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Abstract

The National Institutes of Health (NIH) Magnetic Resonance Imaging (MRI) Study of Normal Brain Development

is a landmark study in which structural and metabolic brain development and behavior are followed longitudinally

from birth to young adulthood in a population-based sample of healthy children. Cross-sectional findings from the
neuropsychological test battery have been previously described (Waber et al., 2007). The present report details 4-year
longitudinal neuropsychological outcomes for those children who were aged 6 to 18 years at baseline (N = 383), of whom
219 (57.2%) completed all 3 visits. Primary observations were (1) individual children displayed considerable variation in
scores across visits on the same measures; (2) income-related differences were more prominent in the longitudinal than
in the cross-sectional data; (3) no association between cognitive and behavioral measures and body mass index; and

(4) several measures showed practice effects, despite the 2-year interval between visits. These data offer an unparalleled
opportunity to observe normative performance and change over time on a set of standard and commonly used
neuropsychological measures in a population-based sample of healthy children. They thus provide important background
for the use and interpretation of these instruments in both research settings and clinical practice. (JINS, 2012, 18, 179-190)

Keywords: Psychological tests, Child behavior, Child development, Adolescent development, Neuropsychology,
Achievement, Educational

INTRODUCTION 2000 Census. The database includes anatomic MRI, magnetic
resonance spectroscopy (MRS), and diffusion tensor imaging
(DTI), with coordinated neuropsychological, neurological and
behavioral data.

We previously documented the recruitment strategy along
with performance on the neuropsychological battery at the
first (cross-sectional) visit among participants in the Objec-
tive 1 component of the project, who were between the ages
of 6 and 18 (Waber et al., 2007). In the present report, we
extend these findings to the longitudinal data, comprising
three time points spaced at 2-year intervals. These data pro-
vide a rare opportunity to examine developmental stability
or change associated with well-standardized and widely used
neuropsychological measures in a large population-based

) sample of healthy children.
Correspondence and reprint requests to: Deborah P. Waber, Department In additi to the 1 itudinal desi d ti
of Psychiatry, Children’s Hospital Boston, 300 Longwood Avenue, Boston, n addition to the longitudinal design and representative-

Massachusetts 02115. E-mail: deborah.waber@childrens.harvard.edu ness, several features of this database render it particularly

The National Institutes of Health (NIH) Magnetic Resonance
Imaging (MRI) Study of Normal Brain Development was
undertaken to compile a database for describing the normative
developmental trajectories of the human brain and correlating
developmental and individual variation, particularly in brain
structures, with behavior and cognition (Evans, 2006). This
landmark study documents structural brain development and
behavior in an accelerated longitudinal design spanning birth
to young adulthood in a population based sample of healthy
children. The sample was recruited to be demographically
representative of the United States population based on the
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valuable for appreciating normative performance on these
measures. First, because of the strict quality control proce-
dures, reliability of test administration and scoring was
carefully monitored across visits and sites. Moreover, the
sample was carefully screened for factors that could impact
brain development and/or function, and thus test performance
(Evans, 2006; Waber et al., 2007).

The study included a comprehensive battery of widely
used neuropsychological instruments. The prior report
(Waber et al., 2007), based on data from the baseline visit,
documented clear effects of family income for IQ and achieve-
ment. Effects of sex favoring males were detected for visuo-
spatial skills; females excelled at processing speed, manual
dexterity, and verbal learning. The general level of performance
on the battery was higher than population norms, most likely
because of the strict inclusion and exclusion criteria, which
would have had their greatest impact on the low-income group,
who were excluded at the highest rate (Waber et al., 2007).

The Brain Development Cooperative Group recently
reported cross-sectional baseline findings on brain volumes
(Brain Development Cooperative Group, 2011). There was
an intriguing association between brain volumes and body
mass index (BMI): BMI was associated positively with white
matter and negatively with grey matter volumes. The anato-
mical findings suggested that it would be important to explore
a potential association between BMI and neuropsychological
functioning.

The present report describes outcomes based on the longi-
tudinal measurement at all time points and addresses three
aims: (1) To describe normative stability or change over time
in scores on measures included in the neuropsychological
battery. (2) To evaluate individual differences related to
age, sex, income, and BMI. (3) To estimate effects of repeated
administration of instruments at 2-year intervals on performance.

METHODS

Details of the methods, including study organization, recruit-
ment, design and measures, have been previously described
(Waber et al., 2007) and are presented here in summary form.
This study is based on Release 4 of the database (public release).

Study Organization

Data were collected at six Pediatric Study Centers (PSCs)
across the United States: Children’s Hospital, Boston; Children’s
Hospital Medical Center of Cincinnati; Children’s Hospital of
Philadelphia; University of California at Los Angeles; University
of Texas, Houston; and Washington University, St. Louis.

Design

Participants were evaluated at baseline (N = 383; age range,
6 to 18 years) and followed at 2-year intervals thereafter,
spanning a total of 4 years, ultimately providing longitudinal
data through age 22. Follow-up data were captured within a
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20 to 28 month window of the initial visit. Sampling density
was higher at younger ages, during which rapid develop-
mental changes were expected, and lower at ages thought to
be more stable.

Participants

The study sample was initially recruited between February
2001 and October 2003. The sampling plan was based on
available U.S. Census data to define low (<<$35,000 per
year), medium ($35,000 to $75,000 per year), and high
income (over $75,000 per year) categories. This distribution
was further subdivided based on the national distribution of
families within race/ethnicity categories within each income
level. The targets within these race/ethnicity-by-income cate-
gories were then distributed across age and sex categories based
on the target age distribution, with males and females repre-
sented equally across age. Although the sample was recruited to
match the distribution in the target cells, low-income white
children were under-represented, presumably because study
sites were in urban centers (Waber et al., 2007).

Consenting families with a child meeting all criteria for a
target cell were screened for exclusionary criteria: pregnancy,
birth and perinatal history, physical/medical or growth impair-
ment; significant behavioral or psychiatric disorder; and family
history of significant neurologic or psychiatric disorder in
first order relative (Evans, 2006; Waber et al., 2007). Those
eligible were invited to the PSC for clinical assessment, which
included neurological evaluation, neuropsychological testing
and structural MRI imaging, typically carried out in 1 day.

Informed consent, and assent as age appropriate, were
obtained in compliance with standards for human research for
all participating institutions and in accordance with the Helsinki
Declaration.

Measures

The neuropsychological battery was comprised primarily of
commonly used measures, most with standardized age norms,
to assess general intelligence, processing speed, verbal and
spatial short-term and working memory, verbal learning, verbal
fluency, and fine motor dexterity (Table 1). Parent ques-
tionnaires assessed psychosocial adjustment and executive
functioning in everyday situations. Detailed descriptions of
the tests and modifications for this study were previously
reported (Waber et al., 2007).

BMI was computed according to the standard formula
(weight in kilograms/height in centimeters?) and also converted
to percentile scores for age and sex according to Center for
Disease Control norms.

Procedures

The testing took approximately 3 hours and typically occur-
red on the same day as the MRI scan, before the scan. Quality
confirmation procedures implemented by the Clinical Coordi-
nating Center (CCC) required that each instrument be
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Table 1. Functional domains and measures in NIH study of normal
brain development neuropsychological battery

Functional domain Measure

Wechsler Abbreviated Scale of
Intelligence (WASI) (Wechsler, 1999)

Wechsler Intelligence Scale for Children
— Third Edition (WISC-III) Coding
(Wechsler, 1991)

Verbal Short-Term and Wechsler Intelligence Scale for Children

Intelligence

Processing Speed

Working Memory — Third Edition (WISC-III) Digit Span
(Wechsler, 1991)
Verbal Learning California Verbal Learning Test for
Children (CVLT-C) (Delis, Kramer,
Kaplan, & Ober, 1994)
Verbal Fluency” NEPSY Verbal Fluency (Korkman, Kirk,

& Kemp, 1997)

Spatial Short-Term and Cambridge Neuropsychological Test
Working Memory Battery (CANTAB)

Spatial Span and Spatial Working
Memory (CeNeS, 1998)

Cambridge Neuropsychological Test
Battery (CANTAB)

Intradimensional/Extradimensional Shift
(CeNeS, 1998)

Purdue Pegboard (Gardner & Broman,
1979; Tiffin & Asher, 1948)

Woodcock-Johnson IIT (WJ-III)

Letter-Word Identification, Passage
Comprehension, Calculation
(Woodcock, McGrew, & Mather, 2001)

Behavior Rating Inventory of Executive

Set Shifting

Fine Motor Dexterity

Academic Skills

Executive Function

(Everyday) Functions (BRIEF) — Parent Version
(Gioia, Isquith, Guy, & Kenworthy,
2000)
Psychosocial Child Behavior Checklist (Achenbach,
Adjustment 2001)

#Administered at all ages but norms available only for ages 7 to 12.

scored accurately and administered verbatim according to
the instrument’s manual so that administration and scoring
would be consistent across testers, sites and visits. After
pilot videos established that the examiner was consistently
“passing,” examiners began testing study participants.
Recordings were reviewed on a frame-by-frame basis. The
initial test batteries were videotaped and examiners were certi-
fied once five protocols met quality control criteria. Errors
required the examiner to record a correct administration of the
measure on which the error occurred. Certified testers then
submitted video recordings of every sixth participant to guard
against drift. Detailed QC procedures at the CCC and Data
Coordinating Center (DCC) assured accurate scoring.
Analyses were carried out to evaluate the effectiveness of
these procedures using the WASI Full Scale IQ scores.
Scores of demographically matched participants whose test
administration did (6th administration, N = 75) or did not
(first to fifth administration, N =75 per group) undergo QC
did not differ (p > .20). Moreover, the rate of non-passing
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test administrations was equivalent for tests administered

during the first and second halves of the study, before or after

the middle of Visit 2 (2.2% vs. 1.7% non-passing, p > .70 by
2

X~ test).

Statistical Methods

The r-tests and y tests were used to compare demographics
of the subjects completing all three visits with those com-
pleting fewer visits.

Longitudinal stability or within-individual change over
time was evaluated by inter-visit correlations as well as
individual-level change scores (i.e., differences between the
individual’s score for each pair of visits). Distributions of
changes in scores across visits were then examined. Only
standardized tests and only children who completed all three
visits were included in these analyses; missing data were not
imputed to describe the distributions of change actually
observed. Since only participants whose entire 4-year span
fell within the age range could be included, sample sizes
varied across measures reflecting the age ranges for which the
measure was standardized. The 95% confidence intervals
were derived from the standard error of measurement for each
visit to visit comparison.

For longitudinal models evaluating effects of age, sex,
income, visit, and BMI on neuropsychological outcomes,
missing values (mostly due to attrition) were imputed using
the Markov Chain Monte Carlo Method (Shafer, 1997) of
multiple imputation implemented in SAS PROC MI (SAS
version 9.2), which uses data available at any time-point
to impute missing values. Multiple imputation produces
unbiased estimates assuming the data are missing at random
(Donders, van der Heijden, Stignen, & Moons, 2006) and
is the preferred method in longitudinal developmental
studies (McCartney, Burchinal, & Bub, 2006). Multiple
imputation is preferable to imputation methods that do not
account for variability in imputed values (such as last
value carried forward or other single imputation methods),
and preferable to complete-case analysis that can produce
biased results (Fitzmaurice, Laird, & Ware, 2004). Ten
imputations were created and results were summarized
across the 10 datasets according to the algorithm devel-
oped by Rubin (1976, 1987), implemented in SAS PROC
MIANALYZE. For tests with a limited age range (e.g.,
WISC Digit Span not valid over 16), scores were not
imputed outside the allowable range. Results based on
complete case analysis (non-imputed) did not in fact differ
meaningfully from those obtained using multiply imputed
data. Results based on imputation are presented, however,
to provide the best model estimates.

For each outcome, mixed models were used with subject
treated as a random effect to account for the correlation of
repeated observations from individuals. Models testing the
effect of visit included that main effect as the primary pre-
dictor. For models testing the effects of age, sex, income, and
BMLI, these main effects were the primary predictor. Models
tested the effect repeated measurement or visit adjusting for


https://doi.org/10.1017/S1355617711001536

182

age, sex, income (three levels), and BMI. Visit was treated as
a categorical variable. For the five participants who missed
the second visit but completed the third, the third visit was
treated as the second although it occurred at the time of the
third visit.

The regression coefficients associated with visit represent
the effect of additional visits on the mean outcome. Age was
treated as a time-varying covariate. For exploratory analyses
examining the potential moderating effects of age and base-
line IQ on repeated measurement, separate models were
analyzed including interaction terms for baseline age and 1Q
with Visit. Because of the large sample size and power to
detect effects, the criterion for significance was set at p < .01
(two-tailed) for all analyses.

Table 2. Demographic characteristics of sample at each visit

D.P. Waber et al.
RESULTS
Participant Retention

Table 2 displays demographic characteristics of the sample
at each visit. The Visit 1 sample included 383 participants.
Two hundred nineteen (57.2%) completed all three visits;
112 (29.2%) completed Visits 1 and 2; 5 (1.3%) completed
Visits 1 and 3; 47 (12.2%) completed Visit 1 only. Those
with fewer than three visits were older (mean 11.54 vs. 10.26;
t(381) = —2.64; p <.01). Anecdotally, adolescents were
often more reluctant to return for repeat visits. There were no
differences in retention related to sex, income, or parental
race/ethnicity.

Visit 1 (N = 383)

Visit 2 (N = 331) Visit 3 (N = 224)

Age in years (N, %)

6 64 (17%)
7 41 (11%)
8 36 (9%)
9 36 (9%)
10 35 9%)
11 27 (7%)
12 24 (6%)
13 27 (7%)
14 23 (6%)
15 24 (6%)
16 19 (5%)
17 21 (5%)
18 6 (2%)
19
20
21
22
Sex (N, % male) 185 (48%)
Handedness (N, % right-handed) 336 (87%)
Family income (N, %)
Low 93 (24%)
Medium 156 (41%)
High 134 (35%)
Mother’s Racial identity (N, %)
White 312 (81%)
African-American 32 (8%)
Native American 1 (0%)
Asian 6 2%)
Mixed 3 (1%)
Not provided 29 (8%)
Father’s Racial identity (N, %)
White 300 (78%)
African-American 33 9%)
Native American 2 (1%)
Asian 7 (2%)
Mixed 5 (1%)
Not provided 34 (9%)
Ethnicity (N, % Hispanic)
Mother 29 (8%)
Father 38 (10%)

0 0
12 (4%) 0
48 (15%) 0
36 (11%) 9 (4%)
34 (10%) 43 (19%)
27 (8%) 23 (10%)
27 (8%) 21 (9%)
25 (8%) 12 (5%)
19 (6%) 22 (10%)
18 (5%) 21 (9%)
29 (9%) 20 (9%)
18 (5%) 13 (6%)
17 (5%) 11 (5%)
15 (5%) 8 (4%)
1 (0%) 10 (4%)
9 (4%)
3(1%)
157 (47%) 104 (46%)
294 (89%) 197 (88%)
81 (24%) 52 (23%)
133 (40%) 96 (43%)
117 (35%) 76 (34%)
271 (82%) 184 (83%)
27 (8%) 18 (8%)
1 (0%) 0 (0%)
4 (1%) 1 (0%)
2 (1%) 1 (0%)
26 (8%) 20 (9%)
261 (79%) 177 (79%)
27 (8%) 18 (8%)
4 (1%) 2 (1%)
6 (2%) 3 (1%)
5(2%) 3 (1%)
28 (8%) 21 (9%)
28 (8%) 21 (9%)
32 (10%) 22 (10%)
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Aim 1: Longitudinal Stability

Table 3 displays Pearson correlations across visits and corre-
sponding 95% confidence intervals, derived from the observed
standard error of measurement. This confidence interval will
contain the true mean 95% of the time if the confidence interval
is computed with repeated samples. Table 3 also shows the actual
distribution of individuals by the number of points (absolute
value) that the scores changed for each 2-year interval. Since
only participants whose entire 4-year span fell within the age
range of a given test were included, sample sizes vary depending
on the age ranges for which the measure is standardized.

As expected, scores are highly correlated across Visits, but
fall well short of unity. Correlations are highest for the WASI
Full Scale IQ (0.75-0.81) and lowest for the CVLT-C
(0.27-0.35). Most range from 0.4 to 0.6. The confidence
intervals are correspondingly wide. They range from just
under 1 SD (£12.8 standard score points) for the WASI
Full Scale IQ to just under 1.5 standard deviations for the
CVLT-C (%£15.8 t-score points).

Aim 2: Age, Sex, Income, and BMI

Table 4 displays standardized parameter estimates (indicative
of effect sizes) for the effects of age, sex and income within
the regression models. BMI showed no significant effects and
was dropped from the models.

Age effects were of course prominent on the unstandar-
dized measures, but also observed for several standardized
measures. Scores decreased with increasing age for the
WASI Verbal IQ as well as the WJ-III Letter-Word Identifi-
cation and Calculation.

Sex differences favoring boys were documented for the
WASI Performance IQ. Follow-up analyses, not shown in the
Table, indicated that boys’ scores averaged 2.8 scaled score
points higher on Block Design (p = .001). Girls performed
better on the Pegboard and Coding. There were no significant
interactions of sex with age, indicating that age did not
moderate the sex effects.

Effects of income were documented for many measures.
Where such differences did not reach statistical significance,
their direction was consistent, with higher income partici-
pants achieving better scores (or showing fewer behavioral
symptoms). The parameter estimates, which compare the
High and Low groups to the Middle group, indicate that the
differences between the High and Middle group were gen-
erally larger than those between the Low and Middle group.
Most effect sizes, however, were in the small range.

Aim 3: Effects of Repeated Administration

Table 4 also provides estimates of the effects of Visit,
adjusted for age, sex, and income. Despite the 2-year interval
between visits, positive effects of repeated testing emerged
for some measures. Visit affected WASI Performance 1Q;
follow-up analysis indicated that Block Design scores improved
an estimated 1.79 scaled score points for each visit (p < .0001).
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There was also a small but statistically significant Visit effect for
Full Scale 1Q.

Effects of Visit were detected for the CANTAB IED and
Pegboard. To assure that the observed effects truly reflected
Visit and not age for these unstandardized measures, we
plotted score distributions for a single age group by Visit (i.e.,
raw score for distributions for 10-year-olds performing the
task at their first, second, or third visit). These confirmed that
the effects of Visit were not attributable to age. Figure 1, for
example, illustrates the Visit effect for the pegboard in the
both hands condition among 10-year-olds. They performed
better if testing occurred on their second or third visit rather
than their first, corroborating the models. Moreover, the
increment appeared to be greater for the second than the third
visit. Accordingly, correlations between Visits 2 and 3 are
generally higher than those between Visits 1 and 2 (Table 3).

Exploratory analyses were implemented to determine
whether the Visit effects were moderated by baseline age or
ability level. Baseline IQ interacted with Visit for the WASI
(Verbal, Performance, Full Scale I1Q) and the WJ-III Passage
Comprehension (all p <.001). The pattern of these interac-
tions, illustrated in Figure 2 for WJ-III Passage Comprehen-
sion, suggests regression to the mean.

Interactions between Visit and age emerged for WJ-III Cal-
culation (p < .0001), and semantic (p < .0001) but not phonemic
fluency, Spatial Span, Pegboard (p <.0001), and CBCL Inter-
nalizing and Total Competence (p <.01). Figure 3 illustrates
the interaction, consistent across affected variables, for the
CANTAB Spatial Span; the Visit effect was greater for younger
children (612 years) than for adolescents (13—18 years).

DISCUSSION

This first report on the longitudinal neuropsychological
data from the NIH MRI Study of Normal Brain Development
database addressed three issues: normative variability in
performance over time, individual differences related to
age, sex, income, and BMI, and effects of prior testing. To
summarize, first, even though these measures were adminis-
tered under well-controlled conditions, with rigorous QC,
individual children displayed considerable variability across
visits on the same measures. Second, individual differences
emerged clearly. Sex differences were consistent with those
previously reported in the psychological literature, differences
related to income level emerged for many measures, both
cognitive and behavioral, and BMI was unrelated to outcomes.
Finally, despite the 2-year interval between visits, considerably
longer than the 1 year minimum typically recommended in
clinical practice, some measures showed effects of prior testing.
The effect sizes for both visit and individual differences, how-
ever, are relatively small, achieving statistical significance
because of the very high power to detect effects.

Aim 1: Longitudinal Stability

The NIH database provides the rare opportunity to observe
normative stability or change across development in measures
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Table 3. Correlations between scores across visits, 95% confidence interval for change between visits; mean, median, and 25™ and 75"
percentiles of absolute value of change in scores between visits

Comparison r  95% confidence interval (+/-) N  Mean Median 25%ile 75%ile

WASI Full Scale IQ (Standard Score) V2-V1 .81 12.8 216  6.11 5.00 2.00 9.00
V3-V1 5 14.7 216 6.86 5.00 3.00 9.50
V3-V2 .80 13.1 216 5.50 4.00 2.00 8.00
WASI VIQ (Standard Score) V2-V1 73 15.3 216 7.57 6.00 3.00 10.00
V3-V1 .68 16.6 216 8.14 7.00 3.00 11.00
V3-V2 7 14.1 216 6.26 5.00 2.00 10.00
WASI PIQ (Standard Score) V2-V1 18 13.8 217  6.81 6.00 3.00 10.00
V3-V1 .70 16.1 217 7.92 7.00 3.00 11.00
V3-V2 76 144 217 6.47 5.00 2.00 10.00
WIIII Calculation (Standard Score) V2-V1 .61 18.4 200 8.02 6.00 3.00 12.00
V3-Vi .52 20.4 200 9.59 8.00 4.00 14.00
V3-V2 .69 16.4 200 7.43 6.00 3.00 12.00
WIII Letter-Word (Standard Score) V2-V1 .69 164 203  6.29 5.00 2.00 9.00
V3-V1 .66 17.1 203  7.09 5.00 3.00 11.00
V3-V2 18 13.8 203  4.97 4.00 2.00 7.00
WIIII Passage Comprehension (Standard Score) V2-V1 .50 20.8 202 7.76 7.00 3.00 11.00
V3-V1 .56 19.5 202 7.52 6.00 2.00 11.00
V3-V2 51 20.6 202 7.50 6.00 3.00 10.00
NEPSY Verbal Fluency (Scaled Score) V2-V1 40 4.6 51 243 2.00 1.00 3.00
V3-V1 .60 3.7 51 225 2.00 1.00 3.00
V3-V2 .58 3.8 51 198 2.00 1.00 3.00
WISC-III Coding (Scaled Score) V2-V1 .50 4.2 155 232 2.00 1.00 3.00
V3-Vi 52 4.1 155 236 2.00 1.00 3.00
V3-V2 .66 34 155 1.97 2.00 1.00 3.00
WISC-III Digit Span (Scaled Score) V2-Vi 48 4.2 162 2.17 2.00 1.00 3.00
V3-V1 .55 3.9 162  2.10 2.00 1.00 3.00
V3-V2 .62 3.6 162 195 1.50 1.00 3.00
CVLT-C T1 to T5 (T-Score) V2-V1 .35 15.8 141 843 6.00 3.00 12.00
V3-V1 .27 16.7 141 8385 7.00 3.00 13.00
V3-V2 .35 15.8 141 833 7.00 4.00 11.00
BRIEF BRI (T-Score) V2-V1 57 12.9 175 5.27 4.00 2.00 8.00
V3-V1 44 14.7 175 5.81 5.00 2.00 8.00
V3-V2 .56 13.0 175 494 4.00 1.00 7.00
BRIEF MI (T-Score) V2-V1 .64 11.8 176 5.30 4.00 2.00 7.50
V3-V1 .58 12.7 176  5.81 5.00 2.00 8.00
V3-V2 .63 11.9 176 5.34 4.00 2.00 7.00
BRIEF GEC (T-Score) V2-V1 .63 11.9 175 5.07 4.00 2.00 7.00
V3-V1 .54 13.3 175 553 4.00 2.00 8.00
V3-V2 .59 12.6 175 5.13 4.00 2.00 6.50
CBCL Externalizing (T-Score) V2-V1 .50 13.9 206 6.06 5.00 2.00 8.00
V3-V1 .35 15.8 206 7.01 6.00 2.00 10.00
V3-V2 .60 124 206 5.63 5.00 2.00 8.00
CBCL Internalizing (T-Score) V2-V1 48 14.1 206 6.88 6.00 3.00 10.00
V3-Vi .49 14.0 206 6.72 6.00 2.00 10.00
V3-V2 .50 13.9 206 6.35 5.00 1.00 10.00
CBCL Competence (T-Score) V2-V1 .53 134 141 6.81 5.00 2.00 10.00
V3-Vi 49 14.0 141 6.99 5.00 3.00 10.00
V3-V2 .59 12.6 141 6.44 5.00 3.00 10.00
CBCL Attention Problems (T-Score) V2-V1 .36 15.7 206 2.51 1.00 0.00 4.00
V3-V1 41 15.2 206 2.22 1.00 0.00 3.00
V3-V2 .53 13.3 206 2.12 1.00 0.00 3.00

Note. Table includes scores of children who completed measure at all three visits. The 95% confidence interval is based on the standard error of
measurement (SEM = SD*(1-r)""?), where r is the Pearson correlation of the measurements between two visits. This interval will contain the true mean 95%
of the time if the confidence interval were computed with repeated samples.
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Table 4. Standardized parameter estimates and probability levels for effects of age, sex, income, and visit on standardized test scores and behavioral scales

Age Sex (female baseline) Income (medium income baseline) Visit (visit 1 baseline)

Year p Male p Low High p Visit 2 Visit 3 p
WASI Full Scale IQ (Standard Score) —0.11 ns 0.07 ns —.16%** 26%%* <.0001 .09k 2% <.01
WASI Verbal 1Q (Standard Score) —0.13 p<<.01 —0.03 ns —0.09 0.20%%* <.0001 0.07 0.06 ns
WASI Performance IQ (Standard Score) —0.06 ns 0.15 <.001 —0.17%*%* 0.23 %% <.0001 0.09%*%* 0.15%%* <.0001
WISC-III Coding (Scaled Score) 0.03 ns —0.24 <.0001 —0.10 0.16%** <.0001 —0.04 —0.06 ns
WISC-III Digit Span (Scaled Score) —0.02 ns 0.00 ns —0.05 0.14%%* <.01 0.02 0.02 ns
CVLT-C T1 to T5 (T-Score) —0.06 ns —0.10 ns —0.06 0.09 ns .01 .07 ns
‘WIIII Calculation (Standard Score) —0.14 p<.01 0.02 ns —0.15%* 0.23%*% <.0001 0.05 0.08 ns
‘WIIII Letter-Word (Standard Score) —0.25 <.0001 —0.01 ns —0.06 0.10 ns —0.00 —0.01 ns
WIIII Passage Comprehension (Standard Score) 0.08 ns .05 ns —0.09 0.17%%* <.0001 0.01 —0.02 ns
NEPSY Verbal Fluency (Scaled Score) 0.03 ns —0.08 ns —0.04 0.11 ns —0.03 0.14 <.01
BRIEF BRI (T-Score) —-0.04 ns 0.01 ns 0.01 —0.08 ns —0.05 —0.01 ns
BRIEF MI (T-Score) 0.04 ns —0.03 ns 0.02 —0.11 ns —0.01 0.04 ns
BRIEF GEC (T-Score) —0.00 ns —0.01 ns 0.02 —-0.12 ns —0.03 0.02 ns
CBCL Externalizing Scale (T-Score) —-0.12 ns —-0.01 ns 0.03 —0.15%** <.01 0.03 0.04 ns
CBCL Internalizing Scale (T-Score) —0.06 ns 0.05 ns 0.04 —0.08 ns —0.00 —0.06 ns
CBCL Total Competence (T-Score) 0.01 ns 0.00 ns —0.07 0. 17%*% <.0001 —0.03 —0.06 ns
CBCL Attention Problems (T-Score) —0.05 ns —-0.05 ns 0.08 —0.12* <.001 0.06 0.08 ns
CANTAB IED Stages 036  <.0001 0.08 ns —0.04 0.08 <.01 0.16%** 0.17%%* <.0001
CANTAB Spatial Span (Span) 0.60 <.0001 0.07 ns —0.09%* 0.06 <.001 0.07 0.08 ns
CANTAB Spatial Working Memory (Errors) —-0.62  <.0001 —0.00 ns 0.12%%* —0.08* <.0001 —0.04 —0.01 ns
Pegboard preferred hand (# Pegs) 0.52  <.0001 —0.15 <.0001 —0.05 0.08 <.01 0.07* 0.11%%* <.0001
Pegboard non-preferred hand (# Pegs) 0.53 <.0001 —0.09 <.01 —0.05 0.07 ns 0.10* 0.14%%% <.0001
Pegboard Both (# Pegs) 0.44  <.0001 —0.08 ns —0.06 0.09* <.01 0.14%*% 0.14%3%:% <.0001
Verbal Fluency Total (# Words) 0.66  <.0001 —0.05 ns —0.02 0.08 ns 0.02 0.05 ns
Verbal Fluency Phonemic (# Words) 0.64 <.0001 —0.04 ns —0.05 0.06 ns 0.05 0.08 ns
Verbal Fluency Semantic (# Words) 0.54 <.0001 —0.07 ns —-0.03 0.09 ns —-0.02 0.00 ns

Note. Standardized parameter estimates indicate effect size.

*p < 01, #¥p < 001, **%p < 0001,
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Fig. 1. Box-plots showing median, 25th and 75th percentile and range
of Pegboard Both Hands scores for children who were 10 years of age
on their first, second, or third visit (F(2,106) = 7.35; p = .001).

that are standard in the armamentarium of pediatric neuro-
psychologists. Although correlations between visits were
robust, their magnitude fell far short of unity, meaning that
there was considerable fluctuation across visits for individuals.
The extent of this fluctuation is perhaps the most significant
finding of this study.

Table 3 provides a backdrop for interpreting observed
changes in scores over time for individuals, both clinically
and in research settings. Thus, for example, for the WASI
Full Scale 1Q, the median change is five standard score points
after 2 years, meaning that for 50%, scores changed more than
five points, and more than nine points for 25%. For the CVLT-C,
the median is six z-score points; S0% of children had scores that
changed more than six points and 25% more than 12 points, that
is, more than one standard deviation for the test.

The fluctuation is noteworthy in light of the well-controlled
conditions of this study. Indeed, the standard deviations
observed in this sample are actually somewhat smaller than

116
114 1
1121
(0]
5 110+
®
S 1084 Q/Q_CI)
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£ 1041
1021 —@— Baseline IQ < 105
100 4 —O— Baseline IQ 105-115
98 . . —W— Baseline IQ> 115
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Fig. 2. Means and standard errors of standard scores for Woodcock-
Johnson III Passage Comprehension subtest for low, medium and
high IQ groups (baseline score) at each of the three visits illustrating
1Q X Visit interaction.
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Fig. 3. Means and standard errors of CANTAB Spatial Span scores
for groups classified according to baseline age, illustrating Age X
Visit interaction.

those of the standardization samples (Waber et al., 2007;
Table 5). The children themselves were screened for attention
and behavioral disorders that could have affected reliability
of performance, and administration and scoring procedures
were carefully monitored. Although repeated measurement
(practice effects) could account to some extent for changes
over time, the effect size estimates were small and did
not affect most measures. Even in these well controlled
conditions, then, a high degree of variation over time, for
some children substantial, appears normative, substantiating
cautions about assumptions of stability in intelligence testing
(Matarazzo & Herman, 1984; McCall, Appelbaum & Hogarty,
1973).

Test—retest reliability coefficients provided by test devel-
opers are typically based on brief intervals. For example, the
mean test-retest interval for the WASI IQ (Wechsler, 1999)
was 31 days, yielding a correlation of 0.93 in the age group
that participated in this study. The standard error of mea-
surement reported in the manual (3.03), yields a 95% con-
fidence interval of =6 points. We observed a 0.81 test-retest
correlation after a 2-year interval and 0.75 after a 4-year
interval. Thus, the confidence interval more than doubles
over 2 years to +=12.8 points and widens further at 4 years.
Table 3 clearly illustrates the implications of the observed
test—retest reliability over 2-year intervals.

The question of stability or change over developmental
time in psychological test scores is not novel. In the mid-20th
century, child psychologists undertook ambitious long-
itudinal studies, documenting diverse aspects of development
from infancy through adolescence and adulthood (Bayley,
1949; McCall, Appelbaum, & Hogarty, 1973). Although IQ
scores were relatively stable after approximately age 6, with
correlations between 6 and 18 years of approximately .80
(Bayley, 1949), there was significant variation in individual
trajectories (McCall, Appelbaum, & Hogarty, 1973). This
variation was related to factors such as child characteristics
(e.g., independent, self-initiating, most likely reflecting the
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contemporary construct of executive function) and parenting
practices. The variability documented here is entirely consistent
with these classic studies and expands the array of outcomes to
many commonly used neuropsychological instruments.

A further possibility—one that this database is uniquely
prepared to inform—is that changes are associated with
underlying discontinuities in the typical trajectories of human
development, which may also be highly variable across
individuals. Developmental psychologists have long empha-
sized that cognitive development does not follow a monotonic
linear trajectory, but is characterized by periodic functional
reorganization, leading to spurts and plateaus that may be
highly individual in their timing if not their process (Elman,
2005; Thelen & Smith, 1998). These discontinuities pre-
sumably underlie the superficially linear trajectories observed
in group data.

Aim 2: Age, Sex, Income, and BMI

Although associations with sex and income were docu-
mented in the cross-sectional data, they were more prominent
in these longitudinal data, especially for income. This finding
most likely reflected the power conferred by the repeated
measures design, since the effect sizes were generally small.
With respect to sex, the findings were similar for the cross-
sectional and longitudinal analyses and consistent with those
previously documented in the psychological literature—a
male advantage for visuospatial skills and a female advantage
for fine motor skills and processing speed (Bors & Vigneau,
2011; Jensen & Reynolds, 1983; Reite, Cullum, Stocker,
Teale, & Kozora, 1993).

The more widespread income-related differences are
striking, although the effect sizes are relatively modest.
Whereas the cross-sectional data documented income-related
differences primarily for IQ and achievement, these longitudinal
analyses revealed significant income-related differences for
many more measures. For the measures for which these differ-
ences failed to reach the designated criterion of statistical sig-
nificance, the effects were consistent in their direction.

These findings highlight the potential impact of socio-
economic influences on neuropsychological measures. In this
database, socioeconomic status is coded by a gross measure
of family income, presumably reflecting a nexus of social,
experiential, genetic, and epigenetic processes on cognitive
and social development. The parameter estimates in Table 4
indicate that children in the high income group differed more
prominently from the middle income group than did the low
income group. Importantly, the participants were carefully
screened for adverse health and behavioral conditions,
including in first-degree relatives. Those from lower income
backgrounds were excluded at a higher rate, consistent with
the higher prevalence of these disorders in less advantaged
populations (Mackenbach et al., 2008; Muntaner, Eaton,
Diala, Kessler, & Sorlie, 1998). Exclusion of low income
children with these morbidities may explain to some extent
why their performance was more similar to that of the middle
income group.
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The small but growing literature on relationships between
poverty and neuropsychological functioning indicates that
socioeconomic factors affect basic neurocognitive function-
ing from early in life (Mezzacappa, 2004) and at low levels
of processing (D’ Angiulli, Herdman, Stapells, & Hertzman,
2008; Waber, Carlson, Mann, Merola, & Moylan, 1984),
most salient in language and executive functioning (Noble,
McCandliss, & Farah, 2007; Noble, Norman, & Farah,
2005). In the prior report (Waber et al., 2007), we suggested
that income levels had their greatest impact on more inte-
grative skills, meaning those that entail orchestrating multiple
cognitive operations to achieve a goal. That continues to be
the pattern here. For example, the magnitude of the income
effect is greater for WI-III Calculation and Passage Com-
prehension, which can require more strategic and inferential
reasoning, than for Letter-Word Identification, which mea-
sures single word reading, a more practiced skill.

Cross-sectional analyses of the structural MRI data did not
document associations of income with lobar brain volumes or
total gray or white matter (Brain Development Cooperative
Group, 2011). Other studies derived from this database, however,
have found clear associations between a general intelligence
factor (or g) and measures of cortical thickness in association
areas that underlie more integrative functions (Ganjavi et al.,
2011; Karama et al., 2009; Luders et al., 2011). These findings
suggest that a biological substrate for the association between
income and cognitive functions may yet be detected. Since cor-
tical thickness can reflect both genetic (Joshi et al., 2011) and
experiential (Engvig et al., 2010; Haier, Karama, Leyba, & Jung,
2009) influences, any causal route is likely complex.

Finally, although the volumetric data documented small
but reliable and consistent associations between BMI
and volumes, no such associations were found in the neuro-
psychological data. The absence of associations is at
variance with published studies suggesting that overweight
and obese children display compromise of cognitive
functioning (Li, Dai, Jackson & Zhang, 2008; Parisi et al.,
2010). Since 12% of the sample was classified as obese (but
without diabetes or other health impairment) and an addi-
tional 14% were overweight (Brain Development Coopera-
tive Group, 2011), there was sufficient variability to detect
associations. The functional significance of the association
with BMI in the structural data is thus unclear.

Aim 3: Effects of Repeated Administration

Effects of repeated administration were few and modest in
size. The literature on practice effects on standard psycholo-
gical test measures is scant, pertaining mostly to IQ tests.
Practice effects have been demonstrated on WISC and WAIS
subtests, albeit with much briefer test—retest intervals than
was the case here, 1 year at most (Basso, Carona, Lowery, &
Axelrod, 2002; Siders, Kaufman, & Reynolds, 2006; Sirois
et al., 2002). The present data, therefore, provide the oppor-
tunity to evaluate the effects of repeated administration of
standard neuropsychological test instruments over a more
extended time frame, which is more typical clinically.
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The large sample size allowed us to reliably detect small
effects. The effect was substantial for Block Design, how-
ever, contributing to an effect for Full Scale IQ. More robust
practice effects for Performance IQ have been previously
reported (Sirois et al., 2002; Tuma & Appelbaum, 1980).
Practice effects also emerged for the CANTAB ID/ED, per-
haps reflecting the importance of strategy on this measure of
set-shifting, which could more easily transfer across adminis-
trations. More surprising, however, were the effects of visit
for the pegboard (Figure 1), a motor task that would not
superficially be expected to show benefit from a single experi-
ence, especially after 2 years. For perspective, the magnitude of
the effect of visit, albeit small, was in the same range as the
effect of sex. Since practice effects were detected after such a
long interval, they could theoretically be of greater magnitude in
shorter intervals of 6 months or even a year.

There were also significant interactions between visit and 1Q
and age. Baseline IQ interacted with visit for the IQ scales and
reading comprehension in a pattern that suggested regression
to the mean. The effect of visit was also larger for younger
children. Since the interactions primarily involved unstan-
dardized measures, the finding likely reflects an asymptotic
relationship of performance to age, with stronger relation-
ships in younger children than adolescents (Waber et al., 2007).

LIMITATIONS

The NIH database provides a unique opportunity to describe the
performance of a large population-based sample of healthy
children on a standard neuropsychological battery, with instru-
ments that are widely used in both research and clinical practice.
The database also has limitations. There was considerable sample
attrition; however, multiple imputation likely provided an accu-
rate estimate of model effects. Also, the socioeconomic measure,
income, was crude and does not allow for analysis of processes
contributing to variation. Finally, because of restrictions in the
length of the battery, as well as concerns about reliability of
administration across sites and visits, measures that are com-
monly used and could have been of interest were not included.

Implications

In research settings, change over developmental time on
neuropsychological testing must be evaluated against a
background of the normative range of change, as illustrated
by these data, as well as potential effects of repeated testing,
which were detectable for several measures, even after 2 years.
The potential impact of socioeconomic and other social
circumstances on test performance cannot be overemphasized.
Obtained scores may reflect the impact of environmental
circumstances on neurobehavioral development and not
necessarily neurological impairment or lack thereof. Indeed,
the boundaries between nature and nurture, especially in low-
income settings, can become quite indistinct (Turkheimer,
Haley, Waldron, D’Onofrio, & Gottesman, 2003). Even for
clinical conditions with known neurobiological implications,
adjusting for potential socioeconomic effects is essential to

https://doi.org/10.1017/51355617711001536 Published online by Cambridge University Press

D.P. Waber et al.

adequately estimate the impact of the condition. Users of this
database who are undertaking brain-behavior correlation
should also be mindful of the probabilistic and fluid nature of
the behavioral measurements.

From a clinical perspective, these findings are especially
relevant. As McCall et al. pointed out in 1973, developmental
fluctuations are expectable on a statistical basis, even in the
context of high test—retest correlations. Our data illustrate that
fluctuation in standardized test scores over time, sometimes
substantial, can be typical, and observed changes in scores across
development should be interpreted accordingly. Test—retest cor-
relations over long intervals, such as the 2 years reported here,
may be more relevant to clinical practice than those obtained
over very brief intervals as reported in manuals. Knowing the
range of expectable variation provides essential context for
interpreting variations in scores over developmental time.

Standardized tests are tools, probabilistic estimates of
functioning that cannot and should not be interpreted in iso-
lation or in absolute terms like measures of height. For
example, given the observed variability, a child could easily
move in or out of “eligibility” range for learning disability on
the WIJ-III on a normative basis, with material consequences
for educational decision-making. Indeed, such fluidity has
been observed in other longitudinal studies (Francis et al.,
2005). Especially in the clinical setting, an individual score
can only be interpreted in light of the broader context,
including prior testing, converging evidence from other
measures, clinical limit testing, teacher observed school per-
formance, access to instruction, intervening social history,
affective presentation, and the challenges of environmental
demands, integrated by an overarching theoretical framework
(Waber, 2010). The present findings, however, should sound
a note of caution with regards to reliance on any of these
measures as criterion indicators without consideration of the
context and the apparently normative range of typical varia-
tion over time. Test scores provide data, not answers.

CONCLUSION

These data from the NIH MRI Study on Normal Brain
Development afford an excellent opportunity to observe
normative performance and change over time on a set of
standard and frequently used neuropsychological measures in
a population-based sample of healthy children. They thus
constitute important background for the use and interpreta-
tion of these instruments in both research settings and clinical
practice. Because this database is freely available for use by
qualified researchers, it can serve as an invaluable resource
for neuropsychological studies.
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