Econometric Theory, 23, 2007, 1248-1253. Printed in the United States of America.
DOI: 10.1017/S0266466607070508

DETERMINANTS OF COVARIANCE
MATRICES OF DIFFERENCED
AR(1) PROCESSES

CHIROK HAN
University of Auckland

In this note, determinants are explicitly calculated for the covariance matrices of
differenced and double-differenced AR(1) variables.

1. MOTIVATION AND RESULTS

Consider the AR(1) process y, = py,_; + €, t € Z, where Z is the set of inte-
gers, g, ~ iid(0,1), and p € (—1,1]. The error variance is set to unity without
loss of generality in the present context because otherwise var(e,) /2y, can be
considered. Let Ay, = y, — y,_,. The covariance matrix of Ay = (Ay,,...,Ay,)’
is a symmetric Toeplitz matrix with its (z,s) element equal to w|,—,| := EAy,Ay,;
in the unit root case Ay, = g,. Similarly, the covariance matrix of the double-
differenced series A%y, := Ay, — Ay, ; is another symmetric Toeplitz matrix
whose (1,s) element depends on |z — s|.

Evaluating the determinant of covariance matrix for Ay, and A%y, is some-
times useful, especially when working with the exact Gaussian likelihood func-
tions derived from the first- and double-differenced data. A prominent example
is the simple dynamic panel data model with unobservable fixed effects y;, =
(1—=p)a; + pyi—1 + &;. One may want to first-difference the data to eliminate
the nuisance fixed effects and get Ay, = pAy;,_; + Ag;, and then derive the
likelihood function for {Ay; }. (See Hsiao, Pesaran, and Tahmiscioglu, 2002.) If
the model also contains incidental trends as in y;, = «; + (1 — p)y;t + py;_; +
i1, then a double-differencing method can eliminate the incidental trends. This
possibility is investigated by Han and Phillips (2006), who find (using results
in the present note) some interesting facts, e.g., that a panel unit root test based
on double-differenced data can outperform point optimal tests such as Ploberger
and Phillips (2002) if the time span is small relative to the cross-sectional
dimension.

In the preceding dynamic panel data model, approximate or conditional max-
imum likelihood estimation (MLE) may yield poor estimators especially if the
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time dimension is small and the cross-sectional sample size is large because
then small errors due to inaccurate approximation may accumulate as the cross-
sectional dimension grows.

When asymptotics is of the only concern, one may be interested in the diver-
gence rates of the determinants rather than their exact formulas, and so a Tay-
lor expansion may be applied. A general theorem in Grenander and Szegé (1958)
is as follows. Let A, be a sequence of Toeplitz matrices (not necessarily sym-
metric) whose (t,s) element is a,_,. One of Szegd’s theorems states that

1 T
lim |A,|'" = exp { — f log f(x) dx}, 1)
n—oo 27T —r

where f(x) = 2 _., a,e™ is the Fourier form, under the regularity condition
that log f(x) is bounded for x € [—,7]. (See Grenander and Szego, 1958,
p. 64.) This theorem is especially useful if the right-hand side of (1) is finite
and bigger than zero, in which case n~!log|A,,| converges to a nonzero quantity.

But in our cases log f(x) is not bounded. For a stationary autoregressive mov-
ing average (ARMA) with a unit root in the moving average (MA) part, the
spectral density and thus f(x) are equal to zero at x = 0, leading to unbounded
log f(x) in the range [—7r, 7], and the result is not applicable.

Another paper that examines asymptotics for ARMA processes with possible
MA unit roots is McCabe and Leybourne (1998); it does not derive the deter-
minant explicitly. Additionally the analysis in that paper is conditional on the
first observation, whereas we are interested in unconditional MLE.

Because neither Szegd’s theorem nor the McCabe and Leybourne (1998)
method is applicable, the present note explicitly derives the determinants
of covariances for first- and double-differenced AR(1) processes. Not only
does this derivation clarify the order of the determinants as the time dimen-
sion increases, but it also reveals the functional form of the determinant
in terms of the autoregressive (AR) coefficient, and so some “local-to-
unity” asymptotics (i.e., asymptotics when the AR coefficient marginally
departs from unity) may be analyzed. See Han and Phillips (2006) for an
application.

Exact Gaussian MLE based on first-differencing is analyzed by Hsiao et al.
(2002) in the dynamic panel context with short time dimensions and large cross-
sectional sizes, where the determinant of covariance matrix is explicitly pro-
vided. Note that this determinant can also be derived from Galbraith and
Galbraith (1974, p. 68) using L’Hopital’s rule. The double-differencing case is
much more complicated, on the other hand, and has not been explicitly obtained
yet as far as the author knows. Haddad (2004) obtains a closed form represen-
tation by some recursion for the inverse and the determinant of ARMA (p,q)
processes, but his results require stationarity and invertibility (i.e., AR and
MA roots outside the unit circle) and hence do not apply to the present case.
Galbraith and Galbraith (1974) provide a generally applicable method, but
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the algebra is quite involved, partly because invertibility is required for the
derivation. Zinde-Walsh (1988) provides a general method for computing deter-
minants of ARMA, but applying this general methodology to the double-
differenced AR(1) case may be overly complicated. Applying the usual cofactor
expansion did not produce useful results, either.!

The method used in the present note expresses the determinants in terms of
difference equations. It is tailored for the differenced AR(1) processes, and so
the derivation and proof are relatively simple. The covariance matrix for the
first-differenced data has the following simple form of the determinant.

THEOREM 1. Let y, = py,_; + &, with &, ~ iid(0,1). Let Q, = EAyAy’
where Ay = (Ayy,...,Ay,) with Ay, =y, — y,_,. Then

|Q,| =1+n(1—p)/1+p).

As noted earlier, this result is already known, but we still present it here
for completeness and for illustrating our method of derivation and proof.
(See the proof that follows.) We can apply the same method to the double-
differenced case. The determinant of the covariance matrix in that case is given
as follows.

THEOREM 2. Let y, = py,_; + &, with &, ~ iid(0,1). Let, this time, Q, =
EN’yA%y" where A’y = (A%yy,...,A%y,) with A>y, = Ay, — Ay,_,. Then

|Qn=(n+1)|:l+8n(l_p)(2+p)+n (1—p)2(7T+p)+n(1—p) ]

12(1 + p)

2. PROOFS AND DISCUSSION

Proof of Theorem 1. From Ay, =&, — (1 — p) 272, p/~'e,_; for all p €
(—1,1], we find that Q, := EAyAy' is a symmetric Toeplitz matrix whose (1, s)
element is |, such that wy = 2/(1 + p) and w; = —p’/~'(1 — p)/(1 + p) for
j = 1. (Also see Karanasos, 1998.) It is easy to see that

) @ & here £, = ( ) )
il = , where ¢, = (w,...,w,)";
ole o, 1

thus |Q, | = d,|Q,|, where d, = wy — £/ Q, ' £,. By the inversion formula for
partitioned matrices, we have

-1 _
Qn+1 -

1 —£,Q,"
- o e 3)
d, | ~0,'¢, 4,0,'+0,'¢,£,0,"
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Now, because w;,; = pw; for j = 1, we have &, = (w,, pé,)’, implying that
Eni Ol €y = d, (0] = 2p0, 6,9, €, + pPwg£,0Q, ' €,)
= (@, = pwy)?/d, + p2w, — pwy) = A, )
where &/ Q' ¢, = wy — d, is used. Thus

dyy = @y — §,2+1Q;+11§n+1 =[(1+ Pz)wo —2pw,] — (0, — pwo)z/d,,

=, —m,/d,,

for n = 1. Because d, = |Q,|/|Q,| for n = 1, this difference equation leads

t0 | Q10| = 71| Qi1 — 72]Q,| for n = 1. Now, the exact formulas of w, and
w, imply that 77; = 2 and 7, = 1, and so the preceding identity implies that
Qo] = 1Qsi| = [Quri] — |Q,]. Obviously |Q,| can be computed from a

sequence of equal steps, and therefore it is linear in n. Its closed form is derived
from the initial condition that |Q;] = @y = 2/(1 + p) and |Q,| = @ — 0] =
(3 — p)/(1 + p), and the final result follows immediately. (For more general
treatment of linear difference equations, see, e.g., Hoy, Livernois, McKenna,
Rees, and Stengos, 1996.) |

Now let us consider the double-differenced case. The notations in the pre-
ceding proof are used here too but with different meanings, which are explained
in relevant places. Again y, = py,_; + g, with g, ~ iid(0,1).

Proof of Theorem 2. Let w; = EA*y,A%y,_;. Because

Ny, =pNy,_ +Ne, =g, —2—plg_, +(1—p)* X p' e,
j=2

we have wy = 2(3 — p)/(1 + p), w, = —(4 — 3p + p?)/(1 + p), and w; =
p’72(1 — p)3/(1 + p) for j = 2. (See also Karanasos, 1998.) Let A%y = (A%y,,
...,A%,) and Q, = EA’yA?y’. Then Q,, is the symmetric Toeplitz matrix whose
(2,5) element is w),—|, again. The partition (2) and the inverse (3) are still valid
with the redefined ¢, = (wy,...,,)" and d, = w, — £,Q,'£,. But now we
have w;,; = pw; for j = 2 (rather than j = 1), and we do not have the simplic-
ity of the previous case. Instead, by noting that w, = pw; + 1 and w;4| = pw;
forj =2,

Loe]-L]
§n+1 - pgn + e, ’ (5)

where e, is the first column of 7,. The extra (0,e,)’ term slightly complicates
the recursion, but we can still proceed as follows.
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Similarly to the first-differencing case, using (4) for the first term in (5) and
denoting a, = e, Q' £, we get

_ — -1
Wy dn+l - §n+IQn+l§n+l

2 2 1
=A— —wa,+2pa,+ —pa,E QA E +e QO e, + —a?
d 1 P d P gn n f n=n d n

n n n

=A- 2’an(a)l - Pwo)/dn + ai/dn + 1/dnfl9

where the terms are simplified using £, Q,'é, = wy — d, and e/ Q, 'e, =
1/d,-. So we have

dpy = [(1+ p*)wy — 2pw,] = (0, — pwy — a,)’/d, = 1/d,_,. (6)
Also, by expanding a,, = &,,Q, ! e,., using the partitioned inverse (3),
we get

Aypyy = P + ((1)1 — pwy — an)/dn' (7)

By change of the variable a, to ¢, := w; — pwy — a,, (6) and (7) are rewrit-
ten as

dn+l = ﬁ()_cs/dn_ l/dnfl and Cnvi :ﬁl _Cn/dn’ (8)

where 7y = (1 + p?)wy — 2pw; = 6 and 7, = w; — pwy — p = —4. Similarly
to the first-differencing case, we note that d, = |Q,+|/|Q,|, and by further
transforming ¢, to u,, := ¢,|Q,|, the two difference equations in (8) are, respec-
tively, written as

Dn+1 6Dn_(Dnan2+/"Lﬁfl)/an1’ (9)

Mp+1 = _4Dn+1 — M (10)

where D, = |Q,,| for notational brevity.

Solving (9) and (10) is not straightforward.? By lagging once the second D,
(the first one in the parentheses) on the right-hand side of (9) and replacing
Mn—1 of (9) with —4D,_; — u,_» using (10), we get the linear expression

Dn+1 = 6Dn — 16D, - 6Dn*2 + Dn*3 - 81“’an (11)

n—1
instead of (9). Now (10) and (11) imply that (1 — L)°w,+; = 0, and so u,, is a
fourth-order polynomial of n. (This is because (1 — L)*u,,, is constant, and
so (1 — L)3w,, is linear in n, and so on.) Thus D, is also a fourth-order poly-
nomial of n because of (10). The coefficients for the polynomial can be deter-
mined from Dy, ..., Ds. The detailed algebra is omitted. u
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Extension of the present method to higher order AR processes is conceptu-
ally possible. Consider the differenced AR(p) process [1/_,(1 — ¢,L)Ay, =
Ag,. Note that multiple AR unit roots are not allowed because then Ay, are not
covariance stationary. Furthermore, if ¢»; = 1 for some i, then it leads to a pure
AR(p — 1) process [Ii+;(1 — ¢p)Ay, = &, with |¢| < 1 for k # i, for which
the determinant is widely available, including Galbraith and Galbraith (1974).
So we assume that | ¢, | < 1 for all k.

The covariance matrix for Ay, in this case is explicitly calculated by Karana-
sos (1998), and its determinant can be expressed in terms of nonlinear simulta-
neous difference equations, which are not presented in this note. Solving them
is quite challenging even for p = 2, and the double-differencing case seems
still more complicated. Yet, derivation would possibly be attempted along this
line if other methods (e.g., Galbraith and Galbraith, 1974) are overly complicated.

NOTES

1. I thank an anonymous referee for helpful comments on the literature.
2. I thank an anonymous referee for suggesting simplifying the proofs, which gave me inspira-
tion that eventually developed into this solution.
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