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A direct method for obtaining the two possible positions derived from two sights using
vector analysis instead of spherical trigonometry is presented. The geometry of the circle

of equal altitude and of the two body fixes is analyzed, and the vector equation for simul-
taneous sights is constructed. The running fix problem is also treated.
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1. INTRODUCTION. Most of the known methods to solve the two
body problem, [10], [13–17], [19], [24–26], use the navigational triangle [1] and
spherical trigonometry. Recursive methods using linear approximations as in [18],
or physics analogies [12] are smart approaches. Sight reduction general procedures
[2–5], can be used to obtain the fix, but for two sights the estimated position is
needed. In reference [11] an analytical solution using plane geometry is used for
both solutions.

On the other hand, vector calculus is a powerful tool widely used for engineering
and physics, [9]. In navigation it is used in naval kinematics, for current calculations,
(set & drift) and the great circle sailing can be formulated using the vector analysis,
[20–23] ; in [27] a vector approach of celestial navigation is made. In this paper a
solution for the two body problem in celestial navigation using this technique is
presented. The following sub paragraphs present some concepts about the celestial
circle of position, CoP.

1.1. Variables and symbols. Let us denote the dot product by ’ and the cross
product by L, and a vector by~vv or by v. The variables used are:

Variable Intervals

GHA Greenwich Hour Angle 0 <=GHA <=360x (W to E)
Dec Declination x90x (S) <=Dec <=+90x (N)
Ho Observed altitude 0 <=H <=90x
B Latitude x90x (S) <=B <=+90x (N)
L Longitude x180x (W) <=L <=+180x (E)
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1.2. The Circle of Equal Altitude. A celestial object is far enough away from
the observer that the incoming light rays are nearly parallel to each other. Thus, there
is a point on the surface of Earth where the object is directly overhead at a given
time; this point is called the geographical position, GP, (or of a star; substellar point).
Using the spherical model of the Earth, there is a circle on her surface centred about
the object’s geographical position where the angle between the horizon and the
celestial object, called the altitude, is constant at a given instant. This circumference
forms a celestial line of position, a small circle, known as a circle of equal altitude.
The great circle distance from this pole to the circle is the zenith distance of the body,
Zd.

At the time of observation the observer of the celestial object must be located
somewhere along that circle. The geographical position of a celestial body is calcu-
lated from an ephemeris or obtained from the Nautical Almanac, and the altitude
is measured with a sextant. The observed altitude is the sextant altitude corrected
for index error and dip, for refraction and if appropriate corrected for parallax and
semi-diameter. This process is summarized in Figure 1.

Geometrically a Circle of Equal Altitude is generated by the intersection of a
circular cone having its vertex in the centre of the Earth, half angle a=90x-Ho, and
with the vector from O to GP as its axis, with the unit sphere. The distance from the
centre of the Earth to the plane containing the CoP is sin(Ho), as shown in Figure 2.

1.3. Vector equation for the Circle of Equal Altitude. In Figure 3, let OP be
the observer’s position at the time of sight, and GP the geographical position of
the celestial body at the same instant. The dot product of the vectors defined by the
centre of the Earth and these points is the cosine of the angle between them, which
is the zenith distance of the observed body. Then, the vector equation of the circle
of equal altitude is :

O
!
P � G

!
P=cos (90�xHo) (1)

It is possible to write the azimuth in vector form [8].

Figure 1. Circle of Equal Altitude parameters.
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1.4. Coordinate Systems. Using a right-handed orthonormal basis {~ii,~jj,~kk}, as in
Figure 4, the Cartesian system of coordinates is defined where the origin O, is the
centre of the Earth with Axes:

’ Z: from O to the North Pole.
’ X: from O to the Greenwich meridian, included in the Earth’s equatorial plane.
’ Y: defined by~jj=~kk ^~ii

Since angles are used, not distances, the hypothesis that the Earth is a sphere of unit
radius is valid.

Figure 2. Earth’s normal section to the plane of the Circle of Position (CoP).

Figure 3. Circle of Equal Altitude and vectors.

NO. 2 INTERSECTION OF TWO CIRCLES OF EQUAL ALTITUDE 357

https://doi.org/10.1017/S0373463307004602 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463307004602


The relationship between the equatorial coordinates (Dec, GHA), and geographi-
cal coordinates (B, L), with the spherical ones, (Q, h), arises from Figure 4:

r=1 r=1

Dec=Q B=Q

GHA=360� -h L=h

According to this formulation the unit vector in Cartesian coordinates, (x,y,z), from
the centre of the Earth to the geographical position of any body is :

GP
�!

=cosDec cosGHA �~iixcosDec sinGHA �~jj+sinDec �~kk (2)

And the unit vector in Cartesian coordinates from the centre of the Earth to any point
on the surface of the Earth is :

OP
�!

=cosB cosL �~ii+cosB sinL �~jj+sinB �~kk (3)

2. VECTOR EQUATION FOR THE INTERSECTION OF TWO
SIMULTANEOUS CIRCLES OF POSITION. In the general case, two
CoP intersect at two points : I1 and I2, (Figure 5). The coordinates of these two
crossings are the solution to the problem. Using the vector notation in section 1.3
there are three unknown variables, the Cartesian coordinates of OP; so three
equations are needed:

OP
�!

� GP
�!

1=sinHo1

OP
�!

� GP
�!

2=sinHo2

OP
�!

� OP
�!

=1

(4)

The last equation takes account of the fact that the observer is on the surface of a
unit sphere : x2+y2+z2=1. To solve the system some methods have been published
[4], [11].

Figure 4. Right-handed orthonormal basis, and coordinates.
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Another approach arises considering Figures 5 & 6. The great circle passing
through the two geographical positions is perpendicular to the one defined by the
points I1 and I2, and intersect in a point Ick on the surface of the sphere. Each CoP is
contained in a plane, (section 1.2), the intersection of these planes is the line defined
by the points I1 and I2. The line OIck and the line I1I2 have a point in common: Ic.
The vector from the centre of the Earth to each GP in rectangular coordinates is :

GP
�!

j=(cosDecj cosGHAjxcosDecj sinGHAj sinDecj) (5)

Figure 5. Crossing of two CoP.

Figure 6. Section by the plane containing the two geographical positions and the centre of

the Earth.
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for the two crossings j=1,2. This vector is perpendicular to the plane that contains
the CoP.

The vector from the origin to the point Ic can be written like a linear combination
of the GP vectors :

OI
�!

c=k1GP
�!

1+k2GP
�!

2 (6)

Where k1 and k2 are the scale factors derived from Figure 7, and alpha is the angle
between the two GP vectors:

GP
�!

1 � GP
�!

2=cosa (7)

The direction of the line connecting the two intersection points : I1 and I2, is defined
by the unit vector

~rr=
GP
�!

1 ^ GP
�!

2

GP
�!

1 ^ GP
�!

2

���
���

(8)

perpendicular to the great circle passing through the two geographical positions.
The vectors from Ic to the points solution of the problem are:

IcI
�!

1=L1~rr and IcI
�!

2=L2~rr:

From Figure 8, L1 and L2 are distances from the middle point of the I1I2 line to
each intersection point.

Lj=IcIj (9)

OI 2
c +IcI

2
j =OI 2

j =1 (10)

 

22sincos kHok1 −=α  

112 sincos kHok −=α  
then: 

α
α

2
21

sin

cossinsin HoHo
k1

−=

α
α

2
12

2 sin

cossinsin HoHo
k

−=

Figure 7. Vector to the point Ic.
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where j=1,2.
OIc is obtained using the dot product:

OI
�!

c
� OI
�!

c=OI2c (11)

Lj=t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1xOI

�!
c
� OI
�!

c

q
(12)

The vector from the origin to each intersection is :

OI
�!

j=OI
�!

c+ IcI
�!

j (13)

And finally, the vector equation for the solution points is :

OI
�!

j=k1GP
�!

1+k2GP
�!

2+Lj
GP
�!

1 ^ GP
�!

2

GP
�!

1 ^ GP
�!

2

���
���

(14)

for j=1,2.
Transforming the Cartesian coordinates, OI

�!
j=( xj yj zj ), in to spherical ones,

the latitude and the longitude of the two points of intersection will be obtained.

Bj=ATAN2(zj,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
j+y2j

q
)

Lj=ATAN2(yj, xj)
(15)

For the North Pole (0,0,1), and the South Pole (0,0,x1), the solution is undeter-
mined. The algorithm is shown in a flow chart in the Appendix.

2.1. The Fix. Only one of the two points of intersection obtained is the true
position of the observer. The dead reckoning position determines the fix.

2.2. Singular case. There is a theoretical case very improbable in navigation:
if the two CoPs are tangents, there is only one solution, but the vector equation gives
the correct result. The two points of intersection I1 and I2 in Figures 5 and 6, the
middle point Ic and its projection on the surface of the Earth Ick are the same. The line
I1I2 degenerates to a point, as well as the two crossings, and Lj=0.

I1 � I2 � Ic � I0c IcIj= 0 OIc= OIj=1 and Lj=0

Figure 8. Section by the plane containing the line I1I2and O.
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Then the vector equation for the position is :

OI
�!

j=k1GP
�!

1+k2GP
�!

2 for j: 1 � 2

2.3. Correction for the motion of the observer. When the two sights are not
taken at the same time, it is necessary to move the first CoP to the time of the second
one, or both to a common instant. Many methods have been presented, but the
correct way to move a CoP is to advance or retire the GP due to the motion of
the observer [6], [7].

Using the technique described in reference [6], the correction is a function of the
estimated position of the observer, (Be,Le), and his motion: course and speed, (C,S).
And since what we are looking for is the true position, an iterative process is required
in order to reach the solution for the running fix. The algorithm is described in the
Appendix.

3. CONCLUSION. A vector solution in rectangular coordinates for the two
body fix problem has been presented. The development uses only vector algebra
and coordinate transformation between geographical and Cartesian coordinates
avoiding the use of the spherical trigonometry. The schema for deriving the
equation is clear and intuitive. The equation is a compact function of the geo-
graphical positions, and the scale factors are also functions of the observed altitudes.
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APPENDIX
A1. Fix Algorithm.

OI1,2 = k1GP1 + k2GP2 + L1,2
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A2. Running Fix Algorithm.

An implementation of these two algorithms is available at the author’s web site:
CelestialFix.exe running under Windows. Other implementations are very easy in a
calculator, electronic spreadsheet, or math dedicated software with vector analysis
functions performed.
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