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Effects of membrane hardness and scaling
analysis for capsules in planar extensional flows
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In this paper, we investigate computationally the effects of membrane hardness on
the dynamics of strain-hardening capsules in planar extensional Stokes flows. As the
flow rate increases, all capsules reach elongated steady-state configurations but the
cross-section of the more strain-hardening capsules preserves its elliptical shape while
the less strain-hardening capsules become lamellar. The capsule deformation in strong
extensional flows is accompanied with very pointed edges, i.e. large edge curvatures
and thus small local edge length scales, which makes the current investigation a multi-
length interfacial dynamics problem. Our computational results for elongated strain-
hardening capsules are accompanied with a scaling analysis which provides physical
insight on the extensional capsule dynamics. The two distinct capsule conformations
we found, i.e. the slender spindle and lamellar capsules, are shown to represent two
different types of steady-state extensional dynamics. The former are stabilized mainly
via the membrane’s shearing resistance and the latter via its area-dilatation resistance,
associated with the elongation tension normal forces and thus both types differ from
bubbles which are stabilized mainly via the lateral surface-tension normal forces. Our
steady-state deformation results can be used to identify the elastic properties of a
real capsule, i.e. the membrane’s shear and area-dilatation moduli, utilizing a single
experimental technique.
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1. Introduction
The study of the interfacial dynamics of artificial or physiological capsules

(i.e. membrane-enclosed fluid volumes) in Stokes flow has seen an increased interest
during the last few decades due to their numerous engineering and biomedical
applications. Artificial capsules have wide applications in the pharmaceutical,
food and cosmetic industries (Pozrikidis 2003). In pharmaceutical processes, for
example, capsules are commonly used for the transport of medical agents. Additional
applications include cell sorting and cell characterization devices (Cranston et al.
1984; Alexeev & Balazs 2007; Fiddes et al. 2007; Chabert & Viovy 2008) and
fabrication of microcapsules with desirable properties (Lensen et al. 2010; Seiffert
et al. 2010). The motion of red blood cells through vascular microvessels has long
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been recognized as a fundamental problem in physiology and biomechanics, since the
main function of these cells, to exchange oxygen and carbon dioxide with the tissues,
occurs in capillaries (Popel & Johnson 2005).

The determination of the mechanical properties for the membrane of artificial
or physiological capsules is essential for the better design of the various devices in
which they are utilized (Leclerc et al. 2012; Koleva & Rehage 2012). For this, several
techniques have been developed including static compression and shear or centrifugal
flow fields for millicapsules as well as micropipette and atomic force microscope
measurements, and flow in microfluidic channels and tubes for microcapsules (see
e.g. Pieper, Rehage & Barthès-Biesel 1998; Carin et al. 2003; Prevot et al. 2003;
Dimitrakopoulos 2012; Koleva & Rehage 2012; Leclerc et al. 2012). We emphasize
that the membrane mechanical determination of a capsule is still a challenging task,
especially for the characterization of both the membrane’s shear and area-dilatation
moduli, where two experimental techniques are commonly required (Pieper et al.
1998; Koleva & Rehage 2012).

The aforementioned applications have motivated the study of artificial capsules
in linear flows, such as simple shear and planar extensional flows, which reveal the
fundamental capsule physics in extensional and rotational flow dynamics. Experimental
studies on capsule deformation have investigated both simple shear and extensional
flows (e.g. Barthès-Biesel 1991; Chang & Olbricht 1993a,b; Koleva & Rehage 2012).
Computational investigations have also considered capsules in weak, moderate and
strong linear flows, especially in recent years facilitated by the development of more
powerful and diverse numerical methodologies (e.g. Lac et al. 2004; Dodson &
Dimitrakopoulos 2008; Kessler, Finken & Seifert 2008; Dodson & Dimitrakopoulos
2009; Walter et al. 2010; Kumar & Graham 2012).

In the area of interest of the present study (i.e. capsule dynamics in planar
extensional flows), the asymptotic solutions for initially spherical capsules by
Barthès-Biesel and coworkers are restricted to small deformations (see e.g. Barthès-
Biesel & Rallison 1981; Barthès-Biesel 1991; Barthès-Biesel, Diaz & Dhenin 2002).
Experimental studies on capsule deformation in extensional flows are still very
limited in number and restricted to small and moderate deformations (Barthès-Biesel
1991; Chang & Olbricht 1993a), even though the required flow rates for large capsule
deformations have long been achieved in corresponding experiments with droplets and
bubbles in four-roll mill devices (Bentley & Leal 1986; Ha & Leal 2001). Chang &
Olbricht (1993a) investigated synthetic capsules (made from a thin nylon membrane)
in small and moderate deformations only owing to experimental limitations, where
the capsules obtain steady-state elliptical profiles. This is also the range studied in
the computational work of Lac et al. (2004) owing to computational failure at higher
flow rates. In our previous paper, we investigated the dynamics of strain-hardening
Skalak and strain-softening neo-Hookean capsules in strong planar extensional flows,
where both capsules reach elongated steady-state configurations but the cross-section
of the Skalak capsule preserves its elliptical shape while the neo-Hookean capsule
becomes lamellar (Dodson & Dimitrakopoulos 2009).

More involved capsule conformations were found in extensional flow experiments
with capsules made of a polylysine membrane, including stable steady-state shapes
whose edges become rounded, then more extended and pointed (i.e. spindled), and
finally cusped as the flow rate increases (Barthès-Biesel 1991). In our earlier letter
(Dodson & Dimitrakopoulos 2008), we studied computationally the dynamics of a
strain-hardening Skalak capsule in a planar extensional flow and showed that in
strong flow rates, the elongated capsule develops steady-state shapes whose edges
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from spindled become cusped with increasing flow rate owing to a transition of the
edge tensions from tensile to compressive.

In the present study, we consider the effects of the membrane hardness on the
dynamics of strain-hardening Skalak capsules in planar extensional Stokes flows.
(The strain-hardening nature of these capsules enables them to withstand strong flow
rates.) In particular, we investigate the steady-state properties of these capsules with
increasing membrane hardness (or strain-hardening nature). The capsule deformation
in strong extensional flows is accompanied with very pointed edges, i.e. large
edge curvatures and thus small local edge length scales, which makes the current
investigation a multi-length interfacial dynamics problem. Our computational results
for elongated strain-hardening capsules are accompanied with a scaling analysis which
provides useful physical insight on the capsule dynamics, revealing two different types
of steady-state extensional membrane dynamics. Our steady-state deformation results
can also be used to identify the elastic properties of a real capsule, i.e. the membrane’s
shear and area-dilatation moduli, utilizing a single experimental technique.

2. Problem description
We consider a three-dimensional spherical capsule with an elastic interface in an

infinite ambient fluid. The interior and exterior fluids are Newtonian, with viscosities
λµ and µ, and the same density. The capsule size is specified by the radius a of its
quiescent spherical shape of volume V = 4πa3/3. Far away, the flow approaches a
planar extensional flow u∞ =G(x,−y, 0), where G is the shear rate. We assume that
the Reynolds number is small for both the surrounding and the inner flows, and thus
the capsule deformation occurs in the Stokes regime.

Based on the standard boundary integral formulation for interfacial dynamics in
Stokes flows, the velocity u at a point x0 on the interface SB of a freely suspended
capsule may be determined by the following boundary integral equation

(1+ λ)u(x0)− 2u∞(x0)=− 1
4πµ

∫
SB

[S ·1 f − (1− λ)µT · u · n](x) dS, (2.1)

where n is the interfacial unit normal pointing into the surrounding fluid, and the
tensors S and T are the fundamental solutions for the velocity and stress for the
three-dimensional Stokes equations, respectively (Pozrikidis 2001; Lac et al. 2004;
Dodson & Dimitrakopoulos 2009). Owing to the no-slip condition at the interface, the
time evolution of the material points x of the membrane may be determined via the
kinematic condition at the interface

∂x
∂t
= u. (2.2)

To produce a closed system of equations, the surface stress 1 f on the capsule
interface is determined by the membrane dynamics. In this work, we consider
elastic membranes with shearing and area-dilatation resistance but negligible
bending resistance. Our membrane description is based on the well-established
continuum approach and the theory of thin shells which consider the membrane as a
two-dimensional continuum with in-plane isotropy (Pozrikidis 2003; Lac et al. 2004),
as described in detail in § 2.2 of our earlier publication (Dodson & Dimitrakopoulos
2009). We emphasize that the study of capsules or cells via the continuum approach
and the theory of thin shells is now a rather classical problem. Thus, here we present
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a laconic description of the membrane statics; more details may be found in relevant
review articles and books (see e.g. Pozrikidis 2001, 2003).

The membrane thickness for a wide range of artificial capsules and the erythrocytes
is several orders of magnitude smaller than the size of the capsule/cell, and thus the
thin-shell theory has proven to be an excellent description of these membranes, up to
a membrane thickness of 5 % the capsule size (Pieper et al. 1998; Carin et al. 2003;
Rachik et al. 2006; Dodson & Dimitrakopoulos 2010). In addition, we restrict our
interest to elastic membranes with shearing and area-dilatation resistance but negligible
bending resistance. This class represents a wide range of artificial capsules whose
bending resistance is very small compared with their shearing resistance. Experimental
findings for nylon capsules (Chang & Olbricht 1993a), aminomethacrylate capsules
(Pieper et al. 1998) and biocompatible alginate capsules (Rachik et al. 2006) compare
very well with theoretical models that ignore bending resistance. The cusped shape of
polylysine capsules at high extensional flow rates (Barthès-Biesel 1991) reveals that
the capsule membrane has negligible bending resistance. To a great extent, this model
also applies to the human red blood cells where the interior haemoglobin solution is
enclosed by a multilayer membrane whose reduced bending modulus (with respect to
its shearing resistance) is O(10−3) (Mohandas & Chasis 1993).

For a membrane with shearing and area-dilatation resistance considered in this work,
the surface stress is determined by the in-plane stresses, i.e. 1 f =−∇s · τ which in
contravariant form gives

1 f =−
(
τ αβ |α tβ + bαβ τ αβ n

)
, (2.3)

where the Greek indices range over 1 and 2, while Einstein notation is employed for
(every two) repeated indices. In this equation, the τ αβ |α notation denotes covariant
differentiation, tβ = ∂x/∂θβ are the tangent vectors on the capsule surface described
with arbitrary curvilinear coordinates θβ , and bαβ is the surface curvature tensor
(Pozrikidis 2003; Lac et al. 2004; Dodson & Dimitrakopoulos 2009).

The in-plane stress tensor τ is described by constitutive laws that depend on the
material composition of the membrane. In this work, we employ the Skalak et al.
(1973) law which relates τ ’s eigenvalues (or principal elastic tensions τ P

β , β = 1, 2)
with the principal stretch ratios λβ by

τ P
1 =

Gsλ1

λ2
{λ2

1 − 1+Cλ2
2[(λ1λ2)

2 − 1]}. (2.4)

Note that the reference shape of the elastic tensions is the spherical quiescent shape
of the capsule while to calculate τ P

2 reverse the λβ subscripts.
In (2.4), Gs is the membrane’s shear modulus while the dimensionless parameter

C is associated with the scaled area-dilatation modulus Ga of the membrane.
In particular, the analysis of Barthès-Biesel et al. (2002) in the limit of small
deformations shows that the area-dilatation modulus is Ga = Gs(1 + 2C); given that
the two moduli Ga and Gs take on positive values, this means that C > −0.5. By
increasing the parameter C from small values, the tensions superlinear increase with
the membrane extension becomes larger (Barthès-Biesel et al. 2002), and thus the
strain-hardening nature (i.e. the hardness) of a Skalak capsule is increased.

The numerical solution of the interfacial problem described by (2.1)–(2.4) is
achieved through our membrane spectral boundary element method which has
been employed for the study of the capsule dynamics in strong extensional flows
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(Dodson & Dimitrakopoulos 2008, 2009) and in microfluidic channels (Kuriakose &
Dimitrakopoulos 2011, 2013; Park & Dimitrakopoulos 2013). Briefly, each boundary
is divided into a moderate number of surface elements which are parameterized by
two variables ξ and η on the square interval [−1, 1]2. The geometry and physical
variables are discretized using Lagrangian interpolation in terms of these parametric
variables. The basis points (ξi, ηi) for the interpolation are chosen as the zeros of
orthogonal polynomials of Gauss type. This is equivalent to an orthogonal polynomial
expansion and yields the spectral convergence associated with such expansions. Owing
to its spectral nature, our interfacial algorithm has the significant advantage of the
accurate determination of any interfacial property, including geometric derivatives
and membrane tensions. This is an important issue for the correct and accurate
determination of very deformed capsule shapes made from membranes obeying
non-linear elastic laws such as the Skalak and Mooney–Rivlin laws, as we discussed
in our earlier publication (Dodson & Dimitrakopoulos 2009). The interested reader
is referred to our earlier papers for more details on our spectral algorithm (including
its spectral accuracy and convergence studies) and the extensional dynamics of
strain-hardening and strain-softening capsules (Dodson & Dimitrakopoulos 2008,
2009).

Owing to the specific symmetry of the planar extensional flow, at steady state there
is no flow inside the capsule and thus the steady-state overall capsule properties are
independent of the viscosity ratio λ. For the same reason, the membrane viscosity (if
any), which is not accounted in our computations, does not affect the capsule’s steady-
state properties (e.g. Lac et al. 2004; Dodson & Dimitrakopoulos 2009). Therefore,
the steady-state capsule dynamics studied in this work depends on two dimensionless
parameters, the capillary number Ca=µGa/Gs and the membrane hardness C. In this
study, the characteristic length a is used as the length scale and thus curvatures are
scaled with a−1, while the membrane tensions are scaled with Gs.

3. Effects of membrane hardness on the capsule steady-state properties
We present now the steady-state properties of a strain-hardening Skalak capsule in

a planar extensional flow as a function of the capillary number Ca or the capsule
length Lc for different values of membrane hardness, i.e. for C = 0.1, 0.5, 1, 5.
Whenever our figures present capsule properties with respect to the capsule length
Lc, we also include our results for the (strain-softening) neo-Hookean capsule for
comparison reasons. As described in our earlier study (Dodson & Dimitrakopoulos
2009), the neo-Hookean capsule is able to reach very deformed steady-state shapes
in extensional flows but at much lower flow rates Ca owing to their strain-softening
nature. To facilitate the results presentation, in the figures the scales of the variables
are omitted and thus the default scales are assumed, i.e. the characteristic length a is
used as the length scale while the membrane tensions are scaled with Gs.

Figure 1 shows that for a given flow rate Ca, the capsule extensional deformation
increases (i.e. its length Lc increases while its width Sc decreases) as the membrane
hardness decreases owing to the less strain-hardening nature of the lower C
membranes. Owing to volume preservation, the capsule depth Wc decreases with
the membrane hardness C to accommodate the variation of the rest two capsule
dimensions. The strong strain-hardening nature of the capsules with C > 0.5 enable
them to withstand increased flow rates and thus reach very elongated shapes,
e.g. shapes with Lc/a≈ 4 for Ca= 5.

It is of interest to note that in figure 1 we do not present results for very low
flow rates Ca. In this case, near steady state, compressive tensions are developed
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FIGURE 1. Steady-state capsule’s half-lengths Lc, Sc and Wc in the x, y and z directions
as a function of the capillary number Ca for a Skalak capsule with C= 0.1, 0.5, 1, 5 in
a planar extensional flow. Note that for a given capsule shape, we determine the three
capsule dimensions, Lc, Sc and Wc, as the half of the maximum distance of the capsule
surface in the x, y and z coordinates, respectively, by employing a Newton method to
solve the optimization problems using the spectral discretization points on the membrane.

on the capsule membrane resulting in wrinkling around the capsule equator and
interfacial breaking for computational algorithms without sufficient bending resistance,
as identified via the bi-cubic B-spline method of Lac et al. (2004) and verified
later via our spectral boundary element method (Dodson & Dimitrakopoulos 2008,
2009). Lac et al. (2004) also studied the influence of the membrane hardness on
the deformation of Skalak capsules. However, owing to interfacial breaking, their
results were restricted to only moderate flow rates and deformations, i.e. capillary
numbers up to Ca=0.4,0.6,1.35 (or capsule lengths Lc/a.2) for membrane hardness
C=0.5,1,10, respectively. Our study shows that the failure of the (low-order) bi-cubic
B-spline method of Lac et al. (2004) at higher flow rates in planar extensional flows
was a numerical artifact and not of physical origin, as also discussed in our earlier
publication (Dodson & Dimitrakopoulos 2009). It is interesting to mention that the
high-order algorithm of Walter et al. (2010) was also able to reach large steady-state
deformations for capsules in strong planar extensional flows, while their results for
the interfacial shape of Skalak C= 1 capsules up to Ca= 3 are in excellent agreement
(i.e. for at least three significant digits) with the findings from our spectral algorithm
(Dodson & Dimitrakopoulos 2009). Note that, in contrast to our spectral algorithm,
the algorithm of Walter et al. (2010) contains small bending resistance, and thus the
findings agreement verifies that small bending resistance cannot affect the capsule’s
overall shape (Chang & Olbricht 1993a; Pieper et al. 1998; Rachik et al. 2006).

To identify better the variation of the capsule dimensions with its extension, in
figure 2 we present the capsule width and depth as a function of its length. As the
capsule length Lc increases in stronger flows, all capsules become thinner while the
capsule width Sc increases monotonically with the strain-hardening of the membrane.
More interestingly, the variation of the capsule depth Wc with its extension Lc depends
on the degree of the membrane strain-hardening; the less-strain-hardening capsules
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FIGURE 2. Steady-state capsule’s dimensions as a function of its length Lc for a neo-
Hookean (NH) and a Skalak capsule with C= 0.1, 0.5, 1, 5 in a planar extensional flow:
(a) width Sc, (b) depth Wc and (c) ratio Sc/Wc.

(such as the Skalak C = 0.1 and neo-Hookean capsules) become flatter while the
depth of the more-strain-hardening capsules (e.g. C > 0.5) decreases with elongation.
To investigate more the behaviour of capsule’s lateral dimensions with elongation,
in figure 2(c) we plot the width-to-depth ratio Sc/Wc. This figure shows that the
width-to-depth ratio Sc/Wc of the more-strain-hardening capsules (C > 0.5) reaches an
(approximately) constant value at higher elongations while the less-strain-hardening
C = 0.1 capsule and the strain-softening neo-Hookean capsule become increasingly
lamellar with extension.

For a better view of the effects of membrane hardness on the capsule dimensions, in
figure 3 we present three-dimensional views of a Skalak capsule with C= 0.1, 0.5, 5
in moderately strong flows with Ca = 1, 1.2, 1.5, respectively, where all capsules
have nearly the same length, Lc/a≈ 2.5. As the membrane hardness C increases, the
capsule depth Wc decreases and its cross-section becomes more rounded, while all
capsules have obtained pointed edges.

In figure 4 we present three-dimensional views of a Skalak capsule with C =
0.1, 0.5, 5 in a planar extensional flow with Ca = 2, 3.5, 5, respectively. These
flow rates represent the highest Ca for which we determined steady-state shapes for
the associated membrane hardness C. Observe that the less-strain-hardening Skalak
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FIGURE 3. (Colour online) Steady-state shape of a Skalak capsule with C = 0.1, 0.5, 5
in a planar extensional flow with Ca= 1, 1.2, 1.5, respectively. All capsules have nearly
the same length (Lc/a≈ 2.5) while the shapes are plotted as seen slightly askew from the
positive z-axis to reveal the capsule’s depth.

(a)

(b)

FIGURE 4. (Colour online) Steady-state shape of a Skalak capsule with C= 0.1, 0.5, 5 in
a planar extensional flow with Ca = 2, 3.5, 5, respectively. The capsule shape is plotted
as seen from the positive z-axis in (a) and slightly askew from this axis in (b) to reveal
the capsule depth.

capsule with C = 0.1 becomes very flat in the lateral direction (i.e. it becomes
lamellar) with flat and very pointed edges that result in interfacial breaking for
Ca> 2 owing to the computational difficulty in determining accurately these shapes.
On the other hand, the more-strain-hardening Skalak capsules with C = 0.5, 5 reach
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FIGURE 5. Steady-state surface area SB of the capsule (scaled by the surface area S0
B of

the reference spherical shape) as a function of the capsule length Lc, for a neo-Hookean
and a Skalak capsule with C= 0.1, 0.5, 1, 5 in a planar extensional flow.

large steady-state extensions in much higher flow rates with a rounded cross-section
while we have not found an upper Ca limit in the existence of steady-state shapes.

It is of interest to note here that our computations show that the lamellar shape of
Skalak capsules with C 6 0 becomes very flat with pointed edges in both the flow
and the lateral directions owing to the very weak strain-hardening nature of these
membranes. Such shapes are very difficult to be computed numerically, i.e. we are
only able to determine very limited steady-state shapes of these capsules and thus they
are not included in the present study.

The overall capsule deformation can also be characterized via the evolution of its
surface area SB. Our computational results show that the capsule’s surface area SB

increases with the flow rate Ca in a manner similar to that for the capsule length Lc

depicted earlier in figure 1, and thus the surface area SB shows a nearly linear increase
with the capsule length Lc as seen in figure 5. Owing to their lamellar shape, the
less-strain-hardening capsules (such as the Skalak C= 0.1 and neo-Hookean capsules)
show a significant surface-area increase at large elongations, e.g. the surface area of
the Skalak C= 0.1 capsule increases to nearly 140 % when Lc= 3.3. The surface-area
increase with the capsule elongation is much smaller for the more-strain-hardening
capsules owing to their more circular cross-section (or higher Sc/Wc ratio) shown
earlier in figure 2(c), e.g. the surface area of the Skalak C = 5 capsule increases to
60 % only when Lc = 4.3.

Another property associated with the capsule’s overall deformation is the maximum
membrane tension. Figure 6(a) reveals that the maximum principal tension τ P

max
at steady state increases monotonically with the flow rate Ca and thus with
the capsule deformation. In addition, the capsules with smaller hardness C are
associated with higher membrane tensions at a given capillary number, owing to
their less-strain-hardening nature which results in a higher interfacial deformation at
a given flow rate. Replotting our τ P

max data with respect to the capsule length Lc in
figure 6(b), the strain-hardening nature of the Skalak capsules is clearly revealed. The
effects of the membrane hardness C are now limited and the curves for the different
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FIGURE 6. Steady-state maximum principal tensions τ P
max among the spectral discretization

points on the membrane as a function of (a) the capillary number Ca and (b) the capsule’s
length Lc, for a neo-Hookean and a Skalak capsule with C = 0.1, 0.5, 1, 5 in a planar
extensional flow.

Skalak capsules nearly coincide and separate from that of the neo-Hookean capsule
which requires significantly lower membrane tensions τ P

max for a given elongation
Lc owing to its strain-softening nature. It is of interest to note that the maximum
tension at steady state occurs at the intersection of the capsule’s surface with the
z-axis (i.e. the location of the maximum capsule depth Wc) and always points in
the direction of the capsule’s elongation. Thus, this location is the most probable to
rupture due to excessive tensions in extensional flows.

We now turn our attention to the capsule pointed edges where the smallest
interfacial length scales occur. To describe the capsule edges, including the local
length scales there, in figure 7 we present the edge curvatures Cxy and Cxz as a
function of capsule’s extension Lc. Observe that both Cxy and Cxz are line curvatures,
determined along the interfacial cross-section with the z = 0 and y = 0 planes,
respectively, while they take on positive values for the spherical quiescent shape of
the capsule where Cxy =Cxz = a−1.

The dependence of the edge curvature Cxy (which represents the sharper edge
profile and thus the smaller local length scale) presented in figure 7(a) is similar
to that identified in our earlier study for the Skalak C = 1 capsules (Dodson &
Dimitrakopoulos 2009). For all capsule hardness, this edge curvature shows a very
fast (exponential-like) increase with the capsule elongation Lc which is higher for the
less-strain-hardening capsules (such as the Skalak C= 0.1 and neo-Hookean capsules)
owing to their lamellar shape. It is of interest to note that Higley, Siegel & Booty
(2012) also found that the steady-state edge curvature of Hookean two-dimensional
capsules increases exponentially with the flow rate in extensional flows. This suggests
that the existence of a very small (in particular, exponentially small) edge length
scale is a general feature of capsules in strong extensional flows, facilitated by
the development of very small membrane tensions at the capsule tips (Dodson &
Dimitrakopoulos 2008, 2009; Higley et al. 2012).

Figure 7(b) shows the elongation dependence of the edge curvature Cxz that
characterizes the local edge length scale along the lateral z-axis. For the less-
strain-hardening capsules, this edge curvature remain small (i.e. 6 5) but for the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

66
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.66


Effects of membrane hardness for capsules in planar extensional flows 497

0

10

20

30

40

50

60

70

80

Lc

Neo-Hookean

Skalak

(a)

0

5

10

15

20

25

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Lc

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Skalak

1

0.5
0.1

(b)
E

dg
e 

cu
rv

at
ur

e

E
dg

e 
cu

rv
at

ur
e

FIGURE 7. Steady-state edge curvature as a function of capsule’s length Lc for a neo-
Hookean and a Skalak capsule with C=0.1,0.5,1,5 in a planar extensional flow. (a) Edge
curvature Cxy determined along the interfacial cross-section with the z= 0 plane. (b) Edge
curvature Cxz determined along the interfacial cross-section with the y = 0 plane. In (b)
the neo-Hookean curve lies between the curves for C = 0.1 and C = 0.5 and has been
omitted for clarity.

most-strain-hardening capsules (such as the Skalak C= 5 capsule) this edge curvature
increases fast with elongation, reaching about half the curvature Cxy.

Therefore, less-strain-hardening capsules are characterized by only a small local
length scale at their edges (i.e. that along the z = 0 profile) owing to their lamellar
shape. On the other hand, strong-strain-hardening capsules are characterized by two
small local length scales at their edges (of similar magnitude) owing to their slender
spindle shape.

The steady-state deformation results for the overall capsule shape we provide in
this section can be used to identify the elastic properties of a capsule’s membrane,
by comparing our computation data with experimental measurements of the capsule
dimensions at planar extensional flows. These experiments can be performed in
classical or microfluidic four-roll mill devices (Bentley & Leal 1986; Ha & Leal
2001; Hudson et al. 2004), in order to provide measurements of the capsule’s
length Lc and width Sc in different flow rates G. In this case, a comparison of our
computation data with experimental measurements can reveal both the shear modulus
Gs and the area-dilatation modulus Ga of a strain-hardening capsule. To explain this,
observe that for a given capsule length Lc, figure 2(a) shows that the capsule width
Sc is a monotonic function of the membrane hardness C, and thus this comparison
can reveal the membrane hardness C. Knowing the membrane hardness C and the
capsule’s length Lc (or width Sc), a comparison of the experimental measurements
with our computation data shown in figure 1 reveals the appropriate capillary number
Ca and thus the membrane’s shear modulus Gs. This procedure has the advantage of
not depending on, or being influenced by, the fluids’ viscosity ratio or the membrane
viscosity (if any).

It is of interest to note that the early study of Chang & Olbricht (1993a) utilized
the capsule investigation in four-roll mill extensional flows as a methodology to
determine the membrane’s Young modulus (which is a function of both shear and
area-dilatation moduli). To achieve this, the authors compared with asymptotic theories
the experimental measurement of the capsule’s length Lc and width Sc in the form
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of the deformation parameter D ≡ (Lc − Sc)/(Lc + Sc) at low flow rates Ca. Our
study reveals that a comparison of the same kind of experimental measurements
at moderate and high flow rates with our computational results can reveal both
the shear and area-dilatation moduli. Observe that the proposed determination of
both membrane moduli via a single experimental technique (instead of the commonly
required two different experiments; see e.g. Pieper et al. (1998) and Koleva & Rehage
(2012)) relies on two properties. First, we utilize both the length Lc and width Sc

of the capsule, and not the single deformation parameter D which reduces the two
degrees of freedom into one. Second, we propose investigation in moderate and high
flow rates where the effects of the membrane hardness C become prominent and thus
capsules with different area-dilatation modulus can be identified.

4. Scaling analysis for the steady-state capsule dynamics

In this section we provide a scaling analysis for the steady-state dynamics of strain-
hardening capsules in strong planar extensional flows. First, we describe our analysis
for the more strain-hardening Skalak capsules with C > 0.5 studied in this work. This
analysis is later modified to be valid for the lamellar Skalak C=0.1 capsules in planar
extensional flows. To facilitate the results presentation, in the figures the scales of the
variables are omitted and thus the default scales are assumed, i.e. the characteristic
length a is used as the length scale while the membrane tensions are scaled with Gs.

4.1. Scaling analysis for slender spindle-like capsules
Our first analysis is based on the similar scaling analysis of Acrivos (1983) for
slender bubbles in strong axisymmetric extensional flows which has been proved
to be also valid for slender bubbles in planar extensional flows even though the
bubble shape in these flows becomes significantly non-axisymmetric (see e.g. Hinch
& Acrivos 1979). We emphasize that owing to the specific symmetry of the planar
extensional flow, at steady state there is no flow on the interfacial membrane or inside
the capsule, and thus the capsule dynamics in planar extensional flows corresponds
better to the dynamics of low-viscosity drops (or bubbles) as also discussed in our
earlier papers (Dodson & Dimitrakopoulos 2008, 2009). Our capsule analysis is more
complicated than the corresponding scaling analysis of Acrivos (1983) for bubbles
with a constant surface tension γ , owing to the fact that the capsule tensions grow
with its deformation and, in particular, they are a nonlinear function of the local
stretch ratios as seen in (2.4). Nevertheless, we are able to derive (closed) predictions
without the need to utilize information from our computational findings while these
predictions provide useful physical insight on the extensional capsule dynamics.

Considering a strain-hardening Skalak capsule with C > 0.5 in a strong planar
extensional flow, its steady-state cross-section becomes elliptical and thus the capsule
width Sc is smaller than its depth Wc, as discussed in § 3. However, in strong flows
(or large elongations), the ratio Sc/Wc is practically constant as shown in figure 2(c),
and thus Sc ∼Wc. For these capsules, volume preservation requires that

V ∼ a3 ∼ Lc W2
c or

Wc

a
∼
(

Lc

a

)−1/2

. (4.1)

It is of interest to note that this geometric constraint justifies the fact that these
capsules become slender with elongation at high flow rates as shown in figure 2.
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fm

FIGURE 8. The interfacial deformation creates elongation and lateral tensions, denoted as
τL and τW , locally on the capsule membrane. Both tensions contribute to the restoring
membrane normal stress fm.

The steady-state capsule dynamics is associated with the balance on the capsule
membrane of the deforming flow normal stress and the restoring membrane normal
stress, owing to the curvature term in (2.3). Since a planar extensional flow mainly
impacts the capsule on its top and bottom surfaces (i.e. along the positive or negative
y-axis), the most appropriate membrane location to enforce the stress balance is the
location of capsule’s maximum width Sc, i.e. the centre of the capsule’s top or bottom
surface. Observe that this location is characterized by two dimensions, i.e. the capsule
length Lc and its depth Wc.

In a strong extensional flow, the deforming normal stress of the external fluid
exerted on the capsule membrane is

fµ ∼µG (4.2)

and results only from the external pressure since the viscous normal stress is
identically zero on the capsule interface at steady state owing to the membrane
immobilization. As seen in the second term on the right-hand side of (2.3), the
restoring membrane normal stress is the sum of the two principal membrane stresses
(along the flow direction denoted by the subscript L and along the lateral direction
of the capsule depth denoted by the subscript W), i.e.

fm ∼ τL Gs CL + τW Gs CW ∼ τL Gs

Lc
+ τW Gs

Wc
, (4.3)

where CL and CW denote the interfacial curvature along the flow and the lateral
directions, respectively. Note that the dimensionless tensions τL and τW account
for the tension development in the corresponding direction owing to the interfacial
deformation, as illustrated in figure 8. Steady-state dynamics implies a balance of the
two opposite normal stresses on the membrane, i.e.

fµ ∼ fm or µG∼ τL Gs

Lc
+ τW Gs

Wc
, (4.4)

and, thus,

Ca= µG a
Gs
∼ τL

Lc/a
+ τW

Wc/a
. (4.5)

To proceed we need to find the scaling of the two principal tensions τL and τW . For
this, we utilize the Skalak et al. law, given by (2.4), by approximating the principal
stretch ratios with the corresponding capsule lengths, i.e.

λ1 ≈ Lc

a
and λ2 ≈ Wc

a
. (4.6)
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Simple algebra reveals that

τL ∼
(

Lc

a

)3.5

+C
(

Lc

a

)1.5

∼
(

Lc

a

)3.5

(4.7)

and

τW ∼−
(

Lc

a

)−1.5

+C
(

Lc

a

)1.5

∼C
(

Lc

a

)1.5

. (4.8)

Observe that our analysis predicts that, for elongated capsules with large enough Lc,
the strong elongation tension τL of the capsules studied in this work (0.5 6 C 6 5)
results mainly from the membrane’s shearing resistance to the capsule elongation
while it is not affected much by the membrane’s area-dilatation resistance. (The
area-dilatation resistance can still contribute significantly at high enough membrane
hardness, i.e. for C� Lc/a.) In addition, the weaker lateral tension τW is shown to
result mainly from the membrane’s area-dilatation resistance and, thus, for a given
capsule length Lc, it increases with the membrane hardness C.

Based on the scaling of the two directional tensions and of the capsule’s depth,
given by (4.1), the normal stress balance represented by (4.5) gives

Ca∼
(

Lc

a

)2.5

+C
(

Lc

a

)2

. (4.9)

Observe that the first term in the right-hand-size of (4.9) results from the elongation
tension normal stress while the second term results from the lateral tension normal
stress. Therefore our analysis suggests that both the strong elongation tension τL and
the weaker lateral tension τW participate in the steady-state dynamics by producing
restoring normal stresses owing to the corresponding curvatures. For small and
moderate values of the membrane hardness C, as the ones employed in this work, we
expect the elongation tension normal stress τL/Lc to dominate the stabilizing dynamics.
However, for very large membrane hardness C � 1, our analysis predicts that the
lateral tension normal stress τW/Wc should dominate the restoring tension forces.

To be able to compare the predictions of our scaling analysis with our computations,
we determined computationally the tensions τ y

L and τ
y
W as the principal tensions at

the middle of the capsule’s top surface (i.e. at the location of the maximum width
Sc along the positive y-axis) for Skalak capsules with C = 0.5, 5. For both capsules,
our computations show that the capillary number Ca as a function of the capsule
elongation Lc follows the scaling of the elongation tension normal stress τ y

L/Lc, i.e. the
deforming flow normal stress is mainly balanced by the elongation tension normal
stress.

In addition, least-squares fitting of our computational results for capsule length
Lc/a > 2 shows that for the Skalak C = 0.5 the elongation tension and the capillary
number grow as

τL ∼
(

Lc

a

)3.40±0.04

and Ca∼
(

Lc

a

)2.34±0.06

. (4.10)

Both findings are in good agreement with the predictions of our scaling analysis,
i.e. with (4.7) and (4.9) for large enough Lc,

τL ∼
(

Lc

a

)3.5

and Ca∼
(

Lc

a

)2.5

(4.11)

as also shown in figure 9 for τ y
L and Ca.
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FIGURE 9. (a) Steady-state elongation membrane tensions τ y
L and τ z

L as a function of
the capsule’s length Lc in a log–log plot for a Skalak capsule with C = 0.5 in a planar
extensional flow. Also shown as a heavy line is the curve L3.5

c . (b) As in (a) but for the
tension normal stress τ y

L/Lc and the capillary number Ca as a function of the capsule’s
length Lc. Also shown as a heavy line is the curve L2.5

c .

For the Skalak C= 5 capsule, least-squares fitting of our computational results for
capsule length Lc/a> 1.67 reveal that the elongation tension and the capillary number
increase as

τL ∼
(

Lc

a

)3.1±0.01

and Ca∼
(

Lc

a

)2.1±0.04

(4.12)

as shown in figure 10, which is slightly slower than that predicted via our scaling
analysis in (4.11). We emphasize that even though the actual power of growth, i.e.
2.1± 0.04, is closer to that predicted based on the lateral tension normal stress, see
the last term of (4.9), our computations show that even for C= 5 the deforming flow
normal stress is mainly balanced by the elongation tension normal stress. Thus, the
reduced power of growth for the C= 5 capsules does not denote distinct physics but
only a difference between the scaling predictions and the actual computations.

Our scaling analysis helps to understand the reason for the appearance of the
maximum tension at the location of the maximum capsule depth Wc, and not the
location of the maximum capsule width Sc which may be an obvious guess. To explain
this, we note that our analysis for the capsule tensions shown in (4.7) and (4.8) is
also applicable on the capsule’s front or back surface (i.e. the capsule surface along
the positive or negative z-axis) since Sc ∼Wc. By utilizing that the lateral stress ratio
λ2 is λ2 ≈ Wc/a along the direction of the capsule depth and λ2 ≈ Sc/a along its
width, our tension analysis for τL seen in (4.7) predicts that

τ
y
L

τ z
L
∼ Sc

Wc
(4.13)

owing to the denominator of λ2 in the Skalak et al. law, given by (2.4), i.e. the
fact that τL ∼ λ−1

2 . This explains why the maximum tension τ P
max ≡ τ z

L on the capsule
membrane is located at the point of the maximum capsule depth Wc, i.e. the middle of
the capsule’s front or back surface. Based on the values of the ratio Sc/Wc shown in
figure 2(c), our scaling analysis predicts that τ y

L/τ
z
L≈0.3,0.7 for a Skalak capsule with

C = 0.5, 5 respectively, while our computational results show that τ y
L/τ

z
L ≈ 0.55, 0.94,

as seen in figure 9(a) and 10(a).
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FIGURE 10. (a) Steady-state elongation membrane tensions τ y
L and τ z

L as a function of
the capsule’s length Lc in a log–log plot for a Skalak capsule with C = 5 in a planar
extensional flow. Also shown as a heavy line is the curve L3.1

c . (b) As in (a) but for the
tension normal stress τ y

L/Lc and the capillary number Ca as a function of the capsule’s
length Lc. Also shown as a heavy line is the curve L2.1

c .

4.2. Comparison with bubbles dynamics
For slender bubbles in strong axisymmetric extensional flows, the scaling analysis of
Acrivos (1983) predicts that the normal flow stress on the bubble interface is fµ ∼
µG (owing to both the pressure and the viscous stress in the external fluid) while
the restoring surface tension force is fm ∼ γ /Wc, i.e. it results from the capsule’s
lateral direction only, since the bubble surface tension γ is constant while the volume
preservation predicts again that Wc/a∼ (Lc/a)−1/2. Balancing of these opposite stresses
produces

Cad ∼
(

Lc

a

)0.5

or
Lc

a
∼Ca2

d (4.14)

as derived by Acrivos (1983), which shows that for a given capillary number Cad =
µGa/γ or Ca=µGa/Gs, bubbles elongate more than the strain-hardening capsules in
an extensional flow since they have a constant surface tension γ while the membrane
tensions grow significantly with the capsule deformation.

4.3. Scaling analysis for lamellar capsules
Our scaling analysis can also be modified to be valid for the lamellar Skalak C= 0.1
capsule in a planar extensional flow. As shown in figures 1 and 2(b), the depth Wc of
this capsule has been increased from its quiescent value at low flow rates. However,
at the large elongations of interest in this study, the capsule depth Wc varies little, and
thus can be regarded as constant, i.e. Wc=O(a). In this case, volume preservation of
the lamellar capsule requires that

V ∼ a3 ∼ Lc Wc Sc or
Sc

a
∼
(

Lc

a

)−1

. (4.15)

It is of interest to note that this geometric constraint justifies the faster width reduction
of the lamellar capsule with the elongation Lc, compared with that of the more-strain-
hardening spindle-like capsules with C > 0.5, as shown in figure 2.
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FIGURE 11. (a) Steady-state capsule’s width Sc/Lc and depth Wc/L2
c as a function of its

length Lc in a log–log plot for a Skalak capsule with C= 0.1 in a planar extensional flow.
Also shown as heavy lines are the curves L−1.85

c and L−2
c . (b) As in (a) but for the tension

normal stress τ y
L/Lc and the capillary number Ca as a function of the capsule’s length Lc.

Also shown as a heavy line is the curve L2.45
c .

While we can employ the length scale Wc = O(a) ∼ L0
c a in our analysis, a more

accurate description can be achieved if we use the exact relationship of the capsule
depth Wc with its length Lc from our computations. As shown in figure 11(a), least-
squares fitting of our computational results reveals that

Wc

L2
c/a
∼
(

Lc

a

)−1.85±0.01

or
Wc

a
∼
(

Lc

a

)0.15

. (4.16)

Approximating again the principal stretch ratios with the corresponding capsule
lengths as in (4.6), the Skalak et al. law (2.4) predicts that the elongation tension
(which produces again the dominant tension normal stress) is now

τL ∼
(

Lc

a

)2.85

+C
(

Lc

a

)3.45

∼C
(

Lc

a

)3.45

(4.17)

i.e. it results mainly from the membrane area-dilatation resistance for large enough Lc.
Therefore, for the lamellar Skalak C = 0.1 capsule, the normal stress balance, given
by (4.5), results in

Ca∼ τL

Lc/a
∼C

(
Lc

a

)2.45

. (4.18)

Both the scaling for the elongation tension τL shown in (4.17) and that for the
capillary number shown in (4.18) are in good agreement with our computational
results as seen in figure 11(b). In particular, least-squares fitting of our computational
results for capsule length Lc/a > 2.23 reveal that the elongation tension and the
capillary number increase as

τL ∼
(

Lc

a

)3.47±0.05

and Ca∼
(

Lc

a

)2.50±0.05

. (4.19)
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We note that if we utilize the simple depth scaling Wc = O(a) ∼ L0
c a, our analysis

predicts that

Ca∼ τL

Lc/a
∼ (1+C)

(
Lc

a

)2

(4.20)

which is not as accurate as the prediction based on the exact depth–length relationship.

5. Discussion

In this paper we have investigated computationally the steady-state dynamics of an
elastic capsule in moderate and strong planar extensional flows. In particular, we have
considered an elastic capsule made of a strain-hardening membrane (following the
Skalak et al. constitutive law) with varying area-dilatation resistance (compared with
its shearing resistance) in order to investigate the effects of membrane hardness C.

We emphasize that high flow rates are commonly encountered in industrial and
physiological processes. For example, for millisize capsules made from amino-
methacrylate membranes with shear modulus Gs = O(10−2) N m−1, flow rates
Ca = O(1) require shear stress µG = O(10) Pa (Pieper et al. 1998); these flow
rates require shear stress µG = O(1) Pa for microcapsules with similar size and
shear modulus as those of the erythrocyte, i.e. a= 2.8 µm and Gs =O(10−6) N m−1

(Popel & Johnson 2005; Dimitrakopoulos 2012). It is of interest to note that the
required flow rates for large deformations of millisize and microsize capsules have
long been achieved in four-roll mill experiments with droplets and bubbles (with size
and fluids/interfacial properties similar to those of the capsules) under Stokes flow
conditions (Bentley & Leal 1986; Ha & Leal 2001).

In addition, our work investigates the capsule dynamics up to quite large
deformations, i.e. surface-area increases up to 140 % for the less-strain-hardening
C = 0.1 Skalak capsules and 60 % for the more-strain-hardening C = 5 Skalak
capsules. This range of membrane deformation has been investigated in compression
experiments and the experimental findings have shown that the capsule dynamics
can be well described by a single constitutive law with fixed value of the employed
moduli (Carin et al. 2003; Rachik et al. 2006). Thus, our modelling is appropriate
for the entire range of deformations we study.

We note that our results were derived for zero bending resistance. As the
membrane’s bending modulus Kb increases from zero but still remains sufficiently
small, it should not affect the capsule’s overall shape as long as Kb/a2 � Gs, a
condition valid for a wide range of capsules as discussed in § 2. Sufficiently small
bending resistance is not expected to affect the edge curvature of our elongated
capsules as long as Kb/R2

c � Gs, where Rc is the edge’s radius of curvature, or
roughly when the actual membrane thickness is smaller than the edge’s radius
of curvature. We emphasize again that the pointed edges of our capsules are in
qualitative agreement with experimental findings of polylysine capsules in planar
extensional flows (Barthès-Biesel 1991) while these local conformations suggest that
the actual polylysine membrane has negligible bending resistance.

Our investigation complements earlier experimental and theoretical studies (Barthès-
Biesel & Rallison 1981; Chang & Olbricht 1993a; Lac et al. 2004; Dodson &
Dimitrakopoulos 2008, 2009), and has revealed a number of new physical results and
insight for the capsule dynamics in extensional flows.

In particular, as the flow rate increases, strain-hardening capsules with different
membrane hardness reach elongated steady-state configurations but the cross-section
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of the more strain-hardening capsules preserves its elliptical shape while the
less strain-hardening capsules become lamellar, similarly to the strain-softening
neo-Hookean capsules we investigated in our earlier work (Dodson & Dimitrakopoulos
2009). The capsule deformation in strong extensional flows is accompanied with very
pointed edges, i.e. large edge curvatures and thus small local edge length scales,
which makes the current investigation a multi-length interfacial dynamics problem.

The pointed profiles of our shapes are in qualitative agreement with experimental
findings on capsules in planar extensional flows (Barthès-Biesel 1991) and resemble
very much the elongated and pointed profiles of low-viscosity droplets in planar
extensional flows. See, for example, the experimental photos shown in figure 5(b) in
the work by Taylor (1934) and in figure 27 in the paper by Bentley & Leal (1986).
We emphasize again that owing to the specific symmetry of the planar extensional
flow, at steady state there is no flow inside the capsule, and thus the capsule dynamics
in planar extensional flows corresponds better to the dynamics of low-viscosity drops
as also discussed in our earlier papers (Dodson & Dimitrakopoulos 2008, 2009).

Our computational results for slender spindle or lamellar strain-hardening capsules
are accompanied with a scaling analysis for each capsule conformation which
provides useful physical insight on the extensional capsule dynamics. Even though
the membrane tensions grow nonlinearly with the capsule deformation, we are able
to derive (closed) predictions for the extensional capsule dynamics by approximating
the principal stretch ratios with the corresponding capsule lengths as in (4.6).

Both the more strain-hardening spindle Skalak capsules with C > 0.5 and the
lamellar C = 0.1 capsules produce practically the same capillary number-elongation
relationship, i.e. nearly Ca ∼ (Lc/a)2.5, that results from the normal stress balance
of the deforming external pressure with the dominant restoring elongation tension
which scales as nearly τL∼ (Lc/a)3.5 for both types of capsules. (See also the similar
dependence of the principal tensions τ P

max on the capsule length Lc for all Skalak
capsules shown in figure 6(b).) However, our scaling analysis shows that the physical
origin of the elongation tension is different; for the more-strain-hardening Skalak
capsules it results mainly from the membrane’s shearing resistance while for the
Skalak C= 0.1 capsule it results mainly from its area-dilatation resistance, as shown
in (4.7) and (4.17). Therefore, in our present computational work we have identified
two types of strain-hardening steady-state extensional dynamics associated with the
two distinct capsule conformations we found, i.e. the slender spindle and the lamellar
capsules.

It is of interest to note that our scaling analysis predicts the existence of a third
type of strain-hardening steady-state extensional dynamics for very large membrane
hardness C for a given capsule extension Lc (i.e. C� Lc/a) where the lateral tension
normal stress should dominate the restoring membrane forces. (See the second term
on the right-hand side of (4.9).) Thus, these capsules resemble more the bubbles
which are mainly stabilized via the lateral surface tension forces (Acrivos 1983).
We emphasize that this type of strain-hardening extensional dynamics may be more
appropriate for non-spherical capsules which can be deformed even for very large
membrane hardness.

Both our computational results and our scaling analysis show that Skalak capsules
with C > 0.5 have a strong strain-hardening nature that enables them to withstand the
highest flow rates in extensional flows. In essence, these capsules will elongate as the
flow rate increases and be able always to reach a steady-state shape. For a real strain-
hardening capsule, interfacial breaking results from membrane rupture, i.e. material
failure, and not from the existence of a critical flow rate. Increasing the membrane
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hardness C in these capsules, means that the area-dilatation modulus Ga is increased
(for a given shear modulus Gs) and thus the capsule’s slender shape becomes more
axisymmetric-like in extensional flows to reduce the surface area increase.

For a Skalak capsule with a lower hardness, such as the C = 0.1 capsule
studied in this paper, its slender shape needs to be flattened at high flow rates,
so that the capsule is able to increase its restoring membrane forces due to the
area-dilatation resistance, and thus be able to reach steady state. The same is true for
the neo-Hookean capsule which in planar extensional flows is the hardest membrane
of the strain-softening Mooney–Rivlin family (see e.g. Barthès-Biesel et al. 2002;
Dodson & Dimitrakopoulos 2009).

Our theoretical investigation has considered moderate to large capsule deformations,
while the current, very limited experimental studies at extensional flows involve small
to moderate capsule deformations owing to experimental limitations (Barthès-Biesel
1991; Chang & Olbricht 1993a). Therefore, we hope that our study motivates for more
experiments at high flow rates for both strain-hardening and strain-softening capsules.
These experiments can be performed in classical or microfluidic four-roll mill devices
(Bentley & Leal 1986; Ha & Leal 2001; Hudson et al. 2004).

The steady-state deformation results we provide in § 3 can be used to identify
the elastic properties of a real capsule, i.e. the membrane’s shear and area-dilatation
moduli, by comparing our computation data with experimental measurements of the
capsule dimensions at planar extensional flows (Bentley & Leal 1986; Ha & Leal
2001; Hudson et al. 2004). This procedure has the advantage of not depending on,
or being influenced by, the fluids’ viscosity ratio or the membrane viscosity (if any).
We emphasize that the proposed determination of both membrane moduli utilizes
a single experimental technique, instead of the commonly required two different
experiments (Pieper et al. 1998; Koleva & Rehage 2012). To achieve this, we utilize
both the length Lc and width Sc of the capsule (and not the single deformation
parameter D = (Lc − Sc)/(Lc + Sc)), and we propose investigation in moderate and
high flow rates where the effects of the membrane hardness become prominent and
thus capsules with different area-dilatation modulus can be identified. It is of interest
to point out that our proposed procedure may also be valid for other flow types.

Our current investigation, which is concentrated on the steady-state capsule
dynamics, may provide useful physical insight on the transient capsule dynamics
in extensional-type flows owing to the quasi-steady nature of low-Reynolds-number
flows. In addition, our theoretical work may provide useful physical insight for
the extensional dynamics of other soft particles, including erythrocytes, which are
able to withstand strong flow rates and thus show large flow deformations. We
emphasize that the pointed profiles of our shapes resemble the elongated and pointed
profiles of erythrocytes in strong shear flows occurring owing to the extensional
component of this flow type; see for example figure 2 in the work of Fischer,
Stöhr-Liesen & Schmid-Schönbein (1978). The erythrocyte membrane consists of an
outer lipid bilayer (which is essentially a two-dimensional incompressible fluid with no
shearing resistance as in vesicles) and an underlying spectrin skeleton (which exhibits
shearing and area-dilatation resistance like the elastic membrane of common artificial
capsules) (Skalak, Özkaya & Skalak 1989). Under different flow conditions, the
spectrin cytoskeleton dominates the erythrocyte dynamics and the cell behaves like a
non-spherical capsule (Skotheim & Secomb 2007; Dodson & Dimitrakopoulos 2010).
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