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Abstract
This paper develops a term structure model for the UK nominal, real and implied inflation spot

zero-coupon rates simultaneously. We start with fitting a descriptive yield curve model proposed by

Cairns (1998) to fill the missing values for certain given days at certain maturities in the yield curve

data provided by the Bank of England. We compare four different fixed ‘exponential rate’

parameter sets and decide the set of parameters which fits the data best. With the chosen set of

parameters we fit the Cairns model to the daily values of the term structures. By applying principal

component analysis on the hybrid data (Bank of England data and fitted spot rates for the missing

values) we find three principal components, which can be described as ‘level’, ‘slope’ and

‘curvature’, for each of these series. We explore the relation between these principal components to

construct a ‘yield-only’ model for actuarial applications. Main contribution of this paper is that

the models developed in the paper enable the practitioners to forecast three term structures

simultaneously and it also provides the forecast for whole term structures rather than just short and

long end of the yield curves.

1 Introduction

The term structure of interest rates, also known as the yield curve, refers to the relationship between

bonds of different terms. When interest rates of bonds are plotted against their terms, this is called

the yield curve. Constructed by graphing the yield to maturity and the respective outstanding terms

of benchmark fixed-income securities, the yield curve is a measure of the market’s expectations of

future interest rates given the current market conditions.
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The Bank of England (2002) estimates two kinds of yield curves for the United Kingdom on a daily

basis. One set is based on yields on UK government bonds and on yields in the general collateral

repo market. It includes nominal and real yield curves and the implied inflation term structure for

the UK. The other set is based on sterling interbank rates (LIBOR) and on instruments related to

LIBOR (short sterling futures contracts, forward rate agreements and LIBOR-related interest rate

swaps). These commercial bank liability curves are nominal only.

The published figures are estimated spot zero-coupon yields, assuming continuous compounding.

Over the period since 1970 a number of different methods have been used to construct these yield

curves, always based on the market prices of actual coupon bonds. The current methodology used to

construct the yield curves is described in the Bank of England Quarterly Bulletin article by Anderson

and Sleath (1999) and a detailed technical description can be found in Anderson and Sleath (2001).

Term structure modelling is influenced by the two different approaches of macroeconomists and of

financial economists. While macroeconomists focus on the role of expectations of inflation and

future real economic activity in the determination of yields, financial economists avoid any explicit

role for such determinants. There are various recent papers which aim to bridge the gap caused by

these different approaches by formulating and estimating a yield curve model that integrates

macroeconomic and financial factors (Ang and Piazzesi (2003), Hördahl et al. (2006), Wu (2002),

Evans and Marshall (1998, 2001), Kozicki and Tinsley (2001), Ang and Bekaert (2003), Dai and

Philippon (2005), Dewachter and Lyrio (2006), Rudebusch and Wu (2008), Diebold, Piazzesi and

Rudebusch (2004), Diebold, Rudebusch and Aruoba (2006), Diebold and Li (2006), Diebold, Li

and Yue (2008), Lildholdt, Panigirtzoglou and Peacock (2007), Ang, Bekaert and Wei (2008), Ang,

Piazzesi and Wei (2006), Kaminska (2008)). Most of these papers use US data or data from other

countries but Diebold, Li and Yue (2008), Lildholdt, Panigirtzoglou and Peacock (2007) and

Kaminska (2008) use the UK data. This study is a first step towards term structure modelling for

actuarial applications by considering the three term structures simultaneously, using the UK data.

The objective of this paper is to construct a benchmark yield curve model using nominal, real and

implied inflation spot rates provided by the Bank of England. Since we exclude the effect of the

macroeconomic factors on the UK yield curves we call the model we propose a ‘yield-only’ model.

Section 2 introduces the term structure data by describing it more fully and presenting some

descriptive statistics.

In order to use all available maturities we fit the Cairns model (Cairns, 1998) as a descriptive yield

curve model to fill in the gaps in the term structures. Section 3 introduces the Cairns model and

discusses the choice of the exponential rate parameter sets by comparing different values for the

fixed parameters and the parameter sets which have been obtained by using a least squares method

and minimax method with a penalty function.

In Section 4 we describe and estimate the ‘yield-only’ model. To estimate this model, we apply

principal component analysis (PCA) in order to decrease the dimension of the data sets by extracting

uncorrelated variables from highly correlated yield curves. Using the first three principal components

(PCs) of each yield curve we explore the correlations between the term structures and fit a

parsimonious time series model to each component. We also analyse the residuals of the models.

In Section 5 we describe how we derive the term structures using the PCs and examine the

one-month ahead forecasts by constructing 95% confidence intervals for the forecasts.
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In Section 6 we check whether our one-month ahead forecasts satisfy the Fisher relation and

whether we can forecast one of the yield curves using the other two. Finally, Section 7 concludes.

2 Data

The Bank of England’s nominal government yield curves that we use are available on a daily basis

from 2 January 1979, and the real yield curves and implied inflation term structure are available

from 2 January 1985 (Bank of England, 2012). The Bank derives the government liability nominal

yield curves from UK gilt prices and General Collateral (GC) repo rates. The real yield curves are

derived from UK index-linked bond prices. Using the Fisher relationship, the implied inflation term

structure is calculated as the difference between instantaneous nominal forward rates and

instantaneous real forward rates.

There are many missing values in the data provided by the Bank, due to the existence of non-trading

days (weekends and holidays) - which we ignore, maturities outside the range covered by existing

gilts and the absence of the shortest and longest market instruments for which reliable prices

are available. There is also one missing day for the real and implied inflation curves, Friday

27 September 1996; it is not obvious why this day is missing.

There are missing values at the end of the nominal yield curve because the Bank of England restricts

the longest maturity quoted to the longest available single-dated stock; it has not used the prices of

‘‘double dated’’ gilts (which give the government an option to repay at any of a number of dates

between two fixed dates). In January 1979 there were a considerable number of double-dated

stocks, some 31, including six ‘‘irredeemable’’, out of 79 stocks quoted; by 2009 there was only one

(31/2% War Stock) that was not deemed by the Debt Management Office to be a ‘‘rump’’ stock, too

small to have a reliable price, so presumably excluded by the Bank of England.

In January 1979 the longest single-dated stock was 10% Treasury 1999, repayable on 19 May

1999, so the longest yield quoted in the first few months of 1979 was for 20 years, shortening to

19.5 years on 24 May 1979, a few days later. On 25 June 1980 a new stock, 13% Treasury 2000,

repayable on 14 July 2000, was issued, so the longest yield quoted increased to 20 years for a few

days, then reduced again on 18 July 1980. The term of the longest quoted yields increased as further

stocks were issued and then reduced again as their term reduced, with a maximum term of 25 years,

which has been maintained since 6% Treasury 2028 was issued on 29 January 1998, followed by

even longer stocks, the longest at present being 4% Treasury Gilt 2060, issued on 22 October 2009

and repayable on 22 January 2060. The shortest that the quoted long end has been is 16 years, for a

short period in 1984.

At the short end of the Bank’s nominal yield curve, yields for 1 year have almost always been

quoted, with a few short gaps, but yields for 0.5 years only sporadically, though continuously since

4 January 2000. Before then the Bank did not use stocks of less than three months maturity, so

quoted a six month yield only when there was a stock whose maturity was between three and six

months away. Since 1997 repo rates have been included in the data used, so shorter terms have

almost always been available.

For the real yield curve, which is based on the prices of index-linked stocks, the longest yield given

is also 25 years, but in 1985 and 1986 there were periods when it was as short as 16 years.

A yield-only model for the term structure of interest rates
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The shortest yield given is 2.5 years, but in December 1996 and January 1997 it increased to

4.5 years. The number of index-linked stocks in issue is relatively small, and the maturity dates are

rather sparse as compared with those of the nominal stocks. Further, the method of indexation

means that the real yields on short-dated stocks depend heavily on the assumptions that are

necessary for calculating them, so yields for shorter maturities are rather uncertain.

On no day is there a maturity for which there is a real yield quoted but no nominal yield, so the

implied inflation rates exist for the same periods and terms as the real yields.

We use these nominal government zero-coupon rates extracted from the conventional gilt market,

and the real zero-coupon rates and implied inflation spot rates extracted from the index-linked gilt

market in our analysis. Unlike previous studies, we use all available maturities i.e. 50 different

maturities for nominal rates (from 6 months to 25 years) and 46 maturities for real rates and

implied inflation (from 2.5 years to 25 years) to construct the yield curve models.

Omitting non-trading days (and the one missing day), we have 8406 daily observations for

the nominal zero-coupon rates (from 2 January 1979 to 30 March 2012) and 6888 daily

observations for the implied inflation and real spot rates (from 2 January 1985 to 30 March 2012);

all are based on half year terms. To begin with, we present some descriptive statistics obtained

from the daily rates. However, it would be misleading to quote statistics over different periods

for the different terms, so we show in Table 1 statistics for the full range of days that is available

and in Table 2 statistics for the longest period with a full range of terms that is available for

each term structure (nominal, real and implied inflation). This gives six different sets of statistics.

The full range of days is available for Nominal for terms from 1.5 years to 16 years and for

Real and Implied Inflation for terms from 4.5 years to 16 years. The longest periods for

which the full range of terms is available are, for Nominal, the period from 4 January 2000

to 31 December 2009, 2528 days, and for Real and Implied Inflation only from 24 May 2000 to

23 May 2003, 758 days.

We can see from Table 1 and Table 2 that the means in each set are fairly constant by term, and the

standard deviations reduce with term; however, the values are quite different in the different sets.

We also see that the skewness is positive for three of the six sets, for each term, and negative for the

other three, also for each term. The excess kurtosis is often negative but sometimes positive and

sometimes the different terms have different signs. It is worth noting that the real zero-coupon rates

recently for shorter terms have been negative.

The series of yields for different terms, for the full range of days, are very highly correlated with

each other. For all classes of yield neighbouring terms have correlation coefficients as high as 0.9999

and the furthest apart terms have coefficients of 0.9 for nominal yields and implied inflation, and

over 0.86 for real yields. For the shorter periods when full range of terms is available some

correlation coefficients are negative. For nominal yields, at the beginning of 2000 short yields were

just over 6% and long were about 4.3%. By 2009 short yields had dropped to less than 0.5% and

long had risen to 4.5%. The correlation coefficient between the values at the extreme ends was

20.19. There is a similar feature for the rather short period for which real and implied inflation

rates are available for the full range of terms.

We also calculate the daily differences of the rates, and calculate the same statistics for them, but

only for the full range of days, which we show in Table 3.
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We can see that all the means are small and negative, reflecting the general decline in all rates over

the periods. The standard deviations are bigger for shorter terms, and reduce as the term increases.

The remarkable feature is the extremely high (excess) kurtosis, and the very large range from lowest

to highest observation, as compared with the standard deviation.

Further investigations showed that many of the big jumps in yields have occurred on the day of

a change in the UK Bank Base Rate, or the following day or within a few days prior to a change.

Table 1. Descriptive Statistics for the Full Range of Days

Nominal Spot Rates (%), 2 January 1979 to 31 March 2012, 8406 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess kurtosis

1.5 7.2642 3.6458 0.3052 15.2688 0.0375 20.8595

3.0 7.4076 3.4877 0.4650 15.8116 0.0913 20.8640

5.0 7.5671 3.3822 0.9479 15.9370 0.1773 20.9417

10.0 7.7402 3.2389 2.0779 15.5571 0.3129 21.0675

15.0 7.6159 3.0346 2.6681 15.0450 0.3902 20.9604

16.0 7.5699 2.9890 2.7453 14.9152 0.4030 20.9255

Nominal Spot Rates (%), 2 January 1985 to 31 March 2012, 6889 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess kurtosis

1.5 6.2729 3.1940 0.3052 14.0070 0.1696 20.5409

3.0 6.3978 2.9397 0.4650 13.3374 0.1117 20.7484

5.0 6.5394 2.7631 0.9479 12.9316 0.1740 20.9489

10.0 6.6964 2.5260 2.0779 12.3813 0.3116 21.2765

15.0 6.6212 2.3010 2.6681 11.4981 0.2895 21.4891

16.0 6.5902 2.2577 2.7453 11.2993 0.2753 21.5284

17.0 6.5561 2.2160 2.8139 11.0976 0.2601 21.5661

Real Spot Rates (%), 2 January 1985 to 31 March 2012, 6888 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess Kurtosis

4.5 2.4989 1.2907 21.7175 5.1096 21.1797 1.2079

5.0 2.5224 1.2644 21.5993 5.1222 21.0987 1.0071

7.5 2.6091 1.2045 21.0904 5.1396 20.7165 0.0296

10.0 2.6594 1.1957 20.7096 5.0887 20.4675 20.5836

15.0 2.6889 1.2257 20.3618 4.9308 20.2507 21.1179

16.0 2.6869 1.2350 20.3238 4.8909 20.2315 21.1711

Implied Inflation Spot Rates (%), 2 January 1985 to 31 March 2012, 6888 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess Kurtosis

4.5 4.0092 1.8311 21.3090 9.2174 0.6717 20.5800

5.0 4.0169 1.7929 20.9900 9.1030 0.6796 20.6103

7.5 4.0440 1.6443 0.2567 8.6129 0.7104 20.6814

10.0 4.0369 1.5157 1.1549 8.1779 0.7104 20.7091

15.0 3.9320 1.2501 1.9805 7.4018 0.5894 20.7769

16.0 3.9030 1.1992 1.9767 7.1765 0.5431 20.8108
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Such changes in yield curves are not surprising, but this does not account for all the big changes, most

of which occur in the period before 1995. There are, however, two artificial reasons why there may be

large jumps in the yield curves, beside the natural one of large changes in actual yields on the stocks.

First, in the years prior to about 1995, the taxation system in the UK, whereby many investors paid

tax only on interest income, at different rates, but not on capital gains, meant that wealthy

individuals, with a high tax rate, preferred low coupon stocks standing at a discount, and pension

funds, with zero tax liability, were happy with high coupon stocks, even if standing above par.

Investors, such as life offices, with an intermediate tax rate, found stocks with an intermediate coupon

acceptable. There was therefore a very strong coupon effect on redemption yields. See Clarkson

(1979) and Dobbie and Wilkie (1978). On 31 December 1978, the day before the observed series

starts, the 15-year redemption yields on stocks in the high, medium and low coupon bands as shown

in the FT-Actuaries Indices were 14.30%, 13.81% and 12.18%, a substantial variation.

No single yield curve can represent accurately such a market, which is why the FTSE-Actuaries BGS

Indices at that time split stocks into three coupon bands. If a single yield curve is used, when a new

Table 2. Descriptive Statistics for the Full Range of Terms

Nominal Spot Rates (%), 4 January 2000 to 31 March 2012, 3096 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess kurtosis

0.5 3.5458 1.9401 0.3375 6.1470 20.6501 21.1275

2.5 3.7869 1.6290 0.3691 6.5593 20.6834 20.8330

5.0 4.0872 1.2350 0.9479 6.3799 20.8268 20.2510

10.0 4.3923 0.7028 2.0779 5.7299 21.2018 1.3557

15.0 4.4865 0.4545 2.6681 5.2352 21.6622 3.6732

20.0 4.4636 0.3573 2.9783 5.1569 21.5178 3.5818

25.0 4.3910 0.3155 3.1484 5.0466 21.1100 2.0332

Real Spot Rates (%), 24 May 2000 to 23 May 2003, 758 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess Kurtosis

2.5 2.4922 0.7572 0.6662 3.7674 20.4715 20.4557

5.0 2.4280 0.3974 1.1459 2.9662 21.4421 1.5263

10.0 2.3096 0.2165 1.5847 2.7015 20.9141 0.7655

15.0 2.2154 0.1664 1.7917 2.5795 20.1426 21.0037

20.0 2.1198 0.1652 1.8160 2.4712 20.1822 21.1726

25.0 2.0192 0.1987 1.6251 2.4010 20.4771 21.0348

Implied Inflation Spot Rates (%), 24 May 2000 to 23 May 2003, 758 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess Kurtosis

2.5 2.2850 0.2897 1.6619 3.0046 0.4049 20.5962

5.0 2.4580 0.2881 1.9051 3.1622 0.2849 20.7618

10.0 2.5201 0.2323 2.0931 3.0875 0.4918 20.6065

15.0 2.5242 0.1541 2.2086 2.9157 0.3555 20.6585

20.0 2.5123 0.1435 2.2183 2.9299 0.6205 20.0915

25.0 2.4926 0.1562 2.1626 2.9012 0.3685 20.4717
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high coupon stock is added, the average yields rise; when a new low coupon stock is issued, the

average falls; the reverse happens when stocks are redeemed, or otherwise are excluded from the

indices. Some of the large jumps in the Bank of England’s yield curve may be because of this feature.

In 1995 the tax basis for many investors was changed to a total return format, and the differential

coupon effect disappeared, as can be confirmed from the FTSE-Actuaries BGS Indices.

A second point is that certain mathematical forms which might be used to represent a yield curve may

have, as shown by Cairns (1998), multiple optimum positions. It is possible that on successive days the

Table 3. Descriptive Statistics for Daily Differences for the Full Range of Days

Nominal Spot Rates (%), 2 January 1979 to 31 March 2012, 8406 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess kurtosis

1.5 20.0013 0.0855 21.3299 0.8105 20.3550 18.2223

3 20.0014 0.0809 20.9650 0.7138 20.2884 11.0463

5 20.0014 0.0747 20.9076 0.6126 20.2586 9.3499

10 20.0012 0.0683 20.4955 0.5224 0.0115 4.8003

15 20.0011 0.0641 20.4731 1.0245 0.2967 12.6845

16 20.0011 0.0640 20.4733 1.0216 0.3246 13.1054

Nominal Spot Rates (%), 2 January 1985 to 31 March 2012, 6889 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess kurtosis

1.5 20.0015 0.0686 21.3299 0.8070 21.1852 38.1823

3 20.0015 0.0666 20.9650 0.7138 20.5194 16.4610

5 20.0015 0.0627 20.6295 0.6126 20.1061 7.8087

10 20.0013 0.0589 20.4955 0.3443 20.0389 3.7007

15 20.0011 0.0556 20.4462 0.3462 20.1021 4.2456

17 20.0010 0.0544 20.4774 0.3445 20.1353 4.6969

Real Spot Rates (%), 2 January 1985 to 31 March 2012, 6888 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess Kurtosis

4.5 20.0008 0.0483 20.4990 0.5464 0.0066 12.8816

5 20.0008 0.0460 20.4396 0.4798 0.0222 11.1738

7.5 20.0007 0.0395 20.2682 0.3456 0.0547 7.1848

10 20.0006 0.0361 20.2816 0.3038 0.0429 5.9321

15 20.0005 0.0325 20.3093 0.2474 20.0169 5.7921

16 20.0005 0.0321 20.3111 0.2388 20.0316 5.9305

Implied Inflation Spot Rates (%), 2 January 1985 to 31 March 2012, 6888 days

Term (years) Mean Standard deviation Minimum Maximum Skewness Excess Kurtosis

4.5 20.0007 0.0601 20.7170 0.4953 20.4631 12.8170

5 20.0007 0.0578 20.6897 0.4477 20.4497 11.8225

7.5 20.0007 0.0513 20.5884 0.3272 20.4221 8.6072

10 20.0007 0.0486 20.5125 0.2994 20.3008 7.1028

15 20.0006 0.0452 20.3643 0.3856 20.0856 7.3628

16 20.0005 0.0447 20.3678 0.3949 20.0548 7.5706
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curve jumps from one local optimum to another, with a consequent change in the shape of the resulting

curve. It is possible that some other jumps in the Bank of England’s curves are because of this.

We have also calculated the autocorrelation coefficients and the partial autocorrelation coefficients

of the daily values and of the daily differences. In Table 4 we show, for the full range of days, the

first autocorrelation coefficient (which is the same as the first partial autocorrelation coefficient)

and the second partial autocorrelation coefficient, for the daily yields and for the daily differences.

We see that the first autocorrelation coefficients for all the yields are very high, around 0.999 for

most terms for each series. This would tempt one to think that the series can each be modelled as

having a unit root, so that the first differences should be analysed, rather than the basic values. But

we know from other sources, e.g. Homer & Sylla (1963) that interest rates are stationary in the long

run, so it would be inappropriate to assume that we can safely round 0.999 to unity. The second

partial for the yields is, in most cases, negative and quite significant. We note that the standard error

of the partials, assuming normality, is 1=
ffiffiffi
n
p

, where n is the number of cases. For the nominal yields

this is 0.0113, for the real yields and implied inflation it is 0.0126. The third and higher partials all

show no more significant values than one would expect.

For the differences, the first autocorrelation coefficient is positive, and significant, but never very

large, 0.1082 at the highest. These observations indicate that there is very strong first autocorrelation

coefficient in the data and a rather weak second one, so that an AR(2) model for the yields or an

AR(1) model for the differences might be appropriate if we were interested in a daily model.

However, our objective is to construct a longer term model, so in due course we switch to values at

monthly intervals, using the last working day of each month. Further calculations (not shown)

indicate that if we take differences of the monthly series the extreme kurtosis is considerably

reduced, but not to zero. For nominal yields it is now between 1.5 and 3. The large jumps

observable in the daily data are diluted. For real yields the excess kurtosis remains high, at over 12

for the shortest terms, but falling to 3 at the longest. This is mainly attributable to a curious feature

of the prices of index-linked stocks between October 2008 and January 2009. The real yields for a

2.5 year term at the end of successive months from the end of September 2008 were: 1.83%, 3.22%,

5.61%, 3.13% and 1.35%. For a 25-year term they were 0.85%, 1.12%, 1.05%, 0.67% and

0.81%, not nearly such a large variation. At the extreme, at the end of November implied inflation

was 22.9%. This was in the middle of a financial crisis, but it is not obvious why short-term index-

linked stocks should have shown such large price movements (which can be confirmed from the

Debt Management Office web site - they are not an artefact of the bank’s indices).

A further advantage of using the monthly series is that, at least for the nominal yields, they show

features of a first order autocorrelated model, with no second order effects as Table 4 indicates. The

curious flutter in index-linked stocks, however, does appear to produce a rather high negative

second-order autocorrelation coefficient, the large rises in yields in October and November 2008

being reversed in December and January.

3 A Descriptive Yield-Curve Model for the UK Term Structures:
The Cairns Model

A descriptive model can be defined as a model which takes a snapshot of the bond market as it is

today. A descriptive model, on its own, gives no indication of how the term structure might change
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Table 4. Autocorrelation coefficients for Yields and Differences, for Full Range

Nominal Spot Rates (%), 2 January 1979 to 31 March 2012, 8406 days

Yields Differences

Term (years) First acf Second pacf First acf Second pacf

1.5 0.9994 20.0529 0.1082 20.0340

3 0.9994 20.0433 0.0979 20.0296

5 0.9994 20.0411 0.0964 20.0177

10 0.9995 20.0322 0.0698 20.0049

15 0.9995 20.0295 0.0608 20.0059

16 0.9995 20.0302 0.0616 20.0077

Nominal Spot Rates (%), 2 January 1985 to 31 March 2012, 6889 days

Yields Differences

Term (years) First acf Second pacf First acf Second pacf

1.5 0.9994 20.0471 0.1044 20.0230

3 0.9993 20.0365 0.0908 20.0170

5 0.9993 20.0314 0.0784 20.0127

10 0.9993 20.0230 0.0499 20.0126

15 0.9993 20.0159 0.0348 20.0252

17 0.9994 20.0163 0.0353 20.0320

Real Spot Rates (%), 2 January 1985 to 31 March 2012, 6888 days

Yields Differences

Term (years) First acf Second pacf First acf Second pacf

4.5 0.9985 20.0656 0.0757 0.0005

5 0.9985 20.0647 0.0788 0.0038

7.5 0.9988 20.0589 0.0774 0.0188

10 0.9990 20.0532 0.0598 0.0249

15 0.9992 20.0449 0.0385 0.0132

16 0.9993 20.0435 0.0377 0.0084

Implied Inflation Spot Rates (%), 2 January 1985 to 31 March 2012, 6888 days

Yields Differences

Term (years) First acf Second pacf First acf Second pacf

4.5 0.9992 20.0530 0.0757 0.0005

5 0.9992 20.0539 0.0788 0.0038

7.5 0.9992 20.0489 0.0774 0.0188

10 0.9991 20.0352 0.0598 0.0249

15 0.9989 20.0172 0.0385 0.0132

16 0.9988 20.0159 0.0377 0.0084
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in the future. The sole aim is to get a good description of the rates of interest which are implicit in

today’s prices (Cairns, 2004).

In this section, we discuss the Cairns model as a descriptive parametric model to fit the daily nominal

spot rates (January 1979 – March 2012), real spot rates (January 1985 – March 2012) and implied

inflation spot rates (January 1985 – March 2012) published on the Bank of England’s web page by

changing the values of the parameters to find the best set of values for the missing yields for each data

set. The overall aim is to fill in the gaps in the nominal, real and implied inflation term structures data.

There are many possible available alternatives in the way we have dealt with fitting the Cairns

model. Investigations showed that they made only fairly small differences to the numerical results

for the later parts of this paper, and no difference to the substantive conclusions. We describe them

as we go along.

First, we have the data for nominal spot rates from 1979, but for real and implied inflation spot

rates only from 1985; we could therefore have omitted the data for nominal rates from 1979 to

1984, so that all three series were fitted over the same period; but we have chosen to use all the

available years.

Secondly, at a later stage we use only the interest rates for the last working day of each month, so we

could have fitted the Cairns model by using only these end-of-month dates; but we have chosen to

use all the available daily data.

Thirdly, we observed that the nominal rates for short terms were, on some days, very irregular, with

sometimes the rate for 1 year lying either above or below both of the rates for 0.5 and 1.5 years; the

irregularities may be because the Bank of England uses different sources for their curves, it is

difficult for the exponential curves in the Cairns model to fit such data readily, so for these days the

errors at low durations are rather large; however, we have used all the data.

We shall indicate further choices we made later on.

The forward-rate curve model proposed by Cairns (1998) is designed to give an indication of what

interest rates are currently implied by the market. Thus, it does not provide an arbitrage-free

framework within which derivatives can be priced on their own. The curve introduced below is

designed to model fixed-interest bond prices. Cairns (1998) defines f(t, t 1 s) to be the instantaneous

forward rate observed at time t for payments to be made at time t1s, and he expresses f(t, t1s) as a

function of t, s, five parameters, b0(t), b1(t), b2(t), b3(t) and b4(t), which vary with t, and four

parameters, c1, c2, c3 and c4, which could vary with t or could be taken as the same for all t:

f t; t þ sð Þ ¼ b0 tð Þ þ b1 tð Þe�c1s þ b2 tð Þe�c2s þ b3 tð Þe�c3s þ b4 tð Þe�c4s ð1Þ

The curve is a flexible model with four exponential terms and nine parameters in total. However, four

of these parameters (the exponential rates) may be fixed. Cairns (1998) has shown that with such a

formula there may well be various local minima when we attempt to optimise for every day. If we

keep the same values of the ‘‘c’’ parameters for all days, this reduces the risk of multiple solutions, or

at least ensures that we use the same one for each day. If the value of ci, where i 5 1,2,3,4, is small

then the relevant value of bi affects all durations whereas if ci is large then the relevant value of bi

primarily affects the shortest durations. Considering several choices for the vector C 5 (c1, c2, c3, c4),

S- . S-ahin et al.

108

https://doi.org/10.1017/S1748499513000146 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499513000146


Cairns (1998) suggested using C 5 (0.2, 0.4, 0.8, 1.6) values which he found to give good results over

the period investigated.

Since we fit the curve to spot zero-coupon rates, R(t, t 1 s), rather than forward rates, we use the

representation below of the model which is specified by Cairns (1998).

R t; t þ sð Þ ¼
1

s

Z s

0

f t; t þ uð Þdu

¼ b0ðtÞ þ b1ðtÞ
1� e�c1s

c1s
þ b2ðtÞ

1� e�c2s

c2s
þ b3ðtÞ

1� e�c3s

c3s
þ b4ðtÞ

1� e�c4s

c4s

ð2Þ

Let Rjk represent the daily nominal zero-coupon rate for term j on day k. On some trading days,

yields are not available for all terms as explained in Section 2, and therefore on day k, j takes values

from jlo(k) to jhi(k), where jlo(k) and jhi(k) are the lowest and highest terms for which data is

available on day k.

For nominal rates kN 5 1 to KN 5 8406 (2 January 1979 to 30 March 2012), jN 5 1 to jN 5 50 at the

most, and the term tN (j) 5 jN/2 years. For real rates and implied inflation kR 5 1 to KR 5 6888

(2 January 1985 to 30 March 2012), jR 5 1 to JR 5 46 at the most, and the term tR(j) 5 2 1 j/2 years.

We omit subscripts N and R where they are obvious in the context.

We also denote the number of terms for each day as nðkÞ ¼ jhiðkÞ� jloðkÞ þ 1.

We can rewrite the model for each day as:

bRjk ¼ b0ðkÞ þ b1ðkÞ
1� e�c1t

c1t
þ b2ðtÞ

1� e�c2t

c2t
þ b3ðkÞ

1� e�c3t

c3t

þ b4ðkÞ
1� e�c4t

c4t

ð3Þ

where t 5 t (j)

There are three approaches we can take to fitting the parameters:

(1) we could fix the values of the c’s and optimise the values of the b’s for each day;

(2) we could optimise the values for one set of c’s, the same for all days, and optimise the values of

the b’s for each day;

(3) we could optimise the values of the b’s and c’s jointly for each day

We then need to decide on a criterion for optimising the b’s for each day and the c’s overall, or both

for each day. For the b’s we could use either

(a) least squares: for day k we minimise the sum of square of differences between the actual and the

estimated rates:

LSðkÞ ¼
XjhiðkÞ

j¼ jloðkÞ

Rjk�
bRjk

� �2
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(b) minimax: for each day k we minimise the maximum absolute difference between the actual and

the estimated rates:

MMðkÞ ¼ MaxjhiðkÞ
j¼ jloðkÞ Rjk�

bRjk

��� ���
The least squares solution would be appropriate if the errors could be thought of as random and

possibly normally distributed. But we already have a function fitted by the Bank of England to the

source data, and our objective is to replicate this function as best we can, so it can be argued that the

minimax solution might be considered more appropriate.

If the values of the c’s are fixed, we can find the least squares solution for the b’s analytically by

inverting a matrix, which is a function of the c’s and is the same for each day that has the same range

of terms. To find the minimax solution we have to use a search procedure, but once we have found

the least squares solution we could first improve it by adjusting the constant term, b0(k), so that the

maximum positive and maximum negative deviations have the same magnitude, and then use these

values of the b’s as the starting values for the search procedure.

When we wish to optimise the values of the c’s overall, keeping them the same for each day, we

could use either a least squares or a minimax approach. For least squares we first calculate the root

mean square error for each day:

RMS ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LSðk=nðkÞÞ

q

and then calculate the mean value of the root mean square error:

MeanRMS ¼
XK

k¼1

RMSðkÞ=K

We then choose values of the c parameters that minimise MeanRMS.

For the minimax approach we could optimise either the maximum error over all days, or the mean

maximum error over all days, thus either:

MaxMMðkÞ

or

MeanMM ¼
XK

k¼1

MMðkÞ=K

again choosing values of the c parameters to minimise the chosen function.

However, if we optimise any either of these functions on its own, we can run into difficulties,

because the values of c can become negative, or too close to zero, or too close to each other, in which

case the matrix mentioned above can become singular or nearly so, or the values of the b’s can be

unstable. To avoid this we could apply either a penalty rule:

c1 4 E

c2 4 c1 þ E

c3 4 c2 þ E

c4 4 c3 þ E

ð4Þ
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where E is suitably small value. In practice it would need to be as big as 0.0001 to avoid numerical

problems.

Alternatively we could apply a penalty function:

PðcÞ ¼ g � c1 þ
c2

c1
þ

c3

c2
þ

c4

c3

� �
� 2 � log c1 �

c2

c1
� 1

� 	
�

c3

c2
� 1

� 	
�

c4

c3
�1

� 	�
 �
ð5Þ

with the condition that 0 , c1 , c2 , c3 , c4 and with g 5 0.0001

We then minimise MeanRMS 1 P(c) to find the best overall values of the c’s.

After trying different values of g (0.0001, 0.00001, 0.000001 and 0.0000001) to decrease the effect

of the penalty function to see how much it dominates the original optimisation equation, we decided

to use 0.0001 since decreasing the number makes the c values closer. However, the penalty rule

noted above, or an alternative penalty function would give slightly different results.

We found that, with approach (3), optimising the values of the b’s and c’s jointly on each day, the

values are extremely unstable, and on some days it is difficult to find a satisfactory solution, so we

did not proceed further with this approach; but we used both of the first two.

By investigating both the least squares and the minimax method with fixed values of the c

parameters, we found that the differences in the results by the two methods are quite small, so we

used the least squares method, which is computationally very much faster.

We started by trying three fixed parameter sets which have been suggested by (Cairns, 1998) and

Cairns and Pritchard (2001), and then we used the least squares criterion with the penalty to find

the optimised set of parameters for each set of yield curve data.

The three fixed sets of the C parameters are: (C1 5 (0.2, 0.4, 0.8, 1.6), C2 5 (0.1, 0.2, 0.4, 0.8), and

C3 5 (0.2, 0.4, 0.6, 0.8). We then optimise for each set of spot rates separately and obtain the

optimal results: COpt(Nom) 5 (0.15, 0.24, 0.40, 0.87), COpt(Real) 5 (0.07, 0.19, 0.57, 1.40) and

COpt(Imp) 5 (0.09, 0.15, 0.25, 0.43). In each case we optimise the b parameters for every day

using each set.

We compare these models by examining the root mean squared errors, fitted values for some specific

dates and fitted values for short (6 months to 5 years), medium (5.5 to 15 years) and long (15.5 to

25 years) term maturities for each yield curve to choose the best set of C parameters (see Sahin

(2010)). We present only the root mean squared errors analysis to compare the performance of these

four different models in this paper.

Table 5 shows that optimised parameter sets (C Opt) displayed as Model 4 give the lowest mean

RMS for all three yield curves. The optimised parameter sets also give the lowest values when we

use Maximum RMS method for nominal and implied inflation spot rates while Model 2 gives the

minimum value for the real spot rates. Thus, we use optimised parameter sets to fill in the gaps in all

three yield curves.
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4 The ‘Yield-Only’ Model

Once we fit the Cairns model to the UK yield curves we apply the PCA to the hybrid data to

decrease the dimension of the data. The aim is to reduce the dimension of the yield curves in order

to obtain uncorrelated variables from highly correlated data to construct yield curve models.

Instead of using the original Bank of England yield curve data to apply the PCA, we use hybrid data

which are constructed by using the original values and the fitted Cairns values for the missing data

in order to consider a full range of maturities in our analysis. If we used the original yield curves we

would eliminate the maturities which include missing values and this would lead us to continue our

analysis without the short end and long end of the yield curves. It is convenient to use hybrid data to

model the term structures as the Cairns model fits the yield curve data quite well. However, it

should also be mentioned that using the hybrid data might have influences on the shape of the

principal components through the fitted values produced by the Cairns model; particularly for the

long end of the yield curves because of the missing data.

We use monthly data to construct the UK ‘yield-only’ model.

4.1 Applying PCA to the UK Term Structures

We apply the PCA to the mean adjusted monthly hybrid data to decrease the dimension of the data

by extracting uncorrelated components. This approach was first applied to bond yields by

Litterman and Scheinkman (1991), who found three common factors that influenced the returns on

all treasury bonds. When we apply PCA we see that the first three principal components explain

almost all the variability in the data sets.

Table 5. Mean RMS and Maximum RMS for Different C Parameter Sets for Nominal, Real and Implied

Inflation Spot Rates

Nominal Mean RMS Maximum RMS

Model 1 (C1) 0.02557 0.10347

Model 2 (C2) 0.01094 0.04594

Model 3 (C3) 0.01548 0.07356

Model 4 (C Opt) 0.01052 0.03948

Real Mean RMS Maximum RMS

Model 1 (C1) 0.00409 0.02552

Model 2 (C2) 0.00087 0.00392

Model 3 (C3) 0.00274 0.01552

Model 4 (C Opt) 0.00064 0.00420

Implied Inflation Mean RMS Maximum RMS

Model 1 (C1) 0.01027 0.05159

Model 2 (C2) 0.00445 0.02108

Model 3 (C3) 0.00684 0.03874

Model 4 (C Opt) 0.00324 0.01829

S- . S-ahin et al.

112

https://doi.org/10.1017/S1748499513000146 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499513000146


The first factor, level, accounts for about 96%, 95% and 94% for the nominal, real and implied

inflation spot rates respectively. Slope factors account for about 4%, 5% and 5% and curvatures

account for less than 1% for all yield curves. Thus, the first three principal components explain

more than 99% of the variability in the term structures. Although the curvature factors seem to

explain very little amount, it is important to include this component to capture the hump shape of

the yield curves for some specific dates.

Figure 1 shows the loadings of the first three principal components for the monthly fitted yield

curves. The first factor, level is relatively flat and represents an approximately parallel shift in the

yield curve; the second factor, slope takes negative values on the short maturities and positive values

on the long maturities to capture the slope of the curve and the third factor, curvature takes negative

values for the short and long maturities and positive values for the medium maturities to give the

hump shape to the yield curve.

4.2 Correlations between the Yield Curve Factors

Table 6 shows the lagged correlations between the PCs of the three yield curves. The lag k value in

the tables is the correlation between x[t] and y[t 2 k] where x[t] is the variable whose

autocorrelation function has been calculated and y[t 2 k] represents all the other variables. We

use N, R and I as the abbreviations for the nominal spot rates, real spot rates and implied inflation

respectively. PC represents the principal component.

As seen from the tables below, all PCs have strong auto-correlations. The auto-correlation functions

of the first PCs (NPC1, RPC1 and IPC1) decay very slowly and even for the lag 12 the auto-

correlation coefficients are higher than 0.80. This might indicate non-stationarity in the data.
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Figure 1. Loadings of the PCs for the Daily Hybrid Yield Curves
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Table 6. Lagged Correlations between the Monthly Yield Curves

NPC1[t]

Lag, k NPC1 [t2k] NPC2 [t2k] NPC3 [t2k] RPC1 [t2k] RPC2 [t2k] RPC3 [t2k] IPC1 [t2k] IPC2 [t2k] IPC3 [t2k]

(0) 1.000 0.000 0.000 0.927 0.146 0.039 0.934 0.090 0.049

(1) 0.986 0.010 20.042 0.922 0.150 0.042 0.913 0.084 0.021

(4) 0.939 0.052 20.135 0.898 0.175 0.033 0.853 0.061 20.029

(8) 0.889 0.091 20.214 0.866 0.219 20.025 0.797 0.060 20.068

(12) 0.85 0.117 20.238 0.845 0.228 20.025 0.748 0.053 20.091

NPC2[t]

Lag, k NPC1 [t2k] NPC2 [t2k] NPC3 [t2k] RPC1 [t2k] RPC2 [t2k] RPC3 [t2k] IPC1 [t2k] IPC2 [t2k] IPC3 [t2k]

(0) 0.000 1 0.000 20.023 0.617 0.171 0.078 20.778 20.197

(1) 20.001 0.974 0.011 20.023 0.625 0.142 0.077 20.732 20.194

(4) 20.003 0.881 0.033 20.027 0.634 0.102 0.075 20.599 20.207

(8) 20.006 0.744 0.019 20.017 0.572 0.078 0.054 20.464 20.208

(12) 0.015 0.608 20.011 0.008 0.525 20.005 0.064 20.328 20.180

NPC3[t]

Lag, k NPC1 [t2k] NPC2 [t2k] NPC3 [t2k] RPC1 [t2k] RPC2 [t2k] RPC3 [t2k] IPC1 [t2k] IPC2 [t2k] IPC3 [t2k]

(0) 0.000 0.000 1 20.137 0.022 0.213 0.138 20.005 0.487

(1) 20.005 20.005 0.878 20.139 0.044 0.214 0.130 0.007 0.374

(4) 20.023 0.008 0.619 20.149 0.115 0.253 0.107 0.014 0.128

(8) 20.019 0.017 0.362 20.142 0.169 0.247 0.105 0.012 20.065

(12) 0.025 0.056 0.206 20.093 0.183 0.352 0.136 20.054 20.200
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Table 6. (Continued)

RPC1[t]

Lag, k NPC1 [t2k] NPC2 [t2k] NPC3 [t2k] RPC1 [t2k] RPC2 [t2k] RPC3 [t2k] IPC1 [t2k] IPC2 [t2k] IPC3 [t2k]

(0) 0.927 20.023 20.137 1 0.000 0.000 0.734 0.152 0.078

(1) 0.907 20.010 20.170 0.979 0.016 20.009 0.718 0.142 0.052

(4) 0.850 0.029 20.249 0.924 0.071 20.050 0.670 0.128 20.006

(8) 0.790 0.055 20.287 0.863 0.110 20.094 0.622 0.122 20.035

(12) 0.737 0.062 20.285 0.816 0.112 20.115 0.570 0.121 20.021

RPC2[t]

Lag, k NPC1 [t2k] NPC2 [t2k] NPC3 [t2k] RPC1 [t2k] RPC2 [t2k] RPC3 [t2k] IPC1 [t2k] IPC2 [t2k] IPC3 [t2k]

(0) 0.146 0.617 0.022 0.000 1 0.000 0.322 20.099 20.448

(1) 0.163 0.575 0.021 0.027 0.939 20.005 0.323 20.083 20.414

(4) 0.197 0.459 0.040 0.072 0.806 20.042 0.334 20.029 20.318

(8) 0.239 0.344 0.017 0.138 0.66 20.117 0.338 0.025 20.197

(12) 0.287 0.233 20.090 0.198 0.552 20.211 0.359 0.082 20.175

RPC3[t]

Lag, k NPC1 [t2k] NPC2 [t2k] NPC3 [t2k] RPC1 [t2k] RPC2 [t2k] RPC3 [t2k] IPC1 [t2k] IPC2 [t2k] IPC3 [t2k]

(0) 0.039 0.171 0.213 0.000 0.000 1 0.070 20.284 20.506

(1) 0.018 0.211 0.164 20.033 0.054 0.868 0.065 20.308 20.461

(4) 20.043 0.336 0.025 20.116 0.248 0.623 0.044 20.347 20.459

(8) 20.069 0.394 0.039 20.177 0.383 0.459 0.062 20.337 20.420

(12) 20.086 0.375 0.066 20.220 0.411 0.297 0.071 20.311 20.310
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Table 6. (Continued)

IPC1[t]

Lag, k NPC1 [t2k] NPC2 [t2k] NPC3 [t2k] RPC1 [t2k] RPC2 [t2k] RPC3 [t2k] IPC1 [t2k] IPC2 [t2k] IPC3 [t2k]

(0) 0.934 0.078 0.138 0.734 0.322 0.070 1 0.000 0.000

(1) 0.927 0.080 0.092 0.746 0.311 0.084 0.977 0.001 20.026

(4) 0.897 0.111 20.003 0.754 0.300 0.104 0.915 20.021 20.062

(8) 0.865 0.146 20.114 0.756 0.334 0.036 0.86 20.011 20.103

(12) 0.848 0.176 20.168 0.765 0.340 0.051 0.821 20.019 20.154

IPC2[t]

Lag, k NPC1 [t2k] NPC2 [t2k] NPC3 [t2k] RPC1 [t2k] RPC2 [t2k] RPC3 [t2k] IPC1 [t2k] IPC2 [t2k] IPC3 [t2k]

(0) 0.090 20.778 20.005 0.152 20.099 20.284 0.000 1 0.000

(1) 0.098 20.778 20.025 0.159 20.146 20.256 0.005 0.953 0.008

(4) 0.114 20.766 20.061 0.164 20.237 20.253 0.023 0.84 0.059

(8) 0.140 20.701 20.063 0.175 20.284 20.269 0.057 0.701 0.143

(12) 0.141 20.632 20.115 0.170 20.322 20.246 0.061 0.565 0.144

IPC3[t]

Lag, k NPC1 [t2k] NPC2 [t2k] NPC3 [t2k] RPC1 [t2k] RPC2 [t2k] RPC3 [t2k] IPC1 [t2k] IPC2 [t2k] IPC3 [t2k]

(0) 0.049 20.197 0.487 0.078 20.448 20.506 0.000 0.000 1

(1) 0.042 20.206 0.427 0.072 20.415 20.439 20.006 0.032 0.853

(4) 0.043 20.233 0.335 0.080 20.379 20.253 20.012 0.090 0.579

(8) 0.027 20.254 0.180 0.080 20.367 20.079 20.043 0.114 0.315

(12) 0.037 20.208 0.138 0.108 20.326 0.147 20.049 0.091 0.137
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However we assume that the variables are stationary. It is more an economic assumption rather

than a statistical one. We do not have a sufficiently long period of data here to justify the

stationarity of the yield curves, but observation over far longer periods shows that yields must be

stationary (Homer, 1963)

We also take the first difference of each PC and calculate the correlation coefficients. Taking the

difference removes the auto-correlations and produce stationary ‘random walk’ series. Since

modelling the yield curves using AR processes is economically reasonable we will continue our

study by using the yield curve data themselves instead of the changes.

The high auto-correlations in the first PCs indicate that the level of the spot rates highly depends on

the level of the previous month rates.

The lagged cross-correlations between the first PCs of the yield curves are quite high. This is

consistent with the Fisher relation which defines the nominal interest rates as the sum of the

expected future inflation (implied inflation) and real interest rates. The second PCs (slope factors)

and the third PCs (curvature factors) of the yield curves also have significant simultaneous and

lagged cross-correlations.

4.3 Fitting AR(1) Models to the Monthly PCs

Once we examine the correlations between the PCs of the yield curves we get an intuition for a

possible vector autoregressive model for the series. Initially we start with a vector autoregressive

model for each PC but after eliminating the insignificant variables we find that the AR(1) process is

the most appropriate model for each of them.

Before introducing the models we describe how we obtain the PCs of the yield curves as time series

in formulas.

Let XM be the matrix of monthly yield curve data for the period 1985–2012 where:

XMN
: Nominal spot rates (327 3 49)

XMR
: Real spot rates (327 3 46)

XMI
: Implied inflation spot rates (327 3 46)

The first three PCs can be obtained by decomposing the covariance matrix into the eigenvectors and

eigenvalues. This decomposition can be shown for the nominal spot rates as below:

Ut
NCNUN ¼ LN ð6Þ

where

CN: covariance matrix of the nominal spot rates (49 3 49)

UN: matrix of eigenvector of CN (49 3 3)

LN: eigenvalues of CN (3 3 3) (diagonal matrix)
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The eigenvectors extracted using Equation 6 are called the loadings of the PCs. Using first three

loadings which explain more than 99% of the variability in the data and the nominal yield curve

data we obtain the first three PCs for the nominal rates.

MN ¼ XMN
UN ð7Þ

where

MN: principal components of the monthly nominal spot rates (327 33)

Let M be the matrix of the monthly PCs where:

MNL
: level component of the nominal spot rates (327 3 1)

MNS
: slope component of the nominal spot rates (327 3 1)

MNC
: curvature component of the nominal spot rates (327 3 1)

MRL
: level component of the real spot rates (327 3 1)

MRS
: slope component of the real spot rates (327 3 1)

MRC
: curvature component of the real spot rates (327 3 1)

MIL
: level component of the implied inflation spot rates (327 3 1)

MIS
: slope component of the implied inflation spot rates (327 3 1)

MIC
: curvature component of the implied inflation spot rates (327 3 1)

The structure of the ‘yield-only’ model is as below:

M½t� � mM ¼ A M½t� 1� � mM

� 
þ EM½t� ð8Þ

where:

mM is the matrix of long run mean of the variables, A is the coefficient matrix for the first lag of the

explanatory variables and EM½t� � 0;
P

M

� 
, i.e. the residuals with zero mean and

P
M variance-

covariance matrix. The autoregressive coefficients in matrix A are very close to 1 particularly for level

factors which indicates that the models are close to random walk models. However, when we examine

the standard errors of the parameters we see that except for the nominal level, slope and real level

factors, all the coefficients are significantly different from 1, i.e. they are at least two standard errors

far from 1. For the three models mentioned the parameters are 1 standard error away from 1.

M ¼

MNL

MNS

MNC

MRL

MRS

MRC

MIL

MIS

MIC

2
66666666666666664

3
77777777777777775

ð9Þ

S- . S-ahin et al.

118

https://doi.org/10.1017/S1748499513000146 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499513000146


bmt
M ¼ 0 0 0 0 0 0 0 0 0

� �
ð10Þ

bA ¼

0:995 0 0 0 0 0 0 0 0

0 0:977 0 0 0 0 0 0 0

0 0 0:882 0 0 0 0 0 0

0 0 0 0:998 0 0 0 0 0

0 0 0 0 0:952 0 0 0 0

0 0 0 0 0 0:874 0 0 0

0 0 0 0 0 0 0:979 0 0

0 0 0 0 0 0 0 0:954 0

0 0 0 0 0 0 0 0 0:858

2
66666666666666664

3
77777777777777775

ð11Þ

bSM ¼

3:06

�0:38 0:57

0:26 �0:01 0:09

1:06 �0:24 0:10 1:42

�0:04 0:16 0:01 �0:40 0:40

0:03 �0:01 0:01 0:07 �0:02 0:05

1:91 �0:07 0:17 �0:41 0:4 �0:04 2:29

0:39 �0:33 0:06 �0:07 0:22 �0:02 0:43 0:48

�0:10 �0:03 �0:05 �0:07 0:05 0:03 �0:03 0:04 0:09

2
66666666666666664

3
77777777777777775

ð12Þ

We display the correlation matrix, brM, for the residuals below. We assume that the coefficients which

are greater or less than three standard errors (0.17) are significant (Chatfield, 2004). Therefore, we see

several significant correlations between the residuals in the matrix brM. These significant correlations

may be caused by various reasons. One reason is that we exclude the simultaneous explanatory

variables in the modelling work. As we observe in Table 6 there are very strong simultaneous

correlations particularly between the corresponding PCs of the three yield curves. The high

correlations between the residuals for the level and slope factor models may be due to these strong

simultaneous correlations between the level and slope components.

brM ¼

1:00

�0:29 1:00

0:51 �0:04 1:00

0:51 �0:26 0:29 1:00

�0:04 0:34 0:06 �0:53 1:00

0:09 �0:05 0:16 0:28 �0:17 1:00

0:72 �0:06 0:37 �0:23 0:42 �0:13 1:00

0:32 �0:62 0:37 �0:23 0:49 �0:13 0:41 1:00

�0:19 �0:14 �0:55 �0:19 0:27 0:51 �0:08 0:20 1:00

2
66666666666666664

3
77777777777777775

ð13Þ

4.4 Residual Analysis

Once we fit the AR(1) models we obtain the residuals using the estimated parameters and apply

some statistical tests on the residuals. To begin with, we inspect whether the residuals are
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independent and whether there is an ARCH effect. We calculate the auto-correlation coefficients up

to lag 36 (i.e. three years) and examine if there is any significant correlations or pattern in the auto-

correlation functions. An indication of ARCH is that the residuals will be uncorrelated but the

squared residuals will show auto-correlation.

Figure 2 shows the auto-correlation plots for the residuals of the nominal principal components.

Although some of the correlation coefficients are slightly significant considering both the residuals

and the squared residuals, they are not large. Therefore we can conclude that the residuals can be

assumed to be independent and there is no ARCH effect in the data, noting that we use data at

monthly intervals; there might be short term, e.g. daily, ARCH effect which we cannot observe.

Figure 3 shows the auto-correlation plots for the residuals of the real principal components. The

residuals seem independent although there are some significant auto-correlation coefficients as we

have for the nominal residuals. The auto-correlation coefficients for the squared residuals of the

slope component indicates that there are two significant correlations and particularly the first lag

correlation is quite high (0.752). The partial auto-correlation function of this component also shows

two significant and high correlations. As for the other two components, the partical auto-correlation

functions indicate some significant but low correlations which might be ignored.

Figure 4 shows the auto-correlation plots for the residuals of the implied inflation principal

components. Some of the auto-correlation coefficients of the residuals are significant. However,

they are not large. On the other hand, the auto-correlation coeffients of the squared residuals for the

level and the slope factors display some high and significant correlations.
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Figure 2. Auto-correlation Functions for the Nominal Spot Rates Residuals
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Figure 3. Auto-correlation Functions for the Real Spot Rates Residuals
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By analysing Figure 2, Figure 3 and Figure 4 which display the auto-correlation coefficients of the

squared residuals, we see that the residuals might not be distributed normally. Table 7 shows the

descriptive statistics such as mean, standard deviation, skewness and excess kurtosis for each set

of residuals. All the means are either zero while the standard deviations vary. The skewness of the

slope factors residuals for the nominal and implied inflation models are relatively high. Except for

the nominal level and curvature factors residuals all the kurtosis of the residuals are quite high. This

supports our doubts about the distribution of the residuals. Since the kurtosis coefficients are high

the normal distribution is not suitable to fit these residuals. The Jarque-Bera test results also show

that the residuals except for the nominal level factor model are not distributed normally. According

to the statistics presented in Table 7, we need a symmetric distribution like a normal distribution

with a higher kurtosis for the residuals. We consider two distributions which might be appropriate

for the monthly residuals. One distribution is the Student’s t distribution and the other is the logistic

distribution. Our analysis has shown that the kurtosis of the residuals are too high to be fitted

properly by Student’s t distribution either. On the other hand, the logistic distribution fits each set of

residuals with very close location (close to 0) and scale (close to 0.5) parameters. As seen in Table 7

when we use the Kolmogorov-Smirnov goodness of fit test (KS-test) to decide whether the residuals

can be modelled by a logistic distribution in the table, we fail to reject at 3% level that the residuals

of the models have a logistic distribution with the given parameters.

5 Forecasting

After modelling the PCs of the yield curves, we test these models by forecasting one-month ahead

spot rates using the estimated parameters. In order to compare our forecasts with the fitted spot

rates we have fitted the models to the data recursively; starting with the first 24 months and ending

with 326 months. As we increase the data period, we apply the PCA, re-fit the model and estimate

the parameters for that period. Afterwards, we use the parameters for each period to forecast the

next month’s level, slope and curvature factors of the spot rates. As a final step, we convert the

forecasts for PCs into the spot rates, i.e. we derive the fitted yield curves by using these three PCs.

We obtain the fitted spot rates back as below.bXN ¼ YNUt
N ð14Þ

Table 7. Residual Analysis of the Yield-Only Model

Residuals Standardised Residuals

Mean

Standard

Deviation Skewness

Excess

Kurtosis

Logistic Distribution (m5 0,

s 5 0.5) KS-test p-value

Nominal Level 0.0000 1.7503 20.1410 1.7850 0.9966

Slope 0.0000 0.7582 21.3959 11.4755 0.2039

Curvature 0.0000 0.2984 20.2368 2.4075 0.5225

Real Level 0.0000 1.1924 0.6895 5.6076 0.7568

Slope 0.0000 0.6309 20.1142 13.6928 0.1270

Curvature 0.0000 0.2179 0.1412 6.6415 0.1960

Implied Level 0.0000 1.5146 0.4226 3.9187 0.1461

Inflation Slope 0.0000 0.6952 1.2054 10.5539 0.0257

Curvature 0.0000 0.2959 0.6221 4.3215 0.2614
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where

bXN: forecast for the fitted nominal spot rates (i 3 3)

YN: principal components of the monthly nominal spot rates (i 3 3)

UN: eigenvectors of the covariance of the nominal spot rates (49 3 3)

i 5 25, 26, y, 327

We also calculate the variance for forecasts for the nominal spot rates for each maturity of each

observation as below:

Var
�bXN


¼ Var YNUt

N

� 
¼ UNVar YNð ÞUt

N

¼ UNSiU
t
N

ð15Þ

where

Si: the variance-covariance matrix of the residuals for the fitted nominal spot rates (3 3 3)
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We calculate the variance-covariance matrix of the residuals for each set of recursive estimates to

construct the confidence intervals for the forecasts.

This sort of ‘in-sample forecasting’ enables us to compare how far our forecasts are from the fitted spot

rates. Furthermore, we also calculate the 95% confidence intervals for these forecasts by assuming the

residuals have a logistic distribution with the specified parameters discussed above (we use 81.83 as

the quantiles of the logistic distribution for the 95% confidence intervals). Figure 5, Figure 6, Figure 7,

Figure 8, Figure 9 and Figure 10 show one-month ahead forecasts with 95% confidence bands and the

forecast erros for the nominal, implied inflation and the real spot rates respectively. One-month ahead

forecasts seem quite close to the fitted spot rates for all three yield curves. It is not surprising that the

forecasts seem like ‘random walk’ forecasts since the AR(1) coefficients are very close to 1. The

confidence intervals shrink as the data period extends. Due to having more information by fitting the

models on to longer data sets the residuals and thus the variance of the residuals get smaller. This leads

to smaller confidence interval bands. We can examine the performance of our forecasts by calculating

the percentage of the fitted spot rates out of the confidence bands for each maturity and each yield

curve. Since we construct the 95% confidence intervals we expect about 5% of the fitted values are out

of the bands. The ratios for the nominal, real and implied inflation yield curves which are outside the

confidence bands are 4.8%, 6.4% and 4.0% respectively. Since these percentages are not far from 5%

we can conclude that our forecasts are good enough (see Sahin (2010) for details). Finally, Figures 6, 8

and 10 show that as the maturity increases the forecast errors decrease.
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Figure 7. 1-Month Ahead Forecasts with Upper and Lower Confidence Limits for Real Spot Rates (%)
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6 Fisher Relation Check

As mentioned in Section 1 nominal interest rates embody the real interest rates plus a compensation

for the erosion of the purchasing power of this investment by inflation. The Bank of England uses

this decomposition, which is also known as the Fisher relation and nominal and real yield curves to

calculate the implied inflation rate factored into nominal interest rates. Since we model these three yield

curves separately, we can check whether our one-month ahead forecasts satisfy the Fisher relation.

This enables us to test both the consistency of the forecasts with the economic theory used in

extracting the implied inflation yield curve and to eliminate one of the yield curves and derive it by

only modelling the other two yield curves. To decide which one to eliminate we check for which

yield curve the Fisher relation holds better. Figure 11 shows the fitted spot rates (black solid lines),

forecasts (red solid lines) and the forecasts obtained using Fisher relation (blue solid line) for

different maturities for the nominal spot rates only. The graphs for the implied inflation and the real

yield curves can be seen in Sahin (2010).

We see that the fitted values and the forecasts derived by using the Fisher relation show significant

differences in particular for very short and very long maturities for the three yield curves. However, the
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nominal yield curve forecasts seem better than the other two considering the two ends of the term

structures. Since there is a significant decrease in the spot rates over the period examined (1985-2012)

we have to draw the graphs on a large scale in order to display the whole period. Therefore, the

overlapping solid lines in Figure 11 do not tell much. Taking this drawback into account, we calculate

and present the errors between the fitted yield curves and the one-month ahead forecasts and the fitted

yield curves and the forecasts derived by the Fisher relation for the nominal term structure in Figure 12.

According to Figure 12, the differences between the fitted nominal spot rates and forecasts (both

obtained by modelling the nominal PCs and the ones derived from the Fisher relation) decrease as

the maturity increases. This might be explained by the higher volatility in the short rates due to

being used as a monetary policy instrument. Since the changes in the economy are reflected into the

short term interest rates first the short rates are more volatile than the long rates. This feature of the

short rates make it relatively difficult to obtain a good fit in terms of modelling. Regardless of

maturity, Figure 12 indicates that the forecasts obtained by modelling the nominal rates produce

closer values than the forecasts obtained by modelling the real and implied inflation rates to derive

the nominal spot rates.
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7 Conclusions

In this paper we have specified and estimated a benchmark yield curve model for the UK. First, we

fill in the gaps in the three UK term structures (nominal, real and implied inflation spot rates) by

fitting the Cairns model with appropriate fixed exponential parameter sets. Although the Bank of

England publishes the yield curve data, there are many missing values due to the reasons discussed

in Section 1. In order to use all available maturities in yield curve modelling, we needed to replace

these missing values by fitting a descriptive yield curve model. We have tried four different fixed

parameter sets to apply the Cairns model and decide the ones which fit the yield curves best. One set

of these parameters for each yield curve has been obtained by the least squares method with a

penalty function discussed in Section 3. The other three parameter sets have been proposed by

Cairns (1998) and Cairns and Pritchard (2001). We have compared these different parameter sets by

examining the root mean squared errors and concluded that the parameter sets obtained from the

least squares method provide the best fit for all three yield curves.

Afterwards we have constructed the ‘yield-only’ model using the monthly UK term structures. First

we apply the PCA on the three term structures and obtain three most important components to

derive the yield curves. Then we examine the relation within and between these components by

analysing the auto- and cross-correlation functions. Once we try to fit vector autoregressive models

to each component we see that the AR(1) model fits each variable quite well. Although the auto-

correlation coefficients in the models are very high and close to 1 we find it economically reasonable

to fit AR processes rather than some random walk models to the interest rates. To test our models

we examine the residuals which we obtain by using the estimated parameters for each PC. The zero

mean and high kurtosis of the residuals show that a distribution which is symmetric like the normal

distribution but has a higher kurtosis, such as a logistic distribution, fits the residuals well. We have

also found some evidence of an ARCH effect particularly in the level and slope factors of the

implied inflation and the real spot rates. As a next step to test our models we have calculated the

one-month ahead forecasts with the 95% confidence limits. Our analysis shows that the fitted spot

rates are well within the confidence limits for all three yield curves which indicate a good forecast.

As a final analysis, we check whether our forecasts satisfy the Fisher relation which might enable us

to derive one of the yield curves by using the other two. We have discovered that not for all

maturities but for specific ones the Fisher relation can be used to forecast the spot rates.
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