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Abstract

We find all integer solutions to the equation x2 + 5a · 13b · 17c = yn with a, b, c ≥ 0, n ≥ 3, x, y > 0 and
gcd(x, y) = 1. Our proof uses a deep result about primitive divisors of Lucas sequences in combination
with elementary number theory and computer search.
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1. Introduction

Let λ be a positive integer. The equation

x2 + λ = yn (1.1)

in positive integers is called a Lebesgue–Nagell equation. Cohn [10] and Bugeaud et
al. [7] studied (1.1) for λ in the range 1 ≤ λ ≤ 100 and others studied (1.1) when λ is a
perfect power (see [2–4, 17]). Many others studied (1.1) when the set of prime factors
of λ is fixed (see [1, 8, 9, 11, 12, 14–16, 18]). For a comprehensive survey of equation
(1.1) and its generalisations, see Le and Soydan [13] with over 350 references. In this
paper, we study (1.1) when λ only has prime factors 5, 13, 17. Our result extends the
work in [14, 16]. We will prove the following result.

THEOREM 1.1. All integer solutions (n, a, b, c, x, y) to the equation

x2 + 5a · 13b · 17c = yn

with n ≥ 3, a, b, c ≥ 0, x, y > 0 and gcd(x, y) = 1 are listed in Table 1.

A main tool in our paper is a deep result of Bilu et al. [5] on primitive divisors
of Lucas sequences. All computations in the paper are done in MAGMA [6]. The
MAGMA code is available from the author on request.
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20 N. X. Tho [2]

TABLE 1. Solutions for Theorem 1.1.

(n, a, b, c, x, y) (n, a, b, c, x, y) (n, a, b, c, x, y)

(3, 0, 1, 0, 70, 17) (3, 1, 1, 2, 716, 81) (3, 2, 2, 0, 142, 29)
(3, 3, 0, 2, 2034, 161) (4, 0, 0, 1, 8, 3) (4, 1, 1, 0, 4, 3)
(4, 1, 1, 1, 36, 7) (4, 5, 1, 1, 26556, 163) (4, 1, 1, 2, 716, 27)
(6, 1, 1, 2, 716, 9) (12, 1, 1, 1, 716, 3)

2. Preliminaries

Let α and β be two algebraic integers such that α + β and αβ are nonzero coprime
integers and α/β is not a root of unity. The Lucas sequence (Ln)n≥1 is defined by

Ln =
αn − βn

α − β for all n ≥ 1.

A prime number p is called a primitive divisor of Ln if p divides Ln but p does not
divide (α − β)2L1L2 . . .Ln−1. From the theorems of Bilu et al. [5]:

(i) if Ln has a primitive divisor q, then n divides q −
(

(α−β)2

q

)
, where

(
∗
∗

)
denotes the

Legendre symbol;
(ii) if n > 30, then Ln has a primitive divisor;
(iii) for 4 < n ≤ 30, if Ln does not have a primitive divisor, then (n, α, β) can be found

from Table 1 in [5].

3. Proof of Theorem 1.1

We fix the set S = {5, 13, 17}. We first assume that n is an odd prime in

x2 + 5a · 13b · 17c = yn. (3.1)

If 2 | y, taking (3.1) mod 8 gives 1 + (−3)a+b ≡ 0 (mod 8), which is impossible.
Therefore, 2 � y and 2 | x. Write 5a · 13b · 17c = DC2, where C, D ∈ Z+ and D is
square-free. Let K = Q(

√
−D). Let h(K) and OK be the class number and the ring

of integers of K, respectively. Then h(K) ∈ {1, 2, 4, 8, 16} and OK = Z[
√
−D]. From

(3.1),

(x + C
√
−D)(x − C

√
−D) = (y)n.

Since 2 � y and gcd(x, y) = 1, the two ideals (x + C
√
−d) and (x − C

√
−d) are

coprime. Therefore,

(x + C
√
−D) = An,

where A is an ideal in OK . Since n � h(K), the ideal A is principal. Since the units in
OK are {±1},

x + C
√
−D = (u + v

√
−D)n, (3.2)
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[3] A Lebesgue–Nagell equation 21

TABLE 2. Cases where the search in Lemma 3.1 did not succeed.

(0, 5, 5) (1, 3, 4) (1, 3, 5) (1, 5, 4) (2, 5, 4) (2, 5, 5)
(3, 4, 4) (4, 3, 5) (5, 2, 4) (5, 2, 5) (5, 4, 4) (5, 5, 1)
(5, 5, 2) (5, 5, 3) (5, 5, 4) (5, 5, 5)

where u, v ∈ Z and y = u2 + Dv2. Notice in (3.2) that uv � 0. Comparing the imaginary
parts in (3.2) gives

x =
(n−1)/2∑

l=0

(
n
k

)
un−2l(−D)lv2l. (3.3)

Since y = u2 + Dv2 and gcd(x, y) = 1, (3.3) forces gcd(u, v) = gcd(u, D) = 1.

LEMMA 3.1. All solutions to (3.1) if n = 3 are listed in Table 1.

PROOF. Let a = 6a1 + i, b = 6b1 + j and c = 6c1 + k, where a1, b1, c1, i, j, k ∈ N and
i, j, k ≤ 5. Let Y = x/(53a1 · 133b1 · 173c1 ) and X = y/(52a1 · 132b1 · 172c1 ). From (3.1),

Y2 = X3 − 5i · 13j · 17k. (3.4)

We used the command SIntegralPoints() in MAGMA [6] to search for S-integral points
on (3.4). MAGMA was able to find S-integral points on (3.4) and hence solutions to
(1.1) as listed in Table 1 for all but the cases of (i, j, k) listed in Table 2, where the
search did not succeed. The details of the computation are given in the appendix.

We show that (3.1) does not have solutions in these cases. With u1 = �i/2	, u2 =

�j/2	 and u3 = �k/2	, we can write C = 53a1+u1 · 133b1+u2 · 173c1+u3 . From (3.2),

53a1+u1 · 133b1+u2 · 173c1+u3 = v(3u2 − Dv2). (3.5)

From (3.5), 2 � v and 2 | u. Since D only has prime divisors 5, 13, 17, taking (3.5) mod
4 gives v ≡ −1 (mod 4). Since v only has prime divisors 5, 13, 17, we have v < 0.

Case 1: D = 5. Here (i, j, k) = (3, 4, 4), (5, 2, 4) and (5, 4, 4), so k = 4 and

53a1+u1 · 133b1+u2 · 173c1+2 = v(3u2 − 5v2). (3.6)

If v = −53a1+u1 · 133b1+u2 · 173c1+u3 , then 1 = 5v2 − 3u2, which is impossible mod 3
since

(
5
3

)
= −1. Hence, v � −53a1+u1 · 133b1+u2 · 173c1+u3 . If 3a1 + u1 ≥ 2, from (3.6) we

have 5 � u because 5 | u forces 5 � v. Hence, 52 � v(3u2 − 5v2), which is a contradic-
tion. Since

(
−15
13

)
= −1 and gcd(u, v) = 1, from (3.6) we have 133b1+u2 | v.

Case 1.1: (i, j, k) = (3, 4, 4). Now

53a1+1 · 133b1+2 · 173c1+2 = v(3u2 − 5v2). (3.7)

If 5 | v, then 53a1+1 | v and 133b1+2 | v. Therefore, v = −53a1+1 · 133b1+2. Then (3.7)
reduces to

173c1+2 = 56a1+3 · 136b1+4 − 3u2.
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Taking this mod 3 gives (−1)3c1+2 ≡ −1 (mod 3), so 2 � c1. Let c1 = 2c2 + 1, where
c2 ∈ N. Then

176c2+5 = 56a1+3 · 136b1+4 − 3u2.

Taking this mod 9 gives −1 ≡ 5 − 3u2 (mod 9), so u2 ≡ 2 (mod 3), which is impossible.
If 5 � v, then 5 | u. Let u = 5u1, where u1 ∈ Z. Since 52 � v(3u2 − v2), in (3.7) we

have 3a1 + 1 = 1. Then v = −133b1+2 or v = −133b1+2 · 173c1+2.
If v = −133b1+2, then (3.7) reduces to

173c1+2 = 136b1+4 − 15u2
1. (3.8)

Taking this mod 3 gives (−1)3c1+2 ≡ 1 (mod 3), so 2 | 3c1 + 2. Therefore, (3.8) is
impossible mod 13 since

(
−15
13

)
= −1.

If v = −133b1+2 · 173c1+2, then (3.7) reduces to

1 = 136b1+4 · 176c1+4 − 15u2
1,

which is again impossible mod 13 since
(
−15
13

)
= −1.

Case 1.2: (i, j, k) = (5, 2, 4). In (3.6), u1 = 2, so 53a1+2 | v. Now v = −53a1+2 · 133b1+1

and (3.6) reduces to

173c1+2 = 56a1+5 · 136b1+2 − 3u2.

Taking this mod 3 gives (−1)3c1+2 ≡ −1 (mod 3), so 2 � 3c1 + 2 and 2 � c1. Let c1 =

2c2 + 1, where c2 ∈ N. Then

176c2+5 = 56a1+5 · 136b1+2 − 3u2.

Taking this mod 9 gives −1 ≡ 5 − 3u2 (mod 9), so u2 ≡ 2 (mod 3), which is impossible.
Case 1.3: (i, j, k) = (5, 4, 4). In (3.6), u1 = 2, so 53a1+2 | v. Now v = −53a1+2 · 133b1+2

and (3.6) reduces to

173c1+2 = 56a1+5 · 136b1+4 − 3u2.

Taking this mod 3 gives (−1)3c1+2 ≡ −1 (mod 3), so 2 � c1. Let c1 = 2c2 + 1, where
c2 ∈ N. Then

176c2+5 = 56a1+5 · 136b1+4 − 3u2. (3.9)

The mod 9 argument does not work for (3.9), so we use a different approach. Let

6a1 + 5 = 4a2 + i1, 6b1 + 4 = 4b2 + j1 and 6c2 + 5 = 4c3 + k1,

where a2, b2, c3 ∈ N, i1 ∈ {1, 3}, j1 ∈ {0, 2} and k1 ∈ {1, 3}. From (3.9),

3Y2 = 5i1 · 13j1 · X4 − 17k1 , where X =
5a2 · 13b2

17c3
, Y =

u
172c2

. (3.10)

We used the SIntegralLjunggrenPoints() command in MAGMA [6] to search for
{17}-integral points on (3.10). The only solutions are (X, Y) = (±1, ±6) when
(i1, j1, k1) = (3, 0, 1). This gives a2 = b2 = c3 = 0. Therefore, 6c2 + 5 = 4c3 + k1 = 1,
which is impossible.
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Case 2: D = 5 · 13. Now (i, j, k) = (1, 3, 4), (1, 5, 4), (5, 5, 2), (5, 5, 4) and

53a1+u1 · 133b1+u2 · 173c1+u3 = v(3u2 − 65v2). (3.11)

If v = −53a1+u1 · 133b1+u2 · 173c1+u3 , then (3.11) reduces to 1 = 65v2 − 3u2, which is
impossible mod 5 since

(
−3
5

)
= −1. Hence, v � −53a1+u1 · 133b1+u2 · 173c1+u3 .

Case 2.1: (i, j, k) = (1, 3, 4). Then (3.11) reduces to

53a1 · 133b1+1 · 173c1+2 = v(3u2 − 65v2). (3.12)

Since 3a1 = 0 or 3a1 > 2, we have 53a1 | v.
If 17 | v, then 173c1+2 | v and so v = −53a1 · 173c1+2. In (3.12), 13 | u and 3b1 + 1 = 1.

Let u = 13u1, where u1 ∈ Z. Then (3.12) reduces to

1 = 56a1+1 · 176c1+4 − 39u2
1,

which is impossible mod 3 since
(

5
3

)
= −1.

If 13 | v, then 133b1+1 | v. Therefore, v = −53a1 · 133b1+1. Then (3.12) reduces to

173c1+2 = 56a1+1 · 136b1+3 − 3u2.

Taking this mod 3 gives (−1)3c1+2 ≡ (−1) (mod 3), so 2 � c1. Let c1 = 2c2 + 1, where
c2 ∈ N. Then

176c2+5 = 56c1+1 · 136c1+3 − 3u2.

Taking this mod 9 gives −1 ≡ 5 − 3u2 (mod 9), so u2 ≡ 2 (mod 3), which is impossible.
If 13 � v and 17 � v, then v = −53a1 . In (3.12), 13 | u and 3b1 + 1 = 1. Let u = 13u1,

where u1 ∈ N. Then (3.12) reduces to

173c1+2 = 56a1+1 − 39u2
1.

Taking this mod 3 gives (−1)3c1+2 ≡ −1 (mod 3), so 2 � c1. Let c1 = 2c2 + 1, where
c2 ∈ N. Then

176c1+5 = 56a1+1 − 39u2
1.

Taking this mod 9 gives −1 ≡ 5 − 3u2
1 (mod 9), so u2

1 ≡ 2 (mod 3), which again is
impossible.

Case 2.2: (i, j, k) = (1, 5, 4). Then (3.11) reduces to

53a1 · 133b1+2 · 173c1+2 = v(3u2 − 65v2). (3.13)

Since 3a1 = 0 or 3a1 > 2, we have 53a1 | v. From (3.13), we also have 133b1+2 | v.
Therefore, v = −53a1 · 133b1+2. Then (3.13) reduces to

173c1+2 = 56a1+1 · 136b1+5 − 3u2.

Taking this mod 3 gives (−1)3c1+2 ≡ −1 (mod 3), so 2 � c1. Let c1 = 2c2 + 1, where
c2 ∈ N. Then

176c2+5 = 56a1+1 · 136b1+5 − 3u2.
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Hence,

Y2 = 3(5 · 135 · X6 + 175), where Y = 3u, X =
17c2

5a1 · 13b1
. (3.14)

Equation (3.14) is locally unsolvable at 3.
Case 2.3: (i, j, k) = (5, 5, 2), (5, 5, 4). Now (3.11) reduces to

53a1+2 · 133b1+2 · 173c1+u3 = v(3u2 − 65v2), (3.15)

where u3 ∈ {1, 2}. Then 53a1+2 | v and 133b1+2 | v and so v = −53a1+2 · 133b1+2. Hence,
(3.15) reduces to

173c1+u3 = 56a1+5 · 136b1+5 − 3u2.

Taking this mod 3 gives (−1)3c1+u3 ≡ −1 (mod 3), so 2 � 3c1 + u3. Now we can write
3c1 + u3 = 6c2 + ε, where c2 ∈ N and ε ∈ {1, 3, 5}. Then

176c2+ε = 56c1+5 · 136b1+5 − 3u2.

Taking this mod 9 gives −1 ≡ 5 − 3u2 (mod 9), so u2 ≡ 2 (mod 3), which again is
impossible.

Case 3: D = 5 · 17. Then (i, j, k) = (5, 2, 5) and

53a1+2 · 133b1+1 · 173c1+2 = v(3u2 − 5 · 17 · v2). (3.16)

Then 53a1+2 | v and 173c1+2 | v. Since (3 · 5 · 17/13) = −1, we have 13 � 3u2 − 5 · 7 · v2.
Hence, 133b1+1 | v. Let v = −53a1+2 · 133b1+1 · 173c1+2. Then (3.16) reduces to

1 = 85v2 − 3u2, (3.17)

which is impossible mod 5 since
(
−3
5

)
= −1.

Case 4: D = 13 · 17. Then (i, j, k) = (0, 5, 5), (2, 5, 5), (4, 3, 5) and k = 5, so (3.5)
reduces to

53a1+u1 · 133b1+u2 · 173c1+2 = v(3u2 − 221v2).

Then 173c1+2 | v. If v = −53a1+u1 · 133b1+2 · 173c1+2, then 1 = 221v2 − 3u2, which is
impossible mod 3 since

(
221
3

)
= −1. Therefore, v � −53a1+u1 · 133b1+2 · 173c1+2.

Case 4.1: (i, j, k) = (0, 5, 5), (2, 5, 5). Then j = k = 5, so

53a1+u1 · 133b1+2 · 173c1+2 = v(3u2 − 221v2), (3.18)

where u1 ∈ {0, 1}. Then 133b1+2 | v and 173c1+2 | v, so v = −133b1+2 · 173c1+2 and

53a1+u1 = 136b1+5 · 176c2+5 − 3u2. (3.19)

Taking this mod 3 gives (−1)3a1+u1 ≡ −1 (mod 3), so 2 � 3a1 + u1. Therefore, (3.19) is
impossible mod 13 since

(
−15
13

)
= −1.

Case 4.2: (i, j, k) = (4, 3, 5). Then

53a1+2 · 133b1+1 · 173c1+2 = v(3u2 − 221v2).
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Therefore, v = −133b1+1 · 173c1+2 and

53a1+2 = 136b1+3 · 176c1+5 − 3u2.

Taking this mod 3 gives (−1)3a1+2 ≡ −1 (mod 3), so a1 is odd. Let a1 = 2a2 + 1, where
a2 ∈ N. Then

56a2+5 = 136b1+3 · 176c1+5 − 3u2,

which is impossible mod 13 since
(
−15
13

)
= 1.

Case 5: D = 13. Now (i, j, k) = (2, 5, 4) and (3.5) reduces to

53a1+1 · 133b1+2 · 173c1+2 = v(3u2 − 13v2). (3.20)

Then 133b1+2 | v. Since (3 · 13/17) = −1 and gcd(u, v) = 1, we have 17 � 3u2 − 13v2

and so 173c1+2 | v.
If v = −133b1+2 · 172c1+2, then (3.20) reduces to

53a1+1 = 136b1+5 · 176c1+4 − 3u2.

Taking this mod 3 gives (−1)3a1+1 ≡ 1 (mod 3) and hence 2 | 3a1 + 1. Taking it mod
17 gives

(
−3
17

)
= 1, which is impossible since

(
−3
17

)
= −1.

If v = −53a1+1 · 133b1+2 · 172c1+2, then (3.20) reduces to

1 = 56a1+2 · 136b1+5 · 176c1+4 − 3u2,

which is impossible mod 5 since
(
−3
5

)
= −1.

Case 6: D = 5 · 13 · 17. Now (i, j, k) = (1, 3, 5), (5, 5, 1), (5, 5, 3), (5, 5, 5) and (3.5)
reduces to

53a1+u1 · 133b1+u2 · 173c1+u3 = v(3u2 − 1105v2). (3.21)

If v = −53a1+u1 · 133b1+u2 · 173c1+u3 , then 1 = 1105v2 − 3u2, which is impossible mod 5
since (−3

5 ) = −1. Hence, v � 53a1+u1 · 133b1+u2 · 173c1+u3 .
Case 6.1. (i, j, k) = (1, 3, 5). Then (3.21) reduces to

53a1 · 133b1+1 · 173c1+2 = v(3u2 − 1105v2). (3.22)

Since 3a1 = 0 or 3a1 > 2, we have 53a1 | v. Also, 173c1+2 | v. Hence, v = −53a1 · 173c1+2.
Therefore, 13 | u. Since 132 � v(3u2 − 1105v2), in (3.22) we have 3b1 + 1 = 1. Let u =
13u1, where u1 ∈ Z. Then (3.22) reduces to

1 = 56a1+1 · 176c1+5 − 39u2
1,

which is impossible mod 17 since
(
−39
17

)
= −1.

Case 6.2: (i, j, k) = (5, 5, 1). Then (3.21) reduces to

53a1+2 · 133b1+2 · 173c1 = v(3u2 − 1105v2). (3.23)

Hence, 53a1+2 | v and 133b1+2 | v. Since 3c1 = 0 or 3c1 > 2, (3.23) implies that 173c1 | v.
Hence, v = −53a1+2 · 133b1+2 · 173c1 , which is impossible.

https://doi.org/10.1017/S0004972721000381 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721000381


26 N. X. Tho [8]

Case 6.3: (i, j, k) = (5, 5, 3). Then (3.21) reduces to

53a1+2 · 133b1+2 · 173c1+1 = v(3u2 − 1105v2). (3.24)

Therefore, 53a1+2 | v and 133b1+2 | v. Thus, v = −53a1+2 · 133b1+2 and 17 | u. Let v =
17u1, where u1 ∈ N. Then (3.24) reduces to

173c1 = 56a1+5 · 136b1+5 − 51u2
1. (3.25)

Therefore, c1 = 0 and (3.25) is impossible mod 17 since
(

5·13
17

)
= −1.

Case 6.4: (i, j, k) = (5, 5, 5). Then (3.21) reduces to

53a1+2 · 133b1+2 · 173c1+2 = v(3u2 − 1105v2).

Therefore, 53a1+2 | v, 133b1+2 | v and 173c1+2 | v. Hence, v = −53a1+2 · 133b1+2 · 173c1+2,
which is impossible. �

LEMMA 3.2. All solutions to (3.1) if 3 | n are listed in Table 1.

PROOF. Let n = 3m, where m ∈ Z+. Let y1 = ym. Applying Lemma 3.1 to the equation

x2 + 5a · 13b · 17c = y3
1

gives Lemma 3.2. �

LEMMA 3.3. All solutions to (3.1) if 4 | n are listed in Table 1.

PROOF. Let n = 4m, where m ∈ Z+. Let a = 4a1 + i, b = 4b1 + j and c = 4c1 + k,
where a1, b1, c1, i, j, k ∈ N and i, j, k ≤ 3. From (3.1),

Y2 = X4 − 5i · 13j · 17k, where Y =
x

52a1 · 132b1 · 172c1
, X =

ym

5a1 · 13b1 · 17c1
. (3.26)

We used the SIntegralLjunggrenPoints() command in MAGMA [6] to search for
S-integral points on (3.26). We list the eight cases of (i, j, k) where (3.26) has
S-integral points in Table 3. The symbol ∅ means that the resulting x, y do not satisfy
the requirements x, y > 0 and gcd(x, y) = 1. Equation (3.26) does not have S-integral
points for other cases of (i, j, k), such as (i, j, k) = (0, 0, 2), (0, 0, 3). �

LEMMA 3.4. Equation (3.1) has no solutions if n simultaneously satisfies the condi-
tions 3 � n, 4 � n and n ≥ 5.

PROOF. We can assume that n is a prime number ≥ 5. From (3.2),

Ln =
C
v

,

where Ln = (αn − βn)/(α − β), α = u + v
√
−D and β = u − v

√
−D. Since uv � 0, we

have |Q(α/β) : Q| = 2. If α/β is a root of unity, say α/β = ζm, a primitive m-root of
unity, then |Q(α/β) : Q| = |Q(ζm) : Q| = φ(m). Consequently, φ(m) = 2 and m ∈ {3, 4},
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TABLE 3. Solutions for the proof of Lemma 3.3.

(i, j, k) (X, Y) (n, a, b, c, x, y, )

(0, 0, 0) (1, 0) ∅
(0, 0, 1) (3, 8) (4, 0, 0, 1, 8, 3)
(1, 1, 0) (3, 4) (4, 1, 1, 0, 4, 3)
(1, 1, 1) (7, 36) (4, 1, 1, 1, 36, 7)
(1, 1, 1) (163/5, 26556/25) (4, 5, 1, 1, 26556, 163)
(1, 1, 2) (27, 716) (4, 1, 1, 2, 716, 27)
(2, 2, 0) (13, 156) ∅
(2, 2, 2) (85, 7140) ∅

so that ζm ∈ {±
√
−1, 1

2 (±1 ±
√
−3)}. But this is impossible since

Q(ζm) = Q
(
α

β

)
= Q(

√
−D) � Q(

√
−1) or Q(

√
−3).

So, α/β is not a root of unity. Also, α + β and αβ are coprime nonzero integers because
gcd(u, v) = gcd(u, D) = 1.

From the work of Bilu et al. [5], if Ln has no primitive divisors, then n ≤ 30. Here n
is a prime number and D is an odd positive integer. From Table 1 in [5], we conclude
that n ∈ {5, 7, 13} and D ∈ {7, 11, 15, 19, 341}. But this is impossible since D only has
the prime divisors 5, 13, 17.

Therefore, Ln has a primitive divisor q. Since q | C, we must have q ∈ {5, 13, 17}.
Now n divides q −

(
(α−β)2

q

)
and n is a prime ≥ 5. So, the only possibility is that n = 7,

q = 13 and
(

(α−β)2

q

)
= −1. Since (α − β)2 = −4v2D, we have D ∈ {5, 5 · 17} and 13 � v.

Let C = 5r · 13s · 17t, where r, s, t ∈ N.

Case 1: D = 5. Then

5r · 13s · 17t = v(7u6 − 175u4v2 + 525u2v4 − 125v6). (3.27)

Since v is odd, u is even. Taking (3.27) mod 4 gives v ≡ −1 (mod 4). Since v could
only have prime divisors 5 and 17, we must have v < 0. Therefore,

5r1 · 13s · 17t1 = −7u6 + 175u4v2 − 525u2v4 + 125v6, (3.28)

where r1, t1 ∈ N. Let 5r1 · 13s · 17t1 = BA2, where A, B ∈ Z+ and B is square-free. From
(3.28),

Y2 = X3 + 175BX2 + 3675B2X + 6125B3, (3.29)

where Y = 7AB2/v3 and X = −7Bu2/v2. We used the SIntegralPoints() command
in MAGMA to search for {5, 17}-integral points on (3.29). None of the solutions
found gives a solution to (3.28) (see Table 4). The symbol ∅ means that (3.29) has
no {5, 17}-integral points. Since X = −7Bu2/v2 < 0, several cases in Table 4 can be
excluded immediately.
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TABLE 4. Solutions for the proof of Lemma 3.4, Case 1.

B (X, Y) (u, v)

1 ∅ ∅
5 (−749, 1624) , (−525, 7000) , (−125, 1000), (0, 875), (175, 7000) ∅

(975, 43000)
13 (91, 9464), (679, 42392) ∅
17 ∅ ∅
65 (−9516, 149227), (−9425, 169000), (−2925, 169000), (100, 57875) ∅

(975, 169000)
65 (1075, 181000), (3679, 512408),(47475, 11549000) ∅

(12236575, 42824431000)
85 (−7325, 463000) ∅
221 (4251, 1266824) ∅
1105 (−45500, 10499125), (−25025, 1183000), (84175, 48503000) ∅

(1816675, 2577197000)

TABLE 5. Solutions for the proof of Lemma 3.4, Case 2.

B (X, Y) (u, v)

1 ∅ ∅
5 (−7325, 463000) ∅
13 (4251, 1266824) ∅
17 ∅ ∅
65 (−45500, 10499125), (−25025, 1183000), (84175, 48503000) ∅

(1816675, 2577197000)
85 (−216461, 7978712), (−151725, 34391000), (−36125, 4913000) ∅
85 (0, 4298875), (50575, 34391000), (281775, 211259000) ∅
221 (26299, 46496632), (196231, 208271896) ∅
1105 (−2750124, 733152251), (−2723825, 830297000) ∅

(−845325, 830297000)
1105 (28900, 284339875), (281775, 830297000), (310675, 889253000) ∅
1105 (1063231, 2517460504), (13720275, 56740237000) ∅

(3536370175, 210396429503000)

Case 2: D = 5 · 17. Then

5r · 13s · 17t = v(7u6 − 2975u4v2 + 151725u2v4 − 614125v6). (3.30)

Therefore, v < 0 and v only has prime divisors 5, 17. Dividing both sides of (3.30) by
v gives

5r2 · 13s · 17t2 = 7u6 − 2975u4v2 + 151725u2v4 − 614125v6, (3.31)
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TABLE 6. Solutions for the appendix.

(i, j, k) (X, Y) (n, a, b, c, x, y) (i, j, k) (X, Y) (n, . . .)

(0, 0, 0) (1, 0) ∅ (3, 0, 3) (85, 0) ∅
(0, 0, 2) (17, 68) ∅ (3, 3, 0) (65, 0) ∅
(0, 0, 3) (17, 0) ∅ (3, 3, 3) (1105, 0) ∅
(0, 1, 0) (17, 70) (3, 0, 1, 0, 70, 17) (3, 4, 4) NA NA
(0, 1, 2) (17, 34) ∅ (3, 4, 5) NA NA
(0, 3, 0) (13, 0) ∅ (4, 2, 0) (325, 5850) ∅
(0, 3, 3) (221, 0) ∅ (4, 2, 2) (325, 1950) ∅
(0, 5, 5) NA NA (4, 2, 2) (425, 6800) ∅
(1, 1, 2) (81, 716) (3, 1, 1, 2, 716, 81) (4, 2, 4) (7225, 606900) ∅
(1, 3, 4) NA NA (4, 2, 4) (19721, 2767856) ∅
(1, 3, 5) NA NA (4, 3, 0) (10829, 1126892) ∅
(1, 5, 4) NA NA (4, 3, 3) (2925, 135200) ∅
(2, 0, 0) (5, 10) ∅ (4, 3, 5) NA NA
(2, 0, 1) (21, 94) ∅ (4, 4, 2) (71825, 19249100) ∅
(2, 0, 4) (185, 2060) ∅ (5, 1, 4) NA NA
(2, 0, 4) (1445, 54910) ∅ (5, 2, 4) NA NA
(2, 1, 3) (425, 8670) ∅ (5, 2, 5) NA NA
(2, 2, 0) (29, 142) (3, 2, 2, 0, 142, 29) (5, 4, 4) NA NA
(2, 2, 0) (65, 520) ∅ (5, 5, 1) NA NA
(2, 2, 2) (221, 3094) ∅ (5, 5, 2) NA NA
(2, 4, 0) (169, 2028) ∅ (5, 5, 3) NA NA
(2, 5, 4) NA NA (5, 5, 4) NA NA
(3, 0, 0) (5, 0) ∅ (5, 5, 5) NA NA
(3, 0, 2) (161, 2034) (3, 3, 0, 2, 2034, 161)

where r2, t2 ∈ N. Write 5r2 · 13s · 17t2 = B′A′2, where B′, A′ ∈ Z+ and B′ is square-free.
From (3.31),

Y2 = X3 + 2975BX2 + 1062075B2X + 30092125B3, (3.32)

where Y = 7A′B′2 and X = −7B′u2/v2. We used MAGMA to search for {5, 17}-integral
points on (3.32). None of the solutions found gives a solution to (3.30) (see
Table 5). The symbol ∅ means that (3.32) has no {5, 17}-integral points. Since
X = −7B′u2/v2 < 0, several cases in Table 5 can be excluded immediately. �

Appendix

We used the SIntegralPoints() command in MAGMA [6] to search for S-integral
points on (3.4). All the cases of (i, j, k) where the set of S-integral points on
(3.4) is not empty or could not be determined using MAGMA are listed in
Table 6. The symbol NA means that S-integral points could not be determined.
The symbol ∅ means that the resulting (x, y) does not satisfy the requirements
x, y > 0 and gcd(x, y) = 1.

https://doi.org/10.1017/S0004972721000381 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721000381


30 N. X. Tho [12]

Acknowledgement

The author would like to thank the anonymous referee for his valuable comments.

References
[1] M. Alan and U. Zengin, ‘On the Diophantine equation x2 + 3a · 41b = yn’, Period. Math. Hungar.

81 (2020), 284–291.
[2] S. A. Arif and F. S. A. Muriefah, ‘On the Diophantine equation x2 + q2k+1 = yn’, J. Number Theory

95 (2002), 95–100.
[3] A. Bérczes and I. Pink, ‘On the Diophantine equation x2 + p2k = yn’, Arch. Math. 91 (2008),

505–517.
[4] A. Bérczes and I. Pink, ‘On the Diophantine equation x2 + d2l+1 = yn’, Glasg. Math. J. 54 (2012),

415–428.
[5] Y. Bilu, G. Hanrot and P. M. Voutier, ‘Existence of primitive divisors of Lucas and Lehmer

numbers. With an appendix by M. Mignotte’, J. reine angew. Math. 539 (2001), 75–122.
[6] W. Bosma, J. Cannon and C. Playoust, ‘The Magma algebra system. I. The user language’, J.

Symbolic Comput. 24(3–4) (1997), 235–265.
[7] Y. Bugeaud, M. Mignotte and S. Siksek, ‘Classical and modular approaches to exponential

Diophantine equations II: The Lebesgue–Nagell equation’, Compos. Math. 142 (2006), 31–62.
[8] I. N. Cangül, M. Demirci, I. Inam, F. Luca and G. Soydan, ‘On the Diophantine equation x2 + 2a ·

3b · 11c = yn’, Math. Slovaca 63(3) (2013), 647–659.
[9] K. Chakraborty, A. Hoque and R. Sharma, ‘On the solutions of certain Lebesgue–

Ramanujan–Nagell equations’, Rocky Mountain J. Math., to appear.
[10] J. H. E. Cohn, ‘The Diophantine equation x2 + C = yn’, Acta. Arith. 65 (1993), 367–381.
[11] H. Godinho, D. Marques and A. Togbé, ‘On the Diophantine equation x2 + C = yn for C = 2a · 3b ·

17c and C = 2a · 13b · 17c’, Math. Slovaca 66 (3) (2016), 565–574.
[12] E. Goins, F. Luca and A. Togbé, ‘On the Diophantine equation x2 + 2α · 5β · 13γ = yn’, in:

Algorithmic Number Theory, 8th International Symposium, ANTS-VIII, Banff, Canada, May 17–22,
2008 (eds. A. J. van der Poorten and A. Stein) (Springer, Berlin–Heidelberg, 2008), 430–442.

[13] M. Le and G. Soydan, ‘A brief survey on the generalized Lebesgue–Ramanujan–Nagell equation’,
Surveys in Mathematics and its Applications 15 (2020), 473–523.

[14] F. S. A. Muriefah, F. Luca and A. Togbé, ‘On the Diophantine equation x2 + 5a · 13b = yn’, Glasg.
Math. J. 50 (2008), 175–181.

[15] I. Pink, ‘On the Diophantine equation x2 + 2a · 3b · 5c · 7d = yn’, Publ. Math. Debrecen 70(1–2)
(2007), 149–166.

[16] I. Pink and Z. Rábai, ‘On the Diophantine equation x2 + 5k · 17l = yn’, Commun. Math. 19 (2011),
1–19.

[17] P. Xiaowei, ‘The exponential Lebesgue–Nagell equation x2 + p2m = yn’, Period. Math. Hungar.
67(2) (2013), 231–242.

[18] H. L. Zhu and M. H. Le, ‘On some generalized Lebesgue–Nagell equations’, J. Number Theory 131
(2011), 458–469.

NGUYEN XUAN THO, School of Applied Mathematics and Informatics,
Hanoi University of Science and Technology,
1 Dai Co Viet Road, Hanoi, Vietnam
e-mail: tho.nguyenxuan1@hust.edu.vn

https://doi.org/10.1017/S0004972721000381 Published online by Cambridge University Press

mailto:tho.nguyenxuan1@hust.edu.vn
https://doi.org/10.1017/S0004972721000381

	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1.1

