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Abstract. In this article, we extend, with a great deal of generality, many results regarding
the Hausdorff dimension of certain dynamical Diophantine coverings and shrinking target
sets associated with a conformal iterated function system (IFS) previously established
under the so-called open set condition. The novelty of the result we present is that it
holds regardless of any separation assumption on the underlying IFS and thus extends
to a large class of IFSs the previous results obtained by Beresnevitch and Velani [A
mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures.
Ann. of Math. (2) 164(3) (2006), 971–992] and by Barral and Seuret [The multifractal
nature of heterogeneous sums of Dirac masses. Math. Proc. Cambridge Philos. Soc. 144(3)
(2008), 707–727]. Moreover, it will be established that if S is conformal and satisfies mild
separation assumptions (which are, for instance, satisfied for any self-similar IFS on R with
algebraic parameters, no exact overlaps and similarity dimension smaller than 1), then the
classical result of Hill–Velani regarding the shrinking target problem associated with a
conformal IFS satisfying the open set condition (and for which the Hausdorff measure was
later computed by Allen and Barany [On the Hausdorff measure of shrinking target sets
on self-conformal sets. Mathematika 67 (2021), 807–839]) can be extended.

Key words: Diophantine approximation approximations, fractal geometry, dynamical
coverings
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1. Introduction
Estimating the Hausdorff dimension of points falling infinitely often in sets Un having
some algebraic or dynamical meaning is a question which arises naturally in Diophantine
approximation as well as in dynamical systems. Given a metric space (X, d), a measurable
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2 E. Daviaud

mapping T : X → X, and an ergodic probability measure μ, a classical question consists
in estimating, for μ-typical points x, the Hausdorff dimension of points falling infinitely
often in balls B(T n(x), φ(n)), centered in T n(x) and with radius φ(n). Such problems
have been studied for instance in [1, 2, 10, 17, 23, 27, 30] and are called ‘dynamical
Diophantine approximation problems’.

Estimating these dimensions often relies on establishing mass transference principles
for the ergodic probability measure μ. Given a sequence of balls (Bn := B(xn, rn))n∈N,
these theorems usually aim at giving lower bounds for the dimension of sets of points of
the form lim supn→+∞ Un, where Un ⊂ Bn (typically, Un = Bδ

n = B(xn, rδ
n)), provided

that the sequence of balls (Bn)n∈N satisfies μ(lim supn→+∞ Bn) = 1.
Let m ≥ 2 be an integer and S = {f1, . . . , fm} be a weakly conformal family of mC1

contracting maps from Rd → Rd (see Definition 2.4). Denote by K the attractor of S,
that is, the unique non-empty compact set satisfying K = ⋃m

i=1 fi(K), � = {1, . . . , m},
�∗ = ⋃

k≥0 �k , and, for k ∈ N, i = (i1, . . . , ik) ∈ �k , write fi = fi1 ◦ · · · ◦ fik .
In this article, we prove that if dimH (K) = dim(S), where dim(S) is the conformality

dimension, defined by Definition 2.8, then for any x0 ∈ K , for any δ ≥ 1,

dimH

(
lim sup

i∈�∗
B(fi(x0), |fi(K)|δ)

)
= dimH (K)

δ
. (1)

In other words, the set of points x for which the orbit of x0, (fi(x0))i∈�∗ , satis-
fies infinitely many often that d(x, fi(x0)) ≤ |fi(K)|δ , has dimension dimH (K)/δ. We
mention that this dimension result regarding this dynamical Diophantine approximation
problem can be deduced from the mass transference principle [7] in the case where the
iterated function system (IFS) is conformal and satisfies the open set condition. One
emphasizes that the condition dimH (K) = dim(S) is much weaker than the open set
condition. For instance, this condition is satisfied for self-similar systems in R, as soon
as Hochman’s exponential separation condition (given by [24, Theorem 1.4]) is verified,
which provides a large number of examples.

An other classical problem in Diophantine approximation on fractals is the so-called
shrinking target problem, which was originally introduced by Hill and Velani in [23].
Consider S = {f1, . . . , fm} as a self-similar IFS satisfying the strong separation condition
and let K be its attractor. It is classical that K can be viewed as the attractor of an expending
map. This is done by defining F : K → K by setting

F(x) = f −1
i (x) if x ∈ fi(K).

Let φ : N → R+ be a mapping such that φ(n) → 0, then the shrinking target set
associated with x0 ∈ K , F , and φ is defined as

W(x0, φ) = {z ∈ K : Fn(z) ∈ B(x0, φ(n)) for infinitely many n ∈ N}.
Writing 0 < ci < 1 as the contraction ratio of fi , one can write

W(x0, φ) = lim sup
i∈�∗

B(fi(x0), ciφ(|i|)).
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Dynamical Diophantine approximation 3

This naturally leads to further investigate the dimension of limsup sets generated by balls
of the form B(fi(x0), |fi(K)|φ(|i|)). In the case where the IFS satisfies the open set
condition, the dimension of such sets was computed by Hill and Velani in [23], and the
Hausdorff measure by Allen and Barany [1]. In this article, we extend the dimension result
established in [23] to a large class of overlapping conformal IFSs.

As an application of our approach, a complement of some results established in [2] are
also given (see Theorem 3.3).

An important tool to establish equation (1) is Theorem 5.11, which is a mass transference
principle for projection of quasi-Bernoulli measures (without assuming any separation
condition on the underlying IFS) and strongly relies on the techniques developed in [10].

Before stating our main results, we make some general recalls about contracting iterated
function systems. We also recall some known results in the case were the IFS is weakly
conformal.

2. Recalls on geometric measure theory and definition of weakly conformal IFSs
Let us start with some notation.

Let d ∈ N. For x ∈ Rd , r > 0, B(x, r) stands for the closed ball of (Rd , ‖ ‖∞) of
center x and radius r. Given a ball B, |B| stands for the diameter of B. For t ≥ 0, δ ∈ R,
and B = B(x, r), tB stands for B(x, tr), that is, the ball with same center as B and radius
multiplied by t, and the δ-contracted ball Bδ is defined by Bδ = B(x, rδ).

Given a set E ⊂ Rd , E stands for the interior of the E, E its closure, and ∂E = E \ E

its boundary. If E is a Borel subset of Rd , its Borel σ -algebra is denoted by B(E).
Given a topological space X, the Borel σ -algebra of X is denoted B(X) and the space of

probability measure on B(X) is denoted M(X).
The d-dimensional Lebesgue measure on (Rd , B(Rd)) is denoted by Ld .
For μ ∈ M(Rd), supp(μ) = {x ∈ [0, 1] : for all r > 0, μ(B(x, r)) > 0} is the topo-

logical support of μ.
Given E ⊂ Rd , dimH (E) and dimP (E) denote respectively the Hausdorff and the

packing dimension of E.

2.1. Dimension of measures and Hausdorff content.
Definition 2.1. Let ζ : R+ �→ R+. Suppose that ζ is increasing in a neighborhood of 0 and
ζ(0) = 0. The Hausdorff outer measure at scale t ∈ (0, +∞] associated with the gauge ζ

of a set E is defined by

Hζ
t (E) = inf

{∑
n∈N

ζ(|Bn|) : |Bn| ≤ t , Bn closed ball and E ⊂
⋃
n∈N

Bn

}
. (2)

The Hausdorff measure associated with ζ of a set E is defined by

Hζ (E) = lim
t→0+ Hζ

t (E). (3)

For t ∈ (0, +∞], s ≥ 0, and ζ : x �→ xs , one simply uses the usual notation
Hζ

t (E) = Hs
t (E) and Hζ (E) = Hs(E), and these measures are called s-dimensional

Hausdorff outer measure at scale t ∈ (0, +∞] and s-dimensional Hausdorff measure,
respectively. Thus,
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4 E. Daviaud

Hs
t (E) = inf

{∑
n∈N

|Bn|s : |Bn| ≤ t , Bn closed ball and E ⊂
⋃
n∈N

Bn

}
. (4)

The quantity Hs∞(E) (obtained for t = +∞) is called the s-dimensional Hausdorff content
of the set E.

Definition 2.2. Let μ ∈ M(Rd). For x ∈ supp(μ), the lower and upper local dimensions
of μ at x are defined as

dimloc(μ, x) = lim inf
r→0+

log(μ(B(x, r)))

log(r)
and dimloc(μ, x) = lim sup

r→0+

log(μ(B(x, r)))

log(r)
.

Then, the lower and upper Hausdorff dimensions of μ are defined by

dimH (μ) = ess infμ(dimloc(μ, x)) and dimP (μ) = ess supμ(dimloc(μ, x)), (5)

respectively.

It is known (for more details, see [16]) that

dimH (μ) = inf{dimH (E) : E ∈ B(Rd), μ(E) > 0},
dimP (μ) = inf{dimP (E) : E ∈ B(Rd), μ(E) = 1}.

When dimH (μ) = dimP (μ), this common value is simply denoted by dim(μ) and μ is
said to be exact dimensional.

2.2. Weakly conformal IFS.

2.2.1. Generalities about contracting IFS. Let m ≥ 2 be an integer. An IFS is a set
S = {f1, . . . , fm} of mappings fi : X → X, where X ⊂ Rd is a closed set. Moreover,
one says that f is differentiable on X if there exists an open set U ⊃ X on which f is
differentiable.

Given an open set U ⊂ Rd and f : U → Rd a differentiable map, for any x ∈ U :
• f ′(x) is the differential of f at x;
• let k ∈ N be an integer, we write L(Rk , Rd) the set of linear maps from Rk to Rd . For

� ∈ L(Rk , Rd), one denotes

‖�‖ = max
x∈Rk �=0

‖�(x)‖∞
‖x‖∞

and ‖�‖ = min
x∈Rk �=0

‖�(x)‖∞
‖x‖∞

. (6)

Let us recall the following result.

PROPOSITION 2.3. (Hutchinson [25]) Let m ≥ 2 be an integer, X ⊂ Rd a closed set,
and S = {f1, . . . , fm} a system of C1 maps from X to X. Assume that S is uniformly
contracting, i.e.,

max
1≤i≤m

sup
x∈X

‖f ′
i (x)‖ < 1.
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Then, there exists a unique non-empty compact set K satisfying

K =
⋃

1≤i≤m

fi(K).

Moreover, for any (p1, . . . , pm) ∈ (0, 1)m, there exists a unique measure μ ∈ M(Rd)

supported on K satisfying

μ =
∑

1≤i≤m

piμ(f −1
i (·)). (7)

From now on, an IFS designates a uniformly contracting system of C1 maps.
The following notation is used throughout the manuscript.

• �(S) = {1, . . . , m} and �(S)∗ = ⋃
k≥0 �(S)k . When there is no ambiguity on the

system S involved, one simply writes �(S) = �.
• KS denotes the attractor of S (or simply K when the context is clear).
• For i = (i1, . . . , ik) ∈ �k , the cylinder [i] is defined by

[i] = {(i1, . . . , ik , x1, x2, . . .) : (x1, x2, . . .) ∈ �N}.
Moreover, if (αn)n∈N is a sequence of real numbers, one sets

αi = αi1 × · · · × αik

and

fi = fi1 ◦ · · · ◦ fik .

For example, given the probability vector (p1, . . . , pm), pi = pi1 × · · · × pik .
• The set �N is endowed with the topology generated by the cylinders. The set of

probability measures on the Borel sets with respect to this topology is denoted
M(�N).

• The shift operator σ : �N → �N is defined for any (i1, i2, . . .) ∈ �N by

σ((i1, i2, . . .)) = (i2, i3, . . .). (8)

• The canonical projection of �N on K will be denoted π� (or simply π when there is
no ambiguity) and, fixing any x ∈ K , is defined, for any (i1, i2, . . . .) ∈ �N, by

K � π((i1, . . .)) = lim
k→+∞ fi1 ◦ · · · ◦ fik (x). (9)

It is easily verified that π is independent of the choice of x.

2.2.2. Weakly conformal IFS and pressure function associated with weakly conformal
IFSs. Let us recall the definition of a weakly conformal map.

Definition 2.4. [19] Let m ≥ 2 be an integer, U ⊂ Rd an open set, S = {fi}mi=1, where
fi : U → U is a C1 contraction and K the attractor of S.
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6 E. Daviaud

One says that S is weakly conformal when, recalling equation (6),

lim
k→+∞

sup(xi )i∈N∈{1,...,m}N(log ‖f ′
(x1,...,xk)

(π(σ k(x)))‖ − log ‖f ′
(x1,...,xk)

(π(σ k(x)))‖)
k

= 0.

(10)

In this case, a measure defined by equation (7) is called a weakly conformal measure.

Example 2.5.
• If the maps f1, . . . , fm are affine similarities or conformal maps (i.e., verify

‖f ′(x)(y)‖ = ‖f ′(x)‖ · ‖y‖ for every x ∈ U , y ∈ Rd ), the system S = {f1, . . . , fm}
is weakly conformal. In this case, the IFS is called self-similar or self-conformal
and the measures satisfying equation (7) are respectively called self-similar and
self-conformal measures. Note that this class of IFSs contains, for instance, every
system of holomorphic contracting mappings.

• Assume that for any 1 ≤ i ≤ m, fi : Rd → Rd is defined by fi(x) = Aix + bi , where
for any 1 ≤ i ≤ m, bi ∈ Rd and Ai ∈ GLd(R) has its eigenvalues equal in modulus
to 0 < ri < 1, and for any 1 ≤ i, j ≤ m, AiAj = AjAi . Then, S = {f1, . . . , fm} is
weakly conformal.

The pressure function associated with a weakly conformal IFS is naturally related to the
dimension of the attractor. It is defined by the following proposition.

PROPOSITION 2.6. Let m ≥ 2 be an integer, S = {f1, . . . , fm} be a C1 weakly conformal
IFS, and let K be its attractor.

Let us fix s ≥ 0 and z ∈ K . The following quantity is well defined and independent of
the choice of z :

Pz(s) = lim
k→+∞

1
k

log
∑
i∈�k

‖f ′
i (z)‖s . (11)

Remark 2.7. Let us mention that the proof of Proposition 2.6 is very standard and does
not diverge much from the standard proofs made in [8, 34], but strictly speaking, due
to the weakly conformal settings, unfortunately, one cannot recover the result from these
references. So, for the sake of completeness, a proof is given in §4.

Since Pz(s) does not depend on z, one writes

Pz(s) = P(s) = lim
k→+∞

1
k

log
(∑

i∈�k

|fi(K)|s
)

.

As said above, the pressure function is naturally connected to the dimension of the attractor
K associated with the underlying IFS. More precisely, the following quantity is a natural
candidate to be the Hausdorff dimension of K.

Definition 2.8. Let m ≥ 2 be an integer. Let S = {f1, . . . , fm} be a C1 weakly conformal
IFS and K its attractor.

The unique real number dim(S) satisfying P(dim(S)) = 0 is called the conformality
dimension of S.
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Remark 2.9. If the mappings f1, . . . , fm are affine similarities, then the conformality
dimension is called the similarity dimension. It is the real number solution to

m∑
i=1

cs
i = 1, (12)

where ci is the contraction ratio of fi (that is, ci = ‖f ′
i ‖).

3. Statement of the main results
3.1. Dimension of weakly conformal dynamical Diophantine set. Our main result is the
following.

THEOREM 3.1. Let m ≥ 2 be an integer. Let U be an open set and let S = {f1 : U →
U , . . . , fm : U → U} be a C1 weakly conformal IFS with attractor K. For every δ > 0,
set

W(x0, δ) = lim sup
i∈�∗

B(fi(x0), |fi(K)|δ). (13)

Then, we have the following.
(1) For any x0 ∈ U , for any δ < 1,

W(x0, δ) = K .

(2) Assume in addition that dimH (K) = dim(S), then for any x0 ∈ K , for any δ ≥ 1,

dimH W(x0, δ) = dimH (K)

δ
.

Remark 3.2. In [10, Theorem 2.14], the Hausdorff dimension of sets defined as in equation
(13) is estimated for a self-similar IFS satisfying the so-called dimension regularity
assumption, meaning that the dimension of every self-similar measure does not drop
by projecting it on the attractor (see Definition 4.17 below). In the self-similar case,
Theorem 3.1 extends this result to any IFS satisfying the weaker assumption that the
similarity dimension and the dimension of the attractor agree. We would like to further
mention that, even in the self-similar case, Theorem 3.1 currently applies to strictly more
cases than the result in [10, Theorem 2.14]. Let 0 < λ ≤ 1

3 , τ ∈ R, and set S = {g1, g2, g3},
where g1(x) = λx, g2(x) = λx + 1 and g3(x) = λx + τ . Due to a result of Rapaport and
Varju established in [32], outside a set of parameters (λ, τ) ∈ (0, 1

3 ) × R of Hausdorff
dimension 0, the IFS S satisfies that dimH K = dim(S), so Theorem 3.1 applies to S.
Note also that every IFS S = {f1, f2, f3} on R is affinely conjugated to the IFS S for
some λ, τ ∈ (0, 1) × R. It is worth mentioning that for the IFS S corresponding to good
parameters, the dimensions of all self-similar measures associated with S are not known,
in general. In particular, such cases are not covered by [10].

Let us provide concrete examples of IFSs for which Theorem 3.1 applies and examples
of IFS to which the conclusion of Theorem 3.1 does not hold.
• Theorem 3.1 applies to any self-similar IFS S on R satisfying the exponential

separation condition [24, Theorem 1.4] or having algebraic contraction ratio and no
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8 E. Daviaud

exact overlaps (i.e., for every k ∈ N, every i �= j ∈ �k , fi �= fj ) with dim(S) ≤ 1
(due to a result of Rapaport [31]). For instance, define g1, g2, and g3 as three
mappings R → R by setting for every x ∈ R, g1(x) = 1

4x, g2(x) = 1
4 (x + 1), and

g3(x) = 1
4 (x + t), where t ∈ R \ Q. Then, Theorem 3.1 applies to S = {g1, g2, g3}.

• Let m ≥ 2 be an integer and 0 < c1, . . . , cm < 1 be m real numbers satisfying

c1 + · · · + cm ≤ 1.

Then (due to a result of Hochman, [24]), for Lebesgue-almost every choice of
a1, . . . , am ∈ R, Theorem 3.1 applies to the IFS S = {f1, . . . , fm} where, for every
1 ≤ i ≤ m, fi(x) = cix + ai .

• It is relatively easy to see that Theorem 3.1 cannot hold when dim(S) > d. One could
take, for instance, so many similarities so that for every 1 ≤ δ ≤ 2,

dimH

(
lim sup

i∈�∗
B(fi(x0), |fi(K)|δ)

)
= d .

To be more explicit, fix t a badly approximable (by rationals) number and define
φ1(x) = x/2, φ2(x) = (x + 1)/2, φ3(x) = (x + t)/2, φ4(x) = (x + 1 + t)/2, and
� = {1, . . . , 4}. Then, it is proved in [2, Theorem 2.10] that for every x0 ∈ [0, 1 + t],

dimH

(
lim sup

i∈�∗
B

(
φi(x0),

1
4|i|

))
= 1.

In §3.1, we establish that the result applies to a large class of weakly conformal IFSs,
namely the weakly conformal IFS satisfying the asymptotically weak separation condition
(AWSC).

3.2. An application in the case of homogeneous self-similar IFS. In Theorem 3.1, the
choice of the radii of the balls plays an important role on the hypothesis that one needs to
assume to be able to estimate dimH W(x, δ). In the case of homogeneous IFSs, we will be
able to treat the general case where the radii are simply given by a mapping φ : N → R+.
In our settings, we will call a system of affine similarities S = {fi}1≤i≤m homogeneous if
for every 1 ≤ i, j ≤ m,

‖f ′
i ‖ = ‖f ′

j‖.

THEOREM 3.3. Let S be an homogeneous self-similar IFS of common contraction ratio
0 < c < 1. Let φ : N → R+ be such that limn→+∞ φ(n) = 0 and set

sφ = inf
{
s ≥ 0 :

∑
k≥0

∑
i∈�k

φ(k)s dim(S) < +∞
}

. (14)

Assume that dimH K = dim(S). Then,

dimH W(x0, φ) := dimH lim sup
i∈�∗

B(fi(x0), φ(|i|)) = min{1, sφ} dim(S).

Remark 3.4. If limn→+∞ φ(n) �= 0, since K is compact, W(x0, φ) contains a ball, and
hence dimH K = d .
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Let us provide a short application to Theorem 3.3. Let t ∈ (0, 1) be a transcendental
number and A = {q1 = 0, . . . , qN } ⊂ Q, where N ≥ 2 satisfies log N ≤ − log t . Define
S = {f1(x) = tx + q1, . . . , fN(x) = tx + qN }. It is established in [32] that, denoting K
as the attractor of S, one has

dimH K = dim S = log N

− log t
.

In addition, one has

PA,t ,n :=
{
P(t) =

n∑
k=0

ait
i : a0, . . . , an ∈ A

}
= {fi(0), i ∈ {1, . . . , m}n+1}.

So, given φ : N → R+, writing

WA,t (φ) =
{
x ∈ Rd : |x − P(t)| ≤ φ(deg P) for infinitely many P ∈

⋃
n≥0

PA,n,t

}
,

a direct application of Theorem 3.3 yields that

dimH WA,t (φ) = min{1, sφ} log N

− log t
,

where sφ is defined as in equation (14). Finally, we mention that, for the sake of clarity,
the present article deals with the case of IFSs without exact overlaps, but one easily
could extend the results to the case where the IFS has exact overlaps under suitable
assumption (related to the Garcia entropy of the IFS). In particular, dimH WA,t (φ) can
also be estimated for t algebraic. The short note [11] has been made available to explain
how one should proceed in this case.

3.3. The classical shrinking target problem. As mentioned in §1, thanks to the
techniques developed in this article, we are able to extend the dimension results established
by Hill and Velani in [23] with a great deal of generality. Let us explain first why one needs
a different hypothesis to extend the result of [23] than in Theorem 3.1. Reading the rest
of the article, the reader will find that the proof of Theorem 3.1 is almost completely
geometrical (that is, the proof is essentially non-symbolic). The combination of this fact
and the fact that establishing dimension results in the context of self-similar IFSs is,
in general, difficult and relies on deep ideas (see [19, 24, 31, 32, 36]), which makes it
somewhat surprising that Theorem 3.1 holds under the rather weak hypothesis that the
similarity dimension and the dimension of the attractor agree. This is completely due to
the specific choice of the radii. More precisely, the choice of the necessary hypotheses in
Theorem 3.1 are made with regard to the analyzing measures one will need to consider
to solve this specific Diophantine problem. In the case of the classical shrinking target
problem, these analyzing measures will be Gibbs measures, so the hypothesis one will
require to deal with it will be made to ensure that the projections of Gibbs measure have
the expected dimension on K. For the sake of simplicity, we will place ourselves in the
case where the IFS is conformal and satisfies the so-called bounded distortion property,
which we recall.
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Definition 3.5. Let S = {f1, . . . , fm} be a conformal IFS. We say that S satisfies the
bounded distortion property if there exists κ > 0 such that for every n ∈ N, for every
i ∈ {1, . . . , m}n and every x, y ∈ K , one has

κ−1 ≤ ‖f ′
i (x)‖

‖f ′
i (y)‖ ≤ κ . (15)

Before stating our main theorem, we recall the following result (see for instance
[1, equation (2.6), p. 7]).

THEOREM 3.6. Let s > 0 be a real number. Assume that S = {f1, . . . , fm} is conformal
and satisfies the bounded distortion property, then there exists a unique ergodic measure
νs ∈ M(�N) satisfying that for every n ∈ N and for every i ∈ �n, one has

C−1 ≤ νs([i])
|fi(K)|se−nP (s)

≤ C, (16)

where C ≥ 1 is a constant independent of i. We will write μs = νs ◦ π−1 as the projection
of νs on the attractor of S.

Remark 3.7. By ergodicity, one easily proves that there exists hs ≥ 0 such that for
νs-almost every i = (in)n∈N ∈ {1, . . . , m}N, one has

lim
n→+∞

log νs([i1, . . . , in])
log |f(i1,...,in)(K)| = hs .

Our main result regarding the Hausdorff dimension of shrinking targets set for
overlapping conformal IFSs is the following.

THEOREM 3.8. Let S be a conformal IFS satisfying the bounded distortion property, given
by equation (15), and let φ : N → R+ be a mapping satisfying φ(n) → 0. Set

α = lim inf
n→0

− log φ(n)

n

and denote s the solution to P(s) = sα/δ. Assume that dimH yμs = hs and 0 < α < +∞,
then for every δ ≥ 1, one has

dimH lim sup
i∈�∗

B(fi(x0), |fi(K)|δφ(|i|)) = s

δ
.

Remark 3.9.
• If α = 0, then for every ε > 0, there exists an increasing sequence of integers (nk)k∈N

such that for every k ∈ N, for every i ∈ �nk , one has

|fi(K)|(1+ε)δ ≤ |fi(K)|δφ(|i|) ≤ |fi(K)|δ .

In that case, using the same argument as in the proof of Theorem 3.1, we conclude that

dimH lim sup
i∈�∗

B(fi(x0), |fi(K)|δφ(|i|)) = dim S

δ
.
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• If α = +∞, then for every δ′ > 0, there exists N ∈ N such that for every n ≥ N and
for every i ∈ �n, we have

φ(n) ≤ |fi(K)|δ′
,

and hence, |fi(K)|δφ(n) ≤ |fi(K)|δ+δ′
. By Theorem 3.1, this implies that

dimH lim sup
i∈�∗

B(fi(x0), |fi(K)|δφ(|i|)) ≤ dim S

δ + δ′ .

Letting δ′ → +∞ yields

dimH lim sup
i∈�∗

B(fi(x0), |fi(K)|δφ(|i|)) = 0.

• In the case where S is a self-similar IFS on R satisfying the exponential separation
condition due to a result established by Jordan and Rapaport in [33], for every s > 0,
one has

dimH μs = min{1, hs}.
As a consequence, Theorem 3.8 applies to any φ satisfying that the root s of
P(s) − s(α/δ) is such that hs ≤ 1.

To provide a large class of IFSs to which Theorem 3.8 applies, we start by recalling the
definition of the so-called multifractal scaling function of a measure. Let μ ∈ M(Rd) and
define

�μ(q, r) = inf
{∑

i∈I

μ(B(xi , r))q
}

,

where the infimum is taken over all countable collections of balls {B(xi , r)}i∈I satisfying
the following two properties:
(1) xi ∈ supp(μ) for every i ∈ I ; and
(2) B(xi , r) ∩ B(xj , r) = ∅ for i �= j .

Then, the multifractal scaling function of μ is defined as

τμ(q) = lim inf
r→0

log(�μ(q, r))

log r
. (17)

Such mappings were first considered in the context of turbulence by Frisch and Parisi
in [21]. The mapping τμ is often connected to the so-called multifractal spectrum of μ.
More precisely, for h ≥ 0, denote by Eμ,h the set of points of lower μ-local dimension h,
that is,

Eμ,h = {x : dim(μ, x) = h}.
Many natural measures satisfy for every h ≥ 0 that

dimH Eμ,h = τ ∗
μ(h),
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12 E. Daviaud

where τ ∗
μ(h) = infq∈R{qh − τμ(q)}. We refer, for instance, to [9] for a complete math-

ematical foundation and to [18, 29, 36] for results regarding the multifractal analysis of
self-similar measures.

When S is conformal and satisfies the bounded distortion property, it is classical (see [1]
for instance) that there exists a unique ergodic measure ν0 on {1, . . . , m}N such that for
every k ∈ N, for every i ∈ {1, . . . , m}k , one has

C−1 ≤ ν0([i])
|fi(K)|dim(S)

≤ C, (18)

where C > 0 is independent of i. In addition, when the IFS is self-similar, ν0 is simply the
self-similar measure corresponding to the similarity dimension (see Remark 2.9). We now
introduce the following condition.

Definition 3.10. Let S be a conformal IFS satisfying equation (15), let K be its attractor,
let ν0 be as in equation (18), and set μ0 = ν0 ◦ π−1, where π is the canonical projection
from {1, . . . , m}N to K. We say that S satisfies condition (A) if for every q > 1,

τμ0(q) = (q − 1) dim(S).

We mention that condition (A) has been proved by Barral and Feng in [4] to be equiv-
alent to the so-called asymptotically weak separation condition without exact-overlaps
mentioned at the end of §3.1 (see Proposition 4.11 thereafter).

Thus (due to Remark 4.22 below), the following result holds true.

LEMMA 3.11. Assume that S is a conformal IFS satisfying the bounded distortion property
and condition (A). Then, for every s > 0, dimH μs = hs . In particular, Theorem 3.8
applies to every φ : N → R+.

Remark 3.12.
• As mentioned above, the advantage of the formulation of condition (A) is that the

multifractal spectrum of self-similar measures, Gibbs measures, etc. is a topic well
studied. For instance, as a consequence of the estimates regarding the Lq spectrum of
self-similar measures on R, established by Shmerkin in [36], Theorem 3.8 applies
to any self-similar IFS satisfying the exponential separation condition on R with
similarity dimension smaller than 1 (which, for instance, is ensured as soon as the
parameters defining the IFS are algebraic and the IFS has no exact-overlaps). In
addition, should these estimates have an analog in higher dimension under suitable
assumptions, then Theorem 3.8 would apply to IFSs satisfying the same conditions.

• We also emphasize that if condition (A) is satisfied, every projection of ergodic
measure has the dimension one would expect (see Remark 4.22), so, although the
class of IFSs satisfying condition (A) is large, condition (A) is somewhat an overkill
for our problem.

In §4, we recall and establish some geometric properties of a weakly conformal IFS. We
also establish Proposition 4.10, which justifies that one can apply Theorem 3.1 to weakly
conformal IFS satisfying the AWSC.
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The mass transference principle for weakly conformal measures, which is key to prove
Theorem 3.1, is established in §5.

In §6, Theorem 3.1 is established.
Section 7 is dedicated to the proof of Theorem 3.3.

4. Geometric properties of weakly conformal IFS
In this section, all the basic geometric properties of a weakly conformal IFS needed in
the rest of this article are recalled or established. More precisely, in §4.1, we recall the
key Lemma 4.1, which will be used instead of an usual bounded distortion property one
often requires when dealing with conformal IFSs. Section 4.2 is dedicated to the proof of
Proposition 2.6. In §4.3, we recall the definition of the Lyapunov exponent in the case of
a weakly conformal IFS and some basic properties of this exponent. Finally, in §4.4, we
recall some facts about the asymptotically weak separation condition.

4.1. Some general estimates. Let m ≥ 2 be an integer. One collects some useful
geometric results on a C1 weakly conformal IFS.

Consider a C1 weakly conformal IFS S = {f1, . . . , fm} with attractor K and for every
x ∈ K , k ∈ N, and i = (i1, . . . , ik) ∈ �k , write

ci(x) = ‖f ′
i (x)‖.

Let us recall the following result established as [19, Lemma 5.4].

LEMMA 4.1. [19] For any c > 1, there exists a constant D(c) > 0 such that, for every
k ∈ N, for every i ∈ �k and every x, y ∈ K ,

D(c)−1c−k‖f ′
i (x)‖ · ‖x − y‖ ≤ ‖fi(x) − fi(y)‖ ≤ D(c)ck‖f ′

i (x)‖ · ‖x − y‖ (19)

D(c)−1c−k‖f ′
i (x)‖ ≤ |fi(K)| ≤ D(c)ck‖f ′

i (x)‖. (20)

Remark 4.2. Let X ⊂ U be a compact set and U as in §2.2.2 (that is, as in the definition
of a weakly conformal IFS). It is proved in [19] that equation (19) actually holds for any
(x, y) ∈ X2.

Note that for every k ∈ N and every x ∈ K , one has

c±k‖f ′
i (x)‖ = ‖f ′

i (x)‖1+(±k log c/log ‖f ′
i (x)‖).

Moreover, since there exists two constants C1, C2 > 0 such that for every 1 ≤ i ≤ m

and every x ∈ K ,

C1 ≤ ‖f ′
i (x)‖ ≤ ‖f ′

i (x)‖ ≤ C2,

there also exists two constants 0 < t1 ≤ t2 such that

t1 ≤ k

log ‖f ′
i (x)‖ ≤ t2.
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Combining this fact with Lemma 4.1, for any θ > 0, there exists C̃θ > 0 such that for every
k ∈ N, every i ∈ �k , and every x, y ∈ K ,

C̃−1
θ ci(x)1+θ‖x − y‖ ≤ ‖fi(x) − fi(y)‖ ≤ C̃θ ci(x)1−θ‖x − y‖. (21)

In particular, there also exists Ĉθ such that for every i ∈ �∗ and every x ∈ K , one has

Ĉ−1
θ c1+θ

i (x)|K| ≤ |fi(K)| ≤ Ĉθ c
1−θ
i (x)|K|. (22)

Let us remark that equation (22) also implies that there exist 0 < α ≤ β < 1 as well as
Cα , Cβ > 0 such that, for any k ∈ N,

Cααk ≤ |fi(K)| ≤ Cββk . (23)

4.2. Proof of Proposition 2.6. As mentioned in §2, the proof of Proposition 2.6 is very
standard and does not diverge much from the proof in the conformal case. Unfortunately,
one cannot derive directly the result from classical cases (see [8, 34], for instance) and
those computations in the weakly conformal case do not seem to be written explicitly in
the literature so for the seek of completeness, it is done below.

Proof. Assume first that the limit exists in R ∪ {−∞}, and let us show that it is
independent of the choice of z and that the limit is > −∞. Let c > 1 be a real number.
Recalling Lemma 4.1, for any k ∈ N, one has

log
(∑

i∈�k

D(c)−sc−sk|fi(K)|s
)

≤ log
(∑

i∈�k

‖f ′
i (z)‖s

)

≤ log
(∑

i∈�k

D(c)scsk|fi(K)|s
)

. (24)

Since equation (24) holds for any c > 1, one gets that

lim
k→+∞

1
k

(
log

( ∑
i∈�k

‖f ′
i (z)‖s

)
− log

(∑
i∈�k

|fi(K)|s
))

= 0, (25)

which proves that this quantity does not depend on z. Moreover, there exists b > 0 so that
for any k ∈ N, any i ∈ �k , and any x ∈ K ,

‖f ′
i (x)‖ ≥ bk .

This implies that if Pz(s) is well defined, then Pz(s) > −∞.
Let us now prove that the limit exists. For k ∈ N, write

gk = log
(∑

i∈�k

|fi(K)|s
)

. (26)

As in the conformal case, the existence of the pressure relies on a sub-additivity argument.
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LEMMA 4.3. For any ε > 0, there exists a constant Mε > 0 such that for any n, m ∈ N,
one has

gn+m ≤ Mε + mε + gn + gm. (27)

Furthermore, any sequence (gn)n∈N verifying equation (27) is such that (gn/n)n∈N
converges in R ∪ {−∞}.

Proof. Let us start by proving the second statement. Let (gn)n∈N be a sequence satisfying
equation (27). Fix ε > 0 and Mε satisfying equation (27). For any q ∈ N∗, b ∈ N∗,
0 ≤ r < q, one has

gbq+r ≤ bgq + gr + (bq + r)ε + (b + 1)Mε

⇒ gbq+r

bq + r
≤ bq

bq + r
· gq

q
+ (b + 1)Mε + gr

bq + r
+ ε.

Fixing q large enough independently of b so that ((b + 1)Mε/bq) ≤ ε, for any large
b ∈ N∗, one has

gbq+r

bq + r
≤ (1 + ε)

gq

q
+ 2ε.

This implies that

lim sup
n→+∞

gn

n
≤ (1 + ε) lim inf

n→+∞
gn

n
+ 2ε.

Letting ε → 0 proves the statement.
One now shows that gn satisfies equation (27).
Let k ∈ N and i ∈ �k . Let us begin by the following lemma.

LEMMA 4.4. Let D(c) be again defined as in Lemma 4.1, then one has, for any j ∈ �∗,

1
2D(c)−2c−2k|fi(K)| · |fj (K)| ≤ |fij (K))| ≤ 2D(c)2c2k|fi(K)| · |fj (K)|. (28)

Proof. Let us start by establishing the lower bound. Let x, y ∈ K be such that

‖fj (x) − fj (y)‖ ≤ |fj (K)| ≤ 2‖fj (x) − fj (y)‖. (29)

By Lemma 4.1, one has

D(c)−1c−k‖f ′
i (fj (x))‖ · ‖fj (x) − fj (y)‖ ≤ ‖fij (x) − fij (y)‖ ≤ |fij (K)| (30)

and

‖f ′
i (fj (x))‖ ≥ D(c)−1c−k|fi(K)|. (31)
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Combining equations (29), (30), and (31), one obtains

1
2D(c)−2c−2k|fi(K)| · |fj (K)| ≤ |fij (K)|.

Let us focus now on the upper bound. Let x, y ∈ K be such that

‖fij (x) − fij (y)‖ ≥ 1
2 |fij (K)|. (32)

Using again Lemma 4.1, one has

‖fij (x) − fij (y)‖ ≤ D(c)ck‖f ′
i (fj (x))‖ · ‖fj (x) − fj (y)‖

≤ D(c)2c2k|fi(K)| · |fj (K)|. (33)

The upper bound is obtained by combining equations (32) and (33).

By Lemma 4.4, for any c > 1 and any n, n′ ∈ N, one has

gn+n′ = log
( ∑

i∈�n+n′
|fi(K)|s

)
= log

( ∑
i∈�n,j∈�n′

|fij (K)|s
)

≤ log
( ∑

i∈�n,j∈�n′
2sD(c)2sc2sn|fi(K)|s |fj (K)|s

)

= n · 2s log(c) + log(2sD(c)2s) + log
((∑

i∈�n

|fi(K)|s
)

× (
∑

j∈�n′
|fj (K)|s)

)
≤ 2sn log(c) + log(2sD(c)2s) + gn + gn′ .

Fixing c = eε/2s , one has 2s log(c) = ε and setting Mε = log(2sD(c)2s) shows that
(gn)n∈N satisfies the condition of Lemma 4.3.

Lemma 4.3 together with equation (25) concludes the proof of Proposition 2.6.

4.3. Lyapunov exponent and dimension of weakly conformal measures. Let m ≥ 2 and
let us fix a C1 weakly conformal IFS S = {f1, . . . , fm} with attractor K.

Given x = (xn)n∈N ∈ �N, the following quantity, called Lyapunov exponent of S at x,
defines a logarithmic shrinking rate associated with S at x. See [19, Proposition 5.6].

PROPOSITION 4.5. [19] For x = (xn)n∈N ∈ �N, the Lyapunov exponent of S at x is
defined, when the following limit exists, as

λ(x) = − lim
n→+∞

log |fx1 ◦ · · · ◦ fxn(K)|
n

. (34)

Moreover, for every ergodic measure ν ∈ M(�N) (with respect to the shift σ ), there exists
λν ≥ 0 such that for ν-almost any x = (xn)n∈N,

λ(x) =
∫

λ(y) dν(y) := λν . (35)
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Remark 4.6.
• By equation (23), the Lyapunov exponents are uniformly bounded above and below by

some positive constant.
• When S is self-similar and 0 < c1, . . . , cm < 1 are the contracting ratios associated

with the similarities f1, . . . , fm, the Lyapunov exponent of ν as in Proposition 4.5 is
simply

λν = −
∑

1≤i≤m

pi log ci .

The following consequence of Proposition 4.5 will be useful later (see Proposition 6.7).

COROLLARY 4.7. Let ((p
(k)
1 , . . . , p

(k)
m ))k∈N ∈ ([0, 1]m)N be a sequence of probability

vectors such that (p
(k)
1 , . . . , p

(k)
m ) → (p1, . . . , pm). Denote for k ∈ Nν, νk ∈ M(�N) the

measures defined for any cylinder [(i1, . . . in)] by

νk([(i1, . . . , ik)]) = p
(k)
i1

· · · · · p(k)
in

and ν([(i1, . . . , in)]) = pi1 · · · · · pin .

Then, νk →
k→+∞ ν weakly, so that

lim
k→+∞ λνk

= λν .

Let us also recall the following fundamental result established by Feng and Hu [19,
Theorem 2.2].

THEOREM 4.8. [19] Let (p1, . . . , pm) ∈ [0, 1]m be a probability vector, ν ∈ M(�N)

defined for any i ∈ �∗ by ν([i]) = pi and μ = ν ◦ π−1.
There is an h ≥ 0 such that for μ-almost every x ∈ K , there exists μπ−1({x}) ∈ M(�N)

such that:
(1) μπ−1({x})(π−1({x})) = 1;
(2) for μπ−1({x})-almost y = (y1, . . . , yn, . . .),

− log μπ−1({x})([y1, . . . , yn])
n

→ h; (36)

(3) for every Borel set A ⊂ �N,

ν(A) =
∫

K

μπ−1({x})(A) dμ(x); (37)

(4) denoting λ as the Lyapunov exponent associated with ν as in equation (35), μ is
exact-dimensional (Definition 5) and

dim(μ) = −h − ∑
1≤i≤m pi log pi

λ
.

4.4. The AWSC condition.

4.4.1. Definition and known results. To provide a larger class of weakly conformal IFSs
to which Theorem 3.1 applies, we recall the definition of the AWSC [18]. First, given an
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IFS S = {fi}i∈�, let us define

�(k) = {i = (i1, . . . , in) ∈ �∗ : 2−k−1 < |fi(K)| ≤ 2−k}. (38)

Definition 4.9. One says that S = {fi}i∈� satisfies the AWSC [18] when, writing for
k ∈ N,

tk(S) = max
x∈Rd

#{fi : i ∈ �(k) and fi(K) ∩ B(x, 2−k) �= ∅}, (39)

one has

log tk(S)

k
→ 0.

Let us also note here that when the IFS S has no exact overlaps (i.e., for any i �= j ∈ �∗,
fi �= fj ), one also has

tk(S) = max
x∈Rd

#{i : i ∈ �(k) and fi(K) ∩ B(x, 2−k) �= ∅}. (40)

The introduction of the AWSC condition is motivated by the following result.

PROPOSITION 4.10. Let S be a weakly conformal IFS satisfying the AWSC with no exact
overlaps. Then, its attractor K satisfies

dimH K = dim(S).

As mentioned in §3.3, the advantage of the ASWC is that it can be reformulated in
terms of a condition regarding the multifractal spectrum of some natural measures (given
by Lemma 4.21) associated with a weakly conformal IFS.

The following proposition was established by Barral and Feng in [4] in the case of
self-similar measures but readily adapts in the case of weakly conformal measures.

PROPOSITION 4.11. [4] Let S = {f1, . . . , fm} be a conformal IFS and let K be its
attractor. Assume that there exists a measure ν0 ∈ M({1, . . . , m}N) such that for every
i ∈ {1, . . . , m}k , one has

C−1 ≤ ν0([i])
|fi(K)|dim(S)

≤ C, (41)

where C > 0 is independent of i. Set μ0 = ν0 ◦ π−1. If for every q ≥ 1, one has

τμ0(q) = (q − 1) dim(S),

where τμ0 is the scaling function defined by equation (17), then dimH yμ0 = dim(S), S

satisfies the AWSC, and S has no exact-overlaps.
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Proposition 4.11 combined with a well-known result established by Shmerkin in
[36] regarding the multifractal spectrum of self-similar measures on R satisfying the
exponential separation yields the following result established as [4, Theorem 1.3].

THEOREM 4.12. [4] Let S be a self-similar IFS on R satisfying the exponential separation
condition [24, Theorem 1.4]. Then, S satisfies the AWSC if and only if dim(S) ≤ 1.

4.4.2. Some technical results regarding the AWSC. For k ∈ N and x ∈ Rd , recall
equation (38) and define

�̃(k) = {i = (i1, . . . , in) ∈ �∗ : |fi(K)| ≤ 2−k < |f(i1,...ik−1)(K)|}. (42)

Moreover, for x ∈ K , we set

Tk(x) = {fi : fi(K) ∩ B(x, 2−k) �= ∅, i ∈ �̃(k)},
T ′

k(x) = {fi : fi(K) ∩ B(x, 2−k) �= ∅, i ∈ �(k)}.
Note that S satisfies AWSC if and only if limk→+∞ maxx∈Rd (log #Tk(x)/k) = 0.

PROPOSITION 4.13. One has

lim
k→+∞ max

x∈Rd

log #Tk(x)

k
= 0 ⇐⇒ lim

k→+∞ max
x∈Rd

log #T ′
k(x)

k
= 0.

Proof. By equation (23), there exists 0 < α < 1
2 < β ≤ 1 such that for every k ∈ N,

αk ≤ |fi(K)| ≤ βk .

Remark 4.14.
(1) For every k ∈ N and every i = (i1, . . . , in) ∈ �(k), one has

C(α, β)−1k ≤ k
− log 2
log β

+ 1 ≤ n ≤ 2k
− log 2
log α

≤ C(α, β)k.

(2) For every c > 1, by Lemma 4.4, for every i = (i1, . . . , in) ∈ �̃(k),

D(c)−2 min
1≤j≤m

|fj (K)|c−2C(α,β)k2−k ≤ |fi(K)| ≤ 2−k .

In particular, for any k ∈ N large enough, one has

c−1/2C(α,β)k2−k ≤ |fi(K)| ≤ 2−k . (43)

LEMMA 4.15. For every ε0 > 0, there exists kε ∈ N such that for every k ≥ kε0 , for every
i = (i1, . . . , in) ∈ �(k), there exists 0 ≤ p ≤ ε0k such that (i1, . . . , in−p) ∈ �̃(k).

Proof. Fix ε = ε0/2C(α, β) and c > 1 such that c1−εβε < 1. By Lemma 4.4, for any
(i1, . . . , in) ∈ �∗ and 0 ≤ p ≤ n,

|f(i1,...,in)(K)| ≤ D(c)2cn−p|f(i1,...,in−p)(K)| × |f(in−p+1,...,in)(K)|.
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In particular, for p ≥ nε,

|f(i1,...,in−p)(K)| ≥ D(c)−2c−(n−p)

|f(in−p+1,...,in)(K)|2−k ≥ 2−k D(c)−2

(c1−εβε)n
.

This yields, for k large enough and p = �εC(α, β)k� + 1 ≤ 2C(α, β)εk, that

|f(i1,...,in−p)(K)| > 2−k .

As a consequence, there must exist p ≤ 2C(α, β)εk such that (i1, . . . , in−p) ∈ �̃(k).

LEMMA 4.16. For every c > 1, for every ε > 0, for every k large enough (depending on c)
and every x ∈ Rd , one has

#Tk(x)

≤ k

⌊
(C(α, β)/2) log c

log 2

⌋
Cdckd(C(α,β)/2) max

k≤k"≤k(1+�((C(α,β)/2) log c)/log 2�)
max
y∈Rd

#T ′
k′(y)

(44)

and #T ′
k(x) ≤ mkε#Tk(x).

Proof. Remark that, for each k′ such that

c−(1/2)C(α,β)k2−k ≤ 2−k′ ≤ 2−k ,

there exists a constant Cd (which depends on d , α, and β) so that each ball B(x, 2−k) can
be covered by less than

Cdckd(C(α,β)/2)

balls of radius 2−k′
. This implies that

#{fi : i ∈ Tk(x) ∩ �(k′)} ≤ Cdckd(C(α,β)/2) max
y∈Rd

#T ′
k′(y).

Since one has

�̃(k) ⊂
k(1+�((C(α,β)/2) log c)/log Z�)⋃

k′=k

�(k′),

it holds that

#Tk(x)

≤ k

⌊
(C(α, β)/2) log c

log 2

⌋
Cdckd(C(α,β)/2) max

k≤k"≤k(1+�((C(α,β)/2) log c)/log 2�)
max
y∈Rd

#T ′
k′(y).

(45)

Moreover, by Lemma 4.15, there exists φk : T ′
k(x) → Tk(x) defined by

φk((i1, . . . , in)) = (i1, . . . in−p)

with 0 ≤ p ≤ kε. The mapping φk verifies that, for every (i1, . . . in′) ∈ Tk(x),

#φ−1
k ({(i1, . . . in′)}) ≤ mkε.
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This implies that

#T ′
k(x) ≤ mkε#Tk(x).

Taking the log of the estimates of Lemma 4.16 and letting k tend to infinity concludes
the proof.

4.4.3. AWSC and dimension regularity. The following notion was introduced by Barral
and Feng in [4].

Definition 4.17. [4] Let S = {f1, . . . , fm} be a weakly conformal IFS. For P =
(p1, . . . , pm) ∈ [0, 1]m a probability vector, denote again by νP ∈ M(�∗) the measure
satisfying for every (i1, . . . , in) ∈ �∗, νP ([i1, . . . , in]) = pi1 × · · · × pin and μP =
νP ◦ π−1. The IFS S is said to be dimension regular if, for every probability vector P,

dim(μP ) = min
{− ∑

1≤i≤m pi log(pi)

λνP

, d

}
, (46)

where λνP
is defined by equation (35).

Remark 4.18.
• When S is self-similar, calling 0 < c1, . . . , cm < 1 the contraction ratios of the

similarities f1, . . . , fm, for any probability vector (p1, . . . , pm), μ, and ν as in
Definition 4.17, one has

dim(μ) = min
{−∑

1≤i≤m pi log(pi)

λν

, d

}
= min

{∑
1≤i≤m pi log(pi)∑m

i=1 pi log(ci)
, d

}
. (47)

• As proved in [24], any self-similar IFS on R satisfying the exponential separation
condition [24, Theorem 1.4] is dimension regular.

We will prove the following result which implies Proposition 4.10.

PROPOSITION 4.19. Assume that S = {f1, . . . , fm} satisfies the AWSC without exact
overlaps. Then, S is dimension regular and dim(S) = dimH (K).

Had the IFS been conformal and satisfying some bounded distortion properties, the
proof of Proposition 4.19 would follow directly from the existence of appropriated Gibbs
measures. Unfortunately, such measures do not always exist in the weakly conformal case,
but some measures that are close enough from satisfying the desired properties still exist
as established by the following lemma.

LEMMA 4.20. Let ε > 0 and s ≥ 0 be real numbers. There exists k ∈ N and a probability
vector (pi)i∈�k such that the weakly conformal measure ν associated with S ′ = {fi}i∈�k

and (pi)i∈�k verifies, for any p ∈ N and i1, . . . , ip ∈ �k ,

e−kpε
|fi1···ip (K)|s

epkP (s)
≤ ν([i1 · · · ip]) ≤ ekpε

|fi1···ip (K)|s
epkP (s)

. (48)

Proof. Fix ε > 0 and c > 1 small enough so that 8s log c ≤ ε.
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By Lemma 4.3, there exists k ∈ N so large that the constant named D(c) in Lemma 4.1
verifies (log D(c)/k) ≤ log c and∣∣∣∣1

k
log

∑
i∈�k

|fi(K)|s − P(s)

∣∣∣∣ ≤ ε

2
. (49)

Writing again gk = log
∑

i∈�k |fi(K)|s , let us define the probability vector (pi)i∈�k

by setting

pi = |fi(K)|s
egk

.

Let ν be the weakly conformal measure associated with S ′ = {fi}i∈�k and (pi)i∈�k .
Applying Lemma 4.4, for any p ∈ N, i1, . . . , ip ∈ �k ,,

D(c)−2pc−2kp ≤ |fi1
◦ · · · ◦ fip

(K)|∏p

j=1 |fij
(K)| ≤ D(c)2pc2kp. (50)

Also,

D(c)2spc2skp = epk2s·((log D(c)/k)+log c) ≤ e(ε/2)pk . (51)

As a consequence, for any p ∈ N and any i1, . . . , ip ∈ �k , one has

ν([i1 · · · ip]) = pi1
· · · · · pip

=
∏p

j=1 |fij
(K)|s

epgk
=

∏p

j=1 |fij
(K)|s

ekp((gk/k)−P (s))epkP (s)
.

Using equations (49), (50), and (51) concludes the proof.

Remark 4.21. The measure ν can be extended over �N by the usual arguments. Moreover,
for any i = (i1, . . . , in) ∈ �∗, write n1 = k�n/k� and n2 = k(�n/k� + 1). Consider
j ∈ �n1 such that [i] ⊂ [j ] and � = (�1, . . . , �n2−n) ∈ �n2−n, one has

e−n2ε
|f(i1,...,in,�1,...,�n2−n)(K)|s

en2P (s)
≤ ν([i�]) ≤ ν([i]) ≤ ν([j ]) ≤ en1ε

|f(i1,...,in1 )(K)|s
en1P (s)

.

(52)

By Lemma 4.4, there exists a constant C > 0 such that, uniformly on i, j , i�, one has

C−1 ≤ min
{ |fj (K)|

|fi(K)| ,
|fi(K)|
|fi�(K)|

}
≤ max

{ |fj (K)|
|fi(K)| ,

|fi(K)|
|fi�(K)|

}
≤ C.

Hence, there exists a constant γs,ε such that for any i = (i1, . . . , in) ∈ �∗, one has

γ −1
s,ε e−nε |fi(K)|s

enP (s)
≤ ν([i]) ≤ γs,εe

nε |fi(K)|s
enP (s)

. (53)

Let us now prove Proposition 4.19.
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Proof. Call K the attractor of S. Let us show first that if any system S satisfying the
AWSC also verifies that, for any weakly conformal measure μ ∈ M(Rd) associated with
a probability vector (p1, . . . , pm) and S,

dim(μ) = −∑
1≤i≤m pi log pi

λν

, (54)

where ν is the measure associated on �N, then dim(S) = dimH (K).
Fix ε > 0 and consider k ∈ N, S′ = {fi}i∈�k , and ν as in Lemma 4.20 applied with

s = dim(S). Note that, since S satisfies the AWSC, so does S ′. Then, considering the
measure μ = ν ◦ π−1, where π is the canonical projection, one has

dim(S) − ε ≤ dim(μ) = −∑
i∈�k pi log pi

λν

≤ dim(S) + ε.

This proves that dimH (K) ≥ dim(S) − ε. Since it always holds that dimH (K) ≤ dim(S)

(see [15]) and ε is arbitrary,

dimH (K) = dim(S).

Let us show that, for any system satisfying the AWSC, equation (54) holds for every
weakly conformal measure μ.

Let μ ∈ M(Rd) be a weakly conformal measure associated with S and a probability
vector (p1, . . . , pm) and ν ∈ M(�N) such that μ = ν ◦ π−1.

It comes from the proof of Theorem 4.8 [19] (applied to μ) that for any ε > 0,
for μ-almost any x ∈ K such that μπ−1({x}) exists and satisfies the two first items of
Theorem 4.8, there exists n0 large enough so that, for any n ≥ n0, there exists i1, . . . , iNn

such that:
• for any 1 ≤ j ≤ Nn,

e−n(λ+ε) ≤ |fij
(K)| ≤ e−n(λ−ε); (55)

• one has

μπ−1({x})
( ⋃

1≤j≤Nn

[ij ]
)

≥ 1
2

; (56)

• for any 1 ≤ j ≤ Nn,

e−n(h+ε) ≤ μπ−1({x})([ij ]) ≤ e−n(h−ε). (57)

Assume that h > 0 and take 0 < ε < min{h/2, λ/2}.
Combining equations (56) and (57), one gets

Nn ≥ 1
2en(h−ε). (58)

Note that #{k : e−n(λ+ε) ≤ 2−k ≤ e−n(λ−ε)} ≤ (2nε/log 2). As a consequence, there exists
k ∈ [n(λ − ε)/log 2, n(λ + ε)/log 2] such that

#�(k) ∩ {[ij ]}1≤j≤Nn ≥ Nn

2nε/log 2
≥ (1/2)enh/2

2nε/log 2
. (59)
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Since for any ≤ j ≤ Nn, [ij ] ∩ π−1({x}) �= ∅, one also has fij
(K) ⊂ B(x, e−n(λ−ε)), so

that, writing n′ = �n(λ − ε)/log 2�, one has

#{i ∈ �(n′) : fi(K) ∩ B(x, 2−n′
)} ≥ (1/2)enh/2

2nε/log 2
. (60)

In particular, recalling equation (40) and Proposition 4.13,

log tk

k
� 0

and S does not satisfy the AWSC. As a consequence, S satisfies the AWSC implying h = 0,
which, recalling the last item of Theorem 4.8, concludes the proof.

Remark 4.22. For simplicity, we established the result for weakly conformal measures,
but Theorem 4.8, that is, [19, Theorem 2.1], is actually stated for ergodic measures and a
careful reader will notice that the same proof combined with [19, Theorem 2.1] actually
shows that if the IFS S satisfies AWSC, for every ergodic measure ν ∈ M(�N) (with
respect to the shift σ ), one has

dimH ν ◦ π−1 = h(ν)

λν

,

where λν is the Lyapunov exponent associated with ν and h(ν) is defined as the positive
number for which, for ν-almost (xn)n∈N, one has

h(ν) = lim
n→+∞

− log ν([(x1, . . . , xn])
n

.

We also state the following corollary, which will be useful later in the manuscript.

COROLLARY 4.23. If S is weakly conformal, then any weakly conformal measure μ

satisfies equation (54). So by Corollary 4.7, dimH μ depends continuously on the choice
of the probability vector.

5. Mass transference principle and quasi-Bernoulli measures
The classical mass transference principle of Beresnevitch and Velani [7] (and many
others [14, 22, 26]) relies on the fact that the ambient measure is Ahlfors-regular.
However, to establish Theorem 3.1, one needs a comparable theorem when the measure
is inhomogeneous (that is, not Ahlfors-regular).

Such theorems were first established by Barral and Seuret [5] and a general version
(in terms of the measure involved) was given in [10, Theorem 2.2]. The key geometric
notion developed in [10] to handle inhomogeneous mass transference principles is the
following.

Definition 5.1. Let μ ∈ M(Rd) and s ≥ 0. The s-dimensional μ-essential Hausdorff
content of a set A ⊂ B(Rd) is defined as

Hμ,s∞ (A) = inf{Hs∞(E) : E ⊂ A, μ(E) = μ(A)}. (61)
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As in the self-similar case treated in [10, Theorem 2.6], precise estimates of Hμ,s∞ (A)

are established when μ is a C1 weakly conformal measure in Theorem 5.5 below.
We will need the following notion of asymptotically covering sequences of balls,

developed in [13] (and also used in [10]), to establish the desired mass transference
principle.

Definition 5.2. Let μ ∈ M(Rd). The sequence B = (Bn)n∈N of closed balls of Rd

satisfying |Bn| → 0 is said to be μ-asymptotically covering (μ-a.c.) when there exists a
constant C > 0 such that for every open set � ⊂ Rd and g ∈ N, there is an integer N� ∈ N
as well as g ≤ n1 ≤ · · · ≤ nN� such that:

(i) for all 1 ≤ i ≤ N�, Bni
⊂ �;

(ii) for all 1 ≤ i �= j ≤ N�, Bni
∩ Bnj

= ∅;
(iii) also,

μ

( N�⋃
i=1

Bni

)
≥ Cμ(�). (62)

The following proposition is proved in [13], the second item will be used to apply our
main theorem to self-conformal measures. For more details about this notion derived from
a covering property proved in the KGB lemma in [7], one refers to [13].

PROPOSITION 5.3. Let μ ∈ M(Rd) and B = (Bn := B(xn, rn))n∈N be a sequence of
balls of Rd with limn→+∞ rn = 0.
(1) If B is μ-a.c., then μ(lim supn→+∞ Bn) = 1.
(2) If there exists v < 1 such that μ(lim supn→+∞(vBn)) = 1, then B is μ-a.c.
(3) If μ is doubling, then B is μ-a.c. if and only if there exists 0 < v ≤ 1 such that

μ(lim supn→+∞(vBn)) = 1.

The mass transference principle associated with these notions is the following [10,
Theorem 2.2].

THEOREM 5.4. [10] Let μ ∈ M(Rd), B = (Bn)n∈N be a μ-a.c. sequence of closed balls
of Rd such that |Bn| → 0, and U = (Un)n∈N a sequence of open sets such that Un ⊂ Bn for
all n ∈ N. Let 0 ≤ s < dimH (μ) such that for every n large enough, Hμ,s∞ (Un) ≥ μ(Bn).

Then,

dimH

(
lim sup
n→+∞

Un

)
≥ s. (63)

To apply Theorem 5.4, precise estimates of essential contents of open sets must
be achieved. The next subsection is dedicated to this problem when the measure is
self-conformal and in the last subsection of §5, the mass transference principle for weakly
conformal measures is established.

5.1. Essential content for weakly conformal measures. Estimates on essential contents
for weakly conformal measures are now established. These estimates are similar to that
established in [10, Theorem 2.6] for self-similar measures, but the introduction of the
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weakly conformal settings brings a number of geometrical difficulties, so for the sake of
completeness, we provide all the details regarding these estimates.

THEOREM 5.5. Let S be a C1 weakly conformal IFS of Rd .
Let K be the attractor of S and μ be a measure on K which satisfies that, for every

i ∈ ⋃
k≥1{1, . . . , m}k , μ ◦ f −1

i is absolutely continuous with respect to μ. Then, we have
the following.

For any 0 ≤ s < dimH (μ), for any 0 < ε ≤ 1
2 , there exists a constant c =

c(d, μ, s, ε) > 0 depending on the dimensions d, μ, s, and ε only, such that for any
ball B = B(x, r) centered on K and r ≤ 1, for any open set �, one has

c(d, μ, s, ε)|B|s+ε ≤ Hμ,s∞ (B) ≤ Hμ,s∞ (B) ≤ |B|s ,

c(d, μ, s, ε)Hs+ε∞ (� ∩ K) ≤ Hμ,s∞ (�) ≤ Hs∞(� ∩ K).
(64)

For any s > dimH (μ), Hμ,s∞ (�) = 0.

• The system S is not assumed to verify any separation condition.
• When the maps are similarities, one still has, for any s > dimH (μ), Hμ,s∞ (�) = 0, but

for s < dim(μ), there exists a constant c(d , μ, s) such that the following more precise
estimates hold true [10, Theorem 2.6]:

c(d , μ, s)|B|s ≤ Hμ,s∞ (B) ≤ Hμ,s∞ (B) ≤ |B|s ,

c(d, μ, s)Hs∞(� ∩ K) ≤ Hμ,s∞ (�) ≤ Hs∞(� ∩ K).
(65)

• When the measure μ is weakly conformal (Definition 2.3) or the projection of a Gibbs
measure, μ is exact dimensional (see [19, Theorem 2.1] for instance), which implies
that dimH μ = dimH μ. In this case, Theorem 5.5 provides a complete description
of the essential Hausdorff content, except at s = dimH μ (this case must depend in
general on the separation property of the IFS).

Before proving Theorem 5.5, we prove that projections of quasi-Bernoulli measures satisfy
the assumptions of Theorem 5.5.

Let ν ∈ M({1, . . . , m}N) be a measure. We call ν a quasi-Bernoulli measure if there
exists C > 0 such that for every i, j ∈ ⋃

k≥1{1, . . . , m}k , one has

C−1 ≤ ν([ij ])

ν([i]) × ν([j ])
≤ C.

PROPOSITION 5.6. Let S = {f1, . . . , fm} be a weakly conformal IFS, let K be its attractor
and π the canonical projection from {1, . . . , m}N to K. Let ν be a quasi-Bernoulli measure
on {1, . . . , m}N such that for every 1 ≤ i ≤ m, ν([i]) �= 0 and write μ = ν ◦ π−1. Then,
for every n ∈ N and every i ∈ {1, . . . , m}n, μ ◦ f −1

i is absolutely continuous with respect
to μ.

Proof. Note that since for every 1 ≤ i ≤ m, ν([i]) �= 0, one has for every n ∈ N and every
i = (i1, . . . , in) ∈ {1, . . . , m}n,

ν([i]) ≥ 1
Cn

n∏
k=1

ν([ik]) > 0.
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In addition, for every Borel set E ⊂ Rd , one has

ν(π−1(E) ∩ [i]) = ν
{
i(xn)n∈N : fi

(
lim

n→+∞ fx1 ◦ · · · ◦ fxn(0)
)

∈ E
}

= ν
{
i(xn)n∈N : lim

n→+∞ fx1 ◦ · · · ◦ fxn(0) ∈ f −1
i (E)

}
= ν{i(xn)n∈N : (xn)n∈N ∈ π−1 ◦ f −1

i (E)}.
This implies that

C−1ν(i)ν(π−1 ◦ f −1
i (E)) ≤ ν(π−1(E) ∩ [i]) ≤ Cν(i)ν(π−1 ◦ f −1

i (E)),

that is,

C−1ν(i)μ(f −1
i (E)) ≤ ν(π−1(E) ∩ [i]) ≤ Cν(i)μ(f −1

i (E)).

Since, for every n ∈ N,

μ(E) = ν(π−1(E)) =
∑

j∈{1,...,m}n
ν(π−1(E) ∩ [j ]),

we have

C−1
∑

j∈{1,...,m}n
ν(j)μ(f −1

j (E)) ≤ μ(E) ≤ C
∑

j∈{1,...,m}n
ν(j)μ(f −1

j (E)).

So,

μ(E) = 0 �⇒ C−1ν(i)μ(f −1
i (E)) = 0 �⇒ μ(f −1

i (E)) = 0,

which proves that μ ◦ f −1
i is absolutely continuous with respect to μ.

Let us now prove Theorem 5.5.

Proof. As mentioned above, the proof of Theorem 5.5 is similar to the proof of (65)
from [10], only it is made significantly more technical by the assumption that the IFS
is weakly conformal.

Let us recall the well-known Besicovitch covering theorem.

THEOREM 5.7. [28] There exists Qd ∈ N�, a constant depending only on the dimension
d, such that for every E ⊂ [0, 1]d , for every set F = {B(x, r(x)) : x ∈ E, r(x) > 0}, there
exists F1, . . . , FQd

finite or countable sub-families of F such that:
• for all 1 ≤ i ≤ Qd , for all L �= L′ ∈ Fi , one has L ∩ L′ = ∅.
• E is covered by the families Fi , that is,

E ⊂
⋃

1≤i≤Qd

⋃
L∈Fi

L. (66)

The proof of Theorem 5.7 relies on the following geometric lemma, which will also be
used.
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LEMMA 5.8. [28] Let B = (Bn)n∈N be a family of balls and B a ball such that:
(i) for all n ≥ 1, |Bn| ≥ 1

2 |B|;
(ii) for all n1 �= n2 ≥ 1, the center of Bn1 does not belong to Bn2 .
Then, B intersects less than Qd elements of B, where Qd is the same constant as in
Theorem 5.7.

Let us first prove the above estimates for balls. We fix S = {f1, . . . , fm} a weakly
conformal IFS and we denote by K its attractor.

PROPOSITION 5.9. Let μ be a measure supported on K satisfying that for every
i ∈ ⋃

n≥1{1, . . . , m}n, μ(f −1
i ) is absolutely continuous with respect to μ. Then, for

any 0 < ε ≤ dimH (μ), any 0 ≤ ε′ ≤ 1
2 such that dimH (μ) − ε + ε′ > 0, there exists a

constant χ(d , μ, ε, ε′) > 0 such that for any ball B = B(x, r) with x ∈ K and r ≤ 1,
one has

χ(d, μ, ε, ε′)|B|dimH (μ)−ε+ε′ ≤ Hμ,dimH (μ)−ε
∞ (B) ≤ Hμ,dimH (μ)−ε

∞ (B) ≤ |B|dimH (μ)−ε.

In addition, for any s > dimH (μ), Hμ,s∞ (B) = 0.

Proof. Note first that, by definition of Hμ,s∞ (Definition 5.1), for any s > dimH (μ),
Hμ,s∞ (B) = 0.

Let us consider 0 ≤ s < dimH (μ) and start by a few remarks.
Set α = dimH (μ), and let ε > 0 and ρ > 0 be two real numbers. One defines

Eα,ρ,ε
μ = {x ∈ Rd : for all r ≤ ρ, μ(B(x, r)) ≤ rα−ε}.

By definition of dimH μ (Definition 2.2), for every ε > 0,

μ

( ⋃
ρ>0

Eα,ρ,ε
μ

)
= 1.

Let ε > 0 and 0 < ρε ≤ 1 be two real numbers such that μ(E
α,ρε ,ε
μ ) ≥ 1

2 and write
E = E

α,ρε ,ε
μ .

Write ci = |fi(K)|. Let us fix i = (i1, . . . , ik) ∈ �∗. For any x ∈ K and r > 0, by
equations (21) and (22) applied with θ = ε′, one has

fi(B(x, r)) ⊃ B(fi(x0), Ĉε′ci(x0)
1−ε′

r) ⊃ B

(
fi(x0),

Ĉ
−2/(1−ε′)
ε′

|K|−(1+ε′)/(1−ε′) c
(1+ε′)/(1−ε′)
i r

)
.

Remember that ε′ ≤ 1
2 . Since (1 + ε′)/(1 − ε′) ≤ 1 + 4ε′,

fi(B(x, r)) ⊃ B(fi(x0), Ĉ
−2/(1−ε′)
ε′ · |K|(1+ε′)/(1−ε′)c1+4ε′

i r). (67)

Writing μi = μ(f −1
i ), equation (67) yields

Ei := fi(E)

= {fi(x) ∈ K : for all r ≤ ρε, μ(B(x, r)) ≤ rα−ε}
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⊂
{
fi(x), x ∈ K : for all r ≤ ρε,

μ(f −1
i (B(fi(x0), Ĉ

−2/(1−ε′)
ε′ · |K|(1+ε′)/(1−ε′)c1+4ε′

i r)))

≤
(

Ĉ
−2/(1−ε′)
ε′ · |K|(1+ε′)/(1−ε′)c1+4ε′

i r

Ĉ
−2/(1−ε′)
ε′ · |K|(1+ε′)/(1−ε′)c1+4ε′

i

)α−ε}

=
{
y ∈ fi(K) : for all r ′ ≤ Ĉ

−2/(1−ε′)
ε′ · |K|(1+ε′)/(1−ε′)c1+4ε′

i ρε,

μi(B(y, r ′)) ≤
(

r ′

Ĉ
−2/(1−ε′)
ε′ · |K|(1+ε′)/(1−ε′)c1+4ε′

i

)α−ε}
. (68)

Notice also that

μi(Ei) = μ(E) ≥ 1
2 .

We are now ready to estimate the μ-essential content of a ball B centered in K.
Let us write

γ (S, ε′) = Ĉ
−2/(1−ε′)
ε′ · |K|(1+ε′)/(1−ε′). (69)

Let B = B(x, r) with x ∈ K and r ≤ c0 := minz∈K min1≤i≤m ‖f ′
i (z)‖.

Since x ∈ K , there exists i = (i1, . . . , ik) ∈ �∗ such that:
• x ∈ fi(K);
• |fi(K)| ≤ 1

3 |B|;
• |f(i1,...,ik−1)(K)| ≥ 1

3 |B|.
By equation (22), for any y ∈ K , one has

|fi(K)| ≥ Ĉ−1
ε′ ‖f ′

i (y)‖1+ε′ |K| (70)

and

‖fi(y)‖ = ‖f ′
(i1,...,in−1)

(fn(x)) ◦ f ′
in
(x)‖ ≥ ‖f ′

(i1,...,in−1)
(fn(x))‖c0

≥ |f(i1,...,in−1(K)|1/(1−ε′)Ĉ−1/(1−ε′)
ε′ · |K|−1/(1−ε′)c0. (71)

Combining equations (70) and (71), one obtains

ci = |fi(K)| ≥ Ĉ
−1−(1+ε′)/(1−ε′)
ε′ |K|−2ε′/(1−ε′)c1+ε′

0 |f(i1,...,in−1)(K)|(1+ε′)/(1−ε′)

≥ Ĉ
−1−(1+ε′)/(1−ε′)
ε′ |K|−2ε′/(1−ε′)c1+ε′

0 r1+4ε′
. (72)

Note that Ei ⊂ B.
Consider a set A ⊂ B verifying μ(A) = μ(B). One aims to give a lower bound for the

Hausdorff content of A which depends only on B, d, ε, ε′, and the measure μ.
Consider a sequence of balls (Ln = B(xn, �n))n≥1 covering A ∩ Ei such that

�n < γ (S, ε′)ρεc
1+4ε′
i and xn ∈ A ∩ Ei .

Since μi is absolutely continuous with respect to μ, it holds that μi(A) = 1.
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By equation (68) applied to each ball Ln, n ∈ N, one has (|Ln|/γ (S, ε′)c1+4ε′
i )α−ε ≥

μi(Ln), so that, recalling equation (72),∑
n∈N

|Ln|α−ε ≥
∑
n∈N

(γ (S, ε′)c1+4ε′
i )α−εμi(Ln) ≥ (γ (S, ε′)c1+4ε′

i )α−εμi

( ⋃
n∈N

Ln

)
≥ (γ (S, ε′)c1+4ε′

i )α−εμi(Ei) ≥ 1
2 (γ (S, ε′)c1+4ε′

i )α−ε

≥ κ(μ, ε′, ε)r(1+4ε′)2(α−ε) ≥ κ(μ, ε′, ε)r(1+16ε′)(α−ε), (73)

where κ(μ, ε′, ε) = 1
2γ (S, ε′)α−ε · (Ĉ−1−(1+ε′)/(1−ε′)

ε′ |K|−2ε′/(1−ε′)c1+ε′
0 )(1+4ε′)(α−ε).

This series of inequalities holds for any sequence of balls (Ln)n∈N with radius less
than γ (S, ε′)ρεc

1+4ε′
i centered in A ∩ Ei . One now proves that one can freely remove

those constraints on the center and the radius of the balls used to cover A ∩ Ei , up to a
multiplicative constant.

Consider balls (Ln = B(xn, �n))n≥1 covering A ∩ Ei such that �n < γ (S, ε′)ρεc
1+4ε′
i

but xn does not necessarily belongs to A ∩ Ei .
Let n ∈ N. One constructs recursively a sequence of balls (Ln,j )1≤j≤Jn such that the

following properties hold for any 1 ≤ j ≤ Jn:
• Ln,j is centered on A ∩ Ei ∩ Ln;
• A ∩ Ei ∩ Ln ⊂ ⋃

1≤j≤Jn
Ln,j ;

• for all 1 ≤ j ≤ Jn, |Ln,j | = |Ln|;
• the center of Ln,j does not belong to any Ln,j ′ for 1 ≤ j ′ �= j ≤ Jn.

To achieve this, simply consider y1 ∈ A ∩ Ei ∩ Ln and set L1,n = B(y1, �n). If A ∩
Ei ∩ Ln � L1,n, consider y2 ∈ A ∩ Ei ∩ Ln \ L1,n and set L2,n = B(y2, �n). If A ∩ Ei ∩
Ln � L1,n ∪ L2,n, consider y3 ∈ A ∩ Ei ∩ Ln \ L1,n ∪ L2,n and set L3,n = B(y3, �n), and
so on.

Note that for any 1 ≤ j ≤ Jn, any ball Lj ,n has radius �n, intersects Ln (which also
has radius �n), and, because yj /∈ ⋃

1≤j ′ �=j≤Jn
Lj ′,n, it holds that for any j �= j ′, 1

3Ln,j ∩
1
3Ln,j ′ = ∅. A volume argument yields that Jn ≤ Qd,1/3, where Qd,1/3 is constant which
only depends on the dimension d and the contraction factor 1

3 .
Hence, denoting by (L̃n)n∈N the collection of the corresponding balls centered on

A ∩ Ei associated with all the balls Ln, one has by equation (73) applied to (L̃n)n∈N,

∑
n∈N

|Ln|α−ε ≥ 1
Qd,1/3

∑
n∈N

|L̃n|α−ε ≥ κ(μ, ε′, ε)

Qd,1/3
r(1+4ε′)(α−ε).

Remark also that any ball of radius smaller than ci can be covered by at most
(2c−4ε′

i /γ (S, ε′)ρε)
d balls of radius γ (S, ε′)ρεc

1+4ε′
i . Moreover, by equation (72),

c−4ε′
i ≤ (Ĉ

−1−(1+ε′)/(1−ε′)
ε′ |K|−2ε′/(1−ε′)c1+ε′

0 )−4ε′
r−4ε′·(1+4ε′).

Setting

κ̂(μ, ε, ε′, d) =
(

2(Ĉ
−1−(1+ε′)/(1−ε′)
ε′ |K|−2ε′/(1−ε′)c1+ε′

0 )−4ε′

γ (S, ε′)ρε

)d

,
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any ball of radius less than ci can be covered by less than κ̂(μ, ε, ε′, d)r−4dε′·(1+4ε′) balls
of radius less than γ (S, ε′)ρεc

1+4ε′
i .

This proves that for any sequence of balls L̂n with |L̂n| ≤ ci covering A ∩ Ei , recalling
equation (73), it holds that∑

n∈N
|L̂n|α−ε ≥ Q−1

d,1/3κ̂(μ, ε, ε′, d)−1r4dε′·(1+4ε′)κ(μ, ε′, ε)r(1+16ε′)(α−ε) (74)

≥ Q−1
d,1/3κ̂(μ, ε, ε′, d)−1κ(μ, ε′, ε)r(1+16ε′)(α−ε)+4dε′·(1+4ε′). (75)

Recalling that |Ei | ≤ ci and Definition 4, since equation (74) is valid for any covering
(L̂n)n∈N of A ∩ Ei with |Ln| ≤ ci , one has

|B|α−ε ≥ Hα−ε∞ (A) ≥ Hα−ε∞ (A ∩ Ei)

≥ Q−1
d,1/3κ̂(μ, ε, ε′, d)−1κ(μ, ε′, ε)r(1+16ε′)(α−ε)+4dε′·(1+4ε′). (76)

Taking the inf over all the set A ⊂ B satisfying μ(A) = μ(B), one obtains

|B|α−ε ≥ Hμ,s∞ (B) ≥ Q−1
d,1/3κ̂(μ, ε, ε′, d)−1κ(μ, ε′, ε)r(1+16ε′)(α−ε)+4dε′·(1+4ε′).

The results stands for balls of diameter less than c0.
Set

ε′
0 = 16ε′(α − ε) + 4dε′ · (1 + 4ε′)

and write

γ (d , μ, ε, ε′
0) = c

α−ε+ε′
0

0 Q−1
d,1/3κ̂(μ, ε, ε′

0, d)−1κ(μ, ε′
0, ε).

For any ball of radius less than 1 centered on K, one has

|B|α−ε ≥ Hμ,α−ε∞ (B) ≥ γ (d, μ, ε, ε′
0)r

α−ε+ε′
0 .

The estimates of Theorem 5.5 are now established in the case of general open sets.
Recall that by item (5) of Proposition 5.14, for any s > dim(μ) and any set E,

Hμ,s∞ (E) = 0.
Let us fix s < dim(μ), ε′ > 0 and set ε′ = min{(dim(μ) − s)/2, 1

2 } > 0.
Since K ∩ � ⊂ � and μ(K ∩ �) = μ(�), it holds that

Hμ,s∞ (�) ≤ Hs∞(� ∩ K).

It remains to show that there exists a constant c(d, μ, s, ε′) such that for any open set
�, the converse inequality

c(d, μ, s, ε′)Hs+ε′
∞ (� ∩ K) ≤ Hμ,s∞ (�)

holds.
Let E ⊂ � be a Borel set such that μ(E) = μ(�) and

Hs∞(E) ≤ 2Hμ,s∞ (�). (77)
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Let {Ln}n∈N be a covering of E by balls verifying

Hs∞(L) ≤
∑
n≥0

|Ln|s ≤ 2Hs∞(E). (78)

The covering (Ln)n∈N will be modified into a covering (L̃n)n∈N verifying the following
properties:
• K ∩ � ⊂ ⋃

n∈N L̃n;
•

⋃
n∈N Ln ⊂ ⋃

n∈N L̃n;
• ∑

n≥0

|L̃n|s+ε′ ≤ 8.2s+ε′ Q2
d

γ (d, μ, ε, ε′)
∑
n≥0

|Ln|s ,

where Qd and γ (d , μ, ε, ε′) are the constants arising from Theorem 5.7 and
Proposition 5.9.

The last item together with equations (77) and (78) then immediately imply that

γ (d , μ, ε, ε′)
8.2s+ε′

Q2
d

Hs+ε′
∞ (K ∩ �) ≤ Hμ,s∞ (�).

Setting c(d, μ, ε, ε′) = γ (d , μ, ε, ε′)/8.2s+ε′
Q2

d will then conclude the proof.
Let us start the construction of the sequence (L̃n)n∈N.
Let � = (K \ ⋃

n∈N Bn) ∩ �. For every x ∈ �, fix 0 < rx ≤ 1 such that B(x, rx) ⊂ �.
One of the following alternatives must occur:
(1) for any ball Ln such that Ln ∩ B(x, rx) �= ∅, |Ln| ≤ rx ; or
(2) there exists nx ∈ N such that Lnx ∩ B(x, rx) �= ∅ and |Lnx | ≥ rx .

Consider the set S1 of points of X for which the first alternative holds.
By Theorem 5.7, it is possible to extract from the covering of S1, {B(x, rx), x ∈ S1},

Qd families of pairwise disjoint balls, F1, . . . , FQd
such that

S1 ⊂
⋃

1≤i≤Qd

⋃
L∈Fi

L.

Now, any ball Ln intersecting a ball L ∈ ⋃
1≤i≤Qd

Fi must satisfy |Ln| ≤ L. In particular,
since for any 1 ≤ i ≤ Qd , the balls of Fi are pairwise disjoint, applying Lemma 5.8 to
the ball of Fi intersecting L, we get that the ball Ln intersects at most Qd balls of Fi and
hence at most Q2

d balls of
⋃

1≤i≤Qd
Fi .

Let L ∈ ⋃
1≤i≤Qd

Fi . One aims at replacing all the balls Ln intersecting L by the
ball 2L.

For any 1 ≤ i ≤ Qd and any ball L ∈ Fi , denote by GL the set of balls Ln intersecting L.
Since E ⊂ ⋃

n∈N Ln and μ(E) = μ(�), one has E ∩ L ⊂ ⋃
B∈GL

B and μ(E ∩ L) =
μ(L). By Definition 5.1 and Proposition 5.9, this implies that

γ (d, μ, ε, ε′)|L|s+ε′ ≤ Hμ,s∞ (L) ≤
∑

B∈GL

Hμ,s∞ (B) ≤
∑

B∈GL

|B|s . (79)
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Replace the balls of GL by the ball L̂ = 2L (recall that
⋃

B∈GL
B ⊂ 2L). The new

sequence of balls so obtained by the previous construction applied to all the balls
L ∈ ⋃

≤i≤Qd
Fi is denoted by (L̂k)1≤k≤K , where 0 ≤ K ≤ +∞.

It follows from the construction and equation (79) that S1 ⊂ ⋃
1≤k≤K L̂k and

∑
1≤k≤K

( |L̂k|
2

)s+ε′

≤ Q2
d

γ (d, μ, ε, ε′)
∑
n≥0

|Ln|s . (80)

However, since for any x ∈ S2 = � \ S1, there exists nx ∈ N such that Lnx ∩
B(x, rx) �= ∅ and rx ≤ |Lnx |, one has S2 ⊂ ⋃

n∈N 2Ln, so that( ⋃
n∈N

Ln

)
∪

(
K ∩ � \

⋃
n∈N

Ln

)
⊂

( ⋃
1≤k≤K

L̂k

)
∪

( ⋃
n∈N

2Ln

)
.

Putting the elements of (L̂k)1≤k≤K and (2Ln)n≥0 in a single sequence (L̂n)n≥0, writing
(L̃n := 2L̂n)n∈N, by construction, K ∩ � ⊂ ⋃

n∈N L̃n and due to equation (80),

Hs+ε′
∞ (K ∩ �) ≤

∑
n≥0

|L̃n|s+ε′ ≤ 2s+ε′
(

Q2
d

γ (d, μ, ε, ε′)
+ 1

) ∑
n≥0

|Ln|s

≤ 8.2s+ε′ Q2
d

γ (d , μ, ε, ε′)
Hμ,s∞ (�).

The proof is concluded now by setting

c(d , μ, s, ε′) = γ (d , μ, dim(μ) − s, ε′)
Q2

d8.2s+ε′ .

Remark 5.10.
(1) The part of the proof of Theorem 5.5 which handles the case of open sets only relies

on the fact that there exists γ (d , μ, ε, ε′) such that for any x ∈ K , for any ρ > 0,
there exists 0 < rx ≤ ρ so that, writing B = B(x, rx),

γ (d , μ, ε, ε′)|B|dimH (μ)−ε+ε′ ≤ Hμ,dimH (μ)−ε
∞ (B)

≤ Hμ,dimH (μ)−ε
∞ (B) ≤ |B|dimH (μ)−ε. (81)

(2) It is easily verified that the estimates of Proposition 5.9 hold in particular if, for
s ≥ 0, there exists a constant C > 0 such that for any x ∈ supp(μ), any 0 < r <

R, (μ(B(x, r))/μ(B(x, R))) ≤ C.(r/R)s . This condition is naturally linked to the
lower Assouad dimension dimL(μ) of μ defined as [20]

dimL(μ) = inf
{
s ≥ 0 : for all x ∈ supp(μ),

for all 0 < r < R,
μ(B(x, r))

μ(B(x, R))
≤ C

(
r

R

)s}
. (82)

More precisely, the estimates of Proposition 5.9 and Theorem 5.5 hold for any
s < dimL(μ).
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5.2. Mass transference principle in the weakly conformal case. Combining Theorem 5.4
with Theorem 5.5 and Proposition 5.3 yields the following result.

THEOREM 5.11. Let S = {f1, . . . , fm} be a C1 weakly conformal IFS of a compact X with
attractor K and μ be a measure on K such that for every i ∈ ⋃

k≥1{1, . . . , m}k , μ ◦ f −1
i

is absolutely continuous with respect to μ.
Let (Bn)n∈N be a sequence of closed balls centered on K with limn→+∞ |Bn| = 0.

(1) Suppose that (Bn)n∈N is μ-a.c. Then, there exists a gauge function ζ such that
limr→0+(log(ζ(r))/log(r)) ≥ (dimH (μ)/δ) and Hζ (lim supn→∞ Bδ

n) > 0. In
particular,

dimH

(
lim sup
n→+∞

Bδ
n

)
≥ dimH (μ)

δ
. (83)

(2) Suppose that μ(lim supn→+∞ Bn) = 1. Then, equation (83) still holds but the
existence of the gauge function is not ensured. Furthermore, if μ is doubling, then
(Bn)n∈N is μ-a.c., so that the conclusion of item (1) holds.

Remark 5.12. One emphasizes that, for the purpose of this article, the results are stated
for balls but Theorems 5.5 and 5.4 allow to deal with more general open sets. For
instance, given 1 ≤ τ1 ≤ · · · ≤ τd , if Un is an open rectangle of sidelength

∏n
i=1 |Bn|τi ,

one needs to estimate the (classical) Hausdorff content of the union of the cubes C ⊂ Un

of length-side |Bn|τd (the smallest side of Un) for which C ∩ K �= ∅. This is achievable as
soon as the rectangle has sides in ‘natural directions’ for the IFS we consider (for instance,
horizontal rectangles on a self-similar carpet).

Proof. One proves the first item of Theorem 5.11.
Fix μ ∈ M(Rd) supported on K satisfying that for every i ∈ ⋃

k≥1{1, . . . , m}k ,
μ ◦ f −1

i is absolutely continuous with respect to μ. Let (Bn)n∈N be a μ-a.c. sequence
of balls centered on K satisfying |Bn| → 0. Let us fix ε > 0.

Let us start with a lemma whose proof can be found in [12, Lemma 4.9].

LEMMA 5.13. Let μ ∈ M(Rd). Let B = (Bn := B(xn, rn))n∈N be a μ-a.c. sequence of
balls of Rd . Then, for every ε > 0, there exists a μ-a.c. sub-sequence (Bφ(n))n∈N of B
such that for every n ∈ N, μ(Bφ(n)) ≤ (rφ(n))

dimH (μ)−ε.

By Lemma 5.13, up to an extraction, one can assume that μ(Bn) ≤ |Bn|dim(μ)−ε/4.
The following proposition is proved in [10, Proposition 3.12].

PROPOSITION 5.14. Let μ ∈ M(Rd), s ≥ 0, and A ⊂ Rd be a Borel set. The
s-dimensional Hμ,s∞ (·) outer measure satisfies the following properties.
(1) If |A| ≤ 1, the mapping s ≥ 0 �→ Hμ,s∞ (A) is decreasing from Hμ,0∞ (A) = 1 to

limt→+∞ Hμ,t∞ (A) = 0.
(2) 0 ≤ Hμ,s∞ (A) ≤ min{|A|s , Hs∞(A)}.
(3) For every subset B ⊂ A with μ(A) = μ(B), Hμ,s∞ (A) = Hμ,s∞ (B).
(4) For every δ ≥ 1, Hμ,s/δ∞ (A) ≥ (Hμ,s∞ (A))1/δ .
(5) For every s > dimH (μ), Hμ,s∞ (A) = 0.
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Also, by Theorem 5.5 and item (5) of Proposition 5.14, there exists a constant
c(d, μ, dim(μ) − ε/2, ε/4) such that, for any n ∈ N, for any δ > 1,

Hμ,(dimH (μ)−ε)/δ(Bn
δ) ≥ c

(
d , μ, dimH (μ) − ε,

ε

2

)
|Bn|dimH (μ)−ε/2.

Taking n large enough so that |Bn|−ε/4 ≥ c(d, μ, dimH (μ)) − ε/2, ε/4), one gets

Hμ,(dimH (μ)−ε/δ)(Bn
δ) ≥ |Bn|dimH (μ)−ε/4 ≥ μ(Bn). (84)

Defining Uδ = (Bn
δ)n∈N, using equation (84) and Theorem 5.4 with sε = (dimH (μ)−ε/δ)

and letting ε → 0 finishes the proof of the first item.
Assume now that the sequence (Bn)n∈N satisfies only μ(lim supn→+∞ Bn). Then, by

Proposition 5.3, (2Bn)n∈N is μ-a.c.
Since, for any ε > 0,

lim sup
n→+∞

(2Bn)
δ+ε ⊂ lim sup

n→+∞
Bδ

n,

applying the first item of Theorem 5.11 to (2Bn)n∈N, one gets

dimH

(
lim sup
n→+∞

Bδ
n

)
≥ dimH (μ)

δ + ε
.

Since ε was arbitrary, the second item is proved.

Remark 5.15. The proof of Theorem 5.11 actually shows more. With the notation of [10,
Definition 2.5], it is proved that s(μ, B, Uδ) ≥ (dimH (μ)/δ) so that [10, Theorem 2.11]
holds for self-conformal measures instead of self-similar measures.

6. Proof of Theorem 3.1
Before starting the proof of Theorem 3.1, we explain why the very natural strategy which
consists in approximating the attractor K by the sub-attractor of IFSs satisfying the strong
separation condition does not yield any interesting conclusion in most (if not every) cases.
Let S = {f1, . . . , fm} be a self-similar IFS and let K be its attractor. Recall that S is said
to satisfy the strong separation condition (SSC) if, for every 1 ≤ i �= j ≤ m, we have

fi(K) ∩ fj (K) = ∅.

Let us start by proving the following result.

PROPOSITION 6.1. Let S = {f1, . . . , fm} be a self-similar IFS satisfying the strong
separation condition and denote by K its attractor. Then, for every

x0 /∈
⋃
i∈�∗

f −1
i (K),

for every δ > 1, one has

W(x0, δ) = ∅,

where W(x0, δ) is defined as in Theorem 3.1.

Proof. Let us write ci as the contraction ratio of the map fi .
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Since S satisfies the strong separation condition, there exists an open set U such that
(see [3] for instance):
(a) K ⊂ U ;
(b) for every i ∈ �∗, fi(U) ⊂ U ;
(c) for every n ∈ N, for every i �= j ∈ �n, fi(U) ∩ fj (U) = ∅.
Moreover, there must exist N ∈ N so large that for every n ≥ N , for every i ∈ �n, one has
fi(x0) ∈ U . Now, fix r > 0 small enough so that for every i ∈ �N , one has

B(fi(x0), r) ⊂ U \ K

and set

C = min
{

r

ci

, i ∈ �N

}
.

Fix k ∈ N, i, i′ ∈ �N , and j , j ′ ∈ �k . We want to show that there exists a constant
C′ > 0 such that, writing h = ji, one has

d(fh(x0), K) ≥ C′ch.

Assume that j �= j ′, then by items (b) and (c), one has

fj (B(fi(x0), r)) ∩ fj ′(K) = ∅,

which implies that

d(fji(x0), fj ′i′(K)) ≥ rcj ≥ Ccjci .

To deal with the case where j = j ′, we recall first that, since x0 /∈ ⋃
i∈�∗ f −1

i (K), the
following quantity is strictly positive:

C̃ = min
{

d(fi(x), fi′(K))

ci

, i, i′ ∈ �N

}
.

Hence, in this case, we get

d(fji(x0), fj ′i′(K)) ≥ cj d(fi(x), fi′(K)) ≥ C̃cj ci .

In any case, we established that there exists a constant C ′ such that for every n ≥ N and
h, h′ ∈ �n, we have

d(fh(x0), fh′(K)) ≥ C′ch.

This yields

d(fh(x0), K) ≥ C′ch.

In particular, recalling that δ > 1, one has

B(fh(x0), cδ
h) ∩ K = ∅,

which implies that

W(x0, δ) = ∅.
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We now establish that, in most cases, one cannot handle the case of overlapping
self-similar IFSs by approximating the IFS by the sub-attractor of IFSs satisfying the strong
separation condition.

PROPOSITION 6.2. Let S = {f1, . . . , fm} be a self-similar IFS and K its attractor.
Assume that S satisfies the following properties:
• dimH K = dim(S);
• S does not satisfy the open set condition;
• there exists an exact-dimensional measure μ ∈ M(Rd) such that supp(μ) = K and

dimH yμ = dimH K .
Then, there exists a set E ⊂ K with dimH E = dimH K such that for every x ∈ E, every
sub-IFS S̃ = {fi1

, . . . , fik
} satisfying the strong separation condition (where i1, . . . , ik

are words on {1, . . . , m}), one has for every δ > 1,

W̃ (x, δ) = ∅,

where W̃ (x, δ) denotes the set W(x, δ) defined using the IFS S̃.

Note that the hypotheses of Proposition 6.2 are quite weak. It applies, for instance, to
every self-similar IFS on the real line satisfying the exponential separation condition with
similarity dimension smaller than 1 and not the open set condition. More generally, it also
applies to many examples of IFS which do not satisfy the open set condition to which
Theorem 3.1 is applied in the present paper.

Proof. Let us call

S =
{
S̃ = {fi1

, . . . , fik
} : i1, . . . , ik ∈

⋃
n≥0

{1, . . . , m}n, S̃ satisfies SSC
}

.

Note that S is countable and denote by (Kn)n∈N the sequence of attractors associated with
the elements of S. Let us recall that, due to [35], since dimH K = dim(S) and S does not
satisfy the open set condition,

HdimH K(K) = 0.

Also, recalling that for every n ∈ N, Kn ⊂ K satisfies the strong separation condition, one
has HdimH Kn(Kn) > 0. In particular, this implies that dimH Kn < dimH K and also that

dimH

⋃
i∈⋃

n≥0{1,...,m}n
f −1

i (Kn) := K̃n < dimH K .

Let μ be a dimH K-exact dimensional measure with supp(μ) = K . The above argument
proves that for every n ∈ N, μ(K̃n) = 0, so that

μ

(
K \

⋃
n≥0

K̃n

)
= 1.
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In particular, setting E = K \ ⋃
n≥0 K̃n, one has dimH E = dimH K . Moreover, for every

x ∈ E and every S̃ ∈ S, by Proposition 6.1, for every δ > 1,

W̃ (x, δ) = ∅,

where W̃ (x, δ) is defined as in Theorem 3.1 but using the IFS S̃.

Remark 6.3. It would be interesting to extend the above result to a sub-attractor satisfying
the open set condition but this question seems related to some open question related to the
size of the set of so-called forbidden points in the case of a self-similar IFS. One refers
to [3] for more details.

6.1. Proof of item (1) of Theorem 3.1. Write s = dimH (K). The notation of the proof of
Theorem 5.5 is adopted in this section.

LEMMA 6.4. For any x0 ∈ U and any δ < 1,

lim sup
i∈�∗

B(fi(x0), |fi(K)|δ) = K .

Proof. Note first that, since K is the (compact) attractor of S,

lim sup
i∈�∗

B(fi(x0), |fi(K)|δ) ⊂ K .

We now prove the converse inclusion.
Let c > 1. By Lemma 4.1 and Remark 4.2 applied with

X =
⋃
i∈�∗

fi(x0) ∪ K ,

there exists D(c) > 0 such that for any y ∈ K and any i = (i1, . . . , in) ∈ �∗,

‖fi(x0) − fi(y)‖ ≤ D(c)cn‖f ′
i (y)‖ · ‖x0 − y‖. (85)

By Lemma 4.1 and equation (20), one has

‖f ′
i (y)‖ ≤ D(c)cn|fi(K)|. (86)

Combining equations (85) and (86), one gets

‖fi(x0) − fi(y)‖ ≤ max
z∈K

d(x0, z)D(c)2c2n|fi(K)|. (87)

Recall that there exist 0 < t1 < t2 so that, uniformly on n and i ∈ �n,

t1 ≤ log ‖fi‖
n

≤ t2.

Set ε = δ − 1 > 0, taking c = et1ε/4 and writing κ(S, ε, x0) = maxz∈K d(x, z)D(c)2, one
gets

‖fi(x0) − fi(y)‖ ≤ κ(S, ε, x0)|fi(K)|1−ε/2. (88)
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In particular, since |fi(K)| → 0, for n large enough, for any i ∈ �n,

fi(K) ⊂ B(fi(x0), |fi(K)|1−ε).

Recalling that

K =
⋃

i∈�n

fi(K),

one concludes that K ⊂ lim supi∈�∗ B(fi(x0), |fi(K)|1−ε).

Remark 6.5. In the case where S = {f1, . . . , fm} is a self-similar system, a more
precise statement can be given. Denote by 0 < c1, . . . , cm < 1 the contracting ratio of
respectively f1, . . . , fm. In the self-similar case, for any z ∈ K and any i ∈ �∗,

d(fi(x0), fi(z)) = cid(x, z) ≤ ci max
y∈K

d(y, x0).

Writing C(x0, S) = maxy∈K d(y, x), this implies that fi(K) ⊂ B(fi(x0), C(x0, S)ci) and

K = lim sup
i∈�∗

B(fi(x0), C(x0, S)ci).

6.2. Proof of item (2) of Theorem 3.1.

6.2.1. Variational principle and C1 weakly conformal IFS. A modified version of
a proposition of Feng and Hu used in the proof of their variational principle [19,
Theorem 2.13] is needed to prove item (3) of Theorem 3.1. The following subsection is
dedicated to this modification.

The result from Feng and Hu we wish to modify as follows.

PROPOSITION 6.6. (Feng and Hu [19]) Let m ≥ 2 be an integer and S = {f1, . . . , fm}
a weakly conformal IFS. For any ε > 0, there exists nε ∈ N as well as words
i1, . . . , inε

∈ �∗ such that:
• for any 1 ≤ j < j ′ ≤ nε, fij

(K) ∩ fij ′ (K) = ∅;
• writing Sε = {fi1

, . . . , finε
}, there exists a probability vector Pε = (p1, . . . , pnε )

such that the weakly conformal measure με associated with Pε and Sε satisfies
dimH (με) ≥ dimH (K) − ε.

Let us remark that, due to the the first item, the IFS Sε = {T1, . . . , Tnε } satisfies the SSC
and might not have K as attractor. We wish to modify this proposition so that the attractor
of the IFS Sε can be taken equal to K.

Note also that in Proposition 6.6, because Sε satisfies the SSC, by Corollary 4.23, the
dimension of a weakly conformal measure associated with Sε depends continuously on the
choice of the probability vector. Moreover, writing νε the canonical measure on the coding
associated with με, then the Lyapunov exponent λνε > 0 (see Definition 4.5) satisfies for
νε-almost every (xn)n∈N that

lim
n→+∞

log |Tx1 ◦ · · · ◦ Txn(K)|
n

= −λνε .

As announced above, one proves the following modified version of Proposition 6.6.
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PROPOSITION 6.7. Let ε0 > 0. There exists an IFS Sε0 and a weakly conformal measure
με0 (associated with Sε0) such that supp(με0) = K and dimH (με0) ≥ dimH K − ε0.

Remark 6.8. Similar to the proof of [19, Theorem 2.13], Proposition 6.7 yields a measure
on �N and taking weak limits of ergodic averages of this measure gives an ergodic measure
fully supported on K with dimension larger s − ε0.

Proof. Fix ε = (ε0/2) > 0. Consider Sε = {fi1
, . . . , finε

}, Pε, με as in Theorem 6.6 and
0 < ε′ < (1/5nεm) · min1≤i≤m pi .

Set {
gj = fj for 1 ≤ j ≤ m,

gj = fij−m
for m + 1 ≤ j ≤ nε + m.

Also set S̃ε = {g1, . . . , gm+nε } and note that S̃ε has attractor K. Denote by
P̃ε,ε′ = (p̃1, . . . , p̃m+nε ) the probability vector defined as⎧⎨⎩p̃j = ε′ for 1 ≤ j ≤ m,

p̃j = pj−m − m

nε

ε′.

Let με,ε′ be the weakly conformal measure associated with S̃ε and P̃ε,ε′ . Applying
Theorem 4.8 to με,ε′ , let us prove that the corresponding h (see second item of
Theorem 4.8) tends to 0 as ε′ tends to 0.

Set � = {1, . . . , nε + m} and �∗ = ⋃
k>0 �k . Let us denote by π� the canonical

projection of �N on K. One endows �� = �N with the metric d� defined for any
x = (xn), y = (yn) ∈ �� by

d�(x, y) = e− min{i∈N:xi �=yi } and d�(x, x) = 0. (89)

Let us remark that the metric d allows one to define on �N the Hausdorff dimension and
the Packing dimension in a similar way than on Rd .

Let νε,ε′ ∈ M(�N) be the Bernoulli product verifying νε,ε′ ◦ π−1
� = με,ε′ .

By the strong law of large numbers, for every x = (xn)n∈N in a set �̃� of νε,ε′
-full

measure, there exists Nx ∈ N such that for any n ≥ Nx , any 1 ≤ i ≤ nε + m,∣∣∣∣#{1 ≤ j ≤ n : xj = i}
n

− p̃i

∣∣∣∣ ≤ ε′. (90)

For n ∈ N, write

An = {x ∈ �̃� : Nx ≤ n}.
By Theorem 4.8, there exists N such that, using the notation involved,

με,ε′(BN =
{
y : dimH (μ

π−1
� ({y})

ε,ε′ ) = h and μ
π−1

� ({y})
ε,ε′ (AN) ≥ 1

2

})
≥ 1

2
.

We fix such an N.
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The following lemma is useful to estimate the number of cylinders of generation n which
intersects AN .

LEMMA 6.9. Consider N ∈ N, y ∈ K , and x = (xn)n∈N, x̃ = (̃xn)n∈N ∈ π−1
� ({y}).

Assume that for every 1 ≤ k ≤ N ,

(xk or x̃k ∈ {1, . . . , m}) ⇒ (xk = x̃k).

Then, for every 0 ≤ j ≤ N such that xj ≥ m + 1, one also has

xj = x̃j .

Proof. We proceed by contradiction. Suppose that the claim is not true and let
xj0 ≥ m + 1 be such for any 1 ≤ i < j0, x̃i = xi and x̃j0 �= xj0 . Write

z = lim
k→+∞ gxj0+1 ◦ gxj0+2 ◦ · · · ◦ gxj0+k

(0)

and

z̃ = lim
k→+∞ gx̃j0+1 ◦ gx̃j0+2 ◦ · · · gx̃j0+k

(0).

Then, recalling that x, x̃ ∈ π−1
� ({y}),

gx1 ◦ · · · ◦ gxj0−1 ◦ gxj0
(z) = gx0 ◦ · · · ◦ gxj0−1 ◦ gx̃j0

(̃z) = y,

which implies that

gxj0
(z) = gx̃j0

(̃z).

Recalling that the system {gm+1, . . . , gm+Nε } satisfies the SSC, one also has

gxj0
(K) ∩ gx̃j0

(K) = ∅,

which yields a contradiction.

Continuing the proof of the proposition, we note that, by equation (90), for every
y ∈ BN , x = (xn)n∈N ∈ π−1

θ ({y}) ∩ AN , and N ′ ≥ N ,

#{1 ≤ k ≤ N ′ : xk ∈ {1, . . . , m}} ≤ 2mε′N ′. (91)

Lemma 6.9 together with equation (91) yields for N large enough,

#{i ∈ �N ′
: [i] ∩ AN ∩ π−1

� ({y}) �= ∅} ≤
�2mε′N ′�+1∑

k=0

(
N ′

k

)
mk .

Since ε′ < (1/5m) so that 2mε′N ′ < (N ′/2),

#{i ∈ �N ′
: [i] ∩ AN ∩ π−1

� ({y}) �= ∅} ≤ (�2mε′N ′� + 2)

(
N ′

�2mε′N ′� + 1

)
m�2mε′N ′�+1.
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Using the Stierling formula, provided that ε′ was chosen small enough at the start and N
(so N ′ too) large enough, there exists a constant C > 0 such that

#{i ∈ �N ′
: [i] ∩ AN ∩ π−1

� ({y}) �= ∅}

≤ C(�2mε′N ′� + 2)
(N ′)�2mε′N ′�+1 · m�2mε′N ′�+1

((�2mε′N ′� + 1)/e)�2mε′N ′�+1
√

2π(�2mε′N ′� + 1)

≤ C(�2mε′N ′� + 2)

(
mN ′

2mε′N ′
/e

)�2mε′N ′�+1 1√
2π(�2mε′N ′� + 1)

≤ C(�2mε′N ′� + 2)

(
e

2ε′

)3mN ′ε′

= C(�2mε′N ′� + 2)e3mN ′ε′ log(e/2ε′) ≤ e
√

ε′N ′
. (92)

Since equation (92) holds for any N ′ ≥ N , one obtains that

dimP (AN ∩ π−1
� ({y})) ≤ √

ε′.

Recalling that, by definition of BN , the measure μπ−1
θ ({y}) is h-exact dimensional, that

μπ−1
θ ({y})(π−1

θ ({y})) = 1, and that μπ−1
θ ({y})(AN) ≥ 1

2 , one has

h = inf{dimH (A), A Borel set satisfying μπ−1
θ ({y})(A) > 0}

≤ dimP (AN ∩ π−1
� ({y})) ≤ √

ε′.

By Remark 4.6 and the fourth item of Theorem 4.8, there exists a constant C̃ depending
on the system S such that

dimH (με,ε′) ≥ dimH (νε,ε′)

λνε,ε′
− C̃

√
ε′, (93)

where λνε,ε′ is given by Definition 4.5. Also, by Corollary 4.7, for any Bernoulli product
ν ∈ M(�) associated with a probability vector P̂ ∈ (0, 1)nε+m, the Lyapunov exponent
depends continuously on the vector P̂ . Recalling that �N is endowed with the metric given
by equation (89), it is also classical that dimH (ν) depends continuously on the choice of P̂ .
Since limε′→0 Pε,ε′ = {0}m × Pε,

lim
ε′→0

dimH (νε,ε′)

λνε,ε′
= dimH (νε)

λνε

. (94)

Equation (94) combined with equation (93) proves that for ε′ small enough, one has

dimH (με,ε′) ≥ dimH (νε)

λνε

− 2ε ≥ s − 2ε,

which concludes the proof of Proposition 6.7.

We can now finish the proof of item (3) of Theorem 3.1.
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6.2.2. Proof of item (2) of Theorem 3.1. Let us recall that, by Proposition 2.6 and
Definition 2.8, dim(S) verifies, for any z ∈ K ,

P(dim(S)) = lim
k→+∞

1
k

log
∑
i∈�k

|fi(K)|dim(S) = 0.

Fix x0 ∈ K , δ ≥ 1 and write

L(δ) = lim sup
i∈�∗

B(fi(x0), |fi(K)|δ).

Let us first show that dimH (L(δ)) ≤ (dim(S)/δ).
Let α and β be as in equation (23). If one must change the constants α and β, one can

assume that there exists k0 ∈ N such that for every k ≥ k0 and every i ∈ �k ,

αk ≤ |fi(K)| ≤ βk .

For every k ∈ N, recalling equation (38), for every i = (i1, . . . , in) ∈ �(k), one has

αn ≤ 2−k ≤ βn−1 ⇒ n ≤ k
− log(2)

log(β)
+ 1 ≤ 2k

− log(2)

log(β)
.

In particular, every integer p ∈ N and every (in+1, . . . , in+p) ∈ �p such that
(i1, . . . , in+p) ∈ �(k) must satisfy

βn+p−1 ≥ αn ⇒ p ≤ n ×
(

log α

log β
− 1

)
+ 1 ≤ 2n

(
log α

log β
− 1

)
≤ k × C(α, β).

This implies that, for any ν ∈ M(�N),∑
i∈�(k)

ν([i]) ≤ kC(α, β). (95)

Consider ε > 0. Let us recall that Lemma 4.20 applied with

ε′ = (ε/2) log 2
2(− log(2))/log(β)

and s = dim(S) combined with Remark 4.21 yields a constant γε′ > 0 and a measure
νε′ ∈ M(�N) such that for any k ∈ N and every i = (i1, . . . , in) ∈ �(k),

γ −1
ε′ e−k(ε/2) log 2|fi(K)|dim(S) ≤ νε′([i]) ≤ γε′ek(ε/2) log 2|fi(K)|dim(S). (96)

For any δ ≥ 1,∑
i∈∈⋃

k≥k0
�k

(|fi(K)|δ)(dim(S)+ε)/δ =
∑

i=(i1,...,in)∈⋃
k≥k0

�(k)

|fi(K)|dim(S)+ε

≤
∑
k≥k0

∑
i=(i1,...,in)∈�(k)

2−kεγε′ek(ε/2) log 2νε′([i])

≤ γε′C(α, β)
∑
k≥k0

k2−k(ε/2) < +∞. (97)
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As a consequence,

dimH (lim sup
i∈�∗

B(fi(x0), |fi(K)|δ)) ≤ dim(S) + ε

δ
,

and letting ε tend to 0 establishes the upper bound.
Now we prove that

dimH (L(δ)) ≥ dim(S)

δ
.

Let ε > 0 and με be a weakly conformal measure as in Proposition 6.7. For any k ∈ N,
the balls {B(fi(x0), |fi(K)|)}i∈�k are centered on K = supp(μ) and their limsup covers K.
This implies that με(lim supi∈�∗ B(fi(x0), |fi(K)|)) = 1.

Applying Theorem 5.11, one gets

s − ε

δ
≤ dimH

(
lim sup

i∈�∗
B(fi(x0), |fi(K)|δ)

)
.

Letting ε → 0 finishes the proof.

7. Application to homogeneous self-similar IFS
7.1. Proof of Theorem 3.3. A self-similar IFS S = {f1, . . . , fm} is said to be
c-homogeneous, for 0 < c < 1, if for every i ∈ �∗,

|fi(K)| = cn|K|.
Such overlapping IFSs have been studied recently by various authors. Among the recent
results on the topic, a Khintchine-type result is established in [2]. Although it is very
tempting to try to combine such a result with Theorem 5.11, it turns out that the study
on the Hausdorff dimension of limsup sets obtained via a more general approximation
function in the case of homogeneous self-similar IFSs does not require this result and can
be achieved only using Theorem 5.11.

Let us fix m ≥ 2 an integer, 0 < c < 1, and a c-homogeneous IFS S = {f1, . . . , fm}.

LEMMA 7.1. Let ψ : N → R+ be a mapping such that∑
n≥1

∑
i∈�n

ψ(n)dim(S) = +∞,

then, for every ε > 0, there exists an infinity of integers (nk)k∈N such that ψ(nk) ≥
c(1+ε)nk .

Proof. Assume that it is not the case: there exists ε > 0 and N ∈ N such that for every
n > N , ψ(n) < c(1+ε)n. Let us denote v ∈ M({1, . . . , m}N), the measure defined for
every i = (1, . . . , in) ∈ �∗ by

v([i]) = cn dim(S).
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In this case, one has∑
n≥N

∑
i∈�n

ψ(n)dim(S) ≤
∑
n≥N

∑
i∈�n

cn(1+ε) dim(S)

=
∑
n≥N

∑
i∈�n

cnε dim(S)v([i])

=
∑
n≥N

cnε dim(S)v

( ⋃
i∈�n

[i]
)

=
∑
n≥N

cnε dim(S) < +∞.

This is a contradiction.

This lemma implies in particular that for every ε > 0, there exists an infinity of integers
(nk)k∈N for every i ∈ �nk , writing 1 − ε = 1/(1 + ε′),

ψ(nk)
1−ε ≥ |fi(K)|.

Since for every k ∈ N and every x0 ∈ K ,

K ⊂
⋃

i∈�nk

B(fi(x0), |fi(K)|),

one obtains the following corollary.

COROLLARY 7.2. Let ψ : N → R+ be a mapping such that∑
n≥1

∑
i∈�n

ψ(n)dim(S) = +∞,

then, for every x0 ∈ K and every ε > 0,

K = lim sup
i∈�∗

B(fi(x0), ψ(n)1−ε).

We now prove Theorem 3.3.
Recall equation (14) and assume first that sφ ≥ 1. Then by Lemma 7.1, for every ε > 0,

K = lim sup
i∈�∗

B(fi(x0), φ(n)1−ε).

Let μ ∈ M(Rd) be given by Proposition 6.7, one has

μ
(

lim sup
i∈�∗

B(fi(x0), φ(n)1−ε)
)

= 1,

which, by Theorem 5.11, implies that, writing δε = 1/(1 − ε),

dimH W(x0, φ) ≥ dimH K − ε

1/(1 − ε)
.

Since this holds for every ε > 0, one has

dimH W(x0, φ) ≥ dimH K ,

and hence dimH W(x0, φ) = dimH K = min{1, sφ} dim(S).
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We now assume that sφ < 1. We first prove that

dimH W(x0, φ) ≤ sφ dim(S).

Let ε > 0. By definition of sφ (see equation (14)),∑
n≥1

∑
i∈�n

φ(n)(sφ+ε) dim(S) < +∞,

which yields H(sφ+ε) dim(S)(W(x0, φ)) = 0, since this holds for every ε > 0,

dimH W(x0, φ) ≤ sφ dim(S).

Let us show that

dimH W(x0, φ) ≥ sφ dim(S).

Fix again ε > 0. Since ∑
n≥1

∑
i∈�n

φ(n)(sφ−ε) dim(S) = +∞,

by Lemma 7.1, one has

K = lim sup
i∈�∗

B(fi(x0), ψ(n)(sφ−ε)(1−ε)).

Let μ ∈ M(Rd) be given by Proposition 6.7. One has

μ(W(x0, φ(sφ−ε)(1−ε))) = 1.

Writing δε = 1/(sφ − ε)(1 − ε) and applying Theorem 5.11, one gets

dimH W(x0, φ) ≥ dim(S)

δε

= (sφ − ε)(1 − ε) dim(S).

Letting ε → 0 yields

dimH W(x0, φ) ≥ sφ dim(S),

which concludes the proof.

8. The classical shrinking target problem: proof of Theorem 3.8
Let S = {f1, . . . , fm} be a conformal IFS satisfying the bounded distortion property
(Definition 15) and s > 0, νs , μs , and φ as in Theorem 3.8. Write again � = {1, . . . , m}.
First, let us recall that μs = νs ◦ π−1 is exact dimensional with

dimH μs = hs = h(νs)

λνs

,

where λνs is the Lyapunov exponent associated with νs (defined in equation (35)) and
h(νs) ≥ 0 is such that for νs-almost every (xn)n∈N ∈ �N,

lim
n→+∞

− log νs([x1, . . . , xn])
n

= h(νs).

Let us collect some remarks.
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Remark 8.1. By equations (35) and (16), we have

λνs = h(νs) − P(s)

s
and h(νs) = sλνs + P(s).

In particular, we have

dimH μs = sh(νs)

h(νs) − P(s)

and s ≤ dimH μs .

In the rest of the section, given δ ≥ 1, we write

Wx0,φ,δ = lim sup
i∈�∗

B(fi(x0), |fi(K)|δφ(|i|)).

8.1. Lower bound for dimH Wx0,φ,δ .

PROPOSITION 8.2. Let s be the root of P(s) = sα/δ. Then, for every ε > 0,

μs

(
lim sup

i∈�∗
B(fi(x0), |fi(K)|s/dimH μφ(|i|)s(1−ε)/δ dimH μ)

)
= 1.

Proof. Fix ε0 > 0. By definition of the Lyapunov exponent λνs , there exists N ∈ N and
a set E ⊂ �N such that νs(E) ≥ 1 − ε0 and for every (xn)n∈N ∈ E, for every n ≥ N , we
have

e−n(1+ε0)λνs ≤ |fx1,...,xn(K)| ≤ e−n(1−ε0)λνs .

By definition of α, there exists an infinite set of integers N ⊂ N such that for every
n ∈ N , we have that

φ(n) ≥ e−n(1+ε/2)α .

Thus, for every (xn)n∈N ∈ E, writing i = (x1, . . . , xn),

|fi(K)|s/dimH μs φ(|i|)s(1−ε)/δ dimH μs

≥ e−n(1+ε0)(sλν/dimH μs)e−n(1−ε)(1+ε/2)×(sα/δ dimH μs)

and recalling that P(s) = sα/δ, one has

|fi(K)|s/dimH μs φ(|i|)s(1−ε)/δ dimH μs

≥ e−n(1+ε0−(1−ε)(1+ε/2))(sλνs /dimH μs) × e−n(1−ε)(1+ε/2)×((P (s)+sλνs )/dimH μs).

Note also that (
1 + ε0 − (1 − ε)

(
1 + ε

2

))
= ε0 + ε

2
+ ε2

2
,

so that (
1 + ε0 − (1 − ε)

(
1 + ε

2

))
sλνs

dimH μs

≤ Cελνs
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for some C > 0 independent of ε provided that ε0 was chosen small enough to begin with.
In addition, using Remark 8.1,

P(s) + sλνs

dimH μs

= λνs × P(s) + sλνs

h(νs)
= λνs .

This implies that, for some C′ > 0 independent of ε, provided that ε0 was chosen small
enough,

|fi(K)|s/dimH μs φ(|i|)s(1−ε)/δ dimH μs ≥ e−n(1+ε0−(1−ε)(1+ε/2))(sλνs /dimH μs)

× e−n(1−ε)(1+ε/2)×(P (s)+sλνs /dimH μs)

≥ e−n(1−C′ε)λνs ≥ e−n(1−ε0)λνs ≥ |fi(K)|.
The last inequality implies that

fi(K) ⊂ B(fi(x0), |fi(K)|s/dimH μs φ(|i|)s(1−ε)/δ dimH μs ),

and hence π((xn)n∈N) ∈ B(fi(x0), |fi(K)|s/dimH μs φ(|i|)s(1−ε)/δ dimH μs ). Since this
happens for every n ∈ N , we conclude that

π((xn)n∈N) ∈ lim sup
i∈�∗

B(fi(x0), |fi(K)|s/dimH μs φ(|i|)s(1−ε)/δ dimH μs ).

This yields

E ⊂ π−1
(

lim sup
i∈�∗

B(fi(x0), |fi(K)|s/dimH μs φ(|i|)s(1−ε)/δ dimH μs )
)

so that

1 − ε0 ≤ νs(E) ≤ μs

(
lim sup

i∈�∗
B(fi(x0), |fi(K)|s/dimH μs φ(|i|)s(1−ε)/δ dimH yμs )

)
.

Letting ε0 → 0 proves the claim.

Applying Proposition 5.11 to lim supi∈�∗B(fi(x0), |fi(K)|s/dimH μs φ(|i|)s(1−ε)/δ dimH μs )

and μs yields the following corollary.

COROLLARY 8.3. Write δ′ = 1/(s(1 − ε)/δ dimH μs), we have

dimH

(
lim sup

i∈�∗
B(fi(x0), |fi(K)|δ/(1−ε)φ(|i|))

)
≥ dimH μs

δ′ = s(1 − ε)

δ
.

Since this holds for every δ ≥ 1 and ε > 0, we conclude that

dimH

(
lim sup

i∈�∗
B(fi(x0), |fi(K)|δφ(|i|))

)
≥ s

δ
.

8.2. Upper bound for dimH Wx0,φ,δ . Fix ε > 0. By definition of α, there exists N ∈ N
so large that for every n ≥ N , one has

φ(n) ≤ e−n(α/(1+ε/2)).
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Hence, writing 0 < ε′ = min{ε, (1 + ε)/(1 + ε/2)} and recalling that P(s) = sα/δ,
we get∑

n≥N

∑
i∈�n

(|fi(K)|δφ(n))s(1+ε)/δ ≤
∑
n≥N

∑
i∈�n

|fi(K)|s(1+ε)e−n((1+ε)/1+ε/2)sα/δ

≤
∑
n≥N

∑
i∈�n

|fi(K)|s(1+ε)e−n((1+ε)/1+ε/2)P (s)

≤
∑
n≥N

∑
i∈�n

(|fi(K)|se−nP (s))1+ε′

=
∑
n≥N

∑
i∈�n

μs(i)
1+ε′

.

Using a similar argument as in equation (97), we have∑
n≥N

∑
i∈�n

μs(i)
1+ε′

< +∞,

and hence ∑
n≥N

∑
i∈�n

(|fi(K)|δφ(n))s(1+ε)/δ < +∞,

so

dimH lim sup
i∈�∗

B(fi(x0), |fi(K)|δφ(|i|)) ≤ (1 + ε)
s

δ
.

Letting ε → 0 yields the desired result.
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