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In this paper I consider a system of equations describing two stratified fluids flowing in

closed, slightly inclined ducts. In the framework of the shallow water approximation with

turbulent friction acting on the wall and at the interface, I investigate a special class of

periodic travelling waves containing stable moving jumps, namely, roll waves and periodic

slug flows. The modulation equations of roll waves and slugs are derived and a nonlinear

stability criterion is obtained. As for plug flow, only a gas–liquid system is considered. The

stability criterion is expressed in terms of an integro-differential relation. For self-similar

cross-section, this criterion is simplified to a relation for a function of one variable only.

1 Introduction

Two-layer flows in closed channels are of considerable interest in many industrial processes

and equipments. A variety of configurations may occur over a range of flow rates. Roll

waves and slugs are among these flow patterns, which may exhibit quasi-periodic spatial

structures. In the shallow water approximation these flows can be described by separated

flow equations for stratified flow regimes.

This paper presents a nonlinear study of the stability of roll waves and slugs for

two-layer flows in inclined channels of arbitrary cross-section. Throughout the paper, the

averaged equations for a separated-flow model of instationary stratified flow regimes with

turbulent friction on the wall and at the interface are considered. Starting from these equa-

tions standard roll waves, i.e. periodic patterns of bores separated by continuous profiles

of the interface, and plug flow regimes for zero-mean pressure gradient gas–liquid flow

system, which consist of successive cells made of liquid, separated from one another by a

liquid layer topped by a gaseous bubble. The viscous Kelvin–Helmholtz (VKH) instability

is generally associated with the transition from stratified to slug flow through the gener-

ation of nonlinear roll waves [1, 3]. The VKH instability is a necessary condition for roll

waves to occur and for their transition into slug flow regime. The generation of roll waves

driven by a pressure gradient in wide horizontal closed channels, and in inclined ducts

with zero-mean pressure gradient have many common characteristics with the generation

of roll waves in inclined open channels [15]. The structure of roll waves and slugs in two-

layer flow is rather complicated. The relation between flow conditions and plug occurrence

has been modelled on the basis of continuous one-dimensional conservative laws.
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2 A. Boudlal

Figure 1. Sketch of flow.

The nonlinear stability problem of roll waves for flows in inclined open channel of ar-

bitrary shape is solved by deriving the modulation equations [5]. This approach has been

extended to the present investigation of a two-layer system, the stability criterion of roll

waves is formulated in terms of hyperbolicity of the modulation equations, depending on

two governing parameters. The main difficulty in obtaining the nonlinear stability domain

on a roll wave diagram is due to singularities in the hyperbolicity condition of the modula-

tion equation for the waves of infinitesimal and maximal amplitude. As for plug flow, only

a gas–liquid system is considered, amounting to investigating, in fact, roll wave stability of

the lower layer. For the class of self-similar cross-sections, the modulation equations take a

rather simple form and the hyperbolicity criterion is reduced to a condition in one variable.

For gas–liquid flow, two different conservation law equations have been investigated;

the plug flow model has been derived, and modulation equations and the stability criteria

for roll wave and plug flow regimes have been derived. A simple form of hyperbolicity

criterion for the modulation equations lets us show that infinitesimal waves and long

waves with and without plugs are unstable and only roll waves of finite length are stable

for the class of self-similar channels.

2 Governing equations

I assume that one-dimensional two-layer flows of immiscible fluids in long, inclined ducts

of arbitrary cross-section are governed by the following system [1, 2]:

(ρ+A+)t + (ρ+A+u+)x = 0

(ρ−A−)t + (ρ−A−u−)x = 0

ρ+(u+
t + u+u+

x ) + p+
x = −τ+/R+ − τi/R

+
i + ρ+g sinϕ

ρ−(u−
t + u−u−

x ) + p−
x = −τ−/R− + τi/R

−
i + ρ−g sinϕ.

(1)

Here t is time, x is distance along the duct, g is acceleration due to gravity, ϕ is the angle

of inclination of the channel, ρ±, A±, u± are the density, the cross-section area and the

stream-wise velocity in the upper and lower layer, respectively (Figure 1). The vertical

pressure distribution in the flow is supposed to be hydrostatic, therefore the pressures at
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Roll waves and plugs in two-layer flows 3

the top and the bottom of the duct, p±, are connected by the expression

p− = p+ + ρ+g cos ϕh+ + ρ−g cos ϕh−, (2.1)

where h+ and h− are the depths of the upper and lower layers of fluid. In the right-hand

terms of (1), τ± are the shear stresses at the wall applied to the corresponding wet

perimeter L±
w , τi is the shear stress at the interface with the perimeter Li, R

± and R±
i are

the hydraulic radii, calculated by the formulae

R± = A±/L±
w , R±

i = A±/Li. (2.2)

The shear stresses τ±, τi are assumed to be

τ± = c±ρ±u±|u±|, c± ≡ const,

τi = ciρ
+(u+ − u−)|u+ − u−|, ci ≡ const.

(2.3)

Consider the case where the two phases are incompressible (ρ± ≡ const) and filling the

duct entirely, i.e.

A+ + A− = A0 ≡ const, h− + h+ = h0 ≡ const. (2.4)

By using the following dimensionless variables

x̃ = c−x/h0, t̃ = c−t/
√
b/h0, h̃ = h−/h0, b = (1 − λ)g cos ϕ,

Ã = A−/A0, u = u−/
√
b · h0, w = u+/

√
b · h0, R̃± = R±/h0,

where

α = tan ϕ, βi = λci/c
−, γ = λc+/c−, λ = ρ+/ρ−,

(2.1)–(2.4) can be simplified. For co-current flows (u > 0, w > 0) the equations take the

following form: (“tilde” over variables is omitted)

At + (Au)x = 0,

(1 − A)t + ((1 − A)w)x = 0,

(u− λw)t + (u2/2 − λw2/2 + h)x = F,

F = α− u2/R− + β(w − u)2(1/R+
i + 1/R−

i ) + γw2/R+,

β = βi sgn(w − u).

(2.5)

The linear stability of steady-state flows for (2.5) has been investigated in [1, 3, 4]. To

describe the transition from a stratified flow regime to flows with liquid plugs, in which

one phase completely occupies the duct cross-section, we must consider flows with waves

of finite amplitude at the interface.

There are different mechanisms of the transition from stratified to wavy flow regimes

in two-layer flows. Depending on a solution the system (2.5) is of elliptic–hyperbolic

type. In the elliptic domain long-wave perturbations of any steady-state flow are growing
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exponentially and the solution cannot be realized in long channels (the Kelvin–Helmholtz

instability). Another mechanism of instability is due to friction terms in (2.5). A steady-

state solution of (2.5) from the hyperbolic region is unstable when the velocity of the

kinematic wave exceeds the velocity of long waves [17]. In this case the VKH instability is

realized. It is well known that VKH instability results in roll wave generation in both open

channel flow and in two-layer flows [1, 3, 4]. In the frame of the model (2.5), roll waves

are travelling periodic waves containing stable discontinuities or jumps. Roll waves for the

one-layer flow in an inclined channel with arbitrary cross-section have been investigated

in [6]. It is shown that, depending on the channel form, the multijump configuration of

roll waves can be found.

In the present study I consider roll waves of finite amplitude for two cases: (a) two-layer

flows in a wide horizontal duct and (b) the plug flow regime in inclined channels.

To describe discontinuous solutions, jump conditions for (2.5) must be chosen. Note that

(2.5) are represented in conservation form and the jump conditions are uniquely defined by

the full set of conservation laws [16]. The corresponding jump conditions provide the mass

and energy conservation in the phases. The main disadvantage of the jump conditions

for the two-layer flow derived from (2.5) is that they are inconsistent with the total

momentum conservation. Nevertheless, (2.5) and the jump conditions derived from this

set of conservation laws are widely used to simulate two-layer flows with discontinuities.

Another set of conservation laws for two-layer flows have been used in [9, 18]. The

main assumption of their approach is that the total momentum in two-layer flow and

the energy in one of the layers are conserved. It means that the energy dissipation occurs

completely in the other layer. Suppose that the dissipating layer is the lower one. The

system of conservation laws takes the form

At + (Au)x = 0,

(1 − A)t + ((1 − A)w)x = 0,

(A(u− λw))t + (Au2 + λ(1/2 − A)w2 + P (A))x = AF.

(2.6)

Here P (A) =
∫ A

0
sh′(s)ds is the total pressure due to buoyancy effects. Note that (2.5) and

(2.6) are equivalent for smooth solutions, but the jump conditions are different.

The set of conservation laws (2.6) is more appropriate for film flows in a duct. In this

case all dissipation occurs in the liquid layer due to wave breaking.

In the present study I consider roll wave of finite amplitude mainly for (2.5). Roll waves

governed by (2.6) will be considered only in Section 7 for the plug flow regime, when the

parameter λ vanishes.

3 Travelling waves

A theoretical study of finite amplitude roll waves in two-layer flow between two parallel

horizontal planes has been performed in [11] for two liquids of small density difference

(the Boussinesq approximation). With model (2.5) the theory can be extended to the

general case of any density difference between two layers.
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Figure 2. The function G(A): (a) m+ > 0; (b) m+ = 0.

Consider first the structure of nonlinear roll waves travelling downstream the channel

with a constant velocity D, i.e.

0 < u � D, 0 < w � D.

In the frame of reference moving with the wave velocity the flow is steady, therefore a

solution of (2.5) depends on a single variable ξ= x− Dt. Equations (2.5) take the form

A(D − u) = m, (1 − A)(D − w) = m+, (3.1)

d

dξ

(
1

2
(u− D)2 − λ

2
(w − D)2 + h

)
= F. (3.2)

Note that for a given channel h= h(A) and the system (3.1)–(3.2) can be reduced to one

equation,

dA

dξ
=
F(A)

∆(A)
, (3.3)

with

∆(A) = G′(A) = h′(A) − (m2/A3 + λm+2
/(1 − A)3), (3.4)

G(A) =
m2

2A2
− λm+2

2(1 − A)2
+ h(A). (3.5)

The function F =F(A) is found from (2.5) by eliminating u and w in view of (3.1).

The dependence G=G(A) is shown for m > 0 in Figure 2. The asymptotic behaviour

of G(A) at A= 1 is different according to m+ > 0 (Figure 2(a)) or m+ = 0 (Figure 2(b)). A

periodic travelling wave (roll wave) can be constructed as the transition MNEM (regular

roll wave (RW)), Figures 2(a), 2(b) and 3(a) and as the transition M′N′E′M′ (inverted

RW, Figures 2(a) and 3(b)). A regular RW consists of the smooth part MEN described by

a solution of (3.3) and contains the hydraulic jump MN, since for discontinuous solutions

of (2.5) the relations at the jumps moving with the velocity D can be expressed in the

form

G(Al) = G(Ar),

where Al, Ar are the limits on the left and right of the jump. The flow is supercritical
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Figure 3. Profile of roll waves: (a) regular RW; (b) inverted RW; (c) m+ = 0: RW with plugs.

(∆ < 0) at ME and subcritical (∆ > 0) at EN. Therefore, it is necessary for RW existence

that there is a critical cross-section y where

F(y) = 0, ∆(y) = 0. (3.6)

Moreover, to construct a regular roll wave MNEM it is necessary and sufficient that the

following conditions are satisfied in the vicinity of a critical point y:

F(A) < 0 for Ar < A < y,

F(A) > 0 for y < A < Al.
(3.7)

In view of (3.7) the profile of wave A(ξ) is the monotone increasing function for Ar <

A < Al and the jump MN is stable, since the flow before the jump is supercritical (∆ < 0)

and it is subcritical behind (∆ > 0). The function G(A) has a local minimum at y. For

m+ > 0 there exists y∗ > y, with ∆(y∗) = 0, in which a local maximum of G(A) is realized

(Figure 2(a)), Therefore, regular RW are possible only for y < Al < y∗.

In the vicinity of y∗ it is possible to construct inverted roll waves M′N′E′M′ (Figure 2(a)).

Now the jump M′N′ is stable with A′
l < y∗ < A′

r and the necessary and sufficient conditions

for inverted roll wave existence take the form

F(A) < 0 for A′
l < A < y∗,

F(A) > 0 for y∗ < A < A′
r.

(3.8)

The profile of an inverted roll wave is shown in Figure 3(b). It is worthy of noting that for

existence of regular and nonregular roll waves the necessary condition reads F ′(yc) > 0

with yc = y or yc = y∗.

I have considered the simplest configurations of roll waves. The dependence G=G(A)

can have several local extrema even for one-layer flow (λ= 0) depending on the channel

form. In this case the multijump structure of roll waves can be constructed, as has been

shown in [8]. I pay further attention to two cases, which lead to the RW configuration

shown in Figures 2 and 3, namely,
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(a) two-layer flow in a horizontal duct;

(b) slug flow regime in a slightly inclined duct.

4 Two-layer flow in a horizontal duct

Consider the flow in a wide horizontal duct (α= 0, A= h, R+ =R+
i = 1−h, R− =R−

i = h).

Suppose that the total flow rate is constant, i.e.

hu+ (1 − h)w = um ≡ const. (4.1)

Let us show that for given parameters β, γ of the model (2.5) and for given flow rate um,

all roll waves may by described by two parameters, say, yc and hr . Here yc is the critical

depth with ∆(yc) = 0 and hr is the minimal depth of the lower layer in a wave.

Let 0 < yc < 1. I am going to show that uc, wc, m, m
+, D depend only on yc and that

these parameters can be found in unique way for downward roll waves (0 < u < D, 0 <
w < D). Here uc and wc are the critical velocities, i.e.

ycuc + (1 − yc)wc = um,

F(yc) = −u2
c

yc
+
β(wc − uc)

2

yc(1 − yc)
+

γw2
c

1 − yc
= 0,

∆(yc) = 1 − (D − uc)
2

yc
− λ(D − wc)

2

1 − yc
= 0.

(4.2)

The second equation in (4.2) can be reduced to the following equation for ζ=wc/uc and

β= βi sgn(wc − uc):

(γyc + β)ζ2 − 2βζ + β + yc − 1 = 0 (4.3)

The only admissible root of (4.3) is given by

ζ =
β +

√
β2 − (γyc + β)(β + yc − 1)

γyc + β
. (4.4)

For 0 < yc < 1/(γ + 1) it follows from (4.4) that ζ > 1 (β > 0). For the case 1/(γ + 1) <

yc < 1 and βi > γ we have ζ < 1(β < 0).

From the first equation in (4.2) the critical velocities uc, wc can be found in a unique

way:

uc = um/(yc + ζ(1 − yc)), wc = ζuc. (4.5)

The wave velocity D may be found from the third equation of (4.2) as follows. The

function

f(D) = 1 − (D − uc)
2

yc
− λ(D − wc)

2

1 − yc

has its maximum at

D = Dmax = χuc + (1 − χ)wc, 0 < χ =
1

yc

(
1

yc
+

λ

1 − yc

)−1

< 1.
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8 A. Boudlal

Therefore, (Dmax − uc)(Dmax − wc) � 0. We are looking for a solution f(D) = 0 with

D > uc, D > wc, so the dependence D = D(yc) is given by the formula

D =
b+

√
b2 − ac

a
, (4.6)

with

a = (1 − yc − λyc), b = (1 − yc)uc + λycwc,

c = (1 − yc)u
2
c + λycw

2
c − yc(1 − yc).

The relation (4.6) presents a real value of D if the following restrictions on the total flow

rate um are satisfied:

f(wc) � 0 or u2
m < yc(yc + ζ(1 − yc))

2/(1 − ζ)2 for wc > uc,

f(uc) � 0 or u2
m < λ−1(1−yc) (yc+ζ(1−yc))2/(1−ζ)2 for uc > wc.

(4.7)

Finally, under the conditions (4.7), we have found uc, wc, D, m= (D − uc)yc, m
+ = (D −

wc)(1 − yc) as functions of the variable yc.

The next step is to investigate the dependence of G(h) on h for two-layer flows in a

horizontal channel. Note that

∆′(h) =
3m2

h4
− 3λm+2

(1 − h)4
(4.8)

and there is only one point of inflection h= hi of the function G(h), i.e. ∆′(hi) = 0, 0 <

hi < 1. It follows from (4.8) that ∆′(hi) > 0 for 0 < h < hi and ∆′(hi) < 0 for hi < h < 1.

Therefore, the function G(h) has exactly two local extrema, as shown in Figure 2(a), if

and only if ∆(hi) > 0, i.e.

(m2)1/4 + (λm+2
)1/4 < 1.

Let ∆(hi) > 0 and there exist two extremum points of G(h):

∆(y) = 0, ∆(y∗) = 0, 0 < y < hi < y∗ < 1.

A regular roll wave MNEM exists if yc = y and (3.7) is satisfied (Figure 2(a)). For given

minimal depth hr in a wave the conjugate depth hl can be calculated from

G(hr) = G(hl) (4.9)

with

G(h) = h+
m2

2h2
− λm+2

2(1 − h)2

and the wave profile can be found as a solution of (3.3) for hr < h < hl . Therefore, for

a fixed value um satisfying (4.7) the diagram of admissible roll waves can be constructed

on the (y, hr) plane. To find all points (yc, hr) corresponding to admissible roll waves, we

start from the diagonal (yc, yc) of the square [0, 1] × [0, 1]. A point (yc, yc) describes a roll

wave of infinitesimal amplitude if

F ′(yc) > 0. (4.10)

Note that (4.10) is the exact linear instability condition of a steady-state flow [3, 4, 8].
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Figure 4. RW diagram for two-layer flows in a horizontal channel. 1, 2, regular RW;

3, 4, inverted RW.

Then, for every value of yc satisfying (4.10), we choose a value of the second governing

parameter hr . Note that hr < y < hl for 0 < yc < hi and hl < yc < hr for hi < yc < 1. Here

hl is the conjugate depth calculated from (4.9) and the point of inflection hi is expressed

by virtue of (4.8) as follows:

hi =
1

1 + (λm+2/m2)1/4
.

It is clear that the set of admissible values of hr and hl satisfying (3.7) is an interval

(h−, h+). At one of the boundaries of the interval h± the function ∆(h) or F(h) vanishes

and we have the roll wave of limiting amplitude. All possible admissible parameters (y, hr)

(domains 1, 3) and (y, hl) (domains 2, 4) are shown in Figure 4 for um = 3, λ= β= γ= 0.7.

For 0 < y < hi (domains 1, 2) the diagram describes the regular RW and for hi < y < 1

(domains 3, 4) it gives the admissible parameters for the inverted RW.

5 Modulation equations

Consider the stability of roll waves of finite amplitude. Let the flow in an inclined duct of

arbitrary cross-section be governed by (2.5) and yc and z be the critical and the minimal

section occupied by the lower fluid in a roll wave, respectively, and v= v(z, yc) be the

conjugate section (yc = y, z=Ar, v=Al for a regular roll wave and yc = y∗, z=A′
l , v=A′

r

for an inverted roll wave; Figure 2(a)). The problem of nonlinear stability of periodic wave

trains with slowly varying parameters (z, yc) can be solved by analysis of the modulation

equations for such trains [17, 5, 12]. After averaging (2.5) over a fixed length scale, which

is large enough compared to the length of roll waves, we have the following modulation
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10 A. Boudlal

equations:

At + (Au)x = 0,

(u− λw)t +

(
1

2
u2 + h− λ

2
w2

)
x

= 0.
(5.1)

Here

A =
1

L

∫ L

0

A(ξ)dξ =
1

L

∫ v

z

sa(s, yc)ds,

Au =
1

L

∫ L

0

A(ξ)u(ξ)dξ =
1

L

∫ v

z

(sD − m)a(s, yc)ds = DA− m,

u− λw =
1

L

∫ L

0

(u(ξ) − λw(ξ))dξ = (1 − λ)D − Φ(z, yc),

1

2
u2 + h− λ

2
w2 =

1

L

∫ L

0

(
1

2
u2(ξ) + h(ξ) − λ

2
w2(ξ)

)
dξ

=
1

2
(1 − λ)D2 − DΦ(z, yc) +Ψ (z, yc),

L =

∫ L

0

dξ =

∫ v

z

a(s, yc)ds

a(s, yc) = dξ/dA = ∆(s, yc)/F(s, yc),

Φ(z, yc) =
1

L

∫ v

z

(
m

s
− λm+

1 − s

)
a(s, yc)ds,

Ψ (z, yc) =
1

L

∫ v

z

(
m2

2s2
− λm+2

2(1 − s)2
+ h(s)

)
a(s, yc)ds.

(5.2)

Note that all averaged quantities in (5.2) are the functions of the two governing parameters

z and yc, since m=m(yc), m
+ =m+(yc), v= v(z, yc). The right-hand side of (2.5) vanishes

after averaging due to periodicity of a wave train. By virtue of (5.2) the modulation

equations represent the following nonlinear systems of partial differential equations for

two unknown variables z and yc:

At + (DA− m)x = 0,

((1 − λ)D − Φ)t +

(
1 − λ

2
D2 − DΦ+Ψ

)
x

= 0.
(5.3)

In the general case, (5.3) have the mixed type. They can be hyperbolic or elliptic depending

on the solution. We say that a periodic wave train is stable if the corresponding governing

parameters yc and z belong to the hyperbolicity domain of (5.3). Therefore, the problem

of the stability of finite amplitude roll waves is reduced to the analysis of the hyperbolicity

of the modulation equations.

The characteristics of (5.3) can be expressed as follows:

dx

dt
=

1

2θ

(
2θD +W ±

√
W 2 + 4δθΨz/Az

)
,

W = δΦz/Az − Φ
dD
dyc

+Ψyc −ΨzAyc/Az,
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θ = (1 − λ)
dD
dyc

− Φyc + ΦzAyc/Az,

δ = A
dD
dyc

− dm

dyc
.

The hyperbolicity condition for (5.3) reads

W 2 + 4δθΨz/Az > 0. (5.4)

To apply the criterion (5.4) for the problem of roll wave stability, it is necessary to apply

the formulae (5.2) taking into account the singularities for L → 0 and L → ∞.

6 Plug flows in an inclined duct

Let us consider two-layer flows in an inclined duct of arbitrary cross-section. The stratified

flow regime transforms into a plug flow when one of the phases, say, the lower liquid,

occupies the total cross-section of the duct due to the intensive wave motion at the

interface (Figure 1). In this case, if the entrainment between the fluids is neglected, we

have for a travelling wave moving with the velocity D

m+ = (1 − A)(D − w) = 0, (6.1)

and D ≡ w for A < 1.

The function G(A) takes the form

G(A) =
m2

2A2
+ h(A), 0 < A < 1.

In ducts of a relative simple form, such as the round tubes or the parallel plates, the

behaviour of G(A) is shown in Figure 2(b). It has one absolute minimum at A = y.

The flow in the liquid plug is governed by the equations (R = R−)

A ≡ 1, u ≡ u∗ = D − m,

dp+

dξ
= α− u2

∗
R(1)

.
(6.2)

We have p+ ≡ const outside of the liquid plug. Therefore, the length of the liquid plug Ls
is proportional to the pressure drop ∆p+ in the plug, i.e.

Ls =
∆p+

(α− u2
∗/R(1))

, ∆p+ = G(As) − G(1),

where As is the wet cross-section before the plug (Figures 2(b), 3(c)). Now we can construct

roll waves with and without plugs for m+ = 0 analogously to the case m+�0. For a

given parameters yc and Ar, 0<Ar <yc = y < 1 satisfying (3.7), the transition MNEM in

Figures 2(a) and 2(b) describes regular roll waves, if the conjugate state Al < 1. If Al = 1

and ∆p+> 0, we have roll waves with plug, described by the diagram MsNsKEMs in

Figure 2(b). The possible profiles of the wave are shown in Figure 3(c).
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12 A. Boudlal

If λ � 1 (gas–liquid flow system [14]), and the upper fluid moves between the successive

plugs with the wave velocity D, we can neglect the gas friction at the wall and at the

interface. This results in the following relations for periodic travelling waves (m+ ≡
0, β= 0, γ= 0):

G(A) =
m2

2A2
+ h(A) + p+, p+ = 0 for 0 < A < 1,

F(A) =

{
α− u2(A)/R(A), 0 < A < 1

α− u2
∗/R(1), A = 1.

(6.3)

Contrary to the two-layer flows in a horizontal channel, which are driven by the pressure

gradient, the mean pressure gradient in the flow under consideration is assumed to be

zero. For such kind of flows only the mean flow rate of the liquid can be given. The mean

flow rate of the gas caused by the wavy motion of the liquid layer can be found after

calculation of the roll wave profile by (3.3) and (6.3). Therefore, we will investigate, in

fact, the roll wave stability of the lower layer.

Let us consider the case of the channel form:

h(A) =
1

�
A�, R(A) = A�. (6.4)

The different cases of self-similar channels may be described by (6.4) after proper scaling

of the dependent and independent variables. In particular, it corresponds to flows over

an incline (�= 1) and in the channel of triangular shape (�= 2). It has been noted in [12]

that for one-layer flows in the self-similar channels satisfying (6.4), the stability of periodic

travelling waves depends only on the combination of governing parameters ζ= z/y. Here

we study (2.5), which lead to different set of conservation laws compared to the system

considered in [12]. Nevertheless, for roll waves of moderate amplitude, which do not touch

the upper lid of the duct (A< 1), the stability criterion depends on the variable ζ only,

exactly like that in open channel flows. To see that, let us express the averaged quantities

in (5.2) using the self-similar variable ζ= z/y:

A = yζ, ζ =
1

l

∫ ω

ζ

sã(s) ds,

Au = DA− m = y
�
2 +1(D1ζ − 1), D1 = 1 +

√
α,

u− λw = y
�
2 ((1 − λ))D1 − ϕ),

1

2
u2 + h− λ

2
w2 = y�

(
1−λ
2

D2
1 − D1ϕ+ ψ

)
,

ϕ =
1

l

∫ ω

ζ

ã(s)

s
ds, ψ =

1

l

∫ ω

ζ

(
1

2s2
+
s�

�

)
ã(s) ds,

L = y�l, l =

∫ ω

ζ

ã(s) ds,

ã(s) = (s� − s−2)/(αs− (D1 − 1/s)2s1−�).

(6.5)

The jump condition for the conjugate depths z and v (z < y < v) with the variables
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ζ = z/y and ω = v/y takes the form

1

2ζ2
+
ζ�

�
=

1

2ω2
+
ω�

�
. (6.6)

For open channel flows (v < 1) relation (6.6) results in ω = ω(ζ) (ζ < 1 < ω) and the

functions ζ, l, ϕ, ψ in (6.5) depend only on the variable ζ. The quantities in (5.4) can be

rewritten as follows:

Az = ζ
′
, Ψz = y�−1ψ′,

δ = y
�
2 δ̃, δ̃ = δ̃(ζ) =

1

2
(�D1ζ − � − 2),

θ = y
�
2 −1θ̃, θ̃ = θ̃(ζ) =

�

2
((1 − λ)D1 − ϕ) + ζϕ′/ζ

′
),

W = y�−1W̃ , W̃ = W̃ (ζ) =
1

2
(�D1ζ − � − 2)ϕ′/ζ

′−

− 1

2
�ϕD1 + �ψ − ζψ′/ζ

′
.

Here ′ denotes the derivative with respect to ζ. Therefore, the hyperbolicity condition

for the modulation equations (5.1) is transformed to the relation for the function of the

variable ζ:

W̃ 2 + 4δ̃θ̃ψ′/ζ
′
> 0.

The necessary condition of roll wave existence,

F ′(y) > 0,

gives the restriction on the duct inclination angle

α = tan ϕ > 4/�2. (6.7)

For the flows over an incline (�= 1) condition (6.7) coincides with the well-known

criterion α> 4 of instability of a steady-state flow [13]. For ducts satisfying (6.7), roll

waves exist for the governing parameters y and z belonging to the sector

ζm < ζ = z/y < 1.

The value ζm is the maximal root of the equation

αζ − (D1 − 1/ζ)2ζ1−� = 0,

which satisfies the condition ζm < 1.

The expressions for the averaged quantities in the modulation equations (5.3) are to be

modified for the plug flow regime (Ls > 0). For the self-similar channels (6.4) they can be
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14 A. Boudlal

Figure 5. RW diagram for plug flows in an inclined channel. EQS: RW with plugs; RW are

unstable in the shaded domain.

given as the functions of the variables y and z as follows:

Li =

∫ 1

z

ã(s/y) ds, Ls =
G(z) − G(1)

α− u2
∗

,

A =
1

L

(∫ 1

z

sã(s/y) ds+ Ls

)
,

Φ =
1

L

(∫ 1

z

m

s
ã(s/y) ds+ mLs

)
,

Ψ =
1

L

(∫ 1

z

(
m2

2s2
+
s�

�

)
ã(s/y) ds+

(
m2

2
+

1

�

)
Ls +

1

2
(α− u2

∗)L
2
s

)
,

D = D1y
�/2, m = y�/2+1, L = Li + Ls.

(6.8)

For the plug flow regime the hyperbolicity domain of (5.3), (6.8) can be found by (5.4).

The RW diagram for plug flows between two parallel inclined plates (� = 1) is shown in

Figure 5 for the Froude number Fr = α1/2 = 5. All admissible parameters (y, z) of the roll

waves with plug (Ls > 0) lie in the domain EQS. RW are unstable in the shaded domain.

7 Film flows with plugs

Now consider two-layer flows in an inclined duct described by (2.6). Equations (2.6) are

more preferable for the stratified gas–liquid flow (λ � 1) with a low flow rate of the gas

phase. It occurs for the plug flow regime in an inclined channel, when the gas is just

trapped by the liquid and the mean pressure gradient in the flow equals zero. In this

case the gas friction on the wall and at the interface can be neglected (β= γ= 0) and the

function F in (2.6) with R− =R is expressed as follows (R=R−):

F = α− u2/R(A). (7.1)
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The stability of roll waves for (2.6), (7.1) can be investigated analogously to the case of

the two-layer flow considered above. The smooth part of a travelling wave is described

by (3.3). But the jump conditions for discontinuous solutions of (2.6) are expressed in the

form

M(Al) = M(Ar) (7.2)

with the function

M(A) =
m2

A
+ λ

(
1

2
− A

)
m+2

(1 − A)2
+ P (A) (0 < A < 1).

Since for the plug flow regime w ≡ D and, consequently, m+ ≡ 0, the function M(A) =

m2/A+P (A) replaces the function G(A) in previous considerations. For the channels with

the convex pressure term P (A), the function M(A) is convex too and it has the only

critical cross-section y, 0 < y < 1 with m = m(y). The necessary and sufficient conditions

for the roll wave existence coincide with (3.7) with the conjugate sections Al, Ar satisfying

(7.2). The stability of roll waves in the open channel flows for the regular case (P ′′ > 0)

has been investigated in [12].

The flow with liquid plugs in a closed duct can be described in the way analogous to

that considered above. When in a travelling wave the liquid occupies the total cross-section

of the duct (A= 1), the velocity in the liquid plug is constant (u≡ u∗) and the pressure

distribution in a plug is linear, i.e.

dM

dξ
=
dp+

dξ
= α− u2

∗
R(1)

.

Therefore, the length of a plug Ls can be expressed as follows:

Ls =
M(Al) −M(1)

α− u2
∗

R(1)

.

Comparing the roll wave structure with and without liquid plugs one can see that a roll

wave is defined completely by two parameters, and after averaging over the fixed-length

scale, which is large enough compared with the length of roll wave, we have the following

modulation equations (cf. (5.1)):

At + (Au)x = 0

(A(u− λw))t +

(
Au2 + λ

(
1

2
− A

)
w2 + P

)
x

= 0.
(7.3)

To express the averaged quantities A, Au as functions of y and z (y = yc, z = Ar) we can
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use (5.2). The averaged momentum equation now takes on the form

(A(u− λw)) = (1 − λ)DA− m,

Au2 + λ

(
1

2
− A

)
w2 + P = D2A− 2Dm+M + λ

(
1

2
− A

)
D,

M =
1

L

∫ L

0

M(A(ξ)) dξ =
1

L

∫ v

z

(
m2

s
+ P (s)

)
a(s, y) ds.

(7.4)

The hyperbolicity condition for (40) is

(
My − MzAy

Az
− 2m

dD
dy

+ λD
(
dD
dy

− dm

dy

))2

+ 4δδλ
Mz

Az
> 0,

δλ = (1 − λ)A
dD
dy
, δ = A

dD
dy

− dm

dy
.

(7.5)

For the self-similar channels considered above,

P =
1

�
A�+1, R(A) = A�. (7.6)

For λ= 0, (2.6) and (7.6) describe the open channel flows over an incline (�= 1), in

the channel of triangular shape (�= 1/2) and the film flows in tubes (�= 2/3). The

specific feature of (7.3), (7.6) is that the hyperbolicity condition (7.5) can be expressed

by the function of one variable, say, ζ= z/y as it has been demonstrated in (6.5). It has

been shown in [12] that the modulation equations (7.3) with λ= 0 are hyperbolic for

ζm � ζ− < ζ < ζ+ < 1. Note that the hyperbolicity interval (ζ−, ζ+) doesn’t contain 1.

It means that the roll waves of infinitesimal amplitude are always unstable and that for

free surface flows the hyperbolicity domain of (7.3) is a sector on the (y, z) plane with

boundaries z= ζ±y. It’s worthy of noting that the values ζ± are rather close to ζm. Thus,

for �= 1, α= 9 we have ζ− = 0.593, ζ+ = 0.604, ζm = 0.589 and only roll waves, which are

long enough, are stable for the shallow water equations (7.1).

Flows with plugs in an inclined closed duct can be considered in the similar way to the

case of two-layer flows considered above. For the self-similar duct (7.6) with A0 = 1, the

formulae (6.5), (6.8) must be modified as follows:

Li = y�

∫ 1/y

ζ

ã(s) ds, Ls = y�+1(µ(ζ) − µ(1/y))/q,

L = Li + Ls,

µ(s) = 1/s+ s�+1/(� + 1), q = α− y�(D1 − y)2,

A =
1

L

(
y�+1

∫ 1/y

ζ

ã(s) ds+ Ls

)
,

M =
1

L

(
y2�+1

∫ 1/y

ζ

µ(s)ã(s) ds+

(
y�+2 +

1

� + 1

)
Ls +

1

2
qL2

s

)
.

(7.7)
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Figure 6. RW diagram for one-layer flows (λ = 0). OQE is for free surface RW, QES is for RW

with plugs, stable RW are in the shaded domain: (a) Fr = 3; (b) Fr = 5.

Here the constant velocity u∗ = y�/2(D1 −y) and the constant pressure gradient in a liquid

plug

dp+

dξ
≡ q

are taken into account. The hyperbolicity criterion (7.5) can be applied to the stability

analysis of the periodic solutions of (7.1) for the free surface flows as well as, in view of

(7.7), for the flows with plugs.

As has been mentioned above, in free surface flows only roll waves of near maximal

amplitude are stable. Therefore, the structure of the stability domain can be seen more

clearly on the (y, A) plane. In Figure 6 the stability diagram of roll waves over an incline

(�= 1, λ= 0) is shown on the (y, A) plane for two different values of the Froude number

Fr = α1/2, (a) Fr = 3 and (b) Fr = 5. Roll waves exist between the diagonal OQ, which

corresponds to the infinitesimal waves, and the straight line OS with the equation A = ζmy,

which corresponds to the waves of maximal amplitude. Roll waves with the free surface

exist in the domain OQE, roll waves with the liquid plugs exist in the domain QES. The

hyperbolicity domains of (7.3) are shown as shaded areas. These stability domains are

bounded for free surface waves (OQE) by the straight lines as it was explained above

for the self-semilar channels. Note that for both the cases Fr = 3 and Fr = 5, infinitesimal

waves and long waves with and without plugs are unstable. Only roll waves of finite

length are stable.

In the gradientless two-layer flows, even a smalldensity fraction λ (λ�, 1) influences the

RW stability, especially, in film flows. The RW stability diagram is shown in Figure 7 for

two values of λ : λ= 0.001 (Figure 7(a)) and λ= 0.1 (Figure 7(b)). The Froude number

Fr = α1/2 = 3 in both cases. The notations are the same as in Figure 6. It can be seen in

Figure 7 that the trapped gas phase results in the stability of RW for film flows (y� 1),

but it does not significantly affect the stability of roll waves with plugs.
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Figure 7. RW diagram for two-layer flows with trapped gas phase (Fr = 3): (a) λ = 0.01;

(b) λ = 0.1. For other notations see Figure 6.

8 Conclusion

The basic mechanism of roll wave generation for one-layer flows in inclined open channel

and for two-layer flows in tubes and ducts is the same, namely, the instability of steady-

state shear flows. But the wave patterns in the two-layer flow are much more complicated

compared to the open channel flow. Nevertheless, the periodic travelling waves or the

roll waves are represented by a two-parameter family of solutions of the shallow water

equations. This gives the possibility to extend the stability approach for roll waves of finite

amplitude developed for one-layer flows and based on the modulation equations analysis.

The analysis can be applied also to the plug flow regime for pressure gradientless two-

layer flows in an inclined channel. It is worthy of noting that the plug flows considered in

the paper are the particular case of roll waves since such waves are defined completely by

the critical and minimal sections as in the separated flow regime. Therefore, this analysis

cannot be applied directly to the slug flow regime for two-layer flow in horizontal channels

and tubes.
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