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Abstract

Letf : M — CP? be an isometric immersion of a compact surface in the complex projective plane CP?. In this paper,
we consider the Helfrich-type functional H,, ,,(f) = fM (|H|? + A, + A,CYHAM, where A, A, € R with A, > 0, H and
C are respectively the mean curvature vector and the Kéhler function of M in CP?. The critical surfaces of H,, ,,(f)
are called Helfrich surfaces. We compute the first variation of #,, ,,(f) and classify the homogeneous Helfrich tori
in CP?. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich
energy for such tori.

1. Introduction

Helfrich functional dates back to Helfrich’s seminal work [7], which proposed the functional model of
the elastic lipid bilayer or membrane. Let f : M — R? be a smooth immersed surface in R?, the Helfrich
functional (see [5]) is given by:

Hiy () 2/ [(H— C0)2 — VK]dM+A/ dm,
M M

where H denotes the mean curvature vector of surface, K is the Gaussian curvature, dM is the area mea-
sure of the induced metric, y € R is a constant bending rigidity, A > 0 is the weight factor of the area
functional, and ¢, € R is a given spontaneous curvature caused by asymmetry between the two layers of
the membrane. The functional with zero spontaneous curvature can be considered as a weighted sum of
the Willmore functional and the area, which represent the bending energy and the surface energy, respec-
tively. The critical surfaces of the first variation of H,, ,,(f) are called Helfrich surfaces. In recent years,
many important researches have been developed in the study of the functional in geometry. Examples
include the existence and regularity of solutions for Helfrich immersion from surfaces into R*(see, for
instance, [3, 3, 6, 13, 16]), the classification ([1, 15]) of Helfrich surfaces in R>.

It is well know that the Willmore functional is conformal invariant and has been a field of active
research since the work of Willmore [17]. And many of the techniques developed have played important
roles in geomotry. Despite this, the functional for a immersed surface in complex manifolds is relatively
less discussed. As noted in [2], Castro and Urbano proved the Whitney sphere is the only Willmore
Lagrangian surface of genus zero in C2. Hu and Li [9] considered higher-dimensional case, and they
proved Whitney spheres are Willmore submanifolds of C" if and only if n = 2 and constructed examples
of Willmore Lagrangian spheres in C” for all n > 2. Immersions from surfaces into the complex pro-
jective plane CP? are also considered. In [8], Hu and Li calculate the Euler-Lagrangian equation of the
Willmore functional for an n-dimensional submanifold in an (n + p)-dimensional Riemannian manifold.
As a corollary, the authors have given the Euler—Lagrangian equation of the Willmore functional for an
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immersed surface in complex projective plane CP?. In [14], Montiel and Urbano studied the Willmore
functional for compact surface M in CP?. In this case, the Willmore functional is given by:

W:/ (JH> +1+3C*dM,
M

where C denotes the Kéhler function of M in CP2. The authors decomposed W into two global conformal
invariants:

W*:f (|H|* + 6C*HdM, W*:/ (JH|* + 2)dM.
M M

They proved that W~ >4 — 2 [ |C|dM, where n denotes the maximum multiplicity of the immer-
sion. The equality holds if and only if u =1 and M is either the complex projective line or totally
geodesic real projective plane, or £ =2 and M is the Lagrangian Whitney sphere. Moreover, Montiel
and Urbano obtained W~ > 872/3+/3 for all homogeneous tori in CP? and conjectured that the Clifford
torus attains the minimum of W~ among all Lagrangian tori in CP?. In this regard, Ma, Mironov, and Zuo
[11] studied a family of Hamiltonian-minimal Lagrangian tori and proved Montiel-Urbano’s conjecture
is valid. For arbitrary Lagrangian tori, the conjecture remains open.

In this paper, we will focus on the Helfrich functional for surfaces in the complex projective plane
CP? (with holomorphic sectional curvature 4). Letf : M — CP? be an isometric immersion of a compact
surface in CP2. For simplicity, we assume that the spontaneous curvature ¢, = 0. The Helfrich functional
is defined by:

Hxl,xz(f)=/ (HI* 4 &y + A,C*dM, (1.1)

where A;, A, € R and A; > 0. When A, =1, A, = 3, the functional reduces to Willmore functioal W.
When A, =0, A, = 6, the functional reduces to W+ and when A, =2, A, =0, reduces to W~. We first
give the Euler-Lagrange equation of Helfrich functional H,, ,,(f). This can also be derived by Hu-Li’s
result (See [8]).

Let {e4}1<4<4 be a local orthonormal frame on CP? such that when restricts to M, {e, e,} is a local
orthonormal basis for TM. Then the Kéhler function C on M can be given by C = (Je|, e,). Without loss
of generality, we assume that {e,} satisfy

J€1=C€2+\/1_C2€4, Jez=—Cel—«/1—Czeg,
Je3=—Ce4+\/l—Czez, Je4:C63_\/1_C2€1.

(1.2)

Then, we have

Theorem 1.1. Let f: M — CP? be an isometric immersion of a compact surface in the complex
projective plane CP*. Then, M is a Helfrich surface if and only if

AYHP (5= 24 — (3 = 20)C° — 2 HPH® + Y. IBh)HP — 23,4/1— C2C, =0,

L/

Bij
ATH 4+ (5—=20 — (B3 —=20,)C* =2|HHH* + > h;hﬁ;Hﬂ — 201 —-C2C, =0,
Bij

where C denotes the Kdihler function of M in CP?, C; (1 <i <2) denote the first covariant derivatives
of C, and H? (3 < B < 4) are the coefficient of the mean curvature vector H of M.

It follows from the above Euler—Lagrange equation that every minimal surfaces with constant Kéhler

angle is Helfrich surface. In particular, the complex curve and Lagrangian minimal surface in CP? are
Helfrich surfaces.
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We, on the other hand, will focus on the homogeneous tori in CP?. We are going to show the
homogeneous Helfrich tori in CP? and compute the Helfrich energy for the homogenous tori, thereby
determining the energy minimizers within this class of surfaces.

Theorem 1.2. Let T, ,, ., be a homogeneous torus in CP?. Then, T, is a Helfrich surface if and
only if

T,

r1.r2,13

1. When 0 <, <3,

5
2. Wheni >3, T, ,n= TyiyaorTnn=T — 55 65,5
3 i N m.

T =97\ 31,9

I
~
45
45
[

Theorem 1.3. Let T, ,, ., be a homogeneous torus in CP?. Then,

1. When 0 <Ay <3,

HM.AZ (f) 2

with equality holding if and only if T, ,,,, =T 5 5 -
2. When \, >3, »

with equality holding if and only if T,, ,, .. = T\/g/?&:::; s

-9

The arrangement of this paper is as follows. In Section 2, we recall the basic theory of surfaces in
CP?. In Section 3, we calculate the Euler-Lagrangian equation of the critical surfaces of H,, ,, (f). Then,
in Section 4, we consider the homogeneous tori in CP? and give the proof of Theorems 1.2 and 1.3.

2. Preliminaries

In this section, we will review the moving frame method for surfaces in CP* following Chern and
Wolfson (for more details, see [4]). In the paper, we will adopt the following ranges of indices:

0<a,b,c<2, 1<i,j,k<2,3<a, <4, 1<A,B<LA4.

Let (, ) be the hermitian product in C?, that is,
3
(Z, W)=Y ZW,
=1

for any Z, W € C*, where W denotes the conjugate of W. Let CP? be the complex projective plane with
its canonical Fubini—Study metric of constant holomorphic sectional curvature 4. Then,

CPZ = {[ZO] = H(ZO)|ZO = (ZI’ZZv Z3) € (C3 - {0}’ |ZO| = 1}v

where IT : §> — CP? is the Hopf projection. We denote g by its Fubini—Study metric and J by its complex
structure induced by C* on CP?. Then,

g =\(dZy,dZy) — (dZy, Zy)(Zy, dZy). 2.1
The Kihler form € on CP? is defined by:
Q(u, v) = g(Ju, v), for any u, v € I'(T(CP?)). 2.2)

https://doi.org/10.1017/S0017089523000320 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089523000320

Glasgow Mathematical Journal 39

Let {Z,, Z\, Z,} be a unitary frames in C*. Then, we have

<Zw Zb - 8ab7 dZ Z Wabzb’ (23)

where V; = ¥z, is connection 1-form and satisfies structure equation:

Ay = Z Ve A Vep- (2.4)
Moreover, the Fubini—Study metric (2.1) can be written as:
8= Z Yoo (2.5)

On the other hand, let {g;} be a unitary frames in CP? with dual frames {w;}, the structure equation of
CP? can be written as:

dw;, = Z Wi A w;, wi + w; =0, vy =5, (2.6)
j
with {w;} being the unitary connection forms with respect to {w;}. We have then
g= Z ww; = Z W;Wj. (2.7)
Combining with (2.5) and (2.7) and (2.4) and (2.6), we get
w; = Y, (2.8)

wj = 51/ VI(JO Iﬂﬁ' (29)

Letf : M — CP? be an isometric immersion of a compact surface M in the complex projective plane
CP?. The Kihler function C on M is defined by:

£Q=CdM, (2.10)

where dM is the area form on M. The surface f is holomorphic, anti-holomorphic, or Lagrangian, respec-
tively, depending on C = 1, —1, or 0. Now, we consider M C CP? first from the Riemannian geometry
version and then from the complex version due to Chern and Wolfson [4].

Let us choose a (new) local orthonormal frame {e,} of CP? with its dual {6,} such that restricting to
M, {e;} is a local orthonormal basis of TM. Then, we have restricted to M

0. =0, 0= hyf).
J

The second fundamental form /I and the mean curvature vector H are defined by:

= Zh“@@@@ea,H_ Zhea ZH"ea

aij

Let V be the Riemannian connection of CP2, and let V and V* be the induced connection and normal
connection of M, respectively. The covariant derivative and Laplacian of H on the normal bundle of M

are, respectively, defined as:
> HIG, =dH" + Y H'6,
i B
Z He6,=dHY + Y HY0,+ Y H6y,,
j B
AHY =" HS.
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Let R, pcp be the Riemannian curvature tensor of CP2, we have then
RABCD = glea, ec)gles, ep) — gles, ep)gles, ec) + glJes, ec)g(Jeg, ep) @.11)
— gWea, ep)g(Jes, ec) +2g(Jey, eg)g(Jec, ep).

Now, let us recall the complex version of the geometry of M which is due to Chern and Wolfson [4].
Set ¢ = 6, + i6,. It defines a complex structure on M. The induced metric on M is of the form:

fle=)Y ww=pp. 2.12)

Then after a normalization of {¢;} if necessary ([4, p. 66]), we can assume that there exist complex-valued
smooth functions s, ¢ which satisfy |s|*> + |¢|> = 1 such that
) = 5¢, 0, =1¢. (2.13)
o o
In particular, setting |s| = cos > |t| = sin > one has then C =cos o with 0 <« <mw. Now we have,

along M,

S, + fo; = ¢, (2.14)

Taking exterior derivative of the first term of (2.15), we get

((sdf — 1ds) + st(wy1 + @3)) A + w3 A =0. (2.16)

Set
(sdf — 1ds) + sl(w;7 + wy5) = ad + b, (2.17)
w3 =b + co, (2.18)

then the complex-valued second fundamental forms can be given by:

1€ = ad?® + 2bdd + ¢ . (2.19)

Lemma 2.1. The coefficients a, b, ¢ of the complex-valued second fundamental forms IIC satisfy

Re(a + ¢) + Re(2b) = hfl, Im(c —a) = h?z, Re(2b) — Re(a + ¢) = h;z,
(2.20)
Im(a + ¢) + Im(2b) = h‘,‘l, Re(a—c) = h‘]‘z, Im(2b) — Im(a + c) = h

22

where Re and Im denote, respectively, the real and imaginary parts.

Proof. Taking exterior derivative of the second term of (2.15), we get

d(0; + it,)
1 h?] — h%z + Zh?z + i(h?l - hgz — Zh?z) h?l + hgz + i(h?l + hgz)—
=5 ¢+ $)no
2 4 4
1 h?l + hgz + i(hﬁ + hgz) h?1 — hgz — thllz + i(h?1 — hgz + Zh?z)— -
-3 7 o+ 2 o} WA
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Then from (2.15), (2.16), (2.17), and (2.18), we have that
4= h?l _ hgz + 2hzllz + i(h?l _ hgz — 2h?2)

4
I By i, + 1)
2 s
c= h?l _ hgz _ Zh?z + i(h?l _ hgz + 2h?2)
4 ’
and (2.20) follows. O

Remark 2.2. Note that we can re-choose the unitary coframe {w,, w,} such that
® t=sine 2.21)
§=cos —, t=sin —. .
2 2

The Kdhler angle o is smooth at the points with 0 < o < . At the points « =0 or 7, a could be only
continuous. Moreover, under the assumption of (2.21), we can obtain by (2.13) that

o .o . o .o
w; = CcOoS 56. + sin 503 + z(cos 502 ~+ sin 504) s

s o /. o o
w, = sin 591 — cos 593 + z(—sm 592 + cos 594) ,

and hence
1 o .« . o .o
G = 2 (cos Eel + sin 563 — 1<cos Eez + sin 5@)) s
1/, « o S/ .« o
G = 2 (sm Eel — Cos 563 — 1<—sm Eez + cos 564)) .
So, we have
o .o o . a .o o . a o
J(cos Eel —+ sin Ee3> = COS Eez —+ sin 564, ](sm Eel — CoS §e3) = —sin Eez 4+ cos 564,

Jfrom which we get

Je, =Ce, + 1 — C?ey, Je,=—Ce; — 1 — C?es,
J€3 = _C€4 + V1 - C2€2, J€4 = Ce:*, —1-— Czel.

This is exactly we assume in (1.2) of Section 1.

3. Euler-Lagrange equation of Helfrich functional

Let f(p,1): M x (—e, €) — CP* be a variation of M with fy(p) =f(p). Here, we denote by f,(p) =

f(,t): M — CP* for r € (—¢, €). Let {x,, x,, t} be a local coordinate system around the point (p, 0) such
ad ad - ad .

that {df<8_> , df(a—>}|,, is an orthonormal basis of 7,M. Set V = df, (8_t) , X, = dﬁ(a‘—;). Then, we
X1 X i

have the induced metric of f; and its area form as follows:

(8)i = &(X;, X)), dM, = / G,dx; A dx, with G, = det(g,).

0 0

Then (gO)’J(p) = g,](p)&, Set é,‘ = dﬁ't:() (8_> and V= df;'r:() (5) = VT + VL with ‘/T (S} F(TM) and
Xi

Ve (T M).
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We first consider

IVG) d|H|?
a

|;=o and —— a7 —— ;0. It is well known that

3(/G)

— == (divVT —2(H, V))V/G.. 3.1

2
Now we consider

|.—o. It follows the definition of the mean curvature vector that
2H, = Z glh(X;, X)),

where ((g,)7) denotes the inverse matrix of ((g,);). Thus, we have at the point p that

0 a(g - - In(X;, X;
E(ZHt)LO:Z( (g) It Oh(el7e)+81j(T)|o> (32)

ij

" a 9
Differentiating the formula ) | g7g; = 8 and using the fact that I:E’ 8_] =0, we get
j

Xi
d(g)” B(g )i
e = = o= —V2(@.8)
ot
- —Wg@, &)+ (Vi V. 8) + (@, V5 V) (3-3)
= —Vng(E‘i, é_,‘) + Zg(h(a-, Ej)7 VL)-
Also, we have
oh(X;, X; - — -
SyML:o = VV(VEiei - Véiez)
ot
=V Vit — Vi Ve 3:4)
+ Vo Vo, VE+R(VE, 8)e; — Vi Vi@,
. H|* oH . .
Since =g|H, ZE , we only need to know the normal part of (3.4). So, by a direct computation
we have

1 1
(Z (Ve Vs, — Vyr vg,,.é,.)> = (Z Vrhe;, é,-)) =2V} H, (3.5)

€L
(Z (vé;vé; VL + I_Q(VL, Ei)éi - vvL Véiéi)>
=Y (~h(@, Avi @) + Vi ViV 4+ RV, 6)8)" — Vg V) (3.6)
=0TV Y (—g(h(@.8). VIREL &) + ROVE, 2)2)Y).
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Here, we used the fact that (V. V;é,)" = VL ;,V*. Finally, substituting (3.3) and (3.4) into (3.2) and
using (3.5), (3.6), and (2.11), we obtain at the pomtp that

8|H|2| R
o =08 ot

= Z (H"ALV"‘ + V(5 —3CHH" + Z VCH IS
ijB

=Y H V'Y ekgy) + Z ViV, |HJ.

ijk

= Z (H"ALV‘” + VIS —3CHH + ) V“Hﬁh;;h;j) + Y VIV HI. (3.7)

ip

Here, we used

Z VH eV, 85 = Z (—=VAV, (H h%) — H*hedivVT + div(H 2 V7)) = 0.

ijk ik

Next, we consider

|,—o. First for an oriented orthonormal basis {e;, ¢,} of TM, set

Xy =QV, e)e, + Q(ey, V)e,.

It is direct to check that Xy is independent of the choice {ey, e,}, and hence it defines a smooth vector
field on M with

divXy =V, Q(V,e,) + V., Qe1, V). (3.8)

The definition of the Kéhler function means that

o _ QXX
' VG,
So we get, at the point p,
AC)| 99X, X) (/G 39)
|t=0 = |t=0 =C |t=0- .
ot ot at

Since [e;, e;]|, =0 and [V, ¢;]|, =0 for 1 <i <2, we have at the point p that

002X, X,) = o - . =
T|r:0 = Q(Va V,e,) + Q(e, Vz»2 V)
=V, QV.8) - V. Vie) + Ve, Q@ V) - Qe ) OO
=V, QV, &) + V5, QE, V) = div(X).
Substituting (3.1) and (3.10) into (3.9), we obtain at the point p that
aC? ) 24 T
— o= (2C divXy — 2C3(divVT — 2(H, V))). (3.11)
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Noting that the right sides of (3.7) and (3.11) are independent of the coordinates and hence valid at any
point of M. Thus, from (3.1), (3.7), and (3.11), we get

d 2 _
o) = /

M

a(dM)
ot

|r=0

0
HFE 3+ 12O oM + / (HP + 21 + 120
M
:/ (Z (H“ALV“ +1(5 =20 — (B = 20)C* —2AHPH* + Y h;hﬁHﬁV")
L Bij

+ D VIV HP 4 22,C divKy + (O + 2,0 + |H|2)divVT>dM.

i

(3.12)
Furthermore, it follows from the divergence theorem that
/ HAYV*dM = / VEATHYdAM. (3.13)
M M
/ Z VngI|H|2dM=—/ |H|*div(VT)dM. (3.14)
M i M

/ 2C divXy = —2/ (VC, Xy)dM = —2/ (VEIC- QV,e)+V,,C- Qe V))dM. (3.15)
M M M

/ C2divVTdM = —2 / <V51C~Q(VT,ez)—i-VezC{Z(el,VT))dM. (3.16)
M M

Substituting (3.13)—(3.16) into (3.12) and noting
V., C-QV &)+ V,,C-Qey, V) = —V,,C- (Jer, V) + V,,C - (Jey, V)

=v1-C¥(V,Ce;+V,Cey),V), (3.17)

we obtain that

d
d_t|t:0(HA1,Az(f)) = / (Z VIATH" + (5 = 24 — (3= 24,)C* = 2|H[HH"
M o

+ Y WH ] = 20,V 1= C(C VP + c,zv4)> dm,
Bij
where C; (1 <i <?2) denote the first covariant derivatives of C. This implies that the Euler—Lagrange
equation of H;, ;,(f) is
ATHP + (5 =20 — (3 =20)C> —2lHPH? + Y HPhR, — 22,+/1— C2C, =0,

/A7)

Bij
(3.18)
AYHY +(5 =24 — (3 = 20,)C° — 2 HPH* + Y HP I h, — 23,/T— C2C, = 0.
Bij

This gives the proof of Theorem 1.1.

Remark 3.1. When i, =0, the function reduces to H,, ,,(f) = [,, (H|* + A,)dM. In this situation, if M
is minimal, we obtain from (3.18) that M is Helfrich surface.

Remark 3.2. When C = constant, that is, M has constant Kdhler angle. If M is minimal, then M is
Helfrich surface.

Combing this we have
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Corollary 3.3. The complex curves and Lagrangian minimal surfaces in complex projective plane CP?
are Helfrich surfaces.

Corollary 3.4. Let f : M — CP? be an isometric immersion of a compact surface in CP*. If M is a
Helfrich surface for any ’y, A,. Then M is minimal.

4. Homogeneous tori in CP?

In this section, we consider the homogeneous tori in CP?.

4.1. The geometry of homogeneous tori
The definition of the homogeneous torus in CP? is given by the image of the Hopf projection:
T, ., =1{ll(Zy) € CP2|ZO =2, 5) lal=n1=1,2,3},

for positive numbers r,, r,, r; that satisfy 7 + r3 4+ r; = 1. In this case, we also call Ti N the Clifford
torus. We note that Ma, Mironov, and Zuo in [11] gave a basis of the period module for the homogeneous
tori. Here, we discuss the conformal structure of the homogeneous tori for completeness.

Taking into account the definition of T ,,,,, we assume that the homogeneous coordinate of
T, is

r1,r,r3
Zo = (11, €™, rye™), ie., dZy = (0, ire”, ir,e™),

where ¢, ¥ € R. Then we have from (2.1) that

Lemma 4.1. The induced metric of T,, ,, ., in CP is

sofl=r 1=
g=rr; —do” + ——=dy” — 2dedy ). 4.1
3 r
Setting
1-12 r r5r3
U= 2(p _ 3 w’ (p — 3 u + 2 V,
3 2 N 1-13 riaf1-13
T e v 4.2)
— " r A/I—r2
v_rz I—r21/f’ 170: 2 o 21)0.
Then

= r2r3(du +d) = r2r3 21dz)?,

and hence z =u + iv gives a complex coordinate of 7,
the period module for 7, with

271 —13 27K} o 2w

W =———", W)=

+ .
T3 rsy/1—13 lrz,/l—rg

So without loss of generality, we assume r; > 7 > r,, k= :—?, then

s+ Also, from (4.2) we get a basis (w,, w,) of

172,13

o)) 1 .k . 1
T=—= +1i , with{tr[0<Ret< =, |T| 2> 1}
w K+ 1 ry(k* + 1) 2
gives the module space for 7, ,, ., (see the shaded part of Figure 1).
1 3
In particular, for Clifford torus 75 5 3, T =5 + i£.
Now, we are going to consider the second fundamental forms of 7, ,, ,, in CP?.
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[ R i
—_

Figure 1. t-plane.

Lemma 4.2. The second fundamental forms of T,, ,, ., satisfy
0 =
) N y
o= | 43)
hy hy, 2 n5
12 nny/1-3

h4 h4 ng—l O
11 2] na/1-13 4.4
4 4 | . : 4.4)
hy, hy, 0 2

Proof. Set ¢ = ryr;(du + idv), then the induced metric of 7, ,, ,, can be written as:
g=¢-¢.
Let {Z, Z,, Z,} be a unitary frames in C*. Then dZ, =} ¥s:Z, with 5 = ¥,. From this, we get
Yoty + Ypl, = dZy — Y52
=dZ, — WdZy, Zy)Z,

_(—r3—irlr2 l’\/l—rgeiw (rl —ir2r3)ei‘1’>¢

-2 2 7 2 /1=7

ry— i, i1 —r2e? (—r —inr)e’ \ —
+< 3 172 2 ( 1 2 3) )¢ (45)

2/1-72" 2 7 2/1-7
And hence we obtain from |Z,| = |Z,| = 1 that
7= (—r3 - irlrz, iy/1—r2e¥ , (r — ir2r3)ei‘/’> ,
V2= V2 V21 —r3)

“o < e ’ imeiw’ (—=r — irzrs)eiw> . o
V21 -1) V2 NoEs)
Let {,} be an unitary coframe in CP? such that restricting to M
W =5¢, 0, =1¢. 4.7)

https://doi.org/10.1017/S0017089523000320 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089523000320

Glasgow Mathematical Journal

Then from (2.8) and (4.5), we have

S=[= —
2
Now, using the fact ¢ ; = (dZ,, Z,), then from (2.9) we get
Br;—1i (Br: =i
Wi =VYp— Y7 = do + - dy,
2 2
@Br: =1 Bri—1i
Wy =V — Y= do + dyr,
2 2
1—-r )l 21 rarars + l(rzr3 — ro)
W3 =—VYou=—

;- 20—1)
and so

2@+@—1+i6@—n)

st + wy) =
e (mmJa—@ 41— P

<—Q@+@—n i(3r2 — 1)

drirs/(1 =712 dn/1 -1

—@rR+nR-h  GR-D )
w5 =
P\ -2 an/1-12

2r3 + r2 -1 i(r;+1) 5
4rirsy/(1 —13) 4r2\/1 -7

47

(4.8)

Thus, we obtain from (2. 17) and (2.18) that the coefficients of the complex-valued second fundamental

forms (see (2.19)) of T,

112,73

- i(3r;—1)
4r1r3\/1 -7 4r2\/1 —rg’

_ r—n i(3r—1)
drir/1 =12 4ny/1 —rg,

_ = B i(r;+1)
4r1r3\/1 - 4r2\/1 —rg.

Using Lemma 2.1, (4.3) and (4.4) follow directly.

4.9)

O

2 2
Remark 4.3. The above proof shows that s =t = - that is, coso = £ and the Kdhler function

C = cos a =0, which also implies that the homogeneous torus in CP* is Lagrangian.

Now we discuss the classification the homogeneous Helfrich tori in CP2.

Theorem 4.4. T, ,, ., is a Helfrich surface if and only if

5
1. WhenO< A<, Ty =T 5
5

3

s
¥

5
2. When)»1>§,T =T,

r1,2,13

“5
%

’ﬁ Trl,rz,r3 =T i 2-5 [2y-5°
303 V @ =9\ 35,9/ #,-9
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Proof. By Lemma 4.2, we get the coeflicients of the mean curvature of 7,, ,, ., as follows:
r2—r? Brr-1
H=—'"" H'=—"YJ——. 4.10
2rr/1—13 2r/1 =13 ( )
And hence the norm square of the mean curvature is
1= -1 -7
pp =4z —nd=n) (@.11)

22,2
4riryrs

Thus, substituting (4.10) and (4.11) into the Euler—Lagrange equation (3.18) and using the fact C =
cos o =0, we get that

{(12 =40 + @2, = 8)3) B + 280 + ) — (L= )1 = P =)} (7 =) =0,
{(10—4x; + @r, = 8)2) ik + 2k — (1 — )L =)0 =)} B — D+ 282 — 1)) =
n+rn+rn=L1

By solving the equation above, we obtain

5
1. When0O< A, < 7 T, ,n=Ts

3

f\§
A

5
2. When i, > -, Tnn=Tssusorl, =T T 2 -5 [2-5 O
2 3033 =9\ =9\ =0
4.2. The Helfrich energy of homogeneous tori
Proposition 4.5. The Helfrich energy of T,, ,, ,, is
oo = [ QP+ 3+ 32CyiM
Y (4.12)

(- (=) —r2) 4+ (@x, — 8)rirry)m?

rrrs

Proof. From Lemma 4.1, we have d7,,,,,, =rrrdedy. By using of (4.11), (4.12) follows

directly. U

Now we consider the lower bound of H, ,,(f) for T, ,, ...

Theorem 4.6. The Helfrich energy of T,, ,, ,, satisfies
1. WhenO< A <3,

4)\.17'[2
3

HA],)Q (f) 2

El

s

and the equality holds if and only if ry =r,=r; =
2. When A, >3,

(4r, — 8)m?
—\/7 ,

/ 20 =5
and the equality holds if and only if r| = o’ ry=r3= 4)»1 5
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Proof. Computing the extreme value of (4.12) under the constraint 77 + r3 + r2 = 1 yields
@r, =8t —rrinn+1+m(1 - = —0-=rmA+ ) —rmr=0,
@r = 8)ri =i+ 1 +mM1 - - — (1 - -+ r)r=0,
r4+nn+n=1

A straightforward calculation shows that

49

5
1. When0< A, < >
4)\.17'[2
Tn,rz,m = TT3 DAL Hll,)»z(f) - 3\/§ .
2. When A, >
4x, 12
Trl rorz_T«/Ti Q’Q’ HK] Az(f) ﬁ?
or
. Ho () = 4r, — 8)n?
V] r?'s_ /74/1 - 21 /Zi: 3, Ash «/79
5 .. ) 4nm? . .
For the case of 0 < A; < > it is obvious that H,, ,,(f) = ﬁ and equality holds if and only
5 4),1? 4p, — 8)m?
if T,,,,,=Ts s »s. In the second case, if — <A, <3, since < (@4 m , we have that
- 33

= 2 33 J4h, —9
M) > 22

4,72 (4r, — 8)m?

172,73

if and only if T, =Ty R If x, >3,

f\%
ﬁ\%

T

1r2'3: i 2 -5 [2-5°
97\ 3,9\ # 9

and hence H,, ,,(f) > %ﬁ the equality holds if and only if 7,

> ’
33 N2y

O

Remark 4.7. For the case of », =3 in the above proof, T s s s =T —— \/2&174’ This implies
3 vy pre

3073

=5\ 7,9
2

3.

3

4
that H;,,,(f) = 3\1/7; , and equality holds if and only if T, ,,,, =T
3 A

w
oI5
5

Remark 4.8. In [14], Montiel and Urbano introduced the conformal invariants W= (F) and W*(F) for

compact surfaces in CP2. In view of the Helfrich functional M, ,,(f), we have

1. Whenry =2, =0, Hy,o(F) =W (F)= [, (IH” +2)dM;
2. When ky=0,1, =6, Hos(F)=W*"(F)= [, (|H|> + 6C*)dM;

3. When =1, , =3, Hi5(F)=W(F)= [, (|H> + 1+ 3C*)dM, that is, the Willmore func-

tional.

Thus, by using the Euler-Lagrange equation of H,, ,,(F), we have the following corollary.

Corollary 4.9. ([8]) The Euler—Lagrange equation of W(F) is
AH +(3+3C -2|HPH® + Z WHHP — 64/1—CC, =0,

ATH' + (3 +3C = 2HPH' + 3 KyhiH® — 63/1— C2C, =0.
Boii
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Corollary 4.10. ([8]) The Euler—Lagrange equation of W~ (F) is
AH* +(1=3C* —2HP)H" + ) " hhH" =0.

i
Biij
Corollary 4.11. The Euler—Lagrange equation of W*(F) is

ATHP 4 (5+9C* = 2|HPH? + Y. hhjH? — 12/1—=C°C, =0,
B.iyj

ATH* + (3+3C* =2l HP)H* + Y hihjH? — 1241 C°C, =0.
Biij

Let us consider the homogeneous tori 7}, ,, ,, in CP?, then it follows from Theorems 4.4 and 4.6 that

Corollary 4.12. T, ,, ,, is a critical surface for W(F), W=(F), or W*(F) if and only if it is the Cliford
torus T

L1
NERVEMNG

iy

2

Corollary 4.13. Considering the homogeneous tori T, (see also [14])

1,72,13

and W*(F) > 0, and the equalities hold if and only if T,

<

8
in CP*. Then W—(F) > 3
T

is the Cliford torus

112,73
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