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ON THE INSTABILITY OF PERIODIC WAVES FOR DISPERSIVE
EQUATIONS—REVISITED

FÁBIO NATALI and SABRINA AMARAL

Abstract. The purpose of this paper is to present an extension of the results

in [8]. We establish a more general proof for the moving kernel formula to prove

the spectral stability of periodic traveling wave solutions for the regularized

Benjamin–Bona–Mahony type equations. As applications of our analysis,

we show the spectral instability for the quintic Benjamin–Bona–Mahony

equation and the spectral (orbital) stability for the regularized Benjamin–Ono

equation.

§1. Introduction

The regularized Benjamin–Bona–Mahony type equation (rBBM henceforth)

ut+ux+(f(u))x+(Mu)t = 0,(1)

arises as a regularized version of the Korteweg–de Vries type equation as

ut+(f(u))x− (Mu)x = 0,(2)

where in both equations, u : R×R→ R is a real valued function which is L-periodic at the

x−variable. Here, M is expressed by the Fourier multiplier as

M̂g(κ) = θ(κ)ĝ(κ), κ ∈ Z,(3)

the symbol θ is assumed to be an even and continuous function on R satisfying

A1|κ|m ≤ θ(κ)≤A2|κ|m, m > 0,(4)

for all κ ∈ Z, and Ai ≥ 0, i= 1,2.

Particular cases of (1) are relevant models describing the propagation of nonlinear waves.

In fact, if M=−∂2
x and f(u) = u2

2 in (1), we obtain the Benjamin–Bona–Mahony (BBM) as

a improvement model to the Korteweg–de Vries equation for modeling of small-amplitude

and long-wavelength surface water waves. When M = H∂x and f(u) = u2

2 we have the

regularized Bejamin–Ono equation (rBO). Here, H indicates the Hilbert transform in the

periodic context. This equation is a model for the time evolution of long-crested waves at

the interface between two immiscible fluids, which appears in various physical applications

(see [18] and references therein). Important to quote that results of orbital stability for

positive and periodic traveling waves associated to the BBM and rBO equations have been

obtained in [4] using the arguments in [6]. In addition, several qualitative aspects have been

determined in [2] for the same power nonlinearity and M =Dα where Dα represents the

fractional differential operator.
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As usual, the rBBM equation (1) admits the following conserved quantities

E(u) =
1

2

∫ L

0

uMu−W (u)dx(5)

P (u) =
1

2

∫ L

0

uMu+u2dx,(6)

and

M(u) =

∫ L

0

udx,(7)

where W is the primitive of f, that is, W ′ = f .

A periodic traveling wave for (1) is a solution of the form u(x,t) = φ(x− ct), where

φ :R→R is a smooth L-periodic function and c is a nonzero real constant representing the

wave speed. Substituting this form into (1), we obtain

c(M+1)φ− (φ+f(φ))+A= 0.(8)

where A is a constant of integration. In whole of this paper, we assume that φ enjoys the zero

mean property, so that
∫ L

0
φdx= 0. By (8), it follows immediately that A= 1

L

∫ L

0
f(φ)dx.

Taking into account the conserved quantities (5), (6), and (7), we are enabled to consider

the following augmented Lyapunov functional

G(u) = E(u)+(c−1)P (u)+AM(u).(9)

By (8), one has G′(φ) = 0, that is, φ is a critical point of the functional G. Moreover, by (9),

the linearized operator around the wave φ is represented by the second Fréchet derivative

of G at the point φ as

L :=G′′(φ) = cM+ c−1−f ′(φ).(10)

We see that L is a self-adjoint operator defined in L2
per([0,L]) with dense domain D(L) =

Hm
per([0,L]).

The main purpose of this paper is to revisit the approach in [8] for periodic waves which

solve (8) with A= 1
L

∫ L

0
f(φ)dx being this value not necessarily zero. The authors considered

in [8] periodic waves with zero mean property as we are supposing and A=0. This fact gives

a restriction since we cannot consider the case f(u) = u2

2 and consequently, the well-known

equations BBM and rBO as above. As far as we can see, few examples can be obtained with

this kind of strong restriction. In fact, for power nonlinearities as f(u) = up+1

p+1 , the value of

p needs to be even and satisfying
∫ L

0
f(φ)dx = 0. As example, it has been presented in [8]

only the spectral stability/instability of periodic cnoidal waves for the case p= 2.

Our first application is the spectral instability of cnoidal wave solutions for the quintic

BBM equation, that is M = −∂2
x and f(u) = u5

5 in (1). Here, we still consider the case

A= 0 since the corresponding equation (8) has two family of explicit even periodic waves,

namely, one of dnoidal and another one of cnoidal type. For dnoidal waves, the authors in

[5] obtained that such families are orbitally stable in the energy space. According with our

best knowledge, the existence and spectral stability of cnoidal waves for the quintic BBM

equation never been proven in the current literature.
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As a second example, we present the spectral (orbital) stability of periodic waves for

the rBO equation. In our approach, we realized a connection between the positive periodic

waves associated with the corresponding Benjamin–Ono equation

Hψ+ωψ−ψ2 = 0(11)

and the periodic wave with zero mean φ given by the formula

ψ =
1

2c

[
φ− (c−1)+

√
(c−1)2+2A

]
.(12)

In addition, (12) gives us a correspondence between the spectral property for the linearized

operator around the periodic wave ψ and the corresponding linear operator (10).

Next, we establish the linearized spectral problem for the rBBM equation. By considering

the pertubation u(x,t) = φ(x− ct) +w(x− ct, t) in (1) and using (8), we obtain that w

satisfies the nonlinear equation

(∂t− c∂x)(w+Mw)+∂x(w+f ′(φ)w)+w∂xw = 0.(13)

Substituing (13) by its linearization around φ, we obtain the linear equation

∂t(v+Mv) = ∂xLv,(14)

where L is given by (10). Since φ depends only on x, (14) has a separation of variables of the

form w(x,t) = eλtη(x) with some λ ∈C and η : T→C which satisfies the spectral problem

∂xLη = λ(M+1)η.(15)

Since M+1 is an invertible operator, we can rewrite the problem (15) as

JLη = λη,(16)

where J := (M+1)−1∂x. Denoting the spectrum of JL by σ(JL), the periodic wave φ

is spectrally stable if σ(JL) ⊂ iR. Otherwise, that is, if σ(JL) contains a point λ with

Re(λ)> 0, the periodic wave φ is said to be spectrally unstable.

We see in the periodic framework that J is not a one-to-one operator. Hence, the classical

spectral stability results in [13] cannot applied. To overcome this difficulty, the authors in

[12] have considered the restricted problem

JL
∣∣
V
χ= λχ,(17)

where L|V is a restriction of L on the closed subspace X0 of periodic functions with zero

mean,

V=

{
f ∈ L2

per([0,L]) :

∫ L

0

f(x)dx= 0

}
.(18)

Thus, the new problem (17) allows to consider the definition of spectral stability as above

restricted to the periodic space V.

We denote ∂x

λ−c∂x
:= (λ− c∂x)

−1∂x, with Re(λ) > 0. Then, the spectral problem (15) is

equivalent to the following one

(M+1)η− ∂x
λ− c∂x

(1+f ′(φ))η = 0.(19)
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Moreover, consider the orthogonal projection Q : L2
per([0,L]) → V defined by Qv = v−

1
L

∫ L

0
vdx and the family of closed operators Aλ :Hm

per([0,L])∩V→ V, Re(λ)> 0, given as

in [8] by

Aλv = (M+1)v− ∂x
λ− c∂x

Q(1+f ′(φ))v.(20)

Thus, we reformulate the spectral problem (19) by considering the problem Aλv = 0

which is better related to (17). Thus, we obtain that the wave φ is spectrally unstable if we

find λ ∈ C with Re(λ) > 0 such that the operator Aλ has a nontrivial kernel. To this end,

we use some tools of asymptotic analytic perturbation theory based on ideas in [8] and [21].

After that, we present a more general expression for the moving kernel formula contained

in [8] for periodic waves with zero mean and A= 1
L

∫ L

0
f(φ)dx �= 0. In addition, for the case

f(u) = u2

2 , we present a modified moving kernel formula. This new formula seems a nice

tool to decide about the spectral stability of periodic waves and we apply it to determine

the spectral (orbital) stability for the rBO equation in an easier manner compared with

those ones in [4].

Important to mention that our results can be extended to present a revisited result

concerning the spectral stability/instability for the Korteweg–de Vries type equation (2)

(as in [8]). The results are similar as determined by ourselves in the present manuscript,

but we decided not to show the formal results for this case since there exist several

contributors in spectral stability/instability for this topic as [3], [12], [17], [22], [25], and

references therein. Concerning the regularized BBM equation for both periodic/solitary

waves it seems that few references containing relevant examples can be found in the current

literature.

This paper is organized as follows. In Section 2, we present a verbatim of the results

presented in [8]. In Section 3, we obtain a revisited moving kernel formula and the

corresponding spectral stability/instability criterion for the rBBM equation. Section 4 is

devoted to our applications and we show the spectral instability of cnoidal waves for the

quintic BBM equation and the spectral (orbital) stability for the rBO equation.

§2. Basic framework on the spectral stability—verbatim of [8]

To simplify the notation, let us consider the modified operator L0 := 1
cL and the

differential operators

Eλ,± :=
λ

λ± c∂x
.

Thus, we can rewrite the operator given in (20) as

Aλ =M+1− 1

c
(1−Eλ,−)Q(1+f ′(φ)).(21)

Lemma 2.1. (i) For λ > 0, operators Eλ,± ∈B(L2
per) are continuous with respect to λ

and

||Eλ,±||B(L2
per)

≤ 1,(22)

||Eλ,±||B(L2
per)

≤ 1.(23)
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(ii) Eλ,± converges to 0 strongly (uniformly) in V as λ→ 0+.

(iii) Eλ,± converges to I strongly in L2
per as λ→ 0+.

Proof. (i) For each v ∈ L2
per([0,L]), we obtain by Parseval Theorem that

||Eλ,±v||2L2
per

= L2
∑
n∈Z

∣∣∣∣ λ

λ± icn

∣∣∣∣2|v̂(n)|2 ≤ L2
∑
n∈Z

|v̂(n)|2 = ||v||2L2
per

.(24)

This last fact establishes (22). To prove (23), we see that

||v−Eλ,±v||2L2
per

= L2
∑
n∈Z

∣∣∣∣ ±icn

λ± icn

∣∣∣∣2|v̂(n)|2 ≤ ||v||2L2
per

.

(ii) For v ∈ V,

||Eλ,±v||2L2
per

= L2
∑

n∈Z\{0}

∣∣∣∣ λ

λ± icn

∣∣∣∣2|v̂(n)|2.
Since for n ∈ Z\{0},

∣∣∣ λ
λ±icn

∣∣∣2 −→ 0 as λ→ 0+, we deduce ||Eλ,±v||2L2
per

−→ 0 as λ→ 0+.

(iii) The proof is similar to (ii).

Proposition 2.1. For λ > 0, the operator Aλ converges to A0 := QL0 strongly in V

when λ→ 0+ and converges to M+1 strongly in L2
per when λ→∞.

Proof. For each v ∈Hm
per([0,L])∩V we have

c2||(Aλ−QL0)v||2L2
per

= ||Eλ,−Q(φ+f ′(φ)v)||2L2
per

and

c2||(Aλ− (M+1))v||2L2
per

= ||(1−Eλ,−)Q(v+f ′(φ)v)||2L2
per

.

Therefore, we conclude by Lemma 2.1 that Aλ converges to QL0 in V and Aλ converges to

M+1 in L2
per([0,L]) when λ→ 0+ and λ→+∞, respectively.

The next result establishes that all eigenvalues of Aλ (with domain Hm
per([0,L])) are

isolated, namely, the spectrum of Aλ is discrete, σ(Aλ) = σp(Aλ), and so the essential

spectrum σess(Aλ) is empty. Therefore, the spectrum of Aλ with domain Hm
per ∩V is also

discrete.

Proposition 2.2. For any λ > 0, we have σess(Aλ) = σess(M+1) = ∅.

Proof. Letting T = M+1 and Aλ = −1

c
(1−Eλ,±)Q(1+ f ′(φ)), we have Aλ = T +Aλ

with D(T )⊂D(Aλ). Next, since T is a closed linear operator, we obtain immediately that

Aλ is T−compact. Therefore [20, Theorem 5.35] implies σess(Aλ) = σess(T ) = ∅. The last

equality is consequence of T has a compact resolvent.

Lemma 2.2. Let c > 0 be fixed. There exists Λ > 0 such that for all λ > Λ, Aλ has no

eigenvalues z ∈ C satisfying Rez ≤ 0.

Proof. See [8].
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Lemma 2.2 gives us the following result:

Proposition 2.3. Let c > 0 be fixed. There exists Λ > 0 such that for all λ > Λ, Aλ

with domain Hm
per([0,L])∩V has no eigenvalues z ∈ C satisfying Rez ≤ 0.

Proof. See [8].

Now, we present some results concerning the spectra of the linear operator Aλ in

Hm
per([0,L])∩V for λ > 0 small enough. In order to obtain the results contained in this

subsection, we will apply the arguments of asymptotic perturbation theory in [16, Chapter

19] and [20, Chapter VIII] to the periodic context. We start with the following two

definitions.

Definition 2.1. An eigenvalue μ0 ∈ σ(QL0) = σp(QL0) is stable with respect to the

family Aλ if the following two conditions hold:

(i) There is δ > 0 such that the region Qδ := {z ∈ C; 0 < |z− μ0| < δ} satisfies Qδ ⊂
ρ(QL0) ∩Δb, where ρ(QL0) is the resolvent set of QL0 and Δb is the region of

boundedness for the family Aλ, defined by

Δb := {z ∈ C; ||Rλ(z)||B(L2
per)

≤M, ∀ 0< λ� 1}.

Here, M = M(z) > 0 does not depend on λ and Rλ(z) = (Aλ − z)−1 : V →
H

m
2
per([0,L])∩V.

(ii) Let Γ be a simple closed curve about μ0 such that Γ⊂Qδ ⊂ ρ(QL0)∩ρ(Aλ), for all λ

small and define the associated Riesz projector for Aλ

Pλ =− 1

2πi

∮
Γ

Rλ(z)dz.

Then

lim
λ→0+

||Pλ−Pμ0 ||B(V) = 0,(25)

where Pμ0 is the Riesz projector for QL0 and μ0.

Lemma 2.3. Let c > 0 be fixed. For all λ> 0 small enough, consider u ∈H
m
2
per([0,L])∩V

satisfying (Aλ−z)u= v, where z ∈C with Rez ≤ 1
2(1−

1
c ) and v ∈ L2

per. Then, we have the

estimate

||u||
H

m
2

per

≤M
(
||u||L2

per,e
+ ||v||L2

per

)
(26)

for some constant M > 0 which does not depend on λ > 0. Here, the notation || · ||L2
per,e

indicates the norm ||g||L2
per,e

:=
(∫ L

0
g(x)2e(x)dx

)1/2
, where e(x) = (f ′(φ(x)))2.

Proof. See [8] and [21].

Theorem 2.1. Let c > 0 be fixed. For z ∈C with Rez ≤ 1
2(1−

1
c ), we have z ∈Δb if and

only if z ∈ ρ(QL0).

Proof. Consider z ∈ Δb. First, it is easy to see that C∞
per([0,L])∩V is a core for the

linear operator Aλ. Then, for all u ∈ C∞
per([0,L])∩V we have

||(Aλ−z)u||L2
per

≥ ε||u||L2
per

> 0,(27)
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for all 0< λ� 1. Here, ε > 0 is parameter which does not depend on λ. By Proposition 2.1

and (21), we obtain for λ→ 0+ that

||(QL0−z)u||L2
per

≥ ε||u||L2
per

.

Since QL0 is self-adjoint, it follows from the last inequality that z ∈ ρ(QL0).

Next, we assume that z ∈ ρ(QL0) but z /∈Δb. We guarantee the existence of a sequence

{uλ} ⊂ C∞
per([0,L])∩V, with ||uλ||L2

per
= 1 such that

||(Aλ−z)uλ||L2
per

−→ 0, as λ→ 0+.(28)

Let us denote vλ = (Aλ−z)uλ. From Lemma 2.3 we have for λ small

||uλ||
H

m
2

per

≤M(||uλ||L2
per,e

+ ||vλ||L2
per

)≤ C.

Hence, from the compact embedding H
m/2
per ([0,L]) ↪→ L2

per([0,L]), we have (modulo a

subsequence) that uλ ⇀u in H
m/2
per ([0,L]) and uλ −→ u in V as λ→ 0+. Then ‖u‖L2

per
= 1.

Next, for each v ∈D((Aλ)∗) =D(QL0) we conclude

0 = lim
λ→0+

〈v,(Aλ−z)uλ〉L2
per

= lim
λ→0+

〈((Aλ)∗− z̄)v,uλ〉L2
per

= 〈(QL0− z̄)v,u〉L2
per

.(29)

Therefore, u ∈D(QL0) and (QL0−z)u= 0. Since z ∈ ρ(QL0), we conclude that u= 0 and

this last fact generates a contradiction since ||u||L2
per

= 1. The proof of the lemma is now

completed.

Theorem 2.2. Let Aλ be the linear operator defined in (21). Suppose that μ0 ∈ σ(QL0)

(therefore μ0 is a discrete eigenvalue). The μ0 is stable in the sense of the Definition 2.1.

Proof. Let μ0 ∈QL0, then we can choose δ > 0 such that the annular region

Qδ = {z ∈ C; 0< |z−μ0|< δ} ⊂ ρ(QL0).(30)

From Theorem 2.1, we see that Qδ ⊂Δb. Then for z ∈ Qδ

||Rλ(z)||V ≤M(z), for 0< λ� 1.(31)

Therefore, since Aλu→ QL0u for λ→ 0+ and ρ(QL0)∩Δb �= ∅, we see by the arguments

in [20, Chapter VIII] that for all z ∈ Qδ and u ∈ C∞
per([0,L])∩V, we have

lim
λ→0+

Rλ(z)u=R0(z)u.

Then, the strong resolvent convergence Rλ(z) → R0(z) is uniform on the circle Γ = {z :

|z− μ0| = r < δ}. Hence, the Riesz projections Pλ satisfies for u ∈ C∞
per([0,L])∩V that

lim
λ→0+

Pλu= Pμ0u, and, since Pμ0 is self-adjoint we have lim
λ→0+

P ∗
λu= Pμ0u. The first of these

convergence implies the principle of the nonexpansion of the spectrum, that is, dim(Pλ)≥
dim(Pμ0) ([20, Chapter VIII, Lemma 1.23]). Next, using [20, Chapter VIII, Lemma 1.24],

the two convergence above of the Riesz projectors and the condition that

dim(Pλ)≤ dim(Pμ0),(32)

for all 0 < λ � 1, are sufficient to establish the condition (ii) of the Definition 2.1, that

is, the norm convergence of the projections. Thus, let us suppose that inequality (32) does

not occur. Then, since Pμ0 is a orthogonal projection, we can find a sequence uλ ∈ V,
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‖uλ‖L2
per

= 1 such that Pλuλ = uλ and Pμ0uλ = 0. Hence, there is a a subsequence, still

denoted by {uλ}, such that uλ ⇀u0 in L2
per. Now, for v ∈ L2

per and λ→ 0+ the relation

〈v,uλ〉L2
per

= 〈v,(Pλ−Pμ0)uλ〉L2
per

= 〈(P ∗
λ −Pμ0)v,uλ〉L2

per
,

implies that 〈v,u0〉L2
per

= 0 and thus u0 = 0.

On the other hand, for z ∈ Qδ−Γ, we have from the first resolvent identity that

(Aλ−z)Pλuλ =− 1

2πi

∮
Γ

[uλ− (z−η)Rλ(η)uλ]dη.

Therefore, from (31) and the compactness of Γ, we obtain for 0 < λ � 1 that

‖(Aλ− z)Pλuλ‖L2
per

≤M0[1+sup
η∈Γ

|z−η| ]. Hence,

||Aλuλ||L2
per

≤ ||(Aλ−z)Pλuλ||L2
per

+ ||zPλuλ||L2
per

≤ C,(33)

where C > 0 does not depend on λ > 0. Inequality (33) implies that uλ is bounded in

Hm
per([0,L]). So, we obtain (modulo a subsequence) that there is u ∈ L2

per([0,L]) such that

uλ → u in L2
per([0,L]), as λ→ 0+, with ||u||L2

per
= 1. Since uλ converges weakly to zero in

L2
per we obtain a contradiction by the uniqueness of the weak limit. This finishes the proof

of the theorem.

§3. The moving kernel formula—revisited

Lemma 3.1. Let L > 0 be fixed. Suppose that the smooth curve of periodic waves c ∈
(0,+∞) �→ φ ∈Hm

per([0,L])∩V satisfies (8). Assume that ker(QL0) = [φ′]. For λ > 0 small

enough, let bλ ∈ R be the only eigenvalue of Aλ near origin. Then,

lim
λ→0+

bλ
λ2

=− 1

||φ′||2L2per

1

c

〈
(M+1)

d

dc
φ,φ

〉
:= I(c)(34)

Proof. By Theorem 2.2, we see that for λ > 0 small enough, there exists uλ ∈
H

m
2
per([0,L]) ∩ V such that (Aλ − bλ)uλ = 0, bλ ∈ R and lim

λ→0+
bλ = 0. We assume

||uλ||L2
per,e

= 1. Thus, from Lemma 2.3, follow that ||uλ||
H

m
2

per

≤ C, for some constant

C > 0 which does not depend on λ > 0. Since uλ is bounded and the embedding

H
m
2
per([0,L]) ↪→ L2

per([0,L]) is compact, modulus a subsequence we have

uλ ⇀u0 in H
m
2
per([0,L])∩V, as λ→ 0+(35)

and,

uλ → u0 in V as λ→ 0+.(36)

Since Aλ →A0 = QL0 in V as λ→ 0+ and ||Aλuλ−A0u0||L2
per

≤ ||Aλuλ−Aλu0||L2
per

+

||Aλu0−A0u0||L2
per

, we have lim
λ→0+

Aλuλ = A0u0. Moreover, A0u0 = QL0u0 = 0 and since

ker(QL0) = [φ′], we ensure the existence of α0 �= 0 such that u0 = α0φ
′. We can assume

α0 = 1, by normalizing the sequence. So, u0 = φ′.

In view of the equality (Aλ−bλ)(uλ−u0) = bλu0+(A0−Aλ)u0, by Lemmas 2.2 and 2.3

and convergence (36), we obtain

uλ → u0 in H
m
2
per([0,L])∩V, as λ→ 0+.
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Next, we are going to show that lim
λ→0+

bλ
λ

= 0. Indeed, given that (Aλ− bλ)uλ = 0, we

obtain

bλ
λ
uλ =

Aλ

λ
uλ+

(Aλ−A0)

λ
uλ.(37)

So, since A0φ= 0 we have

bλ
λ

=

〈
(Aλ−A0)

λ
uλ,φ

′
〉

L2
per

=−1

c

〈
∂x

λ− c∂x
Q(uλ+f ′(φ)uλ),φ

〉
L2

per

=
1

c2
〈
(1−Eλ,−)Q(uλ+f ′(φ)uλ),φ

〉
L2

per
.

Therefore, by Lemma 2.1, we obtain that

lim
λ→0+

bλ
λ

= lim
λ→0+

bλ
λ

〈uλ,φ
′〉L2

per

〈uλ,φ′〉L2
per

=
1

c2
1

||φ||2L2
per

〈Q(φ′+f ′(φ)φ′),φ〉L2
per

=
1

c2
1

||φ||2L2
per

〈φ′+f ′(φ)φ′,φ〉L2
per

= 0.

Next, we calculate lim
λ→0+

bλ
λ2

. We write uλ = cλφ
′ + λvλ, with cλ =

〈uλ,φ
′〉L2

per

||φ′||L2
per

. Then

〈vλ,φ′〉L2
per

= 0 and cλ → 1, as λ→ 0+. Now, we show

||vλ||
H

m
2

per

≤ C,(38)

where the constant c > 0 does not depend on λ > 0. In fact, first note that

Aλvλ =
bλ
λ
uλ− cλ

Aλφ′

λ
=

bλ
λ
uλ− cλ

(
Aλ−A0

λ

)
φ′.(39)

So, considering ωλ :=
(

Aλ−A0

λ

)
φ′ and using (8), we have

ωλ =
1

c

∂x
λ− c∂x

(φ+f(φ)−A) =− 1

c2
(1−Eλ,−)(φ+f(φ)−A)(40)

and ||ωλ||L2
per

≤ C. Here, the constant C > 0 does not depend on λ > 0. So, from Lemma

2.1, we obtain for λ→ 0+ that

ωλ →− 1

c2
(φ+f(φ)−A) =−1

c
(M+1)φ.(41)

Next, we are going to show that ||vλ||L2
per,e

≤C for some C > 0. In fact, suppose otherwise.

So, there is a sequence λn → 0+ such that ||vλn ||L2
per,e

≥ n. We denote ṽλn =
vλn

||vλn ||L2
per,e

.
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Then, ||ṽλn ||L2
per,e

= 1 and ṽλn satisfies the equation

Aλn ṽλn =
1

||vλ||L2
per,e

(
bλn

λn
uλn − cλn

(Aλn −A0)

λn
φ′
)
.

We write

ωλn :=

(
Aλn −A0

λn

)
φ′,

then ωλn →− 1
c2 (φ+f(φ)−A), as λn → 0+ and ||ωλn ||L2

per
≤ C. By Lemma 2.3, we obtain

that ||ṽλn ||H m
2

per

≤ C and modulus a subsequence we get ṽλn ⇀ ṽ0 �= 0 in H
m
2
per([0,L])∩V

and ṽλn → ṽ0 in V. Since
bλn

λn
, 1
||vλ||L2

per,e

→ 0, as λn → 0+, we immediately conclude that

A0ṽ0 = 0. So, ṽ0 ∈ ker(QL0) = [φ′], that is, we guarantee the existence of ξ0 ∈ R\{0} such

that ṽ0 = ξ0φ
′. But, since 〈ṽλn ,φ

′〉L2
per

=0, we obtain 〈ṽ0,φ′〉L2
per

=0 which is a contradiction.

Thus, we deduce that ||vλ||L2
per,e

≤ C. Finally, by using Lemma 2.3, we have (38) satisfied.

Consequently, vλ ⇀ v0 in H
m
2
per([0,L])∩V and vλ → v0 �= 0 in V, as λ → 0+. Moreover,

from (39) and (41), we obtain Aλvλ → 1
c (M+1)φ. So, from Lemma 2.1 and convergence

vλ → v0 above, we obtain Aλvλ →A0v0 =QL0v0. Thus, by the uniqueness of the limit, it

follows that

QL0v0 =
1

c
(M+1)φ.(42)

On the other hand, since c > 0, we can rewrite (8) as

(M+1)φ− 1

c
(φ+f(φ))+

A

c
= 0.(43)

Since c ∈ (0,+∞) �→ φ is a smooth curve, we can differentiate (43) with respect to c to

obtain

(M+1)
d

dc
φ− 1

c

(
d

dc
φ+f ′(φ)

d

dc
φ

)
= − 1

c2
(φ+f(φ))+

A

c2
− 1

c

dA

dc

= −1

c
(M+1)φ− 1

c

dA

dc
.

(44)

Using the definition of L0 and (44), we obtain

L0

(
d

dc
φ

)
=−1

c
(M+1)φ− 1

c

dA

dc
.(45)

Thus, we have

QL0

(
d

dc
φ

)
=−1

c
(M+1)φ.(46)

Now, from (42) and (46), we have the relation QL0

(
d
dcφ
)
= −QL0v0. Therefore, since

ker(QL0) = [φ′], there exists θ ∈ R\{0} such that d
dcφ + v0 = θφ′. Next, we define
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cλ := cλ+λθ and vλ := vλ + θφ′ to deduce the convenient expression uλ = cλφ
′ + λvλ.

Therefore, by the convergences vλ → v0 in L2
per,e([0,L]) and

(Aλ− bλ)(vλ−v0) =
bλ
λ
uλ− cλωλ−Aλ(v0)− bλvλ+ bλv0 −→ 0

in L2
per([0,L]), as λ→ 0+, we obtain by Lemma 2.3 that ||vλ−v0||

H
m
2

per

→ 0. Thus,

vλ = vλ−θφ′ → v0−θφ′ =− d

dc
φ, as λ→ 0+.

Now, for Θλ := (Aλ−A0)
λ , we deduce that

bλ
λ2

uλ =
1

λ
Θλuλ+

1

λ2
QL0uλ = cλ

1

λ
Θλφ

′+Θλvλ+
1

λ2
QL0uλ.

Consequently, we obtain

I(λ) :=
1

λ2
〈bλuλ,φ

′〉L2
per

=
1

λ2
〈QL0uλ,φ

′〉L2
per

+
1

λ
cλ 〈Θλφ

′,φ′〉L2
per

+ 〈Θλvλ,φ
′〉L2

per
.

(47)

Thus, since the operator QL0 :H
m
per([0,L])∩V⊂L2

per([0,L])∩V→V is self-adjoint, the first

term on the right side of (47) is zero. Next, we will handle with the last two terms in (47)

for 0< λ� 1 small enough. In fact, by Lemma 2.1 and the fact that Q
(

d
dcφ+f ′(φ) d

dcφ
)
=

d
dcφ+f ′(φ) d

dcφ−
1
L

∫ L

0
f ′(φ) d

dcφdx, we obtain,

〈Θλvλ,φ
′〉L2

per
=

〈
1

λ
(Aλ−A0)vλ,φ

′
〉

L2
per

=
1

c2
〈
(1−Eλ,−)Q(vλ+f ′(φ)vλ),φ

〉
L2

per

→ − 1

c2

〈
Q

(
d

dc
φ+f ′(φ)

d

dc
φ

)
,φ

〉
L2

per

= − 1

c2

〈
d

dc
φ+f ′(φ)

d

dc
φ,φ

〉
L2

per

.

(48)

Moreover,

1

λ
〈Θλφ

′,φ′〉L2
per

=
1

λ

〈
1

c

1

λ− c∂x
Q(φ′+f ′(φ)φ′),φ′

〉
L2

per

=
1

c2

〈
φ+f(φ),

1

c
φ

〉
L2

per

− 1

c3
〈
φ+f(φ),Eλ,+φ

〉
L2

per

−→ 1

c2

〈
1

c
(φ+f(φ)) ,φ

〉
L2

per

,

as λ→ 0+. Again by (8), we deduce for λ→ 0+.

1

λ
cλ 〈Θλφ

′,φ′〉L2
per

−→ 1

c2
〈(M+1)φ,φ〉L2

per
.(49)
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Furthermore, since L0

(
d
dcφ
)
=−1

c (M+1)φ− 1
c
dA
dc , we have that

1

c
(M+1)φ− 1

c

(
d

dc
φ+f ′(φ)

d

dc
φ

)
=−(M+1)

d

dc
φ− 1

c

dA

dc
.(50)

Thus, combining (47) – (49), and using (50), we obtain

lim
λ→0+

I(λ) = lim
λ→0+

1

λ
cλ 〈Θλφ

′,φ′〉L2
per

+ lim
λ→0+

〈Θλvλ,φ
′〉L2

per

=
1

c

〈
−(M+1)

d

dc
φ− 1

c

dA

dc
,φ

〉
L2

per

=
1

c

〈
−(M+1)

d

dc
φ,φ

〉
L2

per

.

Therefore, we obtain that

lim
λ→0+

bλ
λ2

= lim
λ→0+

I(λ)
〈uλ,φ′〉

=−1

c

1

||φ′||2L2
per

〈
(M+1)

d

dc
φ,φ

〉
L2

per

= I(c).

This finishes the proof of the Lemma.

Corollary 3.1. Let c ∈ (0,+∞) �→ φ be a smooth curve of periodic traveling solutions

with the zero property satisfying (8) with f(s) = s2

2 . The moving kernel formula in Lemma

3.1 is given by

I(c) =− 1

c2
1

||φ′||2L2
per

[
〈(M+1)φ,φ〉L2

per
+L

(
dA

dc

)]
.(51)

Proof. Deriving (8) with respect to c, integrating in [0,L] and using the fact that c ∈
(0,+∞) �→ φ is a smooth curve with the zero mean property, we obtain

c

∫ L

0

φ(M+1)
d

dc
φdx+

∫ L

0

φ(M+1)φdx− 1

2

d

dc

∫ L

0

φ2dx− 1

3

d

dc

∫ L

0

φ3dx= 0.(52)

The next step is to multiply (8) by φ, integrating in [0,L] and deriving the final result with

respect to c to get

2c

∫ L

0

φ(M+1)
d

dc
φdx+

∫ L

0

φ(M+1)φdx− 1

2

d

dc

∫ L

0

φ2dx− 1

2

d

dc

∫ L

0

φ3dx= 0.(53)

By (52) and (53), we deduce that

−c

〈
(M+1)

d

dc
φ,φ

〉
+ 〈(M+1)φ,φ〉+ 1

2

d

dc

∫ L

0

φ2dx= 0.(54)

Deriving (8) with respect to c and integrating we have

1

2

d

dc

∫ L

0

φ2dx= L

(
dA

dc

)
.(55)

Hence, we can combine (34) with (54) and (55) to obtain the required result in (51).
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We are in position to establish the following spectral stability criterion for (1).

Theorem 3.1. Let c → φ ∈ Hm
per([0,L])∩V be a smooth curve of periodic solution to

(8) with c > 0. We assume that

ker(QL0) = [φ′].(56)

Denote by n(QL0) the number (counting multiplicity) of negative eigenvalues of the operator

QL0 defined on Hm
per([0,L])∩V. The wave is spectrally unstable if one of the following two

conditions is true:

(i) n(QL0) is even and I(c)< 0.

(ii) n(QL0) is odd and I(c)> 0.

Proof. See [8].

Concerning the spectral/orbital stability, we have the following result.

Theorem 3.2. Under the same assumptions of Theorem 3.1, if n(QL0) = 1 and I(c)< 0

we have:

(a) the periodic wave φ is spectrally stable.

(b) Let s ≥ m
2 be large enough. If the associated Cauchy problem for (1) is globally well-

posed in Hs
per([0,L])∩V, the periodic wave φ is orbitally stable in the Sobolev space

H
m
2
per([0,L])∩V.

(c) If we assume additionally that n(L0) = 1, ker(L0) = [φ′] and the associated Cauchy

problem for (1) is globally well-posed in Hs
per([0,L]) for s≥ m

2 large enough, the periodic

wave φ is orbitally stable in H
m
2
per([0,L]).

Proof. We prove item (a). Applying [1, Proposition 3.8] for QL0, we obtain by (46) and

the fact I(c)< 0 the existence of C1 > 0 such that

〈L0v,v〉L2
per

= 〈QL0v,v〉 ≥ C1||v||2L2
per

,(57)

for all v ∈ Hm
per([0,L]) ∩ {1,(M+ 1)φ}⊥ such that v ∈ {φ′}⊥. Since (57) implies that

n
(
L0|{1,(M+1)φ}⊥

)
= 0, the periodic wave is then spectrally stable. To prove item (b), we

need to assume that the Cauchy problem is globally well-posed in Hs
per([0,L])∩V for s≥ m

2

large enough. We see that
∫ L

0
u(x,t)dx =

∫ L

0
u0(x)dx = 0 for all t ≥ 0, where u0 denotes

the initial data u(x,0) = u0(x) of the Cauchy problem associated to (1). Since we have the

estimate (57), the orbital stability in H
m
2
per([0,L])∩V is determined using the approach in

[1] (see also [11]). Finally, we prove (c). In fact, since n(L0) = 1, ker(L0) = [φ′] and I(c)< 0,

the orbital stability in the energy space H
m
2
per([0,L]) comes immediately from the arguments

in [1].

§4. Applications

In this section, we will present two applications in order to illustrate that our approach

can be applied.
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4.1 Spectral instability for the quintic BBM equation

We start by proving the spectral instability of cnoidal periodic waves for the focusing

quintic BBM equation,

ut+ux+u4ux−uxxt = 0,(58)

that is, M=−∂2
x and f(u) = u5

5 in (1).

We seek for periodic waves of the form u(x,t) = φc(x− ct) solving the equation

−cφ′′+(c−1)φ− 1

5
φ5+A= 0,(59)

where A is a constant of integration. We assume that A ≡ 0 for all c in order to produce

symmetric periodic waves with the zero mean property.

An explicit family of periodic traveling waves of (58) is given by

φ(x) =
acn

(
4K
L x,k

)√
1− bsn2

(
4K
L x,k

) ,(60)

where the period L > 0 is fixed. Here, cn stands for the cnoidal elliptic function, sn the

snoidal elliptic function and K =K(k) indicate the complete elliptic integral of first kind

depending on the elliptic modulus k ∈ (0,1). Parameters a, b and c depends smoothly on

the modulus k ∈ (0,1) and they are given by

a=
5

1
4 2
√
K(2−k2+2

√
k4−k2+1)

1
4

(−16K2
√
k4−k2+1+L2)

1
4

,(61)

b= k2−1−
√

k4−k2+1,(62)

and

c=
L2

−16K2
√
k4−k2+1+L2

,(63)

for all k ∈ (0,1).

Function b assumes only negative values for all k ∈ (0,1) and thus, the denominator in

(60) makes sense for all values of k ∈ (0,1) and x ∈ [0,L]. Next, to get real solutions φ, we

also need to assume that q(k,L) :=−16K2(k4−k2+1)
1
2 +L2, present in the denominator

of a and c in (61) and (62) is a positive function in terms of the pair (k,L). For a fixed

L > 0, since k ∈ (0,1) �→ 16K2(k4 − k2 +1)
1
2 is a strictly increasing function in terms of

k ∈ (0,1), we guarantee the existence of a unique kL ∈ (0,1) such that

L2 > 16K2(k4−k2+1)
1
2 ,(64)

for all k ∈ (0,kL).

Now, let L := L(c(k,L)) be the linearized operator of (59) around φ given by

L=−c∂2
x+ c−1−φ4.(65)

One has that L is an unbounded self-adjoint operator defined on L2
per([0,L]) with domain

H2
per([0,L]).
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To obtain the spectral properties for L, it is necessary to use the classical Floquet

theory. To this end, we consider the second order ordinary differential equation in a general

form as

−ϕ′′+g(c,ϕ) = 0,(66)

where g is a smooth function in all variables. We assume that the parameter c belongs to

an open set P ⊂ R. The linearized operator around ϕ

Gh=−h′′+g′(c,ϕ)h, c ∈ P,(67)

which is a Hill operator. According with [23], the spectrum of L is formed by an unbounded

sequence of real numbers

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 · · ·< λ2n−1 ≤ λ2n · · · ,

where equality means that λ2n−1 = λ2n is a double eingenvalue.

By the Oscillation Theorem in [23], the spectrum of L is characterized by the number

of zeros of the eigenfunctions. In fact, if χ is an eigenfunction associated to the eigenvalue

λ2n−1 or λ2n, then χ has exactly 2n zeros in the half-open interval [0, L).

In our case, consider {φ′,y} the fundamental set related to the Hill equation

−ch′′+(c−1)h−φ4h= 0.(68)

We see that φ′ is an L-periodic solution of (68). The arguments in [23] establish a

connection between φ′ and y through the equality,

y(x+L) = y(x)+θφ′(x),(69)

where θ is a real constant given by

θ =
y′(L)

φ′′(0)
.(70)

In order to know the exact position of the zero eigenvalue associated to L we follow the

main result put forward in [27], given below.

Theorem 4.1. Let φ′ be periodic eigenfunction of L in (67) associated to the zero

eigenvalue. If θ is the constant given by (70), then zero eigenvalue is simple if and only if

θ �= 0. Moreover, since φ′ has two zeros in the half-open interval [0,L), then λ1 = 0 if θ < 0,

and λ2 = 0 if θ > 0.

To continue with our spectral analysis, it is necessary to know exactly the nonpositive

spectrum of L by studying the inertial index In(L) of L, where In(L) is a pair of integers

(n,z), where n is the dimension of the negative subspace of L and z is the dimension of

the null subspace of L. For instance, In(L) = (1,1) means that the number of negative

eigenvalues of L and denoted by n(L) is one and the dimension of the kernel z(L) is also

one. Using Theorem 3.1 in [24], we see that it is enough to compute the index In(L) only
for an arbitrary value of k0 ∈ (0,kL) and for fixed value of L such that inequality (64) holds.
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Table 1. Values of θ and J in terms of the modulus k0 for L= 4π.

L= 4π

k0 θ J
0.0001 32.4432 6.2833
0.1 30.5161 6.3690
0.3 33.4888 6.3182
0.5 46.0200 6.0088
0.7 74.3573 5.2724
0.9 224.6495 2.8378

0.9999 θ /∈ R J /∈ R

We put forward some values of θ for fixed values of L > 0 and k ∈ (0,kL). To do so, we

need to determine the solution associated with the initial value problem given by⎧⎨⎩
−cy′′+(c−1−φ4)y = 0

y(0) =− 1
φ′′(0)

y′(0) = 0.

(71)

We also want to check the spectral stability of φ. To this end, we need to use an index

formula established in [28, Theorem 4.1] and given by

n(QL) = n(L)−n(J )−z0,(72)

and

z(QL) = z(L)+z0−z∞,(73)

where z0 denotes the dimension of the kernel of the quantity J = 〈L−11,1〉 and z∞ the

corresponding number of diverging eigenvalues. For L > 0 such that (64) occurs, it is

important to mention that θ �= 0 if, and only if, z∞ = 0.

We need to calculate J . First, we use the solution y obtained in (71) and the initial value

problem given by ⎧⎪⎨⎪⎩
−cy′′+(c−1−φ4)y = 1

y(0) = 1
cy′(L)

∫ L

0
y(x)dx

y′(0) = 0.

(74)

The initial condition y(0) is obtained by multiplying equation in (74) by y and performing

two integration by parts.

According with the tables below, we can compute some values of θ and J in terms of the

modulus k0 ∈ (0,kL) for fixed periods. In Table 1, we see that for k0 = 0.9999 the values of θ

and J are complex numbers since inequality (64) is not satisfied for this value of the elliptic

modulus. Next, we know that φ′ is an eigenfunction associated to the zero eigenvalue and

we can deduce that φ′ has exactly two zeros in half-open interval [0,L). By Theorem 4.1

and Tables 1 and 2, we have that the linearized operator L satisfies In(L) = (2,1) for all

k ∈ (0,kL).

From equality (34), we have

P (c) =
d

dc

∫ L

0

(φ′)2+φ2dx.(75)
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Table 2. Values of θ and J in terms of the modulus k0 for L= 12π.

L= 12π

k0 θ J
0.0001 2992.02 219.919
0.1 2768.77 226.843
0.3 2490.16 236.194
0.5 2444.75 240.866
0.7 2759.26 238.559
0.9 4591.67 206.467

0.9999 502992.1 41.752

Since we know the periodic waves for (59), we can calculate ||φ||2H1
per

=
∫ L

0
(φ′)2+φ2dx to

obtain I(c) in (34).

Using the explicit form of φ in (60), we found that∫ L

0

φ2dx=

∫ L

0

a2cn2
(
4K
L x,k

)
1− bsn2

(
4K
L x,k

)dx.
Let us consider the change of variables s= 4K

L x. We have∫ L

0

φ2dx=
a2L

4K

∫ 4K

0

cn2 (s,k)

1− bsn2 (s,k)
ds=

a2L

K

∫ K

0

cn2 (s,k)

1− bsn2 (s,k)
ds.(76)

Now, since 0<−b <+∞ and using the formula 411.03 in [10], we obtain∫ K

0

cn2 (s,k)

1− bsn2 (s,k)
ds=

π(1− b)(1−Λ0(β,k))

2
√

b(1− b)(b−k2)
,

where

Λ0(β,k) =
2

π
[E(k)F (β,k′)+K(k)E(β,k′)−K(k)F (β,k′)]

and

β = sin−1

(
1√
1− b

)
= sin−1

(
1√

2−k2+
√
k4−k2+1

)
.

Here, F (β,k′) and E(β,k′) indicate the incomplete elliptic integral of first kind and second

kind, respectively. Parameter k′ =
√
1−k2 is the elliptic complementary modulus and E(k)

indicate the complete elliptic integral of second kind. Function Λ0(β,k) is known as Heuman

Lambda function.

Defining the function q which depends only on k ∈ (0,kL) as

q(k) :=
π(1− b)(1−Λ0(β,k))

2K
√
b(1− b)(b−k2)

=
π
√
2−k2+

√
k4−k2−1(1−Λ0(β,k))

2K
√
1−k2+

√
k4−k2+1

√
1+

√
k2−k2+1

we can rewrite (76) as ∫ L

0

φ2dx= (a2L)q(k).(77)
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On the other hand, multiplying (59) by φ and integrating in [0,L], we obtain

−c

∫ L

0

(φ′)2dx− (c−1)

∫ L

0

φ2dx+
1

5

∫ L

0

φ6dx= 0.(78)

Moreover, multiplying (59) by φ′ and integrating, we obtain the quadrature form

c
(φ′)2

2
− (c−1)

φ2

2
+

φ6

30
+B = 0,(79)

where B is a nonzero constant of integration.

Integrating (79) in [0,L], we found

c

∫ L

0

(φ′)2dx− (c−1)

∫ L

0

φ2dx+
1

15

∫ L

0

φ6dx+2LB = 0.(80)

Combining (78) and (80), we get∫ L

0

(φ′)2dx=
(c−1)

2c

∫ L

0

φ2dx− 3LB

2c
.(81)

Since φ′ is odd, we can express B by taking x= 0 in (79) as

B = (c−1)
φ2(0)

2
− φ6(0)

2
.

Using the explicit form of φ in (60), we obtain

B =
32

3

√
5K3

√
2−k2+2

√
k4−k2+1(

√
k4−k2+1−2+k2)

(−16K2
√
k4−k2+1+L2)

3
2

.(82)

Therefore, the relations (61), (63), (77), (81), and (82) allow us to write∫ L

0

(φ′)2+φ2dx=
a2L(3c−1)

2c
q(k)− 3LB

2c
:= VL(k).(83)

Using Maple program, we can see that for L> 4K(k4−k2+1)
1
4 and function VL(k) is strictly

increasing in (0,kL) (see Figures 1–4. For instance, by taking L= 4π, we can conclude that

kL = 0.99.

1.4

1.5

1.6

1.7

1.8

1.9

k
0 0.2 0.4 0.6 0.8

Figure 1.

Graph of k ∈ (0,kL) �→ c(k) for L= 4π.
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1.03

1.035

1.04

1.045

1.05

1.055

0 0.2 0.4 0.6 0.8
k

Figure 2.

Graph of k ∈ (0,kL) �→ c(k) for L= 12π.
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4.2

4.4

4.6

4.8
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5.2

5.4

5.6

k
0 0.2 0.4 0.6 0.8

Figure 3.

Graph of VL(k) for L= 4π.

1.6

1.8

2

2.2

2.4

k
0 0.2 0.4 0.6 0.8

Figure 4.

Graph of VL(k) for L= 12π.

Thus,

P (c) =
d

dc

∫ L

0

(φ′)2+φ2dx=
dVL(k)

dk

dk

dc
> 0,(84)
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for all k ∈ (0,kL). So, using (3.1), we conclude that I(c) < 0. In addition, we obtain from

Table 1 that J = 〈L−11,1〉 > 0, that is, n(J ) = 0. Hence, we conclude from (73) that

ker(QL) = [φ′]. Therefore, since n(L) = 2, n(J ) = 0 and z0 = 0, we deduce from (72) that

n(QL) = 2. Since n(QL) = 2 and I(c) < 0, we conclude that the periodic solution φ is

spectrally unstable by Theorem 3.1.

Remark 4.1. It is worth mentioning that the orbital instability of the periodic wave φ

in H1
per([0,L]) can be determined by repeating similar arguments as in [8, Section 3.1]. To

this end, it makes necessary to employ the results in [15] where the authors gave sufficient

conditions to prove the nonlinear (orbital) instability from the spectral instability.

4.2 Spectral stability for the rBO equation

Now, we are interested in studying the spectral (orbital) stability of zero mean periodic

waves for the rBO equation

ut+ux+uux+Huxt = 0.(85)

As we have performed in the last application, periodic traveling waves of (85) are solutions

of the form u(x,t) = φ(x− ct). Substitute this kind of solution into (85), we obtain after

integration

cHφ′+(c−1)φ− φ2

2
+A= 0,(86)

where A=A(c) is a constant of integration defined by

A(c) :=
1

2L

∫ L

0

φ2dx.(87)

Important to mention that condition (87) gives that φ has the zero mean property.

As before, the linearized and self-adjoint operator around the periodic wave φ is

defined by

Lφ = cH∂x+ c−1−φ.(88)

Let us consider the following transformation

ψ =
1

2c

[
φ− (c−1)+

√
(c−1)2+2A

]
(89)

to convert (86) to the equation which determines positive and periodic waves for the classical

Benjamin–Ono equation (M=H∂x and f(u) = u2

2 in (2)),

Hψ′+ωψ−ψ2 = 0,(90)

where ω = 1
c

√
(c−1)2+2A. Integrating (89) on [0,L] and using the fact that φ : R→ R is

a periodic function with the zero mean property, we have

c=

(
1−ω+

2

L

∫ L

0

ψdx

)−1

.(91)
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To simplify the notation, we consider L = 2π. According with [4], the periodic solution

for (90) is given by

ψ(x) =
sinh(γ)

cosh(γ)− cos(x)
,(92)

where parameter γ ∈ (0,+∞) being expressed by γ = coth−1(ω). For c > 1, t he transfor-

mation (89) allows us to obtain the periodic solution for the rBO equation (86) as

φ(x) = 2c

(
sinh(γ)

cosh(γ)− cos(x)
−1

)
.(93)

The linearized operator around periodic wave ψ is given by

Lψ =H∂x+ω−2ψ.(94)

The transformation (89) allows us to establish a relation between both linearized operators

Lφ and Lψ as

Lφ = cLψ,(95)

By (92), we obtain
∫ 2π

0
ψ(x)dx= 2π which allows to deduce, by (91) that c= (3−ω)−1.

In addition, from the equality ω = 1
c

√
(c−1)2+2A, it follows that A(c) = 4c2−2c.

In order to get the spectral conditions required to prove the spectral stability of rBO

equation, we employ again the index formula in [28, Theorem 4.1]. First, we calculate

J = 〈L−1
φ 1,1〉 and I(c) in (34).

Denoting A′(c) := dA
dc , we see that

Lφ

(
d

dc
φ

)
=

1

c

(
A(c)−φ− 1

2
φ2− cA′(c)

)
, Lφ

(
1

c

)
=

1

c
(c−1−φ)(96)

and

Lφ

(
1

c
φ

)
=−1

c

(
1

2
φ2+A(c)

)
.(97)

Equations in (96) and (97) give us the relation

Lφ

(
d

dc
φ− 1

c
− 1

c
φ

)
=

1

c
(1+2A(c)− c− cA′(c)) =

1

c
(1−3c) := d.(98)

Thus, for c > 1 we obtain d �= 0 and

Lφ

(
d−1

(
d

dc
φ− 1

c
− 1

c
φ

))
= 1.(99)

In addition, we can compute explicitly J as

J = 〈L−1
φ 1,1〉 = − 2π

1+2A(c)− c− cA′(c)

=
2π

3c−1
.

(100)

Therefore, for c > 1 we have that J > 0.
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Remark 4.2. By differentiating the relation ω= 1
c

√
(c−1)2+2A(c), we obtain for c> 1

2

that

dω

dc
=

d

c
√
1+2A(c)+ c2−2c

�= 0.(101)

Next, since f(u) = u2

2 in rBO equation (85), we shall use the expression given in (51) in

order to obtain the exact value of I(c). To so do, we need to obtain a convenient expression

for 〈(H∂x+1)φ,φ〉L2
per

+2πA′(c).

In fact, by Poincaré–Wirtinger inequality, we deduce

〈(H∂x+1)φ,φ〉L2
per

=

∫ 2π

0

φHφ′dx+

∫ 2π

0

φ2dx≥ 2

∫ 2π

0

φ2dx.(102)

Moreover, by (87), we have ∫ 2π

0

φ2dx= 4π(4c2−2c).(103)

Since A′(c) = 8c−2, we substitute (103) into (102) to obtain that

〈(H∂x+1)φ,φ〉L2
per

+2πA′(c)≥ 4π(8c2−1),

that is, for c > 1 we obtain I(c)< 0.

On the other hand, as we have already seen in (100) since J = 〈L−1
φ 1,1〉 > 0, we get

n(J ) = 0. By the equalities in (72) and (73), we obtain n(QLφ) = n(Lφ) and z(QLφ) =

z(Lφ), respectively. To calculate n(Lφ) and z(Lφ), we employ (95) joint with the arguments

in [6, Section 5.1]. In fact, according with [6], the linearized operator Lψ has an unique

simple negative eigenvalue and zero is a simple eigenvalue whose eigenfunction is φ′ and

thus, we obtain n(Lφ) = z(Lφ) = 1. These facts allow us to deduce n(QLφ) = z(QLφ) = 1.

Finally, since I(c) < 0 and n(QLφ) = z(QLφ) = 1, we employ Theorem 3.2(a) to obtain

that the periodic wave solution φ for the rBO equation is spectrally stable. We can also use

Theorem 3.2(c) to prove that the periodic wave φ is orbitally stable in the energy space

H
1
2
per([0,L]). To do so, it remains to check the global well-posedness in Hs

per([0,L]) for s >
1
2 .

However, this fact has been verified in [4, Corollary 3.3].
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PR, Brazil
sabrinasuelen20@gmail.com

https://doi.org/10.1017/nmj.2021.9 Published online by Cambridge University Press

mailto:fmanatali@uem.br
mailto:sabrinasuelen20@gmail.com
https://doi.org/10.1017/nmj.2021.9

	1 Introduction
	2 Basic framework on the spectral stability—verbatim of [r68]
	3 The moving kernel formula—revisited
	4 Applications
	4.1 Spectral instability for the quintic BBM equation
	4.2 Spectral stability for the rBO equation


