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Abstract

We prove concentration inequality results for geometric graph properties of an instance
of the Cooper–Frieze [5] preferential attachment model with edge-steps. More precisely,
we investigate a random graph model that at each time t ∈N, with probability p adds a
new vertex to the graph (a vertex-step occurs) or with probability 1 − p an edge connect-
ing two existent vertices is added (an edge-step occurs). We prove concentration results
for the global clustering coefficient as well as the clique number. More formally, we
prove that the global clustering, with high probability, decays as t−γ (p) for a positive
function γ of p, whereas the clique number of these graphs is, up to subpolynomially
small factors, of order t(1−p)/(2−p).
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1. Introduction

Empirical findings on properties of concrete networks have encouraged the proposal and
investigation of nonhomogeneous random graph models. Data obtained from complex net-
works coming from distinct contexts has suggested that, although different in background,
those networks share many special properties such as scale-freeness and small diameter. In
this paper we are interested in the fact that such networks are highly clustered. We do not
intend to survey the enormous amount of work done in the field, but the interested reader may
find in [14] a complete overview as well as important rigorous results about many properties
of the different models investigated so far, and a vast set of empirical properties can be found
in [2, 13].

In this work we investigate two important graph observables known respectively as the
global clustering coefficient (otherwise known as the transitivity coefficient) and the clique
number, which are measurements of how agglomerated a graph is. We will discuss these
quantities in more detail in Sections 1.1 and 1.2. We first highlight some important works in
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this area. The problem of understanding the global clustering coefficient in the context of the
well-known Barabási–Álbert model [2] is discussed in [4], obtaining estimates for the expected
value of this observable, while [7] addressed the same problem for the affine version of the
Barabási–Álbert model with positive constant, also obtaining estimates for the expected value
of the clustering coefficient. Convergence of the probability of global clustering in a model
which takes into account the distance between vertices in its dynamics was proved in [10].

In this paper we obtain concentration inequality results, proving the exact order, at the
log scale, of the global clustering as well as the clique number for an instance of the model
proposed in [5], which is a generalization of the Barabási–Álbert (BA) model. In the next
subsection we define properly the model studied here.

1.1. A preferential attachment dynamic with edge-steps

The model is defined inductively. At each step we decide according to a specific rule how
to obtain the new graph from the previous one. There are two ways in which we modify the
graphs:

Vertex-step: We add a new vertex v to the graph G and connect v to a vertex u in G selected
according to the preferential attachment rule, i.e. u is selected with probability

P (u is chosen | G) = degree of u in G

sum of the degrees of all vertices in G
;

Edge-step: A new edge {u, w} is added to G, where u and w are vertices in G chosen
independently and also according to the preferential attachment rule described
above.

We point out that, in the edge-step, the vertices u and w may be the same; in this case we add
a loop. Moreover, u and w may already be connected; in this case we allow multiple edges in
the process.

The model evolves as follows. Given a parameter p ∈ [0, 1], consider an initial graph G1
and a collection of independent and identically distributed random variables {Zt}t≥2 following
a Bernoulli distribution with parameter p. For each integer t ≥ 2 we obtain Gt+1 from Gt by
performing either a vertex-step on Gt if Zt+1 = 1, or an edge-step otherwise. In this setting we
let Ft denote the σ -algebra encoding all our knowledge about the process up to time t.

We observe that when p = 1 this model corresponds to the BA model with m = 1. For gen-
eral p, [5] shows that the degree distribution of the graphs generated by this model is close to a
power-law distribution whose exponent is 2 + p/(2 − p). For the sake of simplicity, throughout
the paper we let G1 be the graph with one vertex and one loop attached to it.

The introduction of the edge-step has some advantages from the empirical and theoretical
point of view. Using social-network terminology, we should expect that users already in the
network may become friends eventually. And this is the kind of behavior the edge-step accom-
modates in the model. This advantage of the edge-step has been verified empirically: in [15]
a statistical analysis is made comparing real-world prediction capabilities between a class of
models with edge-step (called GLP in the paper) and other influential network models, such as
Erdös–Rényi, Barabási–Álbert, and Tel Aviv Network Generator. Their results suggest that the
process investigated here outperforms these popular models when the task is either to predict
or to mimic real-world networks. Thus, the edge-step rule makes the model more realistic.

From the theoretical point of view, the edge-step rule makes the model richer in substruc-
tures and increases the combinatorial complexity of standard arguments. As we will see later,
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for any value of p ∈ (0, 1), the number of triangles and paths of length 2 increases drasti-
cally when compared to the traditional BA model. The existence of complete subgraphs of
polynomial order is also due to the edge-step rule.

Although it has a simple statement, the edge-step rule prevents application of standard tech-
niques such as Azuma’s inequality and combinatorial computation of the expected number of
fixed subgraphs. The sort of issue imposed by this rule will be discussed in Section 1.4.

We would also like to stress that the model studied here is possibly the most straightforward
way to allow edges between existing vertices to appear at any time while maintaining the
preferential attachment rule. Even though the proposed change is simple, the consequences
for the connectivity properties of the graph are substantial, and will be further outlined in the
introduction.

1.2. Clustering coefficient

One of the common features of many concrete networks is clustering, i.e. the tendency that
people with common friends tend to become friends. One way of quantifying this tendency for
closing triangles is the global clustering coefficient (or transitivity), τ (G), which is defined as

τ (G) := 3 × # triangles in G

# paths of length 2 in G
.

The observable τ (G) measures the probability of a uniformly chosen pair of vertices that have
a common neighbor being connected.

It is important to point out here that we consider the number of triangles without multiplic-
ities, which means three vertices form a triangle if, and only if, there exists at least one edge
between each pair of vertices. The same goes for the number of paths of length 2; however,
as we will see, the presence of multiple edges does not play an important role in the order of
magnitude of this observable.

The traditional BA model with m ≥ 2, where at each step a new vertex with m randomly
selected neighbors is added to the graph, was investigated in [4]. The authors showed that
E[τ (Gt)] decays as log2 (t)/t, and the expected number of triangles at time t is of order log3 (t).
The same question was addressed in a variation of the BA model where vertices are selected
with probability proportional to their degree plus a constant of attractiveness δ. Under this
setup, called the affine version, [7] showed that for any positive δ the expected value of the
number of triangles decreases and is of order log2 (t), and E[τ (Gt)] decays as log (t)/t.

A different model for global clustering was investigated in [10]. In this case it was proved
that τ (Gt) converges in probability to a constant whose positiveness depends on the choice of
parameters. In our case, we prove a concentration inequality result for τ (Gt), showing that it
is, with high probability (w.h.p.), of order t−γ (p), where γ (p) is a rational function of p.

Theorem 1. (Global clustering coefficient.) For any p ∈ (0, 1) and positive ε < 1, there exist
positive constants C1, C2, and δ, depending on ε and p only, such that, for large enough t,

P

(
C1

tγ (p)(1+ε)
≤ τ (Gt) ≤ C2

tγ (p)(1−ε)

)
≥ 1 − t−δ,

where γ is the positive function

γ (p) := 2 − p − 3(1 − p)

2 − p
.
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At first glance we may think that the more edge-steps we take, the more clustered the graph,
since the edge-step could close a lot of triangles. However, the edge-step also increases the
number of paths of length 2. Thus it is not clear whether the clustering should be decreasing
in p or not. As Theorem 1 states, τ (Gt) is largest when γ (p) ∈ [0, 1] is at its minimum. It
turns out that this minimum is not achieved in the p = 0 case in which we only perform edge-
steps. In fact, Theorem 1 shows that this model presents its highest global clustering when
p = 2 − √

3 ≈ 0.26.
A consequence of the bounds given by Theorem 1 is convergence in log scale of the global

clustering.

Corollary 1. (Convergence of the clustering.) Let τ (Gt) be the global clustering of Gt. Then,
almost surely,

lim
t→∞

log τ (Gt)

log t
= 3(1 − p)

2 − p
− 2 + p,

1.3. Clique number

The clique number of a graph G (denoted by ω(G)) is defined as the number of vertices in
the largest complete subgraph (clique) in G. In the general context of random graphs, it has
been studied extensively since the 1960s when [8] introduced the random graph model G(n,p).
The problem of estimating the clique number of G(n,p) was addressed in [3].

To highlight some important works for less homogeneous random graph models, [6] showed
that for geometric random graphs in R

d, as the dimension grows the clique number behaves
essentially as in the Erdös–Rényi model, whereas [11] addressed the clique number problem
for a random graph model whose degree distribution obeys a power law, showing how the
clique number depends on the power-law exponent.

For the model investigated here, [1] proved that for any ε the graph Gt has w.h.p. a clique
of order t(1−ε)(1−p)/(2−p), a power of the total number of vertices in Gt. As a byproduct of
our results, we prove an upper bound for ω(Gt), proving that, at the log scale, this is the right
order of largest clique in Gt. More precisely, we prove the following concentration inequality
theorem for ω(Gt).

Theorem 2. (The clique number.) For any positive ε < 1, there exists a positive constant δ

depending on ε and p only such that, for t large enough,

P

(
t

(1−ε)(1−p)
2−p ≤ ω(Gt) ≤ t

(1−p)
2−p log3 (t)

)
≥ 1 − t−δ .

This theorem illustrates that the edge-step, even when taken in much smaller proportion than
the vertex-step, is capable of producing robust substructures on the graphs that are not observed
on the traditional BA model and many other modifications of it.

As in the case of the clustering, we do have convergence of the clique number in the log
scale.

Corollary 2. (Convergence of the clique number.) Let ω(Gt) be the clique number of Gt. Then,
almost surely,

lim
t→∞

log ω(Gt)

log t
= 1 − p

2 − p
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1.4. Technical ideas

The key steps in our proofs are: a sharp upper bound on the vertices’ degree, and a
correlation estimate between the number of edges connecting three vertices.

Once we have at our disposal good control over the vertices’ degree, we can derive a con-
centration inequality for the number of paths of length 2. On the other hand, in our settings
the upper bound for the number of triangles is somewhat more involved than in the proofs for
models in which edge-steps are not allowed. The usual approach relies strongly on the absence
of the edge-step (see [4, 7]). More precisely, fixing three vertices i, j, and k such that i < j < k,
if the model does not allow an edge-step then, in order to form a triangle �i,j,k, we necessarily
have ‘one chance’ for each connection, i.e. the only possible way �i,j,k becomes a subgraph of
Gt for large t is as follows: j is added to the graph and it sends one edge to i, then k is added to
the graph and it sends one edge to i and one to j. Thus, by conditioning on the evolution of the
degrees of i and j up to the time when k enters the graph, we can compute the probability that
�i,j,k is included in Gt. However, in our case any pair of vertices can be connected at any time
via the edge-step. This extra possibility increases the combinatorial complexity and prevents
the application of the usual strategy seen in the literature.

So, in order to obtain an upper bound for the number of triangles in Gt, T (Gt), we apply
a correlation estimate together with a first moment estimate. If we let edgt(i, j) be the integer
random variable which counts the number of edges connecting vertices i and j at time t, then
T (Gt) may be written as

T (Gt) =
∑

1≤i<j<k≤t

1{edgt(i, j)edgt(i, k)edgt(j, k) ≥ 1}.

By the above identity, estimating the first moment of T (Gt) is the same as estimating the
probability of the product edgt(i, j)edgt(i, k)edgt(j, k) being at least 1, which in turn is bounded
from above by the expected value of the same product of random variables. Thus, our argument
consists in bounding the expected value of a product of correlated random variables. This step
in our proof requires bounds on the probability that the degree of a vertex eventually exceeds
its expected value by a certain amount. Roughly speaking, given that vertices i and j already
belong to Gt and that their degrees at time t have behaved properly, we could write

P
(
edgt+1(i, j) = edgt(i, j) + 1 | Gt

)≈ degreet(i)degreet(j)

t2

�
λ2
E
[
degreet(i)

]
E
[
degreet(j)

]
t2

.

The above domination holds as long as both degrees do not exceed their expected value by a
factor of λ. This leads us to pursue a result which says that w.h.p. we have that

sup
t∈N

{
degreet(i)

E
[
degreet(i)

]}≤ λ.

The usual approach to obtain upper bounds for vertex degrees is applying Azuma’s inequal-
ity for a suitably constructed martingale. However, in our case, Azuma’s inequality does not
lead to an upper bound as sharp as the one we need. To overcome this, we use a finer martin-
gale inequality known as Freedman’s inequality in order to control the whole trajectory of the
degree of a vertex.
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1.5. Martingale concentration inequality

For convenience we provide here a more concise statement of Freedman’s inequality.

Theorem 3. (Freedman’s inequality [9].) Let (Mn,Fn)n≥1 be a (super)martingale. Write
Vn := ∑n−1

k=1 E
[
(Mk+1 − Mk)2 |Fk

]
. Moreover, suppose that M0 = and |Mk+1 − Mk| ≤ R for

all k. Then, for all A > 0,

P

(
Mn ≥ A, Vn ≤ σ 2 for some n

)
≤ exp

(
− A2

2σ 2 + 2RA/3

)
.

2. Bounds for the degree

This section is devoted to obtaining sharp upper bounds for the vertices’ degrees and guar-
anteeing the existence of at least one vertex with very high degree. These estimates will be
needed to derive an upper bound for the number of triangles in Gt and also to bound the
number of paths of length 2.

Since the number of vertices is random, we use the letters i,j, k to express the ith, jth, and kth
vertices added by the process. In this way, i will be used as an integer number and as a vertex
itself. We let dt(i) be the degree of he ith vertex at time t, and define the following function of
p that will appear several times in our proofs and results: cp := 1 − p

2 .

2.1. Lower bound for the degree

In this part our aim is to ensure the existence of a vertex with very high degree. For this we
apply [1, Theorem 2], which essentially states that when vertices are grouped in blocks of m
vertices according to their time of appearance, the sum of the degree of the m vertices in the jth
block cannot be too small when j is not too large. In other words, in the jth block of m vertices
there must w.h.p. be at least one vertex with high degree.

Corollary 3. (of Theorem 2 in [1].) Given ε ∈ (0, 1), there exist positive constants C1, C2, and
a, depending on ε and p only, such that

P

(
there exists j ∈ Gt, dt(j) ≥ C1tcp(1−ε)

)
≥ 1 − C2t−a.

Proof. We will apply [1, Theorem 2]. In order to prove the result in a way that makes clear
how δ may depend on ε and p, we will need to make some choices of parameters coming from
results in [1]. Set

γ = p

2(2 − p)
, m =

⌈(
4γ (1 − p)

pε

)1/γ
⌉

, R = mcp(1 − ε), β = cp(1 − ε),

where γ is an auxiliary parameter coming from the statement of [1, Lemma 1], whereas m, R,
and β come from [1, Theorem 2]. By our choice of m it follows that δm ≤ ε/4. The term δm is
defined in [1, (3.4)]. Then, making j = tε/4 again in the statement of [1, Theorem 2], it follows
that there exists a constant C2 depending on p and ε such that P

(
dt,m(tε/4) < tβ

)≤ C2t−a,
where dt,m(j) denotes the sum of the degrees of the m vertices in the jth block of vertices and,
because of our choices, a is strictly positive. Finally, using the fact that m is fixed, by the
pigeonhole principle at least one vertex in the tε/4th block of m vertices has degree at least
tcp(1−ε)/m. This concludes the proof. �

Observe that, due to the dynamics of this model, it could be the case that the degree of
a vertex does not represent too well how many neighbors it has since its degree also counts
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multiple edges. Thus, for a fixed vertex j we let �t(j) be the number of neighboring vertices
j has at time t. Notice that �t(j) ≤ dt(j). In particular, it will be useful for us to estimate how
many neighbors a vertex whose degree is at least C1tcp(1−ε) has. For this, we prove the lemma
below, which is essentially a statement of the above corollary for �t(j).

Lemma 1. Given ε > 0, there exist positive constants C′
1, C′

2, and a depending on ε and p only
such that P

(
there exists j ∈ Gt, �t(j) ≥ C′

1tcp(1−ε)
)≥ 1 − C′

2t−a.

Proof. By Corollary 3 with probability at least 1 − C2t−a there exists in Gt a vertex j with
degree at least C1tcp(1−ε). We claim that the number of neighbors of j at time 2t that connect to
j between times t and 2t is at least C′

1tcp(1−ε) w.h.p. To see this, consider the random variable
ζs = 1{a vertex is added at step s and it connects to j}. Observe that for s ∈ [t + 1, 2t] we have

E

[
ζs+1

∣∣Gs, dt(j) ≥ C1tcp(1−ε)
]
=E

[
p

ds(j)

2s

∣∣Gs, dt(j) ≥ C1tcp(1−ε)
]

≥ C1p

4tε+2−1p(1−ε)
.

Notice that the random variable N := ∑2t
s=t+1 ζs, which counts the number of neighbors j has

gained between time t and 2t only by vertex-steps, conditioned on j having degree large enough,
dominates a binomial random variable with parameter t and C14−1pt−ε−p2−1(1−ε). Moreover,
�2t(j) ≥ N. Thus, setting C′

1 = C1p/8 and using Chernoff bounds and Corollary 3, it follows
that

P

(
�2t(j) ≤ C′

1tcp(1−ε)
)

≤ P

(
N ≤ C′

1tcp(1−ε), dt(j) ≥ C1tcp(1−ε)
)

+ P

(
dt(j) ≤ C1tcp(1−ε)

)
≤ P

(
Bin

(
t,

C1p

4tε+p(1−ε)/2

)
≤ C′

1tcp(1−ε)
)

+ C2t−a

≤ exp
{
−C1ptcp(1−ε)/32

}
+ C2t−a

≤ C′
2t−a

for a proper choice of C′
2, which proves the lemma. �

2.2. Upper bound for the degree In this part we obtain a sharp upper bound for the degree of a
fixed vertex i. Since the proof relies on the fact that the degree of a vertex properly normalized
is a martingale, we define below this normalizing factor:

φ(t) :=
t−1∏
s=1

(
1 + cp

s

)
= �(t + cp)

�(1 + cp)�(t)
, (1)

where �(x) is the gamma function. A useful fact about φ is that there exist c1, c2 > 0 such that
c2tcp ≤ φ(t) ≤ c1tcp for all t. The interested reader can check a formal proof of this fact in [12,
Lemma A.5]. We will need this multiple times throughout the paper.

Now we go on to the proof of the main result of this section.

Theorem 4. (Upper bound for the degree.) There exist positive constants C1, C2, and C3,
depending on p only, such that for every vertex i and every number λ > C3 the following upper
bound holds:

P

(
sup
s∈N

{
ds(i)

φ(s)

}
>

λ

icp

)
≤ C1 exp{−C2λ}. (2)
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Proof. The proof requires control over the degree of the ith vertex added by the process.
Since the time at which the ith vertex is added to the graph is random, we will work with the
process conditioned on the event that the ith vertex was added at time ti ≥ i. More specifically,
we let PGti

be the probability measure P conditioned on Gti , which is a realization of the
process up to time ti in which the ith vertex is added at time ti. By [1, Proposition 2.1], the
sequence {Xs,ti}s≥ti defined as

Xs,ti := ds(i)

φ(s)

is a martingale with mean φ(ti)−1 with respect to the natural filtration {Fs}s≥1 and the measure
PGti

. Recall that there exists a constant C3 such φ(t) ≥ C3tcp for all positive t. In this setting,

for a fixed positive number λ > C−1
3 , let η be the stopping time,

η := inf

{
s ≥ 1;Xs,ti ≥ λ

icp

}
,

and let η = ∞ on the event {Xs,ti < λi−cp, for all s ≥ ti}. Then, we define the stopped martin-
gale X′

s := Xs∧η,ti . Observe that the increment (�X′
s := X′

s+1 − X′
s) of the stopped martingale

satisfies, for s ≥ ti,∣∣�X′
s

∣∣= ∣∣∣∣ ds+1(i)

φ(s + 1)
− ds(i)

φ(s)

∣∣∣∣ 1{η>s} =
∣∣∣∣ �ds(i)

φ(s + 1)
− cpds(i)

sφ(s + 1)

∣∣∣∣ 1{η>s} ≤ 4

φ(s + 1)
, (3)

since ds(i) ≤ 2s for all s deterministically and �ds(i) ≤ 21{i is chosen at least once at step
s + 1}. Combining the above bound with the second identity in (3), we also obtain, for s > ti,

EGti

[ (
�X′

s

)2 |Fs
]≤ 2EGti

[
(�ds(i))2

φ2(s + 1)
|Fs

]
1{η>s} + 2c2

pd2
s (i)

s2φ2(s + 1)
1{η>s}

≤ 2

φ2(s + 1)
EGti

[4 · 1{i chosen at least once at step s + 1}|Fs]1{η>s}

+ 2c2
pd2

s (i)

s2φ2(s + 1)
1{η>s}

≤
(

8ds(i)

sφ2(s + 1)
+ 2c2

pd2
s (i)

s2φ2(s + 1)

)
1{η>s}

≤ 8λ

icpsφ(s + 1)
+ 4c2

pλ

icpsφ(s + 1)
≤ 12λ

icpsφ(s + 1)
.

Since φ(t) ≥ C3tcp , the above inequality implies that

W ′
t :=

(t−1)∧η∑
s=ti

EGti

[(
�X′

s

)2 |Fs

]
≤

t−1∑
s=ti

12λ

icpsφ(s + 1)
≤

t−1∑
s=ti

12λ

C3icps1+cp
≤ C4λ

icp t
cp
i

almost surely, where C4 = 12C−1
3 c−1

p . Now we use Freedman’s inequality [9] (Theorem 3)

with σ 2 = C4λi−cp t
−cp
i and R = 4C−1

3 t
−cp
i , which is possible due to (3), to obtain that, for any

positive constant A,

PGti

(
X′

t − φ(ti)
−1 ≥ A

)
≤ exp

⎧⎨⎩− A2

2C4λ

icp t
cp
i

+ 8A
3C3t

cp
i

⎫⎬⎭ . (4)
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Now, we would like to guarantee that the stopping time η is not too small, i.e. that the
martingales X′ and X are essentially the same. To do this, observe that

PGti
(η ≤ t) ≤ PGti

(there exists s ≤ t, Xs ≥ λi−cp) = PGti
(X′

t − φ(ti)
−1 ≥ λi−cp − φ(ti)

−1).

(5)

Also notice that since λ > C−1
3 , φ(ti)−1 ≤ C−1

3 t
−cp
i , i ≤ ti, and C4 = 12C−1

3 c−1
p , it follows that

2C4λ

icp t
cp
i

>
8(λi−cp − φ(ti)−1)

3C3t
cp
i

> 0,

which implies that

− (λi−cp − φ(ti)−1)2

2C4λ

icp t
cp
i

+ 8(λi−cp−φ(ti)−1)
3C3t

cp
i

≤ − (λi−cp − φ(ti)−1)2

4C4λ

icp t
cp
i

= − t
cp
i λ

4C4icp
+ t

cp
i

2C4φ(ti)
− icp t

cp
i

4C4λφ(ti)2

≤ − t
cp
i λ

4C4icp
+ 1

2C3C4
.

(6)

Thus, setting A = λi−cp − φ(ti)−1 in (4) and using (6) yields

PGti

(
X′

t − φ(ti)
−1 ≥ λi−cp − φ(ti)

−1
)

≤ exp

⎧⎪⎨⎪⎩− (λi−cp − φ(ti)−1)2

2C4λ

t
cp
i

+ 4(λ−φ(ti)−1)
3t

cp
i

⎫⎪⎬⎪⎭
≤ eC−1

3 C−1
4 /2 exp

{
−C5t

cp
i λ

icp

}
,

where C5 = 1/4C4. Combining the above bound with (5), we obtain

PGti

(
sup
s∈N

{
ds(i)

φ(s)

}
≥ λ

icp

)
= PGti

(η < ∞) ≤ C6 exp

{
−C5λt

cp
i

icp

}
and, since ti ≥ i, integrating over Gti yields

P

(
sup
s∈N

{
ds(i)

φ(s)

}
≥ λ

icp

)
≤ C6 exp {−C5λ} ,

which proves the theorem. �

3. Number of paths of length 2

In this section we combine the bounds obtained in the previous section to prove concen-
tration inequalities for C(Gt), i.e. the number of paths of length 2. Our aim is to prove the
following theorem.

Theorem 5. (Concentration for paths of length 2.) Given ε ∈ (0, 1), there exist positive
constants C1, C2, C3, and a, depending on ε and p only, such that

P
(
C1t(2−p)(1−ε) ≤ C(Gt) ≤ C2t(2−p) log2 t

)≥ 1 − C3t−a.
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Proof. We prove the lower bound first. Observe that for any given vertex j ∈ Gt it follows
that

C(Gt) ≥
(

�t(j)

2

)
,

where �t(j) is the number of vertices adjacent to j in Gt. Thus, we have the following inclusion
of events {

there exists j ∈ Gt, �t(j) ≥ C1t(1−p/2)(1−ε)
}

⊂
{
C(Gt) ≥ C′

1t(2−p)(1−ε)
}

, (7)

where C′
1 is chosen small enough that(

C1t(1−p/2)(1−ε)

2

)
≥ C′

1t(2−p)(1−ε).

Thus, by Lemma 1 and (7) it follows that, for a given ε > 0, there exist positive constants a,
C′

1, and C′
2 such that

P
(
C(Gt) ≥ C′

1t(2−p)(1−ε))≥ 1 − C′
2t−a, (8)

which proves the lower bound. For the upper bound, we begin by observing that

C(Gt) ≤
∑
v∈Gt

(
dt(v)

2

)
. (9)

Then, in Theorem 4 take λ = 10C−1
2 log t. This particular choice of λ and a union bound

lead to

P

⎛⎝⋃
i∈Gt

{
dt(i) ≥ 10C−1

2 c1
tcp log (t)

icp

}⎞⎠≤ C1t−9, (10)

where we have used the fact that, for all t, φ(t) ≤ c1tcp . Let At be the event

At :=
⋃
i∈Gt

{
dt(i) ≥ 10C−1

2 c1
tcp log (t)

icp

}

and observe that by (9), on Ac
t the following upper bound holds:

C(Gt) ≤
∑
v∈Gt

(
dt(v)

2

)
≤ 100C−2

2 c2
1

t∑
i=1

t2−p log2 (t)

i2−p
≤ C′

3t2−p log2 (t),

where C′
3 := 100C−2

2 c2
1(1 − p)−1. Thus, by (10), P

(
C(Gt) > C′

3t2−p log2 (t)
)≤ P (At) ≤

C1t−9. Finally, combining the above bound with (8) proves the result. �

4. Decoupling the number of edges between vertices

Our results rely on a first moment argument in order to estimate the number of triangles in
Gt (counted without multiplicities), which we denote by T (Gt). As discussed in Section 1.4,
the first moment of T (Gt) is bounded by the sum of a product of correlated random variables.
Thus, in essence, this section is devoted to dealing with this correlation.
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We will use i, j, and k to denote the ith, jth, and kth vertices added by {Gt}t≥0. Moreover,
for a pair i and j and a specific time s, we let ei,j and gi,j

s be the following random variables:

gi,j
s := 1{an edge is added between i and j at time s by an edge-step},

ei,j := 1{an edge is added between i and j before time t and by a vertex-step}.
Let C3 > 0 be such that

φ(s)

φ(i)
≥ C3

scp

icp
.

We define, for s ∈ {1, . . . , t} and i, j ∈ {1, . . . , t}, the functions

pi,j
s := C2

p
log2 (t)

icp jcpsp
∧ 1, pi,k

s := C2
p

log2 (t)

icpkcp sp
∧ 1, pj,k

s := C2
p

log2 (t)

jcpkcpsp
∧ 1,

qi,j := Cp
log t

icp j
p
2

∧ 1, qi,k := Cp
log t

icpk
p
2

∧ 1, qj,k := Cp
log t

jcp k
p
2

∧ 1,

where Cp = 10C−1
2 C−1

3 , with C2 the constant given by Theorem 4. The terms pi,j
s and qi,j are

related to the random variables gi,j
s and ei,j as described by the following lemma.

Lemma 2. Given t ≥ 0, any triplet of vertices i, j, k ∈ {1, . . . , t}, and times r, s, s′ ∈
{1, . . . , t}, there exists a positive constant C1 such that E

[
ei,jei,kgj,k

s′+1

]
≤ C1qi,jqi,kpj,k

s′ ,

E

[
ei,jgi,k

s+1gj,k

s′+1

]
≤ C1qi,jpi,k

s pj,k

s′ , and E

[
gi,j

r+1gi,k
s+1gj,k

s′+1

]
≤ C1pi,j

r pi,k
s pj,k

s′ .

Before we prove the above lemma, let us say something about its statement. Notice that, using
the dynamics of the process {Gt}t≥0, we have

E

[
gi,j

s+1 |Fs

]
= (1 − p)

ds(i)ds(j)

2s2
. (11)

Now, using (1) and the martingale associated with the degree ds(i), we can show that there exist
constants c, c′ > 0 such that, uniformly over i and s,

c
scp

icp
≤E [ds(i)] ≤ c′ scp

icp
.

Observe that if the degree of the ith vertex behaves like its expectation, returning to (11), we
would have that, up to multiplication by a power of log t, E[gi,j

s+1] behaves like pi,j
s . The same

reasoning could be carried over to E[ei,j], replacing pi,j
s by qi,j.

It may be instructive to think of pi,j
s (respectively qi,j) as the expectation of gi,j

s+1 (respectively
ei,j). From this perspective, the above lemma may be read as follows: up to a power of log t,
the random variables gi,j

r and ei,j are all negatively correlated. This approximated negative
correlation will help us obtain a good upper bound for the expected number of triangles in Gt.

Now we can proceed to the proof of the result.

Proof of Lemma 2. As usual, we start by introducing some definitions and establishing some
notation. Throughout this proof we will assume i < j < k.

Recall the Bernoulli random variables Zs
d= Ber(p) from the definition of the random graph

process {Gt}t≥0. We define the filtration Gs := σ (Fs−1, Zs), that is, Gs carries information
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about all that happened up to time s − 1, plus the knowledge about whether the step taken at
time s was a vertex-step or an edge-step.

Given a vertex i and a fixed time t, it will be useful to introduce the stopping time

ηi := inf
s∈N

{
ds(i) ≥ Cp log (t)

scp

icp

}
,

and for a triplet of vertices i < j < k we let η̃ = ηi ∧ ηj ∧ ηk. By the definition of η̃, the following
bound holds:

E

[
gi,j

s+11{̃η > s} ∣∣Fs

]
= 1{̃η > s}(1 − p)

ds(i)ds(j)

2s2
≤ pi,j

s 1{̃η > s}. (12)

For ei,j a similar bound holds under the proper conditioning. We let Tn denote the time at which
the nth vertex is added to the process. Using the fact that Tn ≥ n, we obtain

E
[
ei,j1{̃η > Tj} | GTj

]≤ t−1∑
s=j−1

ds(i)

2s
1{̃η > s + 1, Tj = s + 1}

≤ 1{̃η > Tj}Cp
log t

icp j
p
2

∧ 1

= qi,j1{̃η > Tj}.

(13)

Now we will prove the upper bounds given by the statement of the lemma. We will prove the
more involved cases, but first we will derive some measurability results that will play important
roles later in the proof.

Fix i < j < k, and consider discrete times r, s, and s′. Observe that since j < k we have
Tj < Tk and then GTj ⊂ GTk . This implies that ei,j ∈ GTk . Indeed, it is enough to notice that for a
fixed r and s > r, it follows that

{Tk = s} ∩ {ei,j1{Tj = r} = 1
}= {Tk = s}︸ ︷︷ ︸

∈Gs

∩ {Tj = r}︸ ︷︷ ︸
∈Gr

∩
{j is born at time r and connects to

i via a vertex-step

}
︸ ︷︷ ︸

∈Gr+1⊆Gs

,

and, since ei,j1{Tj = r} takes values in {0, 1}, ei,j1{Tj = r} is GTk -measurable. Consequently,
ei,j is GTk -measurable as well. Applying the same reasoning as above, we also conclude that

ei,j1{Tj = r} ∈Fr. Considering r < s, we also have that gi,j
r 1{Tk = s} ∈ GTk . With all the above

in mind, we can prove our bounds. Using (13) and the tower property of the conditional
expectation, we deduce that

E

[
ei,jei,k1{̃η > t}

]
=E

[
ei,j

E

[
ei,k1{Tk ≤ t, η̃ > t}

∣∣∣GTk

]]
≤ qi,k

E
[
ei,j1{̃η > Tk}

]
≤ qi,k

E
[
ei,j1{̃η > Tj}

]≤ qi,jqi,k.

(14)

The same kind of reasoning for r ≤ s yields

E

[
ei,j1{Tj = r}gl,j

s+11{̃η > t}
]
≤E

[
ei,j1{Tj = r}E

[
gl,j

s+11{̃η > s} ∣∣Fs

]]
≤ pj,k

s E
[
ei,j1{Tj = r}1{̃η > s}] . (15)
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For the case where s + 1 ≤ r ≤ t, we have that E
[
ei,j1{Tj = r}gl,j

s+1

]= 0, since it is impos-
sible for an edge-step to connect j and k before j is born or at the time when j is born.
Then using E

[
ei,jgl,j

s+11{̃η > t}]=∑s
r=j E

[
ei,j1{Tj = r}gl,j

s+11{̃η > t}] together with (15), we

obtain E
[
ei,jgl,j

s+11{̃η > t}]≤ pj,k
s E
[
ei,j1{Tj ≤ s}1{̃η > s}]≤ qi,jpj,k

s . Reasoning as above, we
also obtain

E

[
ei,jgi,k

s+11{̃η > t}
]
≤ qi,jpi,k

s , E

[
ei,jej,k1{̃η > t}

]
≤ qi,jqj,k.

The same general procedure of conditioning on the ‘last’ time also leads to

E

[
gi,j

r+1gi,k
s+11{̃η > t}

]
≤ pi,k

s pi,j
r .

By (12) and (14), it follows that

E

[
ei,jei,kgl,j

s+11{̃η > t}
]
=E

[
ei,jei,kgl,j

s+11{̃η > t}1{Tk ≤ s}
]

≤E

[
ei,jei,k1{̃η > s}1{Tk ≤ s}E

[
gl,j

s+1

∣∣Fs

]]
≤ pj,k

s E

[
ei,jei,k1{̃η > s}1{Tk ≤ s}

]
= pj,k

s E

[
ei,jei,k1{̃η > Tk}

]
= pj,k

s E

[
ei,j1{̃η > Tk}E

[
ei,k | GTk

]]
≤ pj,k

s qi,kqi,j,

and analogous arguments also yield analogous bounds for E

[
ei,jgi,k

s+1gj,k

s′+1
1{̃η > t}

]
and

E

[
gi,j

r+1gi,k
s+1gj,k

s′+1
1{̃η > t}

]
.

It remains to prove these bounds without the term 1{̃η > t} inside the expectations above. To
conclude this part of the proof, recall the definition of ηi. Thus, by Theorem 4, with λ = Cp log t
it follows by the union bound that P (̃η ≤ t) ≤ C1t−10.

Then, for s, r ∈ [1, t] and i, j, and k larger than Cp log t, it follows that, for large enough t,

C1t−10 ≤ min{qi,jqi,kpj,k

s′ , qi,jpi,k
s pj,k

s′ , pi,j
r pi,k

s pj,k

s′ }. This is enough to conclude the proof, since,
for instance,

E

[
ei,jei,kgl,j

s+1

]
≤E

[
ei,jei,kgl,j

s+11{̃η > t}
]
+ P (̃η ≤ t) ≤ 2pj,k

s qi,kqi,j,

and the other bounds follow similarly. �

5. The number of triangles

In this section we will use the estimates obtained in the previous section to prove an upper
bound for the expected number of triangles at time t, T (Gt), counted without multiplicities.

Proposition 1. There exists a positive constant C, depending on p only, such that E[T (Gt)] ≤
Ct3α( log t)8, where α is the function of p defined as

α := 1 − p

2 − p
.

https://doi.org/10.1017/jpr.2021.20 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.20


Clustering in preferential attachment random graphs with edge-step 903

Proof. We begin by recalling that T (Gt) counts the number of triangles in Gt disregarding
the multiplicity of edges. Therefore, in order for the above discussion to be useful, it will
be important to estimate the numbers of triangles formed by earlier vertices (which usually
have high degree, corresponding to a high multiplicity of edges) and triangles formed by later
vertices separately. We let

T1(Gt) := #
{{i, j, k} ⊂N;i · j · k ≤ t3α

}
,

T2(Gt) := #

{ {i, j, k} ⊂N;i · j · k ≥ t3α;i < j < k;

and the vertices i, j, k form a triangle in Gt

}
.

We then have T (Gt) ≤ T1(Gt) + T2(Gt). Now, T1(Gt) can be estimated in an elementary
way:

T1(Gt) ≤
t3α∑
i=1

t3α

i∑
j=1

t3α

ij∑
k=1

1 ≤ Ct3α( log t)2.

But T2(Gt) is more complicated. We have to break it into three distinct sets:

T 0
2 (Gt) := #

⎧⎪⎨⎪⎩
{i, j, k} ⊂N;i · j · k ≥ t3α;i < j < k;

and the vertices i, j, k form a triangle in

Gt with all edges coming from edge-steps

⎫⎪⎬⎪⎭ ,

T 1
2 (Gt) := #

⎧⎪⎨⎪⎩
{i, j, k} ⊂N;i · j · k ≥ t3α;i < j < k;

and the vertices i, j, k form a triangle in Gt with two edges

coming from edge-steps and one from a vertex-step

⎫⎪⎬⎪⎭ ,

T 2
2 (Gt) := #

⎧⎪⎨⎪⎩
{i, j, k} ⊂N;i · j · k ≥ t3α;i < j < k;

and the vertices i, j, k form a triangle in Gt with one edge

coming from an edge-step and two from vertex-steps

⎫⎪⎬⎪⎭ .

Note that it is impossible for a triangle to be formed by three edges coming from vertex-steps.
Therefore, T2(Gt) ≤ T 0

2 (Gt) + T 1
2 (Gt) + T 2

2 (Gt). We bound the expectations of the variables
on the right-hand side of this inequality separately, but before we go to the computations we
introduce new notation in order to avoid clutter. We will need to sum over vertices’ indices as
well as the time they became connected. Thus, we let I be the following region of Z3:

I :=
{

(i, j, k) ∈Z
3 : i ∈ (1, t); j ∈

(
t3α−1

i
∨ i, t

)
; k ∈

(
t3α

ij
, t

)}
.

Observe that for p ≥ 1/2 we have 3α − 1 ≤ 1. Also, for fixed (i,j,k) we let Si,j,k

be Si,j,k := {
(s1, s2, s3) ∈Z

3 : s1 ∈ [i, t]; s2 ∈ [j, t]; s3 ∈ [k, t]
}

whereas Si,j denotes Si,j :={
(s1, s2) ∈Z

3 : s1 ∈ [i, t]; s2 ∈ [j, t]
}
. We also use �i as a shorthand for (i,j,k) and �s for either

(s1, s2, s3) when summing over Si,j,k, or (s1, s2) when the summation is over Si,j. Now we go
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to the remainder upper bound, recalling that α = α(p) = (1 − p)(2 − p)−1 and bounding the
summand by the integral, which yields

E[T 0
2 (Gt)] ≤E

⎡⎣∑
�i∈I

∑
�s∈Si,j,k

gi,j
s1

gj,k
s2

gi,k
s3

⎤⎦
≤
∑
�i∈I

∑
�s∈Si,j,k

C1C6
p log (t)6

(ijk)2−p(s1s2s3)p
[by Lemma 2] (16)

≤ C1C6
pt3(1−p)( log t)6

(1 − p)3

∑
�i∈I

1

(ijk)2−p
[by (2)].

For the summation over I in the last inequality we bound the sum by the integral

∑
�i∈I

1

(ijk)2−p
≤

t∑
i=1

t∑
j=1

t∑
k=t3α/ij

1

(ijk)2−p

≤
t∑

i=1

t∑
j=i

1

1 − p

1

(ij)2−p

(ij)1−p

t3α(1−p)
≤ ( log t)2

(1 − p)t3α(1−p)
.

Replacing the above bound in (16) and using that (1 − p) − α(1 − p) = α leads to E[T 0
2 (Gt)] ≤

C1C6
p(1 − p)−4( log t)8t3(1−p)(1−α) = C1C6

p(1 − p)−4( log t)8t3α . For T 1
2 (Gt), using the bounds

derived in Lemma 2 and the integral bound, we then obtain

E[T 1
2 (Gt)] ≤E

⎡⎣∑
�i∈I

∑
�s∈Sk,k

ei,jgj,k
s1

gi,k
s2

⎤⎦+E

⎡⎣∑
�i∈I

∑
�s∈Sj,k

gi,j
s1

ej,kgi,k
s2

⎤⎦

+E

⎡⎣∑
�i∈I

∑
�s∈Sj,k

gi,j
s1

gj,k
s2

ei,k

⎤⎦ (17)

≤ C1C5
p(1 − p)−2t2(1−p)( log t)5

⎛⎝∑
�i∈I

1

(ik)2−pj
+ 2

(ij)2−pk

⎞⎠ [by Lemma 2].

We again bound the summation over I in the same way as before. We begin with the first sum,
for which we obtain the following upper bound:

∑
�i∈I

1

(ik)2−pj
≤

t∑
i=1

t∑
j=1

t∑
k=t3α/ij

1

(ik)2−pj

≤ 1

(1 − p)

t∑
i=1

t∑
j=1

1

ijpt3α(1−p)
≤ t1−p log t

(1 − p)2t3α(1−p)
.

(18)
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The second summation over I in (17) is somewhat more involved. For this reason we will split
it into two cases, p ≤ 1/2 and p > 1/2, in order to make clear the region over which we are
integrating. For p > 1/2 we bound the second summation over I in the following way:

∑
�i∈I

2

(ij)2−pk
≤

t∑
i=1

t∑
j=1

t∑
k=t3α/ij

2

(ij)2−pk
≤ 2 log t

(1 − p)2
.

Then, replacing the above bound and (18) in (17) gives, for p > 1/2, the bound

E[T 1
2 (Gt)] ≤ C1C5

pt3α log t

(1 − p)4
+ 2C1C5

pt2(1−p)( log t)6

(1 − p)4
≤ Ct3α( log t)6,

where C = 3C1C5
p(1 − p)−4, since in this regime for p, 2(1 − p) ≤ 3α. For p ≤ 1/2 we need to

be more careful with our bounds. In this case we break up the sum depending on whether

t3α−1

i
∨ i = i or

t3α−1

i
∨ i = t3α−1

i
.

We have

∑
�i∈I

2

(ij)2−pk
=

t(3α−1)/2∑
i=1

t∑
j=t3α−1/i

t∑
k=t3α/ij

2

(ij)2−pk
+

t∑
i=t(3α−1)/2

t∑
j=i

t∑
k=t3α/ij

2

(ij)2−pk

≤
t(3α−1)/2∑

i=1

t∑
j=t3α−1/i

2 log t

(ij)2−p
+

t∑
i=t(3α−1)/2

t∑
j=i

2 log t

(ij)2−p

≤
t(3α−1)/2∑

i=1

2( log t)i1−p

(1 − p)i2−pt(3α−1)(1−p)
+

t∑
i=t(3α−1)/2

2 log t

(1 − p)i2−pi1−p

≤ 2( log t)2

(1 − p)t(3α−1)(1−p)
+ log t

(1 − p)t(3α−1)(1−p)
.

Then, replacing the above bound and (18) in (17), and noticing that 2(1 − p) − (3α − 1)(1 −
p) = (1 − p)(2 − 3α + 1) = 3(1 − p)(1 − α) = 3α, gives us that for p > 1/2 and some constant
depending on p only, E[T 1

2 (Gt)] ≤ 4C1C5
p(1 − p)−4t3α( log t)7. We conclude by estimating the

expectation of T 2
2 (Gt) in a similar manner as above:

E[T 2
2 (Gt)] ≤E

⎡⎣∑
�i∈I

t∑
s=k

ei,jgj,k
s ei,k

⎤⎦+E

⎡⎣∑
�i∈I

t∑
s=k

ei,jej,kgi,k
s

⎤⎦
≤ 2

∑
�i∈I

t∑
s=k

C1C4
p( log t)4 1

i2−pjksp
[by Lemma 2]

≤ C1C4
p(1 − p)−1t1−p( log t)4

⎛⎝∑
�i∈I

2

i2−pjk

⎞⎠
≤ 2C1C4

p(1 − p)−2t1−p( log t)6,

which is enough to conclude the proof of Proposition 1. �
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The next lemma gives us concentration results for T (Gt).

Lemma 3. Given ε > 0, there exist positive constants C1, C2, C3, and a, depending on ε and p
only, such that P

(
C1t3α(1−ε) ≤ T (Gt) ≤ C2t3α(1+ε)

)≥ 1 − C3t−a.

Proof. The upper bound for T (Gt) follows from Proposition 1 and Markov’s inequality,
which yields

P

(
T (Gt) ≥ Ct3α(1+ε)

)
≤ ( log t)8

t3αε
. (19)

For the lower bound, we apply [1, Theorem 1] (more specifically the polynomial bound given
by (4.3)), which states that, with probability at least 1 − t−a2 , Gt contains a complete subgraph
of order tα(1−ε). Notice that every three distinct vertices in this complete subgraph form a
triangle. Thus, on the event that there exists a complete subgraph with at least tα(1−ε) vertices
in Gt, the following lower bound holds:

T (Gt) ≥
(

tα(1−ε)

3

)
≥ C4t3α(1−ε),

for some constant C4 depending on p and ε. This can be restated as

P

(
T (Gt) ≤ C4t3α(1−ε)

)
≤ t−a2 . (20)

The proof is finished by combining the inequalities (19) and (20), and choosing a =
min{αε, a2}. �

6. Proof of the main results

In this section we wrap up all the results we have proved so far in order to prove our two
main results: Theorems 1 and 2, as well as their consequences, Corollaries 1 and 2.

Proof of Theorem 1: Clustering coefficient. We begin recalling the definition of some
functions of p we have used throughout the paper, as well as the definition of τ (Gt):

τ (Gt) := 3 × T (Gt)

C(Gt)
, α(p) = 1 − p

2 − p
, γ (p) = 2 − p − 3α(p).

Since p will be fixed, we simply write α and γ to avoid clutter. Let ε′ be

ε′ := γ

γ + 6α
ε,

and consider the following events:

A =
{

C1t(2−p)(1−ε
′) ≤ C(Gt) ≤ C2t(2−p)(1+ε

′)} ,

B =
{

C′
1t3α(1−ε

′) ≤ T (Gt) ≤ C′
2t3α(1+ε

′)} .

By Theorem 5 and Lemma 3, we have that P (Ac) ≤ C3t−a′
1 and P(Bc) ≤ C′

3t−a′
2 , where a′

1
and a′

2 are constants depending on p and ε′. Moreover, observe that on the event A ∩ B the
following bounds hold:

C′′
1 t−γ (1+ε) = 3

C′
1t3α(1−ε

′)

C2t(2−p)(1+ε
′) ≤ τ (Gt) ≤ 3

C′
2t3α(1+ε

′)

C1t(2−p)(1−ε
′) = C′′

2 t−γ (1−ε),
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since by the definition of ε′, γ , and α we have (2 − p)(1 − ε′) − 3α(1 + ε′) = γ (1 − ε), (2 −
p)(1 + ε′) − 3α(1 − ε′) = γ (1 + ε). Then, we conclude that

P

(
C′′

1 t−γ (1+ε) ≤ τ (Gt) ≤ C′′
2 t−γ (1−ε)

)
≥ 1 − C3t−a′

1 − C′
3t−a′

2 ≥ 1 − C′′
3 t−a3,

where a3 can be chosen as min{a′
1, a′

2}, and C′′
3 = C3 + C′

3. This concludes the proof.
Now we use the bounds derived in the above proof to prove Corollary 1.

Proof of Corollary 1. Consider the sequence tk := ek2
and fix a positive ε. For large enough

k, Lemma 3 and Theorem 5 give us

P

(∣∣∣∣ log T (Gtk )

log tk
− 3α

∣∣∣∣> ε

)
≤ k−2, P

(∣∣∣∣ log C(Gtk )

log tk
− 2 + p

∣∣∣∣> ε

)
≤ k−2.

Thus, the Borel–Cantelli lemma yields log T (Gtk )/ log tk → 3α and log C(Gtk )/ log tk → 2 − p
almost surely as k tends to infinity. Therefore, the definition of the global clustering τ (Gtk )
implies that log τ (Gtk )/ log tk → 3α − 2 + p almost surely. Now, since both quantities T (Gt)
and C(Gt) are increasing on t, for any t ∈ [tk, tk+1] we have

log

(
3T (Gtk )

C(Gtk+1 )

)
≤ log

(
3T (Gt)

C(Gt)

)
≤ log

(
3T (Gtk+1 )

C(Gtk )

)
,

log

(
τ (Gtk )C(Gtk )

C(Gtk+1 )

)
≤ log τ (Gt) ≤ log

(
τ (Gtk+1 )C(Gtk+1 )

C(Gtk )

)
.

Since (tk)k is increasing in k as well, we obtain

log
(

τ (Gtk )C(Gtk )
C(Gtk+1 )

)
log tk

· log tk
log tk+1

≤ log τ (Gt)

log t
≤

log
(

τ (Gtk+1 )C(Gtk+1 )
C(Gtk )

)
log tk+1

· log tk+1

log tk
,

which are enough to conclude the proof, sending k to infinity and using the almost sure
convergence of ( log τ (Gtk )/ log tk)k≥1 and ( log τ (Gtk )/ log tk)k≥1. �

Proof of Theorem 2. The existence of a clique of order t
(1−ε)(1−p)

2−p in Gt w.h.p. was proved
by [1, Theorem 1]. For the upper bound, observe that the existence of a complete subgraph of

order C1/3t
(1−p)
2−p log3 (t) in Gt implies immediately that T (Gt) is at least C( log t)9t3α , which,

by Proposition 1 and Markov’s inequality, occurs with probability at most 1/ log t. This proves
the theorem. �

The proof of Corollary 2 follows exactly the same reasoning, exploring monotonicity, given in
the proof of Corollary 1, since polynomial bounds on the relevant probabilities are available
(see [1, (4.3)]). The proof is in fact simpler, since, unlike τ (Gt), ω(Gt) is itself increasing in t.
For this reason we omit the proof.
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