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Abstract. Asymmetric oscillatory expansion of a cylindrical plasma layer into va-
cuum is investigated analytically by solving the fluid equations of the electrons and
ions together with the Maxwell’s equations. For the problem considered, it is found
that the asymmetrical flow components are strongly affected by the symmetrical
components, but not the vice versa.

1. Introduction
Expansion of a gas or plasma into vacuum is of in-
terest in many areas of research and applications, such
as astrophysical explosions, inertial confinement fusion,
laser acceleration of charged particles, etc. involving
high energy density, as defined in Davidson et al. (2004).
Since the problem is intrinsically highly nonlinear, it
is traditionally investigated by assuming that the pro-
cess is self-similar, so that the governing equations
can be simplified and solved analytically. Despite the
over-simplification, significant and useful solutions have
been obtained (see for example Sedov 1959; Gurevich
and Pariiskaya 1986; Zel’dovich and Raizer 2002). On
the other hand, in reality many expansions are not,
or not fully, self-similar (Sedov 1959). Thus, besides
solving the more general problems numerically, it is
also desirable to search for solutions using analytical
methods.

Many paradigm linear partial differential equations
in science and engineering can be reduced to ordinary
differential equations by using the method of separa-
tion of variables (see for example Arfken 1985). On
rare occasions, similar separation of variables has also
been successfully applied to solving nonlinear evolution
equations (Stenflo 1990; Stenflo and Yu 2002; Karimov
and Godin 2009). In such schemes, one first makes an
Ansatz, usually by intuitive trial and error, on the spatial
behavior of the physical variables such that a system
of coupled nonlinear ordinary differential equations for
the temporal evolution of the latter can be obtained.
Recently, we have used this approach to consider the
radial expansion of a cylindrical plasma and found that
the expansion can be accompanied by intense oscilla-
tions as well as energy exchange among the different
spatial components. In the present paper, we extend
our work to include axial variations that can lead to
asymmetry and rotation in the expansion. It is found that
in the problem considered, the added asymmetric flow

components do not affect the evolution of the symmetric
flow components.

Our work is motivated by the following question:
in the radial expansion of a cylindrical plasma layer
(Karimov et al. 2009a, b), how does flow asymmetry
affect the development of the expansion and the ac-
companying plasma oscillations, and what new flow
behavior can appear? In particular, we shall consider the
development of the nonlinear oscillations in an axially
asymmetric plasma expansion when the vorticity Ωϕ is
finite (Nijboer et al. 1997; Karimov 2009), or

Ωjϕ = ∂rvjz − ∂zvjr�0, (1.1)

where vj is the velocity of the species j = i, e.

2. Formulation
We introduce a simple (but not necessarily small) devi-
ation of the originally (Karimov et al. 2009a, b) axially
symmetric velocity field by adding a function of r and t

to the axial velocity component. Accordingly, we make
the Ansatz

vjr =Aj(t)r, vjϕ = Cj(t)r, and

vjz =Bj(t)z + βj(t)Q(t, r), (2.1)

E = εr(t)rer + εϕ(t)reϕ + [εz(t)z + εzr(t)Q(t, r)] ez , (2.2)

where the additional (with respect to that in Karimov
et al. 2009a) functions βj(t), εzr(t), and Q(t, r) allow
for asymmetry of the expansion. One can see that we
have allowed for an arbitrary function Q(t, r), which can
be useful to specific applications and shows that the
nonlinear solutions are not unique, as to be expected.

The straightforward but tedious derivation of the
resulting evolution equations for the flow components
is similar to that of our earlier works (Karimov et al.
2009a, b). Accordingly, in the following we shall directly
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present the ordinary differential equations governing the
evolution of the expansion of a cold cylindrical plasma
layer.

3. The evolution equations
Following Karimov et al. (2009a), one can derive from
the cold electron and ion fluid and Maxwell’s equa-
tions without any approximation the following ordinary
differential equations governing the evolution of the
asymmetric cylindrical plasma with rotation:

dtn + (2Ae + Be)n = 0, (3.1)

dtAe + A2
e − C2

e + εr + CeBz = 0, (3.2)

dtBe + B2
e + εz = 0, (3.3)

dtCe + 2AeCe + εϕ − AeBz = 0, (3.4)

dtAi + A2
i − C2

i − μiεr − μiCiBz = 0, (3.5)

dtBi + B2
i − μiεz = 0, (3.6)

dtCi + 2AiCi − μiεϕ + μiAiBz = 0, (3.7)

dtεr = n(Ae − Ai) − (2εr + εz)Ai, (3.8)

dtεϕ = n(Ce − Ci) − (2εr + εz)Ci, (3.9)

dtεz = n(Be − Bi) − (2εr + εz)Bi, (3.10)

dtBz = −2εϕ. (3.11)

The evolution of the asymmetric flow components is
governed by

Qdtβj + βjdtQ+AjβjrdrQ+ βjBjQ− μjεzrQ = 0, (3.12)

Qdtεzr + εzrdtQ + n(βi − βe) + (2εr + εz)βi = 0, (3.13)

where we recall that Q can be a function of t and r.
Eliminating dtQ from (3.12) with the help of (3.13),

we get

εzr[dtβj + βjBj − μjεzr] + βj[n(βe − βi) − (2εr + εz)

×βi − dtεzr] + Ajβjεzr
r

Q
drQ = 0. (3.14)

As mentioned, the function Q(t, r) is a free parameter.
It can be chosen such that it becomes decoupled from
the other variables. We can in fact separate the t and r

dependence of Q(t, r) by setting Q(t, r) = q(t)rσ , where σ

is an arbitrary constant and q(t) is an arbitrary function
of t only. Then (3.14) becomes

εzrdtβj = [dtεzr + (βi − βe)n + (2εr + εz)

×βi − εzr(Bj + σAj)]βj + μjε
2
zr, (3.15)

and (3.13) becomes

εzrdtq = [n(βe − βi) − (2εr + εz)βi − dtεzr]q. (3.16)

We can further set q(t) = q0e
t/τ, where q0 and τ are

constants, so that

dtεzr = n(βe − βi) − (2εr + εz)βi − εzr/τ. (3.17)

Substitution of (3.17) into (3.15) then leads to

dtβj = −(1/τ + Bj + σAj)βj + μjεzr, (3.18)

which completes the set of equations governing the
evolution of the asymmetric flow expansion. One can see
that the symmetric flow components Aj , etc. can affect
the asymmetric flow components βj , but not the vice
versa: βj does not affect Aj , etc. Accordingly, the results
on the evolution of the symmetric flow components
obtained in Karimov et al. (2009a) remain valid also for
the asymmetric expansion.

4. Discussion and conclusion
It is remarkable that although the symmetric flow com-
ponents can strongly affect the asymmetric ones, yet the
latter do not affect the former. That is, the flow asym-
metry does not affect the evolution of the symmetric
flow components, and the behavior of the symmetric
part of the flow as discussed in detail in Karimov et al.
(2009a) is thus also applicable even when asymmetric
flow is introduced. However, the latter also depend on
the constants σ and τ, which are determined externally
by the physical situation (such as the presence of external
drive) and characterize the space and time scales of the
evolution of the asymmetric components of the flow.

It is of interest to note that the oscillations can
be considered as energy and momentum redistribution
from the flow expansion. Such energy and momentum
redistribution can prevent the occurrence of shock-
or soliton-like structures, or singularities, during the
expansion, whose speed can increase with time as the
densities decrease. We also note that depending on the
signs of σ and τ as determined by the initial condition,
the flow asymmetry can increase with t and r.

We emphasize that, as for most nonlinear problems,
the conclusion here is not unique and other flow be-
havior can also exist. Nevertheless, our results illustrate
an unusual nonlinear plasma flow property that could
be useful to interpreting unexpected phenomena, such
as weak- or de-coupling among the degrees of freedom,
in high energy-density astrophysical and laser-induced
plasma expansions and explosions, as well as other
areas (Gurevich and Pariiskaya 1986; Bartel et al. 1991;
Blondin et al. 1996; Zel’dovich and Raizer 2002; Mora
2003; Davidson et al. 2004; Kaladze et al. 2007; Shukla
and Eliasson 2009; Meliani and Keppens 2010; Mamun
and Shukla 2011).
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