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In this note, determinants are explicitly calculated for the covariance matrices of
differenced and double-differenced AR~1! variables+

1. MOTIVATION AND RESULTS

Consider the AR~1! process yt � ryt�1 � «t , t � Z, where Z is the set of inte-
gers, «t ; iid~0,1!, and r � ~�1,1# + The error variance is set to unity without
loss of generality in the present context because otherwise var~«t !

�102yt can be
considered+ Let Dyt � yt � yt�1+ The covariance matrix of Dy � ~Dy1, + + + ,Dyn!

'

is a symmetric Toeplitz matrix with its ~t, s! element equal to v6 t�s6 :� EDytDys;
in the unit root case Dyt � «t + Similarly, the covariance matrix of the double-
differenced series D2yt :� Dyt � Dyt�1 is another symmetric Toeplitz matrix
whose ~t, s! element depends on 6 t � s6+

Evaluating the determinant of covariance matrix for Dyt and D2yt is some-
times useful, especially when working with the exact Gaussian likelihood func-
tions derived from the first- and double-differenced data+ A prominent example
is the simple dynamic panel data model with unobservable fixed effects yit �
~1 � r!ai � ryit�1 � «it + One may want to first-difference the data to eliminate
the nuisance fixed effects and get Dyit � rDyit�1 � D«it and then derive the
likelihood function for $Dyit % + ~See Hsiao, Pesaran, and Tahmiscioglu, 2002+! If
the model also contains incidental trends as in yit � ai � ~1 � r!gi t � ryit�1 �
«it , then a double-differencing method can eliminate the incidental trends+ This
possibility is investigated by Han and Phillips ~2006!, who find ~using results
in the present note! some interesting facts, e+g+, that a panel unit root test based
on double-differenced data can outperform point optimal tests such as Ploberger
and Phillips ~2002! if the time span is small relative to the cross-sectional
dimension+

In the preceding dynamic panel data model, approximate or conditional max-
imum likelihood estimation ~MLE! may yield poor estimators especially if the
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time dimension is small and the cross-sectional sample size is large because
then small errors due to inaccurate approximation may accumulate as the cross-
sectional dimension grows+

When asymptotics is of the only concern, one may be interested in the diver-
gence rates of the determinants rather than their exact formulas, and so a Tay-
lor expansion may be applied+A general theorem in Grenander and Szegö ~1958!
is as follows+ Let An be a sequence of Toeplitz matrices ~not necessarily sym-
metric! whose ~t, s! element is as�t + One of Szegö’s theorems states that

lim
nr`
6An 610n � exp� 1

2p
�

�p

p

log f ~x! dx� , (1)

where f ~x!� �k��`
` ak e ikx is the Fourier form, under the regularity condition

that log f ~x! is bounded for x � @�p,p# + ~See Grenander and Szegö, 1958,
p+ 64+! This theorem is especially useful if the right-hand side of ~1! is finite
and bigger than zero, in which case n�1 log6An6 converges to a nonzero quantity+

But in our cases log f ~x! is not bounded+ For a stationary autoregressive mov-
ing average ~ARMA! with a unit root in the moving average ~MA! part, the
spectral density and thus f ~x! are equal to zero at x � 0, leading to unbounded
log f ~x! in the range @�p,p# , and the result is not applicable+

Another paper that examines asymptotics for ARMA processes with possible
MA unit roots is McCabe and Leybourne ~1998!; it does not derive the deter-
minant explicitly+ Additionally the analysis in that paper is conditional on the
first observation, whereas we are interested in unconditional MLE+

Because neither Szegö’s theorem nor the McCabe and Leybourne ~1998!
method is applicable, the present note explicitly derives the determinants
of covariances for first- and double-differenced AR~1! processes+ Not only
does this derivation clarify the order of the determinants as the time dimen-
sion increases, but it also reveals the functional form of the determinant
in terms of the autoregressive ~AR! coefficient, and so some “local-to-
unity” asymptotics ~i+e+, asymptotics when the AR coefficient marginally
departs from unity! may be analyzed+ See Han and Phillips ~2006! for an
application+

Exact Gaussian MLE based on first-differencing is analyzed by Hsiao et al+
~2002! in the dynamic panel context with short time dimensions and large cross-
sectional sizes, where the determinant of covariance matrix is explicitly pro-
vided+ Note that this determinant can also be derived from Galbraith and
Galbraith ~1974, p+ 68! using L’Hôpital’s rule+ The double-differencing case is
much more complicated, on the other hand, and has not been explicitly obtained
yet as far as the author knows+ Haddad ~2004! obtains a closed form represen-
tation by some recursion for the inverse and the determinant of ARMA~ p,q!
processes, but his results require stationarity and invertibility ~i+e+, AR and
MA roots outside the unit circle! and hence do not apply to the present case+
Galbraith and Galbraith ~1974! provide a generally applicable method, but
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the algebra is quite involved, partly because invertibility is required for the
derivation+ Zinde-Walsh ~1988! provides a general method for computing deter-
minants of ARMA, but applying this general methodology to the double-
differenced AR~1! case may be overly complicated+ Applying the usual cofactor
expansion did not produce useful results, either+1

The method used in the present note expresses the determinants in terms of
difference equations+ It is tailored for the differenced AR~1! processes, and so
the derivation and proof are relatively simple+ The covariance matrix for the
first-differenced data has the following simple form of the determinant+

THEOREM 1+ Let yt � ryt�1 � «t with «t ; iid~0,1! . Let Vn � EDyDy '

where Dy � ~Dy1, + + + ,Dyn!
' with Dyt � yt � yt�1. Then

6Vn 6 � 1 � n~1 � r!0~1 � r! .

As noted earlier, this result is already known, but we still present it here
for completeness and for illustrating our method of derivation and proof+
~See the proof that follows+! We can apply the same method to the double-
differenced case+ The determinant of the covariance matrix in that case is given
as follows+

THEOREM 2+ Let yt � ryt�1 � «t with «t ; iid~0,1! . Let, this time, Vn �
ED2yD2y ' where D2y � ~D2y1, + + + ,D2yn!

' with D2yt � Dyt � Dyt�1. Then

6Vn 6 � ~n � 1!�1 �
8n~1 � r!~2 � r!� n2~1 � r!2~7 � r!� n3~1 � r!3

12~1 � r!
� .

2. PROOFS AND DISCUSSION

Proof of Theorem 1+ From Dyt � «t � ~1 � r!�j�1
` r j�1«t�j for all r �

~�1,1# , we find that Vn :� EDyDy ' is a symmetric Toeplitz matrix whose ~t, s!
element is v6 t�s6 such that v0 � 20~1 � r! and vj � �r j�1~1 � r!0~1 � r! for
j � 1+ ~Also see Karanasos, 1998+! It is easy to see that

Vn�1 � �v0 jn
'

jn Vn
� , where jn � ~v1, + + + ,vn !

' ; (2)

thus 6Vn�16� dn6Vn6, where dn � v0 � jn
'Vn

�1jn + By the inversion formula for
partitioned matrices, we have

Vn�1
�1 �

1

dn
� 1 �jn

'Vn
�1

�Vn
�1jn dnVn

�1 �Vn
�1jnjn

'Vn
�1� + (3)
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Now, because vj�1 � rvj for j � 1, we have jn�1 � ~v1,rjn
' !' , implying that

jn�1
' Vn�1

�1 jn�1 � dn
�1~v1

2 � 2rv1jn
'Vn

�1jn � r2v0jn
'Vn

�1jn !

� ~v1 � rv0 !
20dn � r~2v1 � rv0 !� A, (4)

where jn
'Vn

�1jn � v0 � dn is used+ Thus

dn�1 � v0 � jn�1
' Vn�1

�1 jn�1 � @~1 � r2 !v0 � 2rv1#� ~v1 � rv0 !
20dn

� p1 �p2 0dn ,

for n � 1+ Because dn � 6Vn�1606Vn6 for n � 1, this difference equation leads
to 6Vn�26 � p16Vn�16 � p26Vn6 for n � 1+ Now, the exact formulas of v0 and
v1 imply that p1 � 2 and p2 � 1, and so the preceding identity implies that
6Vn�26 � 6Vn�16 � 6Vn�16 � 6Vn6+ Obviously 6Vn6 can be computed from a
sequence of equal steps, and therefore it is linear in n+ Its closed form is derived
from the initial condition that 6V16 � v0 � 20~1 � r! and 6V26 � v0

2 � v1
2 �

~3 � r!0~1 � r!, and the final result follows immediately+ ~For more general
treatment of linear difference equations, see, e+g+, Hoy, Livernois, McKenna,
Rees, and Stengos, 1996+! �

Now let us consider the double-differenced case+ The notations in the pre-
ceding proof are used here too but with different meanings, which are explained
in relevant places+ Again yt � ryt�1 � «t with «t ; iid~0,1!+

Proof of Theorem 2+ Let vj � ED2ytD
2yt�j + Because

D2 yt � rD2 yt�1 � D2«t � «t � ~2 � r!«t�1 � ~1 � r!2 �
j�2

`

r j�2«t�j ,

we have v0 � 2~3 � r!0~1 � r!, v1 � �~4 � 3r � r2!0~1 � r!, and vj �
r j�2~1 � r!30~1 � r! for j � 2+ ~See also Karanasos, 1998+! Let D2y � ~D2y1,
+ + + ,D2yn! and Vn � ED2yD2y ' + Then Vn is the symmetric Toeplitz matrix whose
~t, s! element is v6 t�s6, again+ The partition ~2! and the inverse ~3! are still valid
with the redefined jn � ~v1, + + + ,vn!

' and dn � v0 � jn
'Vn

�1jn + But now we
have vj�1 � rvj for j � 2 ~rather than j � 1!, and we do not have the simplic-
ity of the previous case+ Instead, by noting that v2 � rv1 � 1 and vj�1 � rvj

for j � 2,

jn�1 � � v1

rjn
��� 0

en
� , (5)

where en is the first column of In+ The extra ~0, en
' !' term slightly complicates

the recursion, but we can still proceed as follows+
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Similarly to the first-differencing case, using ~4! for the first term in ~5! and
denoting an � en

'Vn
�1jn we get

v0 � dn�1 � jn�1Vn�1
�1 jn�1

� A �
2

dn

v1 an � 2ran �
2

dn

ranjn
'Vn

�1jn � en
'Vn

�1 en �
1

dn

an
2

� A � 2an~v1 � rv0 !0dn � an
20dn � 10dn�1,

where the terms are simplified using jn
'Vn

�1jn � v0 � dn and en
'Vn

�1 en �
10dn�1+ So we have

dn�1 � @~1 � r2 !v0 � 2rv1#� ~v1 � rv0 � an !
20dn � 10dn�1+ (6)

Also, by expanding an�1 � jn�1
' Vn�1

�1 en�1 using the partitioned inverse ~3!,
we get

an�1 � r� ~v1 � rv0 � an !0dn + (7)

By change of the variable an to cn :� v1 � rv0 � an, ~6! and ~7! are rewrit-
ten as

dn�1 � Jp0 � cn
20dn � 10dn�1 and cn�1 � Jp1 � cn 0dn , (8)

where Jp0 � ~1 � r2!v0 � 2rv1 � 6 and Jp1 � v1 � rv0 � r� �4+ Similarly
to the first-differencing case, we note that dn � 6Vn�1606Vn6, and by further
transforming cn to mn :� cn6Vn6, the two difference equations in ~8! are, respec-
tively, written as

Dn�1 � 6Dn � ~Dn Dn�2 �mn�1
2 !0Dn�1, (9)

mn�1 � �4Dn�1 �mn , (10)

where Dn [ 6Vn6 for notational brevity+
Solving ~9! and ~10! is not straightforward+2 By lagging once the second Dn

~the first one in the parentheses! on the right-hand side of ~9! and replacing
mn�1 of ~9! with �4Dn�1 � mn�2 using ~10!, we get the linear expression

Dn�1 � 6Dn � 16Dn�1 � 6Dn�2 � Dn�3 � 8mn�2 (11)

instead of ~9!+ Now ~10! and ~11! imply that ~1 � L!5mn�1 � 0, and so mn is a
fourth-order polynomial of n+ ~This is because ~1 � L!4mn�1 is constant, and
so ~1 � L!3mn�1 is linear in n, and so on+! Thus Dn is also a fourth-order poly-
nomial of n because of ~10!+ The coefficients for the polynomial can be deter-
mined from D1, + + + ,D5+ The detailed algebra is omitted+ �
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Extension of the present method to higher order AR processes is conceptu-
ally possible+ Consider the differenced AR~ p! process � k�1

p ~1 � fk L!Dyt �
D«t + Note that multiple AR unit roots are not allowed because then Dyt are not
covariance stationary+ Furthermore, if fi � 1 for some i , then it leads to a pure
AR~ p � 1! process �k�i ~1 � fk!Dyt � «t with 6fk6 � 1 for k � i , for which
the determinant is widely available, including Galbraith and Galbraith ~1974!+
So we assume that 6fk6 � 1 for all k+

The covariance matrix for Dyt in this case is explicitly calculated by Karana-
sos ~1998!, and its determinant can be expressed in terms of nonlinear simulta-
neous difference equations, which are not presented in this note+ Solving them
is quite challenging even for p � 2, and the double-differencing case seems
still more complicated+ Yet, derivation would possibly be attempted along this
line if other methods ~e+g+, Galbraith and Galbraith, 1974! are overly complicated+

NOTES

1+ I thank an anonymous referee for helpful comments on the literature+
2+ I thank an anonymous referee for suggesting simplifying the proofs, which gave me inspira-

tion that eventually developed into this solution+
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