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Recently, the phenomena of streaming suppression and relocation of inhomogeneous
miscible fluids under acoustic fields were explained using the hypothesis on mean Eulerian
pressure. In this work, we derive the expression for the acoustic body force without
relying on any prior assumptions regarding the second-order Eulerian pressure. We present
a theory of nonlinear acoustics for inhomogeneous fluids from first principles, which
explains streaming suppression and acoustic relocation in both miscible and immiscible
inhomogeneous fluids inside a microchannel. This theory predicts the relocation of higher
impedance fluids to pressure nodes of the standing wave, which agrees with recent
experiments.
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1. Introduction

The acoustic fields imposed on fluids exhibit several interesting nonlinear acoustic
phenomena including an acoustic radiation force acting on particles or interfaces, and
acoustic streaming (Friend & Yeo 2011). This subject has a long history, beginning
with early investigations by Faraday (1831), Rayleigh (1884), King (1934) and Lighthill
(1978). Over the last two decades, employing these acoustic forces in microscale flows
has become a rapidly growing research field known as ‘acoustofluidics’. It has far-ranging
applications in biological (Petersson et al. 2007; Wiklund 2012; Collins et al. 2015; Lee
et al. 2015; Ahmed et al. 2016), medical (Augustsson et al. 2012; Li et al. 2015) and
chemical sciences (Suslick et al. 1999; Li & Huang 2019; Chen et al. 2021). Recently,
two interesting phenomena were observed in microchannel experiments: (i) inhibition of
Rayleigh streaming vortices (bulk flow rolls outside the boundary layer due to interaction
of the acoustic wave with a solid boundary) called acoustic streaming suppression and
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(ii) relocation or stabilization of inhomogeneous fluids to a stable configuration called
acoustic relocation (Deshmukh et al. 2014; Augustsson et al. 2016). This phenomenon
opens the door to several applications including sorting of submicron particles such as
bacteria and nanoparticles using acoustofluidic systems (Gautam et al. 2018; Van Assche
et al. 2020), tweezing and patterning of fluids (Karlsen & Bruus 2017; Baudoin & Thomas
2020) and on-demand stream to stream or stream to drop relocation of immiscible fluids
(Hemachandran et al. 2019, 2021).

The main goal of this work is to develop a theory of nonlinear acoustics for
inhomogeneous fluids that explains the phenomena of acoustic relocation and streaming
suppression. Remarkably, our theory predicts that the acoustic relocation/stabilization
of inhomogeneous fluids in a microchannel subjected to standing acoustic waves is
possible only if there exists an impedance (Z = ρc) gradient, which agrees well with
recent experiments. We demonstrate that the amplitude of the first-order fields is highly
dependent on fluid configuration, thus acoustic energy density (Eac) varies significantly
during the process of relocation and diffusion, whereas Eac is assumed to be constant in
previous works (Karlsen, Augustsson & Bruus 2016; Karlsen 2018). Also, we successfully
separate the streaming term and acoustic relocation term from the generalized acoustic
body force, which was previously claimed not to be possible by Karlsen et al. (2018).
Furthermore, this theory also explains the recently observed relocation of immiscible
fluids under acoustic fields (Hemachandran et al. 2019).

Although Karlsen et al. (2016) explained these phenomena using the acoustic force
density, fac = −∇ · 〈p2I + ρ0v1v1〉, it is not derived from first principles and involves
the assumption on the time-averaged second-order mean Eulerian pressure as 〈p2〉 =
(1/2)[κ0〈|p1|2〉 − ρ0〈|v1|2〉], which is claimed as the central hypothesis of their theory
(Karlsen 2018). Here, ρ0 is the zeroth-order density, κ0 is the zeroth-order compressibility,
p1 is the first-order pressure and v1 is the first-order velocity. The following are our
objections to this assumption: first, like any other pressure field, the mean Eulerian
pressure has to be derived from the Navier–Stokes (N-S) equations. Second, if the assumed
p2 is the second-order Eulerian pressure then the pressure that results from the N-S
equations after the substitution of fac lacks clarity. In this work, we improve the clarity
of the acoustic force density by deriving it from first principles without invoking any
assumption on the time-averaged second-order mean Eulerian pressure 〈p2〉.

2. Physics of the problem

The hydrodynamics of inhomogeneous fluids considered in this study is governed by the
mass continuity, momentum and advection–diffusion equations (Landau & Lifshitz 1987)

∂tρ + ∇ · (ρv) = 0, (2.1a)

ρ[∂tv + (v · ∇)v] = −∇p + η∇2v

+βη∇(∇ · v) + ρg, (2.1b)

∂ts + v · ∇s = D∇2s, (2.1c)

where ρ is the density, v is the velocity, p is the pressure, η is the dynamic viscosity
of the fluid, ξ is the bulk viscosity, β = (ξ/η) + (1/3), g is acceleration due to gravity in
negative y-direction (g = −gj), s is the solute concentration and D is the diffusivity. When
the fluid is subjected to acoustic waves, the following thermodynamic pressure–density
relation in terms of material derivative (d/dt) = ∂t + (v · ∇) is also required

940 A32-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

25
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.257


Theory of acoustic forces acting on inhomogeneous fluids

(Bergmann 2005):
dρ

dt
= 1

c2
dp
dt

, (2.1d)

where c2 = (∂p/∂ρ)|S and c is the adiabatic local speed of sound.
According to perturbation theory (Eckart 1948), the dependent fields f are decomposed

as
f ≈ f0(r, τ ) + f1(r, τ, tf ) + f2(r, τ ), (2.2)

where f0 are zeroth-order (background) fields, f1 are first-order time-harmonic acoustic
fields f1 = fa(r, τ ) e−iωtf , actuated at an angular frequency ω(∼1 MHz), and f2 are
second-order fields (in general f2 � f1). In microscale flows, since the hydrostatic pressure
ρgH(∼1 Pa) � p1(∼106 Pa), the variation of pressure and velocity fields due to gravity is
accounted in the second-order effects. Thus, in a quiescent fluid, we take the zeroth-order
velocity v0 = 0, and pressure p0 = const.(∇p0 = 0).

The first-order acoustic fields vary on the fast time scale tf (tf ∼ 1/ω ∼ 0.1 μs), whereas
the second-order hydrodynamic fields vary on the slow time scale τ(τ � tf ). Usually in
perturbation theory, f0(r, τ ) is assumed to be constant for homogeneous fluids. Whereas
for inhomogeneous fluids, the variation in the background fields (ρ0, s0, c0 and η0) with
space as well as the slow time scale has to be accounted for due to the gravity stratification
and second-order acoustic effects. As the first-order acoustic fields (f1) are sensitive to the
inhomogeneous configuration (ρ0, s0, c0 and η0) which varies on the slow time scale, the
amplitude of these acoustic fields are considered to be a function of the slow time scale
(fa(r, τ )) unlike homogeneous fluids, where the amplitude of these fields is only a function
of space (fa(r)).

The variation of zeroth-order fields on the fast time scale (tf ) can be neglected. Also,
since D ∼ O(10−9), the diffusion term is negligible on the fast time scale, due to which
the composition of any given fluid particle remains unchanged as it moves. Consequently,
the governing equations up to first order (t ∼ tf ) reduce to (Bergmann 2005)

∂tρ1 + ∇ · (ρ0v1) = 0, (2.3a)

ρ0∂tv1 = −∇p1 + η∇2v1 + βη∇(∇ · v1), (2.3b)

∂ts1 + v1 · ∇s0 = 0, (2.3c)

∂tρ1 + (v1 · ∇)ρ0 = (1/c2)[∂tp1]. (2.3d)

The first-order fields have a harmonic time dependence, thus the time average of these
fields is zero. Therefore, first-order terms in (2.3) cannot cause any bulk fluid motion.
However, the N-S equation is nonlinear and the above linearized equations (2.3) are not
exact. Hence, proceeding to solve (2.1) up to second order (t ∼ τ ),

〈∂t(ρ0 + ρ2)〉 + ∇ · 〈ρ1v1〉 + ∇ · 〈ρ0v2〉 = 0, (2.4a)

〈ρ1∂tv1〉 + ρ0〈(v1 · ∇)v1〉 − 〈(ρ0 + ρ2)g〉 = −∇〈p2〉
+η∇2〈v2〉 + βη∇(∇ · 〈v2〉) − 〈ρ0∂tv2〉, (2.4b)

〈∂t(s0 + s2)〉 + 〈v2 · ∇s0〉 + 〈v1 · ∇s1〉 = D∇2〈(s0 + s2)〉, (2.4c)

〈∂t(ρ0 + ρ2)〉 + 〈(v1 · ∇)ρ1〉 + 〈(v2 · ∇)ρ0〉 = (1/c2)[〈∂tp2〉 + 〈(v1 · ∇)p1〉], (2.4d)

where 〈· · · 〉 denotes time average over one oscillation period. Since the time average of
the product of two first-order fields is non-zero (the time average of two first-order fields
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〈u1v1〉 is defined as 1
2 Real(u


1v1), where 
 denotes complex conjugation), they act as a
source term for second-order fields (slow hydrodynamic time scale). The first two terms
on the left side of (2.4b) together comprise the divergence of the Reynolds stress tensor,
∇ · 〈ρ0v1 ⊗ v1〉 = ∇ · 〈ρ0v1v1〉.

In microscale flows, the variation of second-order fields with respect to the slow time
scale is negligible (Bruus 2011; Friend & Yeo 2011). From (2.3), we get ρ1 � ρ0, s1 � s0
(see Appendix A) and from general perturbation theory, f2 � f1 (for any perturbed field f ),
thus ρ2 � ρ0 and s2 � s0. We can also neglect 〈v1 · ∇s1〉, 〈ρ1∇ · v1〉 since the first-order
fields in both these terms are out of phase (see Appendix A). Using the above arguments,
combining ((2.4a) and (2.4d)),

〈ρ0∇ · v2〉 = −(1/c2)〈v1 · ∇p1〉. (2.5)

Substituting the above relation in (2.4b) and analysing the order of magnitude,
O(βη∇(1/ρ0c2

0)(v1 · ∇)p1) � O(∇ · 〈ρ0v1v1〉). As this term, (1/c2)〈v1 · ∇p1〉 does not
contribute to the momentum equation, it does not affect the second-order velocity and
pressure fields and thus can be neglected. Hence, (2.5) becomes divergence free and
second-order flow is incompressible i.e. ∇ · 〈v2〉 = 0 (Nyborg’s approximation; Nyborg
2005; Baasch, Doinikov & Dual 2020). Accounting for all the above arguments, the
governing equations reduce to

∇ · 〈v2〉 = 0, (2.6a)

−∇ · 〈ρ0v1v1〉 + 〈ρ0g〉 − ∇〈p2〉 + η∇2〈v2〉 = 0, (2.6b)

〈∂ts0〉 + 〈v2 · ∇s0〉 = D∇2〈s0〉. (2.6c)

The above (2.6) govern the dynamics of inhomogeneous fluids in microscale
acoustofluidics and can also be derived by another approach, see Appendix B. From (2.6b),
it is evident that second-order slow hydrodynamic flows are created due to the divergence
of the Reynolds stress tensor consisting of the product of first-order fast acoustic fields.
Thus, we introduce the body force due to acoustic fields as

f ac = −∇ · 〈ρ0v1v1〉. (2.7)

It is well known that the above force is responsible for boundary-driven Rayleigh
streaming and bulk-driven Eckart streaming in homogeneous fluids. In this work, we
proceed to show that the same force is also responsible for recently observed streaming
suppression and acoustic relocation of miscible as well as immiscible inhomogeneous
fluids. A microchannel of width w = 380 μm and height h = 160 μm is chosen for
study from Muller & Bruus (2014) containing an inhomogeneous miscible solution, as
shown in figure 1. Fluid properties are taken from Qiu et al. (2019). An acoustic standing
half-wave along the width is imposed in the microchannel by actuating both the sidewalls
in phase at a specific frequency ‘ν’ and wall displacement ‘d’ in the x-direction. The
first-order fields due to this standing wave are obtained by solving (2.3) in the frequency
domain, see Appendix C. These first-order fields are then used to obtain the acoustic body
force (2.7) to solve the time-averaged second-order fields (2.6). At each time step, the
first-order fields are solved for the updated inhomogeneous fluid configuration (ρ0, c0, η0)
from the previous time step. Hence, both the first-order and second-order equations
are bidirectionally coupled and solved numerically at all slow time steps in COMSOL
Multiphysics 5.6. The mesh convergence for the numerical simulation is discussed in
Appendix G.
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Fluid domain
y

x

0

0–w/2 +w/2
–h/2

+h/2

v = d · iω x̂

η(r, t), s(r,t)
ρ(r, t), c(r,t)

Figure 1. Sketch of acoustofluidic microchannel with an imposed half-wave acoustic pressure resonance,
containing fluids whose density, speed of sound, dynamic viscosity and solute concentration are functions
of space and time.

3. Results and discussion

From figure 2, the acoustic body force f ac tends to relocate high impedance fluid to
nodes and low impedance to anti-nodes, called a stable configuration (whereas any
other configuration with an impedance gradient is considered unstable). Once the stable
configuration is reached, due to the existing impedance gradient, this f ac inhibits any
fluid motion due to gravity and suppresses acoustic streaming, which tries to disturb the
stable configuration, as seen in figures 2 and 3. As time progresses, due to diffusion,
the fluid profile becomes homogeneous, where the same f ac induces boundary-driven
Rayleigh streaming. From these results, it is evident that the acoustic body force f ac is
responsible for acoustic relocation and streaming suppression in inhomogeneous fluids as
well as acoustic streaming in homogeneous fluids. Remarkably, in the process of acoustic
relocation and diffusion, as shown in figures 2(a) and 3(a), the amplitude of the first-order
fields (pa and va) varies significantly (see Appendix D) as the background ρ0 and c0 fields
change on the slow time scale. Thus, the acoustic energy density Eac, which is a function
of pa, ρ0 and c0, also changes significantly, in contrast to constant Eac assumed in previous
studies (Karlsen et al. 2016; Karlsen 2018; Karlsen et al. 2018). Surprisingly, it is observed
that, for the case of constant impedance (figure 4), relocation does not occur irrespective
of the ρ0 and c0 configurations, thus any constant impedance configuration is called a
neutral configuration. This demonstrates that the impedance gradient is the requisite and
governing factor for acoustic relocation. In addition to the impedance gradient being a
prerequisite, the sufficient conditions for acoustic relocation include: the fluid interface
should not be at a node (See Appendix E) and the fluid configuration must be unstable.

In order to explain the above results mathematically, we analyse the acoustic body force,
f ac = −∇ · 〈ρ0v1v1〉 in detail

f ac = ∇ · 〈ρ0v1 ⊗ v1〉 = −∇ · 〈ρ0v1v1〉 = −ρ0〈v1 · ∇v1〉 − 〈ρ1∂tv1〉. (3.1)

Using the following identity A · ∇A = ∇(A2/2) − A × (∇ × A) and substituting
first-order fields from (2.3), (3.1) becomes

f ac = − 1
2ρ0

∇〈|ρ0v1|2〉 + 〈v1 × ∇ × (ρ0v1)〉 + 1
2
κ0∇〈|p1|2〉

− 〈(κ0p1)(η∇2v1 + βη∇(∇ · v1))〉. (3.2)
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t = 0 s

pa = 0.141 MPa
t = 0.5 s

pa = 0.219 MPa

t = 0.64 s

pa = 1.44 MPa

t = 0.8 s

t = 40 s

0 12.05 24.20 18.95 37.9
〈v2〉 (µm s–1) 〈v2〉 (µm s–1)

t = 145 s

pa = 0.996 MPa

Z (MPa s m–1)

t = 40 s

pa = 0.661 MPa

1.491 1.535 1.579

t = 145 s

pa = 0.483 MPa

(b)

(a)

Figure 2. (a) Relocation of unstable configuration to stable configuration with d = 0.261 nm and ν =
1.96 MHz. Initially (t = 0 s), there is low impedance deionized (DI) water (blue) at the centre and high
impedance 10 % Ficoll PM70 (red) at the sides. The green image indicates the homogeneous fluid profile
after relocation and complete diffusion. (b) Second-order velocity 〈v2〉.

For a detailed derivation refer to Appendix F. From the scaling analysis, the last term in
(3.2) can be neglected, thus reducing to

f ac = 1
2∇(κ0〈|p1|2〉 − ρ0〈|v1|2〉) + 〈v1 × ∇ × (ρ0v1)〉
− 1

2 [〈|p1|2〉∇κ0 + 〈|v1|2〉∇ρ0]. (3.3)

In the above (3.3), the first term (1/2)∇(κ0〈|p1|2〉 − ρ0〈|v1|2〉) is a pure gradient
term (conservative), and the curl of that term is zero, thus it does not cause
relocation or streaming but only contributes to the second-order pressure. The third term
(−1/2)[〈|p1|2〉∇κ0 + 〈|v1|2〉∇ρ0] is responsible for relocation, since the curl of this term,
in general, is non-zero. From (2.3b), the first-order fields in the inviscid region satisfy
the following relation, ∇ × (ρ0v1) = 0. Thus the second term 〈v1 × ∇ × (ρ0v1)〉 is only
significant inside the boundary layer (δ ∼ 1 μm) of first-order fields, which is responsible
for boundary-driven streaming in inhomogeneous fluids. The competition between the
relocation force (third term) and streaming force (second term) accounts for streaming
suppression, as seen in figures 2 and 3. In (3.3), we have analytically separated relocation
and streaming causing terms from the general body force term, f ac, which was previously
claimed not to be possible by Karlsen et al. (2018). For homogeneous fluids (3.3) reduces
to (Bradley 1998; Friend & Yeo 2011)

f ac = −∇ · 〈ρ0v1v1〉 = 1
2 (κ0∇〈|p1|2〉 − ρ0∇〈|v1|2〉) + {ρ0〈v1 × (∇ × v1)〉}, (3.4)

where the first term is the homogeneous second-order mean Eulerian pressure and the
second term is responsible for acoustic streaming.
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t = 0 s

pa = 0.290 MPa

t = 15 s

pa = 0.615 MPa

t = 160 s

pa = 0.483 MPa

Z (MPa s m–1)

1.491 1.535 1.579

t = 15 s

0 12.06 24.130 17.62 35.24

〈v2〉(µm s–1) 〈v2〉 (µm s–1)
t = 160 s

(b)

(a)

Figure 3. (a) Stable configuration with no relocation, with low impedance DI water (blue) at the sides and
high impedance 10 % Ficoll PM70 (red) at the centre. The green image indicates the homogeneous fluid profile
after complete diffusion. (b) Second-order velocity 〈v2〉. Here, d = 0.261 nm and ν = 1.96 MHz. Relocation
force ( f rl) stabilizes this configuration against gravitational stratification.

t = 0 s

pa = 0.572 MPa

t = 15 s

pa = 0.572 MPa

t = 65 s

pa = 0.571 MPa

ρ0 (kg m–3)

1005 1057.45 1109.9

t = 15 s

0 18.65 37.30 18 33.2
〈v2〉 (µm s–1) 〈v2〉 (µm s–1)

t = 65 s

(b)

(a)

Figure 4. For constant impedance fluids any configuration of ρ0 and c0 is a neutral configuration. (a) No
relocation due to zero relocation force ( f rl = 0). To clearly show the absence of a relocation force in the
constant impedance case, gravity is neglected. The presence of gravity would stratify the fluids. The green
image indicates the homogeneous fluid profile after complete diffusion. (b) Second-order velocity 〈v2〉. Here,
d = 2 nm and ν = 1.96 MHz.

To understand the second-order pressure and relocation phenomenon in inhomogeneous
fluids clearly, we study the acoustic body force outside the boundary layer of first-order
fields (neglecting the streaming term). Thus, (3.3), after time averaging, reduces to

f ac = −∇ · 〈ρ0v1v1〉 = 1
4∇(κ0|p1|2 − ρ0|v1|2)[−1

4 |p1|2∇κ0 − 1
4 |v1|2∇ρ0]

= f 1 + [f 2]. (3.5)
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Considering the case of a stable configuration (figure 3), the second-order velocity will be
zero as relocation does not take place due to which (2.6b) will reduce to −∇ · 〈ρ0v1v1〉 =
∇〈p2〉. Now, it is evident that, in the inviscid case, both the terms ( f 1, f 2) in (3.5)
contribute to the mean Eulerian pressure 〈p2〉, whereas, in Karlsen et al. (2016), Karlsen
(2018) and Karlsen et al. (2018), it is hypothesized that only the first term in (3.5)
contributes to the mean Eulerian pressure, 〈p2〉 = 1

2κ0〈|p1|2〉 − 1
2ρ0〈|v1|2〉. Thus, our

work clearly demonstrates that 〈p2〉 can be derived from the governing equations and their
assumption on 〈p2〉 is incorrect and needless.

In the case of constant impedance (Z0 = ρ0c0 = const.) inhomogeneous fluids,
subjected to a one-dimensional acoustic standing half-wave (λ ≈ 2w), using the
relations p1 = pa sin(kx) and v1 = (pa/iρ0c0) cos(kx) where k = 2π/λ is wavenumber,
the relocation force term f 2 reduces to

f 2|Z=C
= −1

4
|p1|2∇κ0 − 1

4
|v1|2∇ρ0 = −∇

(
p2

aρ0

4Z2

)
. (3.6)

Since f 2 reduces to a purely gradient term in the case of constant impedance
inhomogeneous fluids, it does not induce relocation or motion but only contributes to
the second-order pressure. Thus, we prove that the impedance gradient is the necessary
condition for acoustic relocation, which agrees with experimental results (Deshmukh et al.
2014; Hemachandran et al. 2019).

For the case of variable impedance, the relocation term f 2 in (3.5) is written as

f 2 = p2
a sin2(kx)

4

(
∇ρ0

ρ2
0c2

0

)
+ p2

a sin2(kx)
2

(
∇c0

ρ0c3
0

)
− p2

a cos2(kx)
4

(
∇ρ0

ρ2
0c2

0

)
, (3.7)

f 2 = −p2
a cos(2kx)

4ρ2
0c3

0
∇Z0 + p2

a

4ρ0c3
0
∇c0. (3.8)

Analogous to the Boussinesq approximation, ∇Z0/ρ
2
0c3

0 ≈ ∇Z0/ρ
2
avgc3

avg, ∇c0/ρ0c3
0 ≈

∇c0/ρavgc3
avg and substituting (3.8) in (3.5), separating gradient and non-gradient terms,

f ac = −∇ · 〈ρ0v1v1〉 = −Eac cos(2kx)∇Ẑ0

− ∇(1
4ρ0|v1|2 − 1

4κ0|p1|2 − Eacĉ0), (3.9)

where Eac = p2
a/(4ρavgc2

avg), ĉ0 = c0/cavg, ρ̂0 = ρ0/ρavg and Ẑ0 = ρ̂0ĉ0.
It is clear that only the first term in (3.9) is responsible for acoustic relocation in

inhomogeneous fluids, whereas the second term resembles a conservative or purely
gradient term, thus inducing only pressure. Thus, in addition to the impedance gradient
being the necessary factor for relocation, now we write the relocation force in terms of the
impedance gradient as follows:

f rl = −Eac cos(2kx)∇Ẑ0. (3.10)

The above force term, which is a part of the generalized force (2.7), is responsible for the
relocation of the unstable configuration in figure 2 and maintaining the stable configuration
by inhibiting acoustic streaming as well as gravity stratification in figure 3. Whereas, for
constant impedance fluids (figure 4), irrespective of any fluid configuration, the relocation
force is always absent ( f rl = 0).
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t = 0 s

(a)

(b)

(c)

Pa = 0.592 MPa

t = 0.2 s

Pa = 0.584 MPa Pa = 0.581 MPa

t = 2.5 s

t = 0 s

Pa = 0.987 MPa

t = 0.2 s

Pa = 0.827 MPa Pa = 0.767 MPa

t = 2.5 s

t = 0 s

Pa = 1.077 MPa

t = 0.2 s

Pa = 1.0714 MPa

1.090.961

Z (MPa s m–1)

1.23

Pa = 1.073 MPa

t = 2.5 s

Figure 5. Relocation of immiscible fluids by actuating all walls of a microchannel (two-dimensional),
consisting of high impedance mineral oil (red) and low impedance silicone oil (blue) with a surface tension of
1 mN m−1 actuated at a frequency of 2.1 MHz for unstable configurations. (a) No relocation for Eac < Ecr,
slight fluid displacement is attributed to slanted node alignment. (b) Relocation for Eac > Ecr. (c) Stable
configuration, no relocation for any Eac, slight fluid displacement is attributed to slanted node alignment.

In several previous studies (Karlsen & Bruus 2017; Nath & Sen 2019; Qiu et al.
2019), including ours (Pothuri, Azharudeen & Subramani 2019; Kumar et al. 2021), (3.8)
has been used to study relocation without realizing that it contains implicit gradient
or conservative terms which do not contribute to relocation. This leads to an incorrect
scaling analysis and thus it is necessary to ignore this gradient term in such circumstances.
Furthermore, (3.10) captures all the aspects of relocation and does not cause scaling
issues like (3.8). It must be noted that (3.10) is valid only outside the boundary layer of
first-order fields, whereas inside the boundary layer, it cannot be reduced from f 2 of (3.5).
This is because p1 = pa sin(kx) remains the same inside and outside the boundary layer
(δ ∼ 1 μm), but v1 /=(pa/iρ0c0) cos(kx) and ∂yv1 is significant inside the boundary layer
due to the no-slip condition. Thus, in the case of constant impedance fluids, the relocation
force is absent in the bulk but non-zero within the boundary layer, which is responsible for
the disturbance of homogeneous streaming, as in figure 4.

Immiscible fluids. The phenomenon of acoustic relocation of immiscible fluids due
to a standing acoustic wave is also governed by (2.7). This theory predicts that, for the
relocation of immiscible fluids to occur, the applied acoustic energy density Eac must
be greater than the threshold Ecr to overcome the interfacial tension force. The above
prediction is in agreement with the experimental studies by Hemachandran et al. (2019).
However, in their study, relocation is achieved irrespective of the interface location with
respect to the node. Also, the frequency employed is very different from the resonant
frequency (ν = cavg/2w) that corresponds to the standing half-wave actuated only along
the width of the microchannel, as shown in figure 1. Contrary to their study, when we
actuated only sidewalls, relocation seemed to be highly dependent on the position of
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the interface and was absent when the interface and node coincide. Whereas, when all
the walls were actuated in the direction of their surface normal, we achieved relocation,
independent of the interface location, (figure 5), which is in agreement with their
experiments (Hemachandran et al. 2019). It is evident that relocation can be achieved
through two modes; one is due to a one-dimensional standing wave resulting from the
actuation of the sidewalls at the one-dimensional resonant frequency (ν = cavg/2w) while
the other is due to a two-dimensional standing wave resulting from the actuation of all
walls at the two-dimensional resonant frequency (between ν = cavg/2w and ν = cavg/2h).
Since the relocation in Hemachandran et al. (2019) is due to a two-dimensional standing
wave, the frequency required (∼2.1–2.4 MHz) for relocation (for silicone–mineral oil)
is different from the one-dimensional resonant frequency (1.66 MHz). The velocity and
pressure fields of the relocation of immiscible fluids due to a two-dimensional standing
wave are shown in Appendix E.

4. Conclusion

We have put forward a theory of nonlinear acoustics that governs the acoustic phenomena
of relocation and streaming suppression in inhomogeneous miscible and immiscible fluids
(including streaming in homogeneous fluids). This theory also confirms the fact that the
divergence of the time-averaged Reynolds tensor −∇ · 〈ρ0v1v1〉 is alone responsible for
all the above processes. We showed that first-order fields p1, v1 and energy density Eac
vary significantly during the process of acoustic relocation and diffusion. Importantly, we
have proved that an impedance gradient is the necessary condition for relocation. The other
conditions for acoustic relocation in one- and two-dimensional modes will be addressed
in detail using stability analysis for both miscible and immiscible fluids in an upcoming
paper. The fundamental understanding from this study can give new insights into particle
(cells/drops/beads) and inhomogeneous fluid handling in microchannels under acoustic
fields.

Funding. This work is supported by IIITDM Kancheepuram via Grant No: IRG/2019-20/KS/006.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
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Appendix A. Order of magnitude analysis

The order of magnitude analysis for different terms considered at various steps in the
derivations is given below. The proof of the stated assumption ρ1 � ρ0 and s1 � s0 is as
follows. We shall first obtain the order for v1 from (2.3b). The viscous effects are dominant
only inside the thin viscous boundary layer (∼ 1 μm), due to which we can take only
the first term, i.e. ρ0∂tv1, which has an effect on the entire medium. Thus comparing its
magnitude with ∇p1, we get

O(ρ0∂tv1) ∼ O(∇p1). (A1)

It is known that the first-order pressure (p1) in the domain in our study is of the order of
∼ 106, ρ0 ∼ O(103), wavenumber k ∼ O(104) and ω ∼ O(106) (the time derivative can
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be written in terms of the angular frequency as −iω, where i represents a complex root)

v1 ∼ kp1

ρ0 iω
∼ 1

0.76
∼ 1. (A2)

In the above simplification, wavelength λ is considered as 760 μm (it is chosen as twice
the width of the channel in order to get a one-dimensional half-standing wave along this
dimension of the channel). Using this order of v1 in ((2.3c) and (2.3d)), we have

s1 ∼ v1ks0

iω
∼ 10−2(s0), (A3a)

ρ1 ∼ v1kρ0

iω
∼ 10−4(ρ0). (A3b)

Thus, it is conclusive that s1 � s0 and ρ1 � ρ0.
On simplifying to the second-order equations, we have stated that O(βη∇(1/ρ0c2

0)〈(v1 ·
∇)p1〉) � O(∇ · 〈ρ0v1v1〉) and the proof for this follows. Using the order of magnitudes
as β ∼ O(10−1), η ∼ O(10−3), δ ∼ O(10−6), c ∼ O(103) and the magnitudes for other
variables as considered above, we have

βη∇
(

1
ρ0c2

0
〈(v1 · ∇)p1〉

)
∼ βη

δ

(
1

ρ0c2
0
(v1k)p1

)
∼ 10−110−3

10−6

(
104106

109

)
∼ 103,

(A4a)

∇ · 〈ρ0v1v1〉 ∼ kρ0v1v1 ∼ 104103 ∼ 107. (A4b)

Thus, βη∇(1/ρ0c2
0)〈(v1 · ∇)p1〉 is 104 orders less than ∇ · 〈ρ0v1v1〉.

We have also stated that the first-order fields in the terms 〈v1 · ∇s1〉, 〈ρ1∇ · v1〉 are out
of phase. The below is the proof for this. From (C1a) and v1 = va(r, τ )) e−iωtf (first-order
time-harmonic acoustic field), we have

−iωρ1 = ∇ · (ρ0v1) = ∇ · (ρ0va(r, τ )) e−iωtf , (A5a)

ρ1 = Re
[

i∇ · (ρ0va(r, τ )) e−iωtf

ω

]
, (A5b)

where va is the velocity amplitude. The complex ‘i’ in the ρ1 expression indicates a phase
shift between the velocity and density oscillations. Thus, ρ1 and v1 are out of phase
(Muller & Bruus 2014). Similarly, from (C1c), we have

−iωs1 = −v1 · ∇s0 = −va(r, τ ) e−iωtf · ∇s0, (A6a)

s1 = Re
[−iva(r, τ ) e−iωtf · ∇s0

ω

]
. (A6b)

Thus v1 and s1 are out of phase.
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Appendix B. Derivation of governing equations for inhomogeneous fluids – alternate
approach

The hydrodynamics of inhomogeneous fluids considered in this study is governed by the
mass continuity, momentum and advection–diffusion equations, which are given below

∂tρ + ∇ · (ρv) = 0, (B1a)

ρ[∂tv + (v · ∇)v] = −∇p + η∇2v + βη∇(∇ · v) + ρg, (B1b)

∂ts + v · ∇s = D∇2s, (B1c)

where ρ is the density, v is the velocity, p is the pressure, η is the dynamic viscosity of the
fluid, ξ is the volume fluid viscosity, β = (ξ/η) + (1/3), s is the solute concentration
and D is the diffusivity. When the fluid is subjected to acoustic waves, the following
thermodynamic pressure density relation is required,

dρ

dt
= 1

c2
dp
dt

. (B1d)

Say the fields are decomposed based on their variation on different time scales

f = f0(r, τ ) + f1(r, τ ) e−iωtf , (B2)

where f0 varies due to gravity and nonlinear effects on the slow time scale and f1 varies on
the fast time scale. The time scale of acoustics is of the order of microseconds (tf ∼ 1/ω ∼
0.1 μs), whereas the hydrodynamic time scale of the order of milliseconds (tf � τ ).

Substituting (B2) in the governing equations, we have

∂t(ρ0 + ρ1) + ∇ · [(ρ0 + ρ1)(v0 + v1)] = 0, (B3a)

(ρ0 + ρ1)∂t(v0 + v1) + (ρ0 + ρ1)((v0 + v1) · ∇)(v0 + v1)

= −∇( p0 + p1) + η∇2(v0 + v1) + βη∇(∇ · (v0 + v1)) + (ρ0 + ρ1)g, (B3b)

∂t(s0 + s1) + (v0 + v1) · ∇(s0 + s1) = D∇2(s0 + s1), (B3c)

∂t(ρ0 + ρ1) + ((v0 + v1) · ∇)(ρ0 + ρ1) = (1/c2)[∂t( p0 + p1)]. (B3d)

It is important to mention here that the pressure field on the slow time scale is
decomposed as, p0 = pc + pg + ps, where pc is the reference pressure, pg is the pressure
due to gravity and ps is the second-order mean Eulerian pressure. Neglecting the influence
of gravity and accounting for the fact that the reference pressure remains constant, the
variation in p0 is only due to the variation in ps.

Before we proceed to the fast time scale equations, we propose the validity of this theory,
i.e. it holds good only when v0 � v1 and ∇p0 � ∇p1, which is true in our case. On the
fast time scale (tf ), the variation of the f0 fields with respect to time can be neglected and
since D ∼ O(10−9), the diffusion term is negligible, due to which the composition of any
given fluid particle will remain unchanged as it moves. Also, from (B3c) and (B3d), it is
evident that s1 � s0 and ρ1 � ρ0. Accounting for all the above arguments, the fast time
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scale equations reduce to

∂tρ1 + ∇ · (ρ0v1) = 0, (B4a)

ρ0∂tv1 = −∇p1 + η∇2v1 + βη∇(∇ · v1), (B4b)

∂ts1 + v1 · ∇s0 = 0, (B4c)

∂tρ1 + v1 · ∇ρ0 = (1/c2)[∂tp1]. (B4d)

However, the time average of these f0 fields over one complete oscillation is zero, thus
these fields cannot cause any bulk fluid motion. But the N-S equation is nonlinear and
the above linearized equation is not exact. Thus, we must proceed to solve the fields on
the slow time scale, which is responsible for the nonlinear effects. Since ρ1 � ρ0 and
v0 � v1, the fast time-averaged, slow time scale equations reduce to

〈∂tρ0〉 + ∇ · 〈ρ0v0 + ρ1v1〉 = 0, (B5a)

ρ0〈∂tv0〉 + ρ1〈∂tv1〉 + ρ0〈(v1 · ∇)v1〉 = −∇〈p0〉 + η∇2〈v0〉 + βη∇(∇ · 〈v0〉) + ρ0g,

(B5b)

〈∂ts0〉 + 〈v0 · ∇s0〉 + 〈v1 · ∇s1〉 = D∇2〈s0〉, (B5c)

〈∂tρ0〉 + 〈v0 · ∇ρ0〉 + 〈v1 · ∇ρ1〉 = (1/c2)〈v1 · ∇p1〉, (B5d)

where 〈· · · 〉 denotes the time average for one oscillation period. From (B5b), it can be seen
that the product of the fast time scale varying fields along with gravity act as source terms
responsible for second-order fields, which cause a change in the fluid profile, due to which
the amplitudes of fast scale fields also change accordingly at all time instants on the slow
scale. Also, in inhomogeneous fluids, changing the background velocity field v0, results
in variation of ρ0 and s0 with respect to the slow time scale (t ∼ τ ), thus 〈∂tρ0〉 /= 0 and
〈∂ts0〉 /= 0. Along with ρ1g � ρ0g, D∇s1 � D∇s0, we also neglect 〈v1 · ∇s1〉, 〈ρ1∇ · v1〉
since both these terms are out of phase. Using the above arguments, combining equations
(B5a) and (B5d) we get

〈ρ0∇ · v1〉 = −(1/c2)〈v1 · ∇p1〉. (B6)

Substituting the above equation in (B6), since βη∇(1/ρ0c2)(v1 · ∇)p1 ∼ O(103) � ∇ ·
〈ρ0v1v1〉 ∼ O(107) we can neglect the term βη∇(∇ · 〈v1〉). The term (1/c2)〈v1 · ∇p1〉
does not contribute to any acoustic phenomena and can be neglected, thus we have
∇ · 〈v1〉 = 0, which indicates the flow is incompressible. This is stated as Nyborg’s
divergence-free approximation, which states that compressibility effects can be safely
ignored. In microscale flows, the term ρ0〈∂tv0〉 in (B5b) can be neglected. Consequently,
our governing equations reduce to

∇ · 〈v0〉 = 0, (B7a)

−∇〈p0〉 + η∇2〈v0〉 − ∇ · 〈ρ0v1v1〉 + 〈ρ0g〉 = 0, (B7b)

〈∂ts0〉 + 〈v0 · ∇s0〉 = D∇2〈s0〉. (B7c)

Hence, the body force due to acoustic fields is construed as

f ac = −∇ · 〈ρ0v1v1〉. (B8)
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Appendix C. First-order equations in frequency domain

The first-order equations, which give rise to the first-order fields, ((2.3) in the main text)
are specified to be solved in the frequency domain on the fast time scale. As we are solving
the governing equations at a particular frequency for all acoustic phenomena, they can be
rewritten as

−iωρ1 = −∇ · (ρ0v1), (C1a)

−iωρ0v1 = −∇p1 + η∇2v1 + βη∇(∇ · v1), (C1b)

−iωs1 + v1 · ∇s0 = 0, (C1c)

−iωρ0κ0p1 = −iωρ1 + v1 · ∇ρ0. (C1d)

Also, combining (C1a) and (C1d) we get

− iωκ0p1 = −∇ · v1, (C1e)

where p1 is the first-order pressure field, ρ1 refers to the first-order density field, v1 is the
first-order velocity field, ω is the angular frequency, η is the dynamic viscosity of the fluid,
ξ is the volume fluid viscosity, β = (ξ/η) + (1/3), s is the solute concentration and D is
the diffusivity. In the time-dependent domain (C1e) can be written as κ0∂tp1 = −∇ · v1.

Appendix D. Variation of first-order and second-order fields for different
configurations

In support of the analytical calculations and numerical simulations for the theory
proposed, the profiles of the first-order velocity and pressure fields are shown below.

From figure 6 it is observed that the first-order fields (v1 and p1) are highly configuration
dependent, thus they change with respect to time, which supports the fact that the
assumption of Eac being constant is incorrect. In figure 7, it is seen that the magnitude
of the second-order velocity 〈v2〉 is very high as the fluids evolve by an advection process
to settle to a stable configuration. Also, it is noticed that the second-order pressure 〈p2〉
is also significantly high. This is because of the large magnitude of p1 at this instant that
increases Eac drastically, which in turn affects 〈p2〉 and 〈v2〉. The second-order streaming
velocity in this study refers to the time-averaged Eulerian streaming velocity. It can also
be better represented by the Lagrangian streaming velocity. The Eulerian and Lagrangian
velocities are related using Stokes drift (Hamilton, Ilinskii & Zabolotskaya 2003; Pavlic &
Dual 2021).

From figure 8, it is evident that the first-order velocity has a large variation within the
thin viscous boundary layer due to the no-slip condition whereas the first-order pressure
remains the same inside and outside the boundary layer. Thus the acoustic standing wave
relation p1 = pa sin(kx) and v1 = (pa/iρ0c0) cos(kx) (where k = 2π/λ is wavenumber
and λ ≈ 2w) holds good only outside the boundary layer.

Figure 9 shows the relocation of immiscible fluids under acoustic fields. Here also, the
first-order fields (v1 and p1) are highly configuration dependent. Due to the application of
a two-dimensional standing wave, the pressure nodes are not formed at the centre of the
channel as a vertical line (figure 9c) unlike for miscible fluids (figure 6c).

Appendix E. Fluid interface at the node for inhomogeneous fluids

In order to study the effect of the acoustic body force term alone, the influence of gravity
has been excluded to avoid stratification. From figure 10, we see that acoustic relocation
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t = 0 s
(a)

(b)

(c)

t = 0.5 s

1.491

0
v1 (m s–1)

0.07 0
v1 (m s–1)

0.11 0
v1 (m s–1)

0.81

0
p1 (MPa)

0.14 0
p1 (MPa)

0.22 0
p1 (MPa)

1.44

Z (MPa s m–1)
1.535 1.579

t = 0.64 s

Figure 6. (a) Impedance profile for relocation of an unstable configuration to a stable configuration with d =
0.261 nm and ν = 1.96 MHz. Initially (t=0s), there is low impedance DI water (blue) at the centre and high
impedance 10 % Ficoll PM70 (red) at the sides. (b) Corresponding first-order velocity v1. (c) Corresponding
first-order pressure p1. The microchannel width w = 380 μm and height h = 160 μm.

0

(a) (b)

〈v2〉 (mm s–1)

5.47 0

〈p2〉 (Pa)

464

Figure 7. Corresponding (a) second-order velocity (〈v2〉) and (b) second-order pressure (〈p2〉) profile at
t = 0.64 s for the fluid configuration considered in figure (1).

does not occur in the case of inhomogeneous fluids when the fluid interface is at the node.
Acoustic streaming can disturb the interface location, as shown at t = 1.4 s, after which
the acoustic body force tries to stabilize the configuration.

Appendix F. Analysing the body force term fac in detail

The body force f ac = −∇ · 〈ρ0v1v1〉 derived in the main text is analysed in detail by
splitting it as

− ∇ · 〈ρ0v1v1〉 = −ρ0〈v1 · ∇v1〉 − 〈ρ1∂tv1〉. (F1)

Consider the first term −ρ0〈v1 · ∇v1〉. Using the identity A, A · ∇A = ∇(A2/2) − A ×
(∇ × A), it can be written as

−ρ0〈v1 · ∇v1〉 = −1
2
ρ0∇〈|v2

1|〉 + ρ0〈v1 × (∇ × v1)〉, (F2a)

−ρ0〈v1 · ∇v1〉 = −1
2ρ0

∇〈|ρ0v1|2〉 + 〈|v1|2〉∇ρ0 + ρ0〈v1 × (∇ × v1)〉. (F2b)
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Figure 8. (a) Variation of first-order velocity at t=0 s near the boundary layer. Plots for variation of (b)
first-order pressure p1 and (c) first-order velocity v1 in the direction of height.

t = 0 s(a)

(b)

(c)

t = 0.2 s
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0.43 0
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0
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t = 2.5 s

Figure 9. Results of relocation of immiscible fluids by actuating all walls of a microchannel
(two-dimensional), consisting of high impedance mineral oil (red) and low impedance silicone oil (blue) with a
surface tension of 1 mN m−1. The wall is actuated with a displacement d = 15 nm at a frequency of 2.1 MHz.
(a) Impedance profile. (b) First-order velocity profile v1. (c) First-order pressure profile p1. The microchannel
is of width w = 360 μm and height h = 160 μm.

Now consider the second term on the right-hand side of (F1), −〈ρ1∂tv1〉. Using
∂t(ρ1v1) = 0, we have −〈ρ1∂tv1〉 = 〈v1∂tρ1〉 and from the first-order continuity equation,
we have ∂tρ1 = −∇ · (ρ0v1). Substituting these and using the identity ∇ · (AB) = B ·
∇(A) + A∇ · (B), (where A and B are two vectors), we get

− 〈v1∇ · (ρ0v1)〉 = −〈v1(v1 · ∇ρ0)〉 − 〈ρ0v1∇ · v1〉. (F3)
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Figure 10. No relocation of inhomogeneous fluid when the interface is at node.

From κ0∂tp1 = −∇ · v1, the second term on the right-hand side of (F3) can be
simplified as −〈ρ0v1∇ · v1〉 = 〈ρ0v1(κ0∂tp1)〉 = −〈κ0p1(ρ0∂tv1)〉 (since 〈f1(∂tg1)〉 =
−〈g1(∂tf1)〉 is valid for time-harmonic fields f1 and g1). Now, using the first-order
momentum equation (ρ0∂tv1 = −∇p1 + η∇2v1 + βη∇(∇ · v1)), (F3) reduces to

−〈v1∇ · (ρ0v1)〉 = 〈−v1(v1 · ∇ρ0)〉 − 〈κ0p1(−∇p1 + η∇2v1 + βη∇(∇ · v1))〉,
(F4a)

−〈v1∇ · (ρ0v1)〉 = 1
2κ0∇〈|p2

1|〉 − 〈v1(v1 · ∇ρ0)〉 − 〈κ0p1(η∇2v1 + βη∇(∇ · v1))〉.
(F4b)

Adding (F2b) and (F4b)

f ac = 1
2
κ0∇〈|p2

1|〉 − 1
2ρ0

∇〈|ρ0v1|2〉 + 〈|v1|2〉∇ρ0 + 〈v1 × ∇ × (ρ0v1)〉

−〈v1(v1 · ∇ρ0)〉 − 〈κ0p1(η∇2v1 + βη∇(∇ · v1))〉, (F5a)

= 1
2
κ0∇〈|p2

1|〉 − 1
2ρ0

∇〈|ρ0v1|2〉 + 〈v1 × ∇ × (ρ0v1)〉 − 〈κ0p1(η∇2v1 + βη∇(∇ · v1))〉,
(F5b)

= 1
2∇(κ0〈|p1|2〉 − ρ0〈|v1|2〉) + {〈v1 × ∇ × (ρ0v1)〉}

−1
2 [〈|p1|2〉∇κ0 + 〈|v1|2〉∇ρ0] − 〈(κ0p1)(η∇2v1 + βη∇(∇ · v1))〉. (F5c)

For an acoustic wave propagating in the medium with frequency in the range of MHz, the
orders of magnitude of individual parameters are wavenumber k ∼ O(104), ρ0 ∼ O(103),
δ ∼ O(10−6), c0 ∼ O(103), η ∼ O(10−3) and p1 ∼ ρ0c0v1 (where u1 and v1 denote x and
y components of first-order velocity). The order of magnitude analysis results in, outside
the boundary layer,

1
2
∇(κ0〈|p1|2〉 − ρ0〈|v1|2〉 ∼ ρ0ku2

1
2

∼ O(106)(u2
1), (F6a)

−〈(κ0p1)(η∇2v1 + βη∇(∇ · v1))〉 ∼ ηk2u2
1

c0
∼ O(102)(u2

1). (F6b)

Inside the boundary layer,

{〈v1 × ∇ × (ρ0v1)〉} ∼ ρ0u2
1

δ
∼ O(109)(u2

1), (F6c)

−〈(κ0p1)(η∇2v1 + βη∇(∇ · v1))〉 ∼ ηu2
1

c0δ2 ∼ O(106)(u2
1). (F6d)
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Figure 11. Mesh convergence analysis for first-order pressure amplitude pa.

From the above arguments, we can conclude that the last term in (F5c) is insignificant
inside as well as outside the boundary layer on comparing the magnitudes of acoustic
parameters with those of other terms, thus we can certainly neglect this term to proceed
further. Hence, the equation reduces to

f ac = −∇ · 〈ρ0v1v1〉 = 1
2∇(κ0〈|p1|2〉 − ρ0〈|v1|2〉) + {〈v1 × ∇ × (ρ0v1)〉}

− 1
2 [〈|p1|2〉∇κ0 + 〈|v1|2〉∇ρ0]. (F7)

Appendix G. Mesh convergence and numerical uncertainty

The mesh convergence analysis is performed as shown in figures 11 and 12 to determine
the number of grids large enough for all dependent variables to converge, ensuring a
mesh-independent result. The dark blue line, which indicates a mesh constituting of 24 794
triangular grid elements (maximum element size of about 2.655 μm), is chosen as a
trade-off between computational time and accuracy.

The discretization error and numerical uncertainty for this mesh is estimated using
the Richardson extrapolation method. The discretization error is given as (Freitas 2002;
Phillips & Roy 2014)

ε ≈ [( ff − fc)/ff ]/[rp − 1], (G1)

where p = ln[( fm − fc)/( ff − fm)]/ ln[r] is the order of the convergence rate, subscript f
refers to the fine grid solution (24 794 elements), c refers to the course grid solution (6070
elements), m refers to the medium grid solution (12 308 elements) and r is the ratio of
grid spacings. For numerical solutions on the fine grid, grid convergence indices for the
pressure amplitude and second-order velocity are calculated to be 1.028 % and 2.793 %
respectively. Thus, the numerical uncertainty for pressure amplitude is pa ± 0.01pa, and
the second-order velocity is v2 ± 0.027v2.
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