any 0 <e < %, there exists a constant ¢ =

c(d, u,s, &) > 0 depending on the dimensions d, |, s, and ¢ only, such that for any
ball B = B(x, r) centered on K and r < 1, for any open set S2, one has

c(d, p, 5, 8)|BI"T < He' (B) < Hod (B) < |B’,

s+ .S K (64)
c(d, s, 8)Hog (RN K) < HoS (2) < H (2N K).

Forany s > dimy (n), HE' () = 0.

The system S is not assumed to verify any separation condition.

When the maps are similarities, one still has, for any s > dimp (1), HE () = 0, but
for s < dim(u), there exists a constant c(d, i, s) such that the following more precise
estimates hold true [10, Theorem 2.6]:

c(d, . 9)|BI* < Hod' (B) < Hed' (B) < |BI',

S (65)
c(d, u, YHL(QNK) < Hed () < HL(QNK).

e  When the measure p is weakly conformal (Definition 2.3) or the projection of a Gibbs
measure, u is exact dimensional (see [19, Theorem 2.1] for instance), which implies
that dimy,u = dimg . In this case, Theorem 5.5 provides a complete description
of the essential Hausdorff content, except at s = dimgy p (this case must depend in
general on the separation property of the IFS).

Before proving Theorem 5.5, we prove that projections of quasi-Bernoulli measures satisfy

the assumptions of Theorem 5.5.

Let v e M{1,...,m}Y) be a measure. We call v a quasi-Bernoulli measure if there
exists C > 0 such that for every i, j € | ;- {1, . .. , m}¥

v([ijD
- = < (.
v([i) x v([jD ~

PROPOSITION 5.6. Let S = {f1,. .., fm} beaweakly conformal IFS, let K be its attractor
and 1 the canonical projection from {1, . . ., m" to K. Let v be a quasi-Bernoulli measure
on{l,..., m}N such that for every 1 <i <m, v([i]) # 0 and write u = v o 7L, Then,
foreveryn € Nandeveryi € {1,...,m}", no fi_1 is absolutely continuous with respect
to [L.

, one has

c'<

Proof. Note that since for every 1 < i < m, v([i]) # 0, one has for every n € N and every
i=(1,...,0)€{l,...,m}",

n

1
v(i) = = [ vt > 0.

n
k=1
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In addition, for every Borel set E C R?, one has
v (E) N 1) = v]iCnen: i lim_ fo o0 £,,0) € Ef

= vfiunen: tim fiy oo f,,0) € 7B
= v{i(Xnen : Gndnen € 710 fTH(E)).

This implies that

C v o fTU(E) < v (E) NI < Covr ™ o £ (E)),
that is,
Cv@p(fHE) < v (E)N i) < Cv@u(f (E)).
Since, for every n € N,

wE)=v@E " (EN= )Y vE (E)NILD,

we have

ety vOn(TIE) swEYSC YT v(DrlfE).

jell,..m}n jell .. m)n
So,
w(E) =0= C"v@u(fi (E) =0 = u(f; (E)) =0,
which proves that ¢ o fi_l is absolutely continuous with respect to u. O

Let us now prove Theorem 5.5.

Proof. As mentioned above, the proof of Theorem 5.5 is similar to the proof of (65)
from [10], only it is made significantly more technical by the assumption that the IFS
is weakly conformal.

Let us recall the well-known Besicovitch covering theorem.

THEOREM 5.7. [28] There exists Q4 € N*, a constant depending only on the dimension
d, such that for every E C [0, l]d, for every set F = {B(x, 1)) : x € E, r(xy > 0}, there
exists F1, . . ., Fo, finite or countable sub-families of F such that:

o foralll <i < Qy, forallL # L € F;,onehas LNL = .

o Eis covered by the families F;, that is,

EC U UL. (66)

1<i<Q4 LeF;

The proof of Theorem 5.7 relies on the following geometric lemma, which will also be
used.
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LEMMA 5.8. [28] Let B = (By)nen be a family of balls and B a ball such that:
() forall n=1,|By| = 5|Bl;
(i1))  forall ny # ny > 1, the center of B, does not belong to B,,.

Then, B intersects less than Qg elements of B, where Qg is the same constant as in
Theorem 5.7.

Let us first prove the above estimates for balls. We fix S = {f1,..., fn} a weakly
conformal IFS and we denote by K its attractor.

PROPOSITION 5.9. Let 1 be a measure supported on K satisfying that for every
i€ Unzl{l’ s, m ,u(fl._l) is absolutely continuous with respect to . Then, for

any 0 < & <dimy(u), any 0 < ¢’ < % such that dimy () — e + &' > 0, there exists a
constant x(d, u, &, ") > 0 such that for any ball B = B(x,r) with x € K and r < 1,
one has

X(d, i, e, €| BI04 < gl SmnUDTE (g < gm0 () < | gm0,
In addition, for any s > dimy (1), H5' (B) = 0.

Proof. Note first that, by definition of 75 (Definition 5.1), for any s > dimg (1),
HES(B) = 0.

Let us consider 0 < s < dimy (u) and start by a few remarks.

Set o = dimy (u), and let e > 0 and p > 0 be two real numbers. One defines

ESP ={x eR?: forallr < p, u(B(x,r)) <r*°}.
By definition of dim g u (Definition 2.2), for every ¢ > 0,
u( U Eg’/’f) =1.
>0

Let ¢ > 0 and 0 < p. <1 be two real numbers such that ,u(EZ’p ©f) > % and write
E=E;"".

Write ¢; = | fi(K)|. Let us fix { = (i1,...,ix) € A*. For any x € K and r > 0, by
equations (21) and (22) applied with & = ¢’, one has

G2/

. . ~ . 1—¢ ) g/ (14" /(1—¢")
B, > B0, Coartr0) ™) S B 000 el )

Remember that ¢’ < % Since (1 +¢")/(1 —¢&') <1 +4¢,
fi(B(, 1) D B(fi(xg), 21700 i (1+e)/A=eh [ +aely (67)
Writing 1; = uu(f;"), equation (67) yields

E; := fi(E)
={fi(x) e K : forall r < p,, pw(B(x,r)) <r* ¢}
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C {fi(x),x € K : forall r < p,
—1 : A72/(176’) (1+5/)/(1—8/) 1+4¢’
n(f; (B(fi(xo), C, K| e )

&

~__

5—/2/(1_8’) ) |K|(1+e/)/(lfs/)cil+48’r a—s
- ( Ce/z/(l_g’) | |/ (e 14 ) }

= {y € fi(K): forall r' < 68_,2/(1_6,) . |K|(1+5/)/(1_8/)c£+48,p8,

i (B(y, 1)) < ( : ) } (68)

C A= K |60/ (1=e) [ +4e!

Notice also that
ui(Ep) = u(E) > 3.

We are now ready to estimate the p-essential content of a ball B centered in K.
Let us write

y(S,e)) = G270 (e =), (69)

Let B = B(x, r) withx € K and r < ¢ := minzex minj<;j<,, || f/ ()|l
Since x € K, there exists i = (i1, ..., ix) € A* such that:

e x € fi(K);

o 1fi(K)| < 3IB;

o | fir i) = 3B
By equation (22), for any y € K, one has

A = CHLA O (70)

and

.....

—eHA—1/(1—¢ —1/(1—¢
> | fligoin o (KO A=EOE VA0 g 71— g 1)

Combining equations (70) and (71), one obtains

A_1_1+/ 1—¢’ _ 9l o ’ / !
CL=|fL(K)|ZCg’ (I+e")/( 8)|K| 2" /(1 E)C(l)-’_alf(il """ l.nfl)(K)|(l+8)/(l g')

> 6;1—(1+6’)/(1—a’) |K|—2£’/(l—£’)c(1)+£’rl+45’. (72)

Note that E; C B.

Consider a set A C B verifying i(A) = w(B). One aims to give a lower bound for the
Hausdorff content of A which depends only on B, d, ¢, ¢/, and the measure w.

Consider a sequence of balls (L, = B(xy, £,)),>1 covering AN E; such that
Ly < y(S, e’)pscl-l+4€, andx, € ANE;.

Since ; is absolutely continuous with respect to i, it holds that mi(A) =1
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By equation (68) applied to each ball L,, n € N, one has (|L,|/y (S, 8/)ci1+4‘9/)°‘_‘8 >
wi(Ly), so that, recalling equation (72), -

D LT = Y (S €] ) T i (L) = (v (S, 8/)c,~”48/)“8ui< U Ln)
neN

neN neN

> (y(S. el N e (B = S (S, e)e] T

> k(u, &, 8)r(1+4g/)2(a—e) > (€, 8)’_(1—&-168/)(&—8), (73)
where « (i, &', &) = %V(S, g . (6‘;1*(14’5/)/(1*5/)|K|—28//(1—8/)C(1)+S,)(1+48/)(Dl—8)-
This series of inequalities holds for any sequence of balls (L,),en With radius less
than y (S, & )psci]“s/ centered in A N E;. One now proves that one can freely remove
those constraints on the center and the radius of the balls used to cover A N Ei,uptoa
multiplicative constant.

Consider balls (L,, = B(xy, £,))n>1 covering A N E; such that £,, < y (S, 8/),05Cl-1+48/
but x,, does not necessarily belongs to A N E;.

Let n € N. One constructs recursively a sequence of balls (L, ;j)1<j<y, such that the
following properties hold forany 1 < j < J,;:

e L, iscenteredon AN E; N Ly;

° AmELanculijJn Ln,j;

o foralll < j<J,, |Lyjl=I|Lyul

e the center of L, ; does not belong to any L, js for 1 < j' # j < J,.

To achieve this, simply consider yy € AN E; N L, and set Ly, = B(y1, £,). If AN
EiNLy, { Ly, consideryy € ANE; N Ly \ Ly, andset Ly, = B(y2, £,). If ANE; N
Ly Z L1, ULy, considerys € ANE; N L, \ L, ULy,andset L3, = B(y3,{,), and
SO on.

Note that for any 1 < j < J,, any ball L;, has radius ¢,, intersects L, (which also
has radius £,), and, because y; ¢ (J;<j <, Lj x> it holds that for any j # j', $Lnj N
%Ln, j» = #. A volume argument yields that J, < Qg,1/3, where Qg,1/3 is constant which
only depends on the dimeEsion d and the contraction factor %

Hence, denoting by (L,),cN the collection of the corresponding balls centered on
A N E; associated with all the balls L,, one has by equation (73) applied to (Z,,)neN,

> ILal*” =5

neN

1 ~ ge _ k(u, € e) Na—
Z |Ln|a e > r(l+4s )« 8).
a1/3 = 04,173

Remark also that any ball of radius smaller than ¢; can be covered by at most
(2cf48//y(S, &) pe)? balls of radius y (S, e’)psc}HE/. Moreover, by equation (72),
C;4€/ < (6;1—(1+8/)/(1_5/)|Klfzé‘//(l*5/)6(1)4’6/)*46/’,748/'(1+4€/)‘

Setting

2(65_/1_(1+8 )/(1—¢ )|K|28//(1€,)C(1)+8/)48,>d

K, &, ¢,d) = <
v(S, €)pe
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any ball of radius less than ¢; can be covered by less than K, e, &, d)r_4d£/'(1+48/) balls
14+4¢’

i

of radius less than y (S, ') pec

This proves that for any seqﬁence of balls L, with |fn| < ¢; covering A N E;, recalling
equation (73), it holds that

ST 2 Qg R . &, )T IR (o, g (I (g
neN
= 071 sk, 8, &', d) e, € e)rIHIODEOHUEIRD (75
Recalling that |E;| < ¢; and Definition 4, since equation (74) is valid for any covering
(Lyn)nen of AN E; with |L,| < ¢;, one has
[BI*™ > HE?(A) > He (AN Ey)
= 053k (s £, 6 d) ke, &, ey HIBD T4 (76,
Taking the inf over all the set A C B satisfying ©(A) = w(B), one obtains
IBI*™ = HES(B) = 0y} sk, &', d) e, &, )r (1100 Hden(1aeh)

The results stands for balls of diameter less than cg.
Set

gy = 168" (a0 — &) + 4de’ - (1 + 4¢")

and write

/

o—e+ey o1 o~ / -1 /
OQd,1/3K(M» &, &g, d)” Kk (U, &, €).

J/(d, I’Lv 8’ 86) = C()
For any ball of radius less than 1 centered on K, one has
|BI*™* > HE* T (B) = y(d, . &, e))r® 0. O

The estimates of Theorem 5.5 are now established in the case of general open sets.

Recall that by item (5) of Proposition 5.14, for any s > dim(x) and any set E,
HES(E) = 0.

Let us fix s < dim(w), &’ > 0 and set ¢’ = min{(dim(u) — s)/2, %} > 0.

Since K N Q2 C Q and w(K N Q) = u (), it holds that

HE () < HE(QNK).

It remains to show that there exists a constant c(d, u, s, &’) such that for any open set
2, the converse inequality

c(d, p, s, HHEE QN K) < HE ()

holds.
Let E C Q2 be a Borel set such that £ (E) = w(2) and

Heo(E) < 2HES (). (77)
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Let {L,},en be a covering of E by balls verifying

Hi (L) < Y ILyl* < 2HI(E). (78)

n>0

The covering (L,),en Will be modified into a covering (Zn)neN verifying the following
properties:

° KﬂQCUnENZn;N

b UneN L, C UneN L;

Z s+e’ <8.2S+€ Lyl
2 LAl V(du,sa’)zl .

n>0

where Qg4 and y(d, u, ¢, ¢&') are the constants arising from Theorem 5.7 and
Proposition 5.9.

The last item together with equations (77) and (78) then immediately imply that

v, 1, ¢, &’ s4¢ 4,8
—H KNQ)<HI(Q).
sargz MR (KN S HE@
Setting ¢(d, u, &, &) =y, u, &, 8/)/8.2S+€/~Q§ will then conclude the proof.
Let us start the construction of the sequence (L,,),eN.
LetA = (K \ UneN B,) N Q.Forevery x € A, fix0 < ry < I suchthat B(x, ry) C Q.
One of the following alternatives must occur:
(1) for any ball L, such that L, N B(x, ry) # @, |L,| < ry; or
(2) thereexistsny € Nsuchthat L, N B(x,ry) #@¥and |L, | > ry.
Consider the set S1 of points of X for which the first alternative holds.
By Theorem 5.7, it is possible to extract from the covering of Sy, {B(x, ry), x € S1},

Qg families of pairwise disjoint balls, F7, . . ., Fg, such that
ssc | Ut
1<i<Qu LeF;

Now, any ball L, intersecting aball L € | J, <i<g, Jimustsatisty |[L,| < L. In particular,
since for any 1 <i < Qy, the balls of F; are pairwise disjoint, applying Lemma 5.8 to
the ball of F; intersecting L, we get that the ball L, intersects at most Q4 balls of F; and
hence at most Q7 balls of [ J; ;o Fi-

Let L € |, <i<g, Fi- One aims at replacing all the balls L, intersecting L by the
ball 2L.

Forany 1 <i < Qg and any ball L € F;, denote by G the set of balls L,, intersecting L.
Since E C U, ey Ln and pn(E) = (), one has ENL C Upg, B and n(ENL) =
w(L). By Definition 5.1 and Proposition 5.9, this implies that

y(. e ) LI <M (L)< Y HEB) < Y B (79)

BeGy, BeGr
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Replace the balls of G; by the ball L=2L (recall that BeG, B C 2L). The new
sequence of balls so obtained by the previous construction applied to all the balls
Le U<1<Q1 F; is denoted by (Lk)1<k<1<, where 0 < K < +4o00.

It follows from the construction and equation (79) that §1 C ;< <x Ly and

IZil ) 0;
(%) sramss D (50
[} s Cy nZO

1<k<K

However, since for any x € S = A\ §j, there exists ny € N such that L, N
B(x,ry) #Wand ry < |Ly |, onehas S» C |J,c 2Ln, so that

<an;1J\ILn>U<KmQ\ULn>C<1§g1<2k>u<

neN

U 2L,,).

neN

Puttmg the elements of (Lk)1<k<1< and (2L,),>0 in a single sequence (Ln)n>Os writing
(L,, = 2L n)neN, by construction, K N Q2 C |J,cn L and due to equation (80),

! ~ / ’ Q2
HS"FE (K m Q) E |L |S+£ E 2S+8 ( |L |
< 2 I vameo )2
<8 2S+8’Q—3H’“(Q)
T ydopee) T

The proof is concluded now by setting

y(d, n, dim(p) — s, &) =
Q2825+ '

cd, p,s, &)=

Remark 5.10.

(1) The part of the proof of Theorem 5.5 which handles the case of open sets only relies
on the fact that there exists y (d, u, &, &’) such that for any x € K, for any p > 0,
there exists 0 < r, < p so that, writing B = B(x, ry),

y(d, e, &) BIEmu0=ete < gL Smal07E ()
< HES O E (B) < | B (0=, (81)

(2) It is easily verified that the estimates of Proposition 5.9 hold in particular if, for

s > 0, there exists a constant C > 0 such that for any x € supp(u), any 0 < r <

R, (uW(B(x,r))/u(B(x, R))) < C.(r/R)*. This condition is naturally linked to the
lower Assouad dimension dimy (u) of u defined as [20]

dimz (1) = inf {s > 0: forall x € supp(u),

B s
forallO<r<R,M§C<i> } (82)
wu(B(x, R)) R
More precisely, the estimates of Proposition 5.9 and Theorem 5.5 hold for any

s < dimpg ().
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5.2. Mass transference principle in the weakly conformal case. Combining Theorem 5.4
with Theorem 5.5 and Proposition 5.3 yields the following result.

THEOREM 5.11. Let S = {fi, ..., fn} be a C' weakly conformal IFS of a compact X with
attractor K and . be a measure on K such that for every i € Ukzl{l’ ooom¥ o fi_l
is absolutely continuous with respect to (L.

Let (By)nen be a sequence of closed balls centered on K with lim,,_, ;o |B,| = 0.

(1)  Suppose that (B,)ueN is (-a.c. Then, there exists a gauge function ¢ such that
lim,_, g+ (log(¢ (r))/log(r)) > (dimy (w)/8) and HE(lim sup,,_, o, B> 0. In
particular,

dimgy <lim sup B,‘E) > dl_msﬂ

n——+00

(83)

(2) Suppose that p(limsup, . ., By) = 1. Then, equation (83) still holds but the
existence of the gauge function is not ensured. Furthermore, if i is doubling, then
(Bu)neN is p-a.c., so that the conclusion of item (1) holds.

Remark 5.12. One emphasizes that, for the purpose of this article, the results are stated
for balls but Theorems 5.5 and 5.4 allow to deal with more general open sets. For
instance, given 1 < 11 < ... < 14, if U, is an open rectangle of sidelength ]—[;’zl | By |,
one needs to estimate the (classical) Hausdorff content of the union of the cubes C C U,
of length-side | B,|™ (the smallest side of U,,) for which C N K # . This is achievable as
soon as the rectangle has sides in ‘natural directions’ for the IFS we consider (for instance,
horizontal rectangles on a self-similar carpet).

Proof. One proves the first item of Theorem 5.11.

Fix 1 e M(R?) supported on K satisfying that for every i € U111, .. ., mik,
o flf] is absolutely continuous with respect to . Let (By),en be a p-a.c. sequence
of balls centered on K satisfying |B,| — 0. Let us fix & > 0.

Let us start with a lemma whose proof can be found in [12, Lemma 4.9].

LEMMA 5.13. Let u € M(R?). Let B = (B, := B(Xy, rn))nen be a p-a.c. sequence of
balls of R4. Then, for every & > 0, there exists a ji-a.c. sub-sequence (Bgu))nen of B
such that for everyn € N, u(Byn)) < (r¢(n))d‘—mH m—e,

By Lemma 5.13, up to an extraction, one can assume that p(B,) < | B, |4im@—¢/4,
The following proposition is proved in [10, Proposition 3.12].

PROPOSITION 5.14. Let € M(R?), s>0, and ACR? be a Borel set. The

s-dimensional H53' (-) outer measure satisfies the following properties.

(1) If |A| <1, the mapping s > 0+ HL'(A) is decreasing from ’H&O(A) =1 to
lim,— 400 HA (A) = 0.

(2) 0 <HE'(A) < min{|A]", HE,(A)}.

(3) For every subset B C A with u(A) = u(B), HES(A) = HES (B).

(4) Foreverys > 1, H'S° (A) > (H (A3,

(5) Foreverys > dimy (w), HE (4) = 0.
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Also, by Theorem 5.5 and item (5) of Proposition 5.14, there exists a constant
c(d, u, dim(u) — €/2, ¢/4) such that, for any n € N, for any § > 1,

. & .
A Un=O0 (B, 0) > c<d, w. dimy, (1) — e, §)|Bn [ ) =e/2,

Taking n large enough so that |B,|~/* > ¢c(d, 1, dimy (1)) —&/2, ¢/4), one gets
Hﬂs@H(M)*S/fS)(BnS) > |Bn|di7mmﬂ)*8/4 > w(By). (84)

Defining Us = (Bu®)nen, using equation (84) and Theorem 5.4 with s, = (dim (1) —€/6)
and letting ¢ — O finishes the proof of the first item.
Assume now that the sequence (B;),eN satisfies only w(lim sup,_, , o, By). Then, by
Proposition 5.3, (2By,),eN is n-a.c.
Since, for any ¢ > 0,
lim sup(2B,)° ¢ C lim sup BY,

n—+00 n——+00

applying the first item of Theorem 5.11 to (2B;,),<N, One gets

&
dimgy (lim sup Bfl) > &(M)
n——+00 d+¢
Since ¢ was arbitrary, the second item is proved. O

Remark 5.15. The proof of Theorem 5.11 actually shows more. With the notation of [10,
Definition 2.5], it is proved that s(u, B, Us) > (dimg (u)/8) so that [10, Theorem 2.11]
holds for self-conformal measures instead of self-similar measures.

6. Proof of Theorem 3.1

Before starting the proof of Theorem 3.1, we explain why the very natural strategy which
consists in approximating the attractor K by the sub-attractor of IFSs satisfying the strong
separation condition does not yield any interesting conclusion in most (if not every) cases.
Let S = {fi1,..., f} be a self-similar IFS and let K be its attractor. Recall that S is said
to satisfy the strong separation condition (SSC) if, for every 1 <i # j < m, we have

Ji(K) 0 fi(K) = 0.

Let us start by proving the following result.

PROPOSITION 6.1. Let S ={f1,..., fm} be a self-similar IFS satisfying the strong
separation condition and denote by K its attractor. Then, for every
x¢ | &),
ieA*

for every § > 1, one has
W (xo, 8) = 0,
where W (xq, 8) is defined as in Theorem 3.1.

Proof. Let us write ¢; as the contraction ratio of the map f;.
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Since § satisfies the strong separation condition, there exists an open set U such that
(see [3] for instance):
(a KcU;
(b) foreveryi e A*, fi(U) C U;
(c) foreveryn € N, foreveryi # j € A", fi(U)N f;(U) = 0.
Moreover, there must exist N € N so large that for every n > N, for every i € A", one has
fi(x0) € U. Now, fix r > 0 small enough so that for every i € AN, one has

B(fi(x0),r) CU\K

and set

C:nmn{iugeAN}

Ci

Fix k €N, i,i’ € AV, and j, j' € A¥. We want to show that there exists a constant
C’ > 0 such that, writing & = ji,

d(fn(x0), K) > C'cy.
Assume that i * l/ , then by items (b) and (c), one has

Ji(B(fi(x0), 1)) N f;(K) =0,

which implies that
d(fji(xo0), fyir(K)) =z rej = Cejc.

To deal with the case where i = l’, we recall first that, since xo ¢ Uie A fi_l(K ), the
following quantity is strictly positive: -

~ . {d(fi(X), fi(K))
min | ————

i il e AN Y.
ci

Hence, in this case, we get
d(fji(x0), [y (K)) = c;d(fi(x), fy(K)) = Ceje;.

In any case, we established that there exists a constant C’ such that for every n > N and
h, ' € A", we have

d(fa(x0), fw(K)) = C'ey.
This yields
d(fu(x0), K) = C'cp.
In particular, recalling that § > 1, one has
B(fu(x0). ) NK =0,
which implies that

W (xop, 8) = 0. O
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We now establish that, in most cases, one cannot handle the case of overlapping
self-similar IFSs by approximating the IFS by the sub-attractor of IFSs satisfying the strong
separation condition.

PROPOSITION 6.2. Let S ={fi1,..., fm} be a self-similar IFS and K its attractor.

Assume that S satisfies the following properties:

e dimy K = dim(S);

e S does not satisfy the open set condition;

e there exists an exact-dimensional measure . € M(R?) such that supp(n) = K and
dimHyu = dimH K.

Then, there exists a set E C K with dimy E = dimy K such that for every x € E, every

sub-IFS S = {fis -, fi,} satisfying the strong separation condition (where iy, . .., I,
are words on {1, . . ., m}), one has for every § > 1,
W(x, 8) =1,

where VT/(x, 8) denotes the set W (x, §) defined using the IFS S.

Note that the hypotheses of Proposition 6.2 are quite weak. It applies, for instance, to
every self-similar IFS on the real line satisfying the exponential separation condition with
similarity dimension smaller than 1 and not the open set condition. More generally, it also
applies to many examples of IFS which do not satisfy the open set condition to which
Theorem 3.1 is applied in the present paper.

Proof. Letus call
S = {§= {fil’ e ’ka} :él’ Ce ’ik € U{l, ce ,m}"’gsatisﬁes SSC}
n>0

Note that S is countable and denote by (K,),en the sequence of attractors associated with
the elements of S. Let us recall that, due to [35], since dimy K = dim(S) and S does not
satisfy the open set condition,

Hhimi K (g = 0.

Also, recalling that for every n € N, K, C K satisfies the strong separation condition, one
has #4m# Kn(K,) > 0. In particular, this implies that dimy K, < dimy K and also that

dimy U YKy = K, < dimp K.

Let ube adimy K-exact dimensional measure with supp(i) = K. The above argument
proves that for every n € N, u(K,) = 0, so that

u(K\U 1"<'n> =1.

n>0
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In particular, setting £ = K \ Unzo K n,one hasdimy E = dimy K. Moreover, for every
x € E and every S € S, by Proposition 6.1, for every § > 1,

W(x,8) =0,
where W(x, 8) is defined as in Theorem 3.1 but using the IFS S. O

Remark 6.3. 1t would be interesting to extend the above result to a sub-attractor satisfying
the open set condition but this question seems related to some open question related to the
size of the set of so-called forbidden points in the case of a self-similar IFS. One refers
to [3] for more details.

6.1. Proof of item (1) of Theorem 3.1. Write s = dimy (K). The notation of the proof of
Theorem 5.5 is adopted in this section.

LEMMA 6.4. For any xo € U and any § < 1,

lim sup B(f; (x0), | fi(K)|*) = K.

ieA*
Proof. Note first that, since K is the (compact) attractor of S,

lim sup B(f; (x0), | (K)I°) C K.

IEA*

We now prove the converse inclusion.
Let ¢ > 1. By Lemma 4.1 and Remark 4.2 applied with

X = U filxo) UK,
ieA*
there exists D(c) > O such that forany y € K and any i = (i1, . .., i,) € A%,
I fi(x0) — il < D" IFf I - llxo = plI. (85)

By Lemma 4.1 and equation (20), one has
I Wl = D©)e"| fi(K)I. (86)
Combining equations (85) and (86), one gets

I fixo) = fi) = max d(xo, D)’ | (K. (87)

Recall that there exist 0 < #; < f; so that, uniformly on n andi € A",

log || fi
fn <2l
n

Sete =8 — 1 > 0, taking ¢ = ¢"1¢/* and writing k (S, €, x9) = max.cg d(x, z) D(c)?, one
gets

Il fi(x0) — FrIl < (S, &, x0)| fi (K)|' ¢/, (88)
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In particular, since | f; (K)| — 0, for n large enough, for any i € A",

fi(K) C B(fi(xo), | fi(K)I'™9).
Recalling that

k= nx,
ieA"
one concludes that K' C lim sup; 5« B(fi(x0), |fL(K)|1_€). O
Remark 6.5. In the case where S ={f],..., fin} is a self-similar system, a more
precise statement can be given. Denote by 0 < ¢, ..., ¢, < 1 the contracting ratio of
respectively f1, ..., fm. In the self-similar case, for any z € K and any i € A¥,

d(fi(x0), fi(2)) =cid(x,2) < ¢ I}{rlea[z( d(y, xo0)-

Writing C(x¢, S) = maxyek d(y, x), this implies that f; (K) C B(f;(x0), C(xo, S)¢;) and
K = lim sup B(f;(xo), C(x0, S)c;).

ieA*
6.2. Proof of item (2) of Theorem 3.1.

6.2.1. Variational principle and C' weakly conformal IFS. A modified version of
a proposition of Feng and Hu used in the proof of their variational principle [19,
Theorem 2.13] is needed to prove item (3) of Theorem 3.1. The following subsection is
dedicated to this modification.

The result from Feng and Hu we wish to modify as follows.

PROPOSITION 6.6. (Feng and Hu [19]) Let m > 2 be an integer and S = {f1, ..., fm}
a weakly conformal IFS. For any & > 0, there exists n, € N as well as words
Iy ,Lne € A* such that:

forany 1 < j < j' < ng, fi,-(K) ﬂfij,(l() =0
o writing Se ={fi,,. .., fi,,g }, there exists a probability vector P, = (p1, ..., pn,)

such that the weakly conformal measure |, associated with P, and S. satisfies
dimg (us) > dimpg (K) — &.

Let us remark that, due to the the firstitem, the IFS S, = {71, . . ., T}, } satisfies the SSC
and might not have K as attractor. We wish to modify this proposition so that the attractor
of the IFS S, can be taken equal to K.

Note also that in Proposition 6.6, because S, satisfies the SSC, by Corollary 4.23, the
dimension of a weakly conformal measure associated with S, depends continuously on the
choice of the probability vector. Moreover, writing v, the canonical measure on the coding
associated with u,, then the Lyapunov exponent A,, > 0 (see Definition 4.5) satisfies for
vg-almost every (x,),en that

. log [Ty, 0 -0 Ty, (K)|
lim =

n——+00 n

—, -

As announced above, one proves the following modified version of Proposition 6.6.
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PROPOSITION 6.7. Let g9 > 0. There exists an IFS Sg, and a weakly conformal measure
ey (associated with Sg) such that supp(iie,) = K and dimy (ue,) > dimyg K — &.

Remark 6.8. Similar to the proof of [19, Theorem 2.13], Proposition 6.7 yields a measure
on AN and taking weak limits of ergodic averages of this measure gives an ergodic measure
fully supported on K with dimension larger s — &g.

Proof. Fix e = (e0/2) > 0. Consider S¢ = {f;, ..., f%}, P., e as in Theorem 6.6 and
0<é < (1/5nem)-minj<j<p pi.
Set
=f forl <j <m,
f,/ ., form+1<j<n.+m.
Also set §s =1{g1,...,8n+n.} and note that §g has attractor K. Denote by
Pege = (D1, . .., Dmtn,) the probability vector defined as
5,’28/ forl <j <m,
) m

Let p. . be the weakly conformal measure associated with S. and 55,81. Applying
Theorem 4.8 to u.,, let us prove that the corresponding /1 (see second item of
Theorem 4.8) tends to 0 as &’ tends to 0.

Set ® ={1,...,n, +m} and O* =[J;_, ©®k. Let us denote by mg the canonical
projection of ®Y on K. One endows Lo = ON with the metric dg defined for any
x = (xn), y = (yn) € o by

do(x, y) = ¢~ MnlieNxi#yi}  and  de(x, x) =0. (89)

Let us remark that the metric d allows one to define on ®Y the Hausdorff dimension and
the Packing dimension in a similar way than on R?.

Letv, o € M (©ON) be the Bernoulli product verifying v, . o nol = [eg’

By the strong law of large numbers, for every x = (x;,),eN in a set Zo of V& -full
measure, there exists N, € N such that foranyn > Ny, any 1 <i <n, + m,

— Pi

<é. (90)

‘#{lfjfn 1xj =i}
n

For n € N, write
An:{xeig:Nxfn}.

By Theorem 4.8, there exists N such that, using the notation involved,

| =

1
Hew (By = {y dimpr (170, ) = i and 170,V (ay) > 5}) >

We fix such an N.
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The following lemma is useful to estimate the number of cylinders of generation n which
intersects Ay.

LEMMA 6.9. Consider N €N, yec K, and x = (xy)nen, X = (Xn)neN € nél({y}).
Assume that for every 1 <k < N,

(xporxp €{l,...,m}) = (xx = Xp).
Then, for every 0 < j < N such that x; > m + 1, one also has
Xj =)7J'.

Proof. We proceed by contradiction. Suppose that the claim is not true and let
xj, = m+ 1besuchforany 1 <i < jo,X; = x; and X, # xj,. Write

<= klir-il}oo ngO_H o gx.f0+2 ©---0 ng0+k (O)
and
°= kEToo 8Fjp+1 © 8Xjg+2 O " " EXjgrk ).

Then, recalling that x, X € 7161 ),
8x; O 0 8x; 1 08x;, (1) =8gxg 008 08%, @D =),
which implies that
8x;, (@) = gx;, @)
Recalling that the system {g,+1, - . . , gm+n, } satisfies the SSC, one also has
gv, (K) N gz, (K) =0,
which yields a contradiction. O

Continuing the proof of the proposition, we note that, by equation (90), for every
y € By, x = (aaen € 75 ({y)) N Ay, and N' = N,

#l<k <N :xpell,...,m}} <2meN. o1

Lemma 6.9 together with equation (91) yields for N large enough,

) [2me'N'|+1 N/
#ie®V llnAy N (WVh #0 < D (k)mk
k=0

Since ¢’ < (1/5m) so that 2me’ N’ < (N'/2),

/

. N -1 N
#{L ) : [l_] NAy ﬂﬂ(_) ({y}) # B} < (|2me'N'] +2)(|_2m8/N/J +1

)mLst/N’J+1'
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Using the Stierling formula, provided that ¢ was chosen small enough at the start and N
(so N’ too) large enough, there exists a constant C > 0 such that

#ie OV [N Ay Nrg (1y) #0)

(N') [2me'N'|+1 m|_2m£’N/j+l
(([2me'N'| 4+ 1) /e)2me'N'I+1 /27 ((Zme’N'| + 1)
mN' [2me' N’ |+1 1

) V2 (2me’N'] + 1)

< C(12me'N'| +2)

e 3mN'e’
< C(|2me'N'| +2)| —
2¢e’
= C(12me'N'] + 2)¥ N loge/26) < VN (92)
Since equation (92) holds for any N’ > N, one obtains that
dimp(Ay N7g' (yh) < Ve'.

Recalling that, by definition of By, the measure u™ D) s h-exact dimensional, that
s OV ({yh) = 1, and that ™ ©V(Ay) > 1, one has

h = inf(dimy (A), A Borel set satisfying u™ (D (4) > 0}
<dimp(Ay N5 (Y)) < Ve

By Remark 4.6 and the fourth item of Theorem 4.8, there exists a constant c depending
on the system § such that

di ’ ~
dimp (pee) > % N~ 93)

Y

e,e!

where 2,_, is given by Definition 4.5. Also, by Corollary 4.7, for any Bernoulli product
v € M(®) associated with a probability vector P e (0, )=t the Lyapunov exponent
depends continuously on the vector P. Recalling that ® is endowed with the metric given
by equation (89), it is also classical that dimg (v) depends continuously on the choice of P.
Since lim,r_,g P = {0} X P,

dimp (ve,e)  dimy (v;)

lim (94)
& —0 )‘vg o Ay,
Equation (94) combined with equation (93) proves that for ¢’ small enough, one has
dim
dimpg (e e) > dimp 0e) _ 2e > 5 — 2¢,
Av,
which concludes the proof of Proposition 6.7. O

We can now finish the proof of item (3) of Theorem 3.1.
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6.2.2. Proof of item (2) of Theorem 3.1. Let us recall that, by Proposition 2.6 and
Definition 2.8, dim(S) verifies, for any z € K,

. . 1 .
P(dim(S)) = k_liToo T log Z |f£(K)|d1m(S) —0.
ieAk

Fix xg € K, § > 1 and write

£(8) = lim sup B(f; (x0). |/ (KO,

Let us first show that dimg (£(8)) < (dim(S)/8).
Let o and B be as in equation (23). If one must change the constants o and 8, one can
assume that there exists ko € N such that for every k > ko and every i € A¥,

ok < 1fiK)| < gr.

For every k € N, recalling equation (38), for every i = (i, ..., i) € A® one has

n —k n—1 - 10g(2) - 10g(2)
w=2rsbE sk T e

In particular, every integer p € N and every (inii,...,Intp) € AP such that
(1, - sintp) € A% must satisfy

1 1
,3"“’]2a"=>p§nx<%—1)+152n<£§2—1>§ka(a,/3).

This implies that, for any v € M(AN),
Z v([i]) = kC(a, ). 95
ieA®
Consider ¢ > 0. Let us recall that Lemma 4.20 applied with
g (e/2lg2
2(— log(2))/log(B)

and s = dim(S) combined with Remark 4.21 yields a constant y,» > 0 and a measure
ver € M(AN) such that for any k € Nandevery i = (if,...,i,) € A®),

vt KED IR £ ()| <y ([i]) < et EP 122 £ (K1 EME - (96)

Forany 6 > 1,
T (AEHEMOS Z Y e
ie€Urg, Ak i=(i1,enin)€Ugsgg A

3 D S A R R (13

k=ko i=(i,....in)eA®

< yeCla. B) Yy k27HE/D < foo, (97)
k>kq
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As a consequence,
. . dim(S) + ¢
dimy (lim sup B(f; (xo), | f; (K)I*) < ————,
1eA* 1)
and letting ¢ tend to O establishes the upper bound.

Now we prove that

dimp (£(5)) = di“;(S ).

Let ¢ > 0 and p, be a weakly conformal measure as in Proposition 6.7. For any k € N,
the balls { B(f; (x0), | fi (K)|)};ca« are centered on K = supp(i) and their limsup covers K.
This implies that p, (lim supiéA* B(fi(x0), | fi(K)])) = 1.

Applying Theorem 5.11, one gets

§—¢&

< dimp (1im sup B(/;(x0), | i(K)[")).

=%

Letting ¢ — O finishes the proof.

7. Application to homogeneous self-similar IFS
7.1. Proof of Theorem 3.3. A self-similar IFS S ={f1,..., fiu} is said to be
c-homogeneous, for 0 < ¢ < 1, if forevery i € A*,

| fi(K)] = c"|K].

Such overlapping IFSs have been studied recently by various authors. Among the recent
results on the topic, a Khintchine-type result is established in [2]. Although it is very
tempting to try to combine such a result with Theorem 5.11, it turns out that the study
on the Hausdorff dimension of limsup sets obtained via a more general approximation
function in the case of homogeneous self-similar IFSs does not require this result and can
be achieved only using Theorem 5.11.

Let us fix m > 2 an integer, 0 < ¢ < 1, and a c-homogeneous IFS S = {f1, ..., fu}.

LEMMA 7.1. Let ¥ : N — R be a mapping such that

DO v @™ = 4o,

n>1ieA"

then, for every & > 0, there exists an infinity of integers (ny)ren such that yr(ng) >
(14-¢e)ng
c .

Proof. Assume that it is not the case: there exists ¢ > 0 and N € N such that for every
n>N,¥hn) < ¢+ et us denote v € M1, ... ,m}N), the measure defined for
everyi = (1,...,iy) € A*by

v(li]) = " M),
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In this case, one has

Z Z () dme) < Z Z (1+8) dim($)

n>N ieA" n>N ieA"
— Z Z C"Sdim(s)v([i])
n>N ieA"
— Z Cnedim(S)v< U [L]) — Z e dim(S) < +o0.
n>N ieA” n>N
This is a contradiction. O]

This lemma implies in particular that for every ¢ > 0, there exists an infinity of integers
(ng)ken for every i € A", writing 1 —e = 1/(1 +¢),

Y )' > 1 fi(K)).

Since for every k € N and every xp € K,

kK c |J B(fito) /(KD

ieA™

one obtains the following corollary.

COROLLARY 7.2. Let  : N — R* be a mapping such that

YT v ™S = 4o,

n>1ieAn

then, for every xo € K and every ¢ > 0,

K = lim sup B(f;(x0), ¥(m)' ).
ieA*

We now prove Theorem 3.3.
Recall equation (14) and assume first that s, > 1. Then by Lemma 7.1, for every € > 0,

K = lim sup B(f; (x0), ¢ ()" 7).

1eA*

Let 1 € M(R?) be given by Proposition 6.7, one has

,u(lim sup B(f; (xo), ¢(n)1_8)> =1,

ieA*
which, by Theorem 5.11, implies that, writing §, = 1/(1 — ¢),

dimH K—¢

dimy W0, 9) = =

Since this holds for every ¢ > 0, one has
dimpyg W(xp, ¢) > dimpy K,

and hence dimy W(xg, ¢) = dimpy K = min{l, 54} dim(S).
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We now assume that s4 < 1. We first prove that
dimpyg W(xg, ¢) < 54 dim(S).

Let ¢ > 0. By definition of s, (see equation (14)),
Z Z ¢(n)(s¢+8) dlm(S) < +OO,

n>1ieA"
which yields 718 dim(S) (W (x4, ¢)) = 0, since this holds for every ¢ > 0,
dimy W (xo, ¢) < sy dim(S).
Let us show that
dimy W (xo, ¢) > s4 dim(S).

Fix again ¢ > 0. Since

Z Z ¢(n)(s¢78) dim(S) _ +00,

n>1ieA"
by Lemma 7.1, one has

K = lim sup B(f;(xo), W (n)Be=)(1=6)y

1eA*
Let u € M(R?) be given by Proposition 6.7. One has
W (x0, 60~ = 1.
Writing 6, = 1/(sy — ¢)(1 — ¢) and applying Theorem 5.11, one gets

dim(S)

dimy W(xo, ¢) =
8¢

= (s¢ — &)(1 — &) dim(S).
Letting ¢ — 0 yields
dimpyg W(xg, ¢) > s4 dim(S),

which concludes the proof.

8. The classical shrinking target problem: proof of Theorem 3.8

Let S={f1,..., fm} be a conformal IFS satisfying the bounded distortion property
(Definition 15) and s > 0, v, g, and ¢ as in Theorem 3.8. Write again A = {1, ..., m}.
First, let us recall that uy = vg o 7~ ! is exact dimensional with
h(v
dimg puy = hy = ( S)’
A,

where X, is the Lyapunov exponent associated with v, (defined in equation (35)) and
h(vs) > 0 is such that for vg-almost every (x,)neN € AN,
—logv e,
lim g vs([x1 Xnl) _ hvy).

n——+00 n

Let us collect some remarks.
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Remark 8.1. By equations (35) and (16), we have

h(v,) — P
hy = PO Z PO By = sk + Ps).
S
In particular, we have
di sh(vyg)
1m = -
M = o) = P(s)

and s < dimpy .

In the rest of the section, given § > 1, we write

Wiy g6 = lim sup B(f;(x0), | f; (K)I°#(Ii])).

ieA*
8.1. Lower bound for dimpg Wy, ¢ 5.
PROPOSITION 8.2. Let s be the root of P(s) = sa /8. Then, for every ¢ > 0,

ps (1im sup BUf o), ()14 gy (iy* =0ty ) = 1.
iEA*

Proof. Fix gy > 0. By definition of the Lyapunov exponent A, , there exists N € N and
aset E C AN such that vg(E) > 1 — &9 and for every (x,)neN € E, forevery n > N, we
have

.....

By definition of «, there exists an infinite set of integers N' C N such that for every
n € N, we have that

$(n) = e IHe/2e,

Thus, for every (x,)nen € E, writing i = (x1, ..., Xn),
|f‘l(K)|S/dlmH MA-¢(|Z-|)S(1—£)/5 dimH Ms

> e—n(l+£0)(sku/dimy Mj-)e—n(l—s)(1+a/2)x(sa/5 dimpg py)

and recalling that P(s) = sa/3, one has
|f‘l(K)|S/dlmH M‘Y¢(|l‘|)s(176)/5 dimH Ms

> o n(He0—(1=)(1+e/2)(shuy /dimp ) 0 o=n(1=e)(1e/2)x (P () dimpy i)

l4e0—(l—ef1+2 —e+5+82
0 2)) =TTy

e SAy.
I+e— (1= 1+ =) | = Cehy
2 ) ) dimg uy

Note also that

so that
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for some C > 0 independent of ¢ provided that &y was chosen small enough to begin with.

In addition, using Remark 8.1,

P(s) + Shy, P(s) + shy,
— = Ay X = )‘vs-
dimy h(vs)

This implies that, for some C’ > 0 independent of &, provided that &g was chosen small
enough,

|fL(K)|5/dimH us¢(|£|)s(lf€)/5 dimp ps  p—n(l+eo—(1=e)(I+e/2))(shys /dimp pus)
@M 1=e)(1+e/2) X (P(s)+shvs /dimpy pu)
> ¢ n(1=C'ehy 5 p=n(—c0)hy > |f (K.
The last inequality implies that
fi(K) C B(fi(xo), | fi (K)[P/4m 1 g ([iy*1=o)/0 dim sis)

and hence 7 ((x)nen) € B(fi(x0), | fi(K)|¥/4mi s gp(|i]ys1=&)/8 dimu is) — Since  this
happens for every n € N, we conclude that

7 ((Xn)nen) € lim sup B(fi(xo), | f; (K)[*/4mt Hs g (|j]ys1=8)/0 dimar iy

ieA*

This yields
E < x~(tim sup BOfyxo), | fLGKOI/ 5 1y (i) 170/ dim s )
ieA*

so that

1= e0 < vy(E) < ug (lim sup Bfi(o), | fi(K)[/4m 1y |1 =2)/8 diminyies )
=%

Letting &9 — O proves the claim. O

Applying Proposition 5.11 to lim sup; s« B(fi (xo). | fi (K)|¥/4imi s gy (|i])s 1=/ dimp s
and pg yields the following corollary.

COROLLARY 8.3. Write §' = 1/(s(1 — &)/ dimy ), we have

) . dimy s . s(1 —8).

dimyy (lim sup B(f; (o). |fi(KOP/ 1 =09(1i1) = = = =

ieA*
Since this holds for every § > 1 and ¢ > 0, we conclude that

dimyy (1im sup B o). (KO (D)) =
IeA*

SN =]

8.2. Upper bound for dimy Wy, 4s. Fix ¢ > 0. By definition of o, there exists N € N
so large that for every n > N, one has

d(n) < e (@/(+¢/2))
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Hence, writing 0 < &’ = min{e, (1 +¢)/(1 +&/2)} and recalling that P(s) = sa/$,
we get

2 D UAUEOPGm) <y T S IS e
n>N ieA" SN ichn
< )Y i) e P
n=N ieA"
<30 Y (fiE) POy
n>N ieA"
=3 > @
n>N ieA"

Using a similar argument as in equation (97), we have

YoY T m®' < 400,

n>N ieAn
and hence
DD UAE)P ) TP < oo,
n>N ieA"
SO

dimy Tim sup BUf, o), i (KOP (D) = (1)
1EA*

Letting ¢ — 0 yields the desired result.
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