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We consider a pair of like-signed, initially elliptical vortices with uniform vorticity
distribution embedded in an incompressible, inviscid fluid occupying a two-
dimensional, infinite domain. We characterize this finite-time, aperiodic, dynamical
system in terms of its fixed points and separatrices, which divide the flow into inner
core, inner recirculation, outer recirculation regions and outer flow. We numerically
simulate the time evolution of the vortex pair using a contour dynamics algorithm.
The rotational and co-rotational motion of the vortices perturb the separatrices,
which undergo to deformations, yielding a tangle whose complexity increases as the
amplitude of the perturbation increases. We analyse the dynamics of the tangle and
explain the transport of fluid between different regions. We use two diagnostics to
quantify stirring: stretching of the interface and the mix-norm. These two diagnostics
characterize stirring in contradicting ways and present different sensitivity to the
parameters considered. We find that stretching is dominated by the chaotic advection
induced within the inner core and inner recirculation regions, whereas the mix-
norm is dominated by the laminar transport induced within the outer recirculation
regions. For pairs of vortices of small aspect ratio, stretching is piecewise linear and
the mix-norm does not decrease monotonically. We show that these two effects are
strongly coupled and synchronized with the rotational motion of the vortices. Since
the nominal domain is unbounded, we quantify stirring on three concentric, circular
domains. One domain nearly encloses the outer separatrices of the vortex pair, one
is smaller and one larger than the first one. We show that the mix-norm is very
sensitive to the size of the domain, while stretching is not. To quantify the sensitivity
of stirring to the geometry of the initial concentration field, we consider, as an initial
scalar field, two concentrations delimited by a straight-line interface of adjustable
orientation. We show that the interface passing through the centroids of the vortices
is the one most efficiently stretched, while the initial concentration field with an
orthogonal interface is the most efficiently stirred. Finally, we investigate the effects
of the angular impulse on the stirring performance of the vortex pair. Stretching is
very sensitive to the angular impulse, while the mix-norm is not. We show that there
is a value of the angular impulse which maximizes stretching and argue that this is
due to two competing mechanisms.
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1. Introduction

Transport and mixing of two or more fluids is widely encountered in nature, for
instance in atmospheric and oceanic phenomena, and also constitutes a key mechanism
in many industrial applications involving combustion or chemical reactions, and
pharmaceutical and food-industry processes, to name a few. Mixing results from
the coupling of advective and diffusive mechanisms and can be broadly categorized
according to the regime of the underlying flow: laminar or turbulent mixing. In
general, turbulent flows have an excellent mixing performance with respect to laminar
flows where transport is non-chaotic.

Turbulent mixing can be viewed as a three-stage process (Eckart 1948), comprised
of entrainment, stirring and diffusion, spanning the full spectrum of space–time scales
of the flow. It has been widely studied both theoretically and experimentally (see, to
name a few, Leonard & Hill 1992; Flohr & Vassilicos 1997; Poje & Haller 1999;
Slessor, Bond & Dimotakis 1998; Warhaft 2000; Dimotakis 2001; Smyth, Moum &
Caldwell 2001; Vassilicos 2002; Meunier & Villermaux 2003; Villermaux & Duplat
2003; Dimotakis 2005; Aguirre, Nathman & Catrakis 2006; Sau & Mahesh 2007;
Shadden et al. 2007; Deneve, Fröhlich & Bockhorn 2009 and references therein). The
main mechanism underlying turbulent flows is the evolution and mutual interaction
of vortical structures. Of particular interest are the coherent vortical structures
identifiable at large scales of many turbulent flows of practical relevance, such as
mixing layers, jets and wakes. A coherent structure can be thought of as a region
of concentrated vorticity that retains its identity for long times (see e.g. Provenzale
1999), or as a set of fluid particles with distinct statistical properties (see e.g. Elhmaidi,
Provenzale & Babiano 1993).

In many quasi-two-dimensional flows of interest, the evolution of coherent vortical
structures can be modelled using pairwise interactions of vortices. This approach has
been widely used to study the physical mechanisms responsible for vortex pairing and
merging in two-dimensional turbulence (see e.g. Dritschel 1985; Melander, Zabusky &
Styczek 1986; Melander, Zabusky & McWilliams 1988; McWilliams 1990; Dritschel &
Zabusky 1996; Yasuda 1997; Von Hardenberg et al. 2000; Fuentes 2001; Rasmussen,
Nielsen & Naulin 2001; Le Dizes & Verga 2002; Cerretelli & Williamson 2003a ,b;
Fuentes 2005; Huang 2005; Meunier, Le Dizès & Leweke 2005; Josserand & Rossi
2007; Sau & Mahesh 2007; Nybelen & Paoli 2009). On the other hand, mixing induced
by pairwise interactions of vortices has received, in comparison, less attention (Witt
et al. 1999; Estevadeordal & Kleis 2002).

To better understand transport and mixing in quasi-two-dimensional turbulence,
it is important to characterize the dynamics of a pair of interacting vortices. We
confine our interest to a pair of like-signed, identical, initially elliptic vortices during
the phase of the evolution previous to merging. The dissipative effects are negligible
during this phase (Cerretelli & Williamson 2003a); therefore, we analyse entrainment
and stirring only, two of the three stages proposed by Eckart (1948). We neglect
diffusion and model the vortex system with a pair of Kirchhoff vortices, i.e. a pair
of vortex patches of uniform vorticity distribution, embedded in an incompressible,
inviscid fluid occupying a two-dimensional, infinite domain. This vortex system is a
finite-time, aperiodic dynamical system. We numerically describe the time evolution
of the patches via contour dynamics (see Zabusky, Hughes & Roberts 1979; Pullin
1992 and references therein). Since the evolution of a pair of identical, like-signed
vortices has radial symmetry, we characterize the performance of the vortex system
on a circular domain and save computational time by imposing symmetry. The goal
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of this study is to characterize stirring, stretching and transport induced by a pair of
initially elliptic vortices and identify the physical mechanisms behind it. This task is
made difficult by the aperiodicity and finite timeness of the vortex system, and by the
unboundedness of the domain.

We use dynamical system techniques to analyse the vortex system (e.g. Aref 1984;
Khakhar, Rising & Ottino 1986; Leonard, Rom-Kedar & Wiggins 1987; Wiggins
1987; Ottino 1989; Rom-Kedar & Wiggins 1990, 1991; Rom-Kedar, Leonard &
Wiggins 1990; Rom-Kedar et al. 1990; Beigie, Leonard & Wiggins 1991, 1994;
Fuentes 2001, 2005 and references therein). Many studies have shown the importance
of computing the invariant manifolds to describe transport, stretching and stirring of
fluid particles under chaotic advection. In particular, the intersections of the invariant
manifolds provide insight into how to partition a flow in regions of qualitatively
different fluid motion and, subsequently, analyse the dynamics of the manifolds to
explain the transport and stirring of fluid. In this study, however, we are limited by
the finite timeness and aperiodicity of the system on the use of asymptotic techniques,
such as Poincaré maps. Therefore, to overcome this difficulty and provide a reliable
analysis, we resort to the use of a combination of diagnostics: tangle dynamics, finite-
time Lyapunov exponents and direct expansion rate (see, e.g., Franjione & Ottino
1987; Rom-Kedar et al. 1990; Haller 2001; Padberg et al. 2009).

The unboundedness of the domain is also a source of difficulties for the
quantification of mixing, stretching and transport, an issue that has been rarely
addressed. In general, two characteristic lengths are necessary to characterize mixing.
One is the largest scale over which mixing should be induced, and the other is the
smallest scale mixing should target. As has been shown by Mathew, Mezic & Petzold
(2005), mixing should be quantified accounting for the contribution at all scales,
from the largest to the smallest. For bounded systems, the largest characteristic scale
is usually dictated by the geometry of the domain. The matter is very different for
unbounded, simply connected domains, where no characteristic length can be deduced
from the geometry of the problem.

In this study we obtain a characteristic length, appropriate for quantifying stirring,
stretching and transport, by describing the vortex system in terms of its fixed points
and separatrices. The separatrices divide the fluid domain into four qualitatively
different regions: the inner core regions, the inner recirculation region, the outer
recirculation regions and the outer flow (Cerretelli & Williamson 2003a). The outer
separatrices, which enclose the first three regions, identify a nearly circular domain
surrounded by the outer flow. The radius of this domain is the largest length scale
over which stirring should be quantified. As the vortex system evolves, the system of
separatrices deforms but remains within the circular domain, and the transport of
fluid in and out of the domain is negligible.

Owing to the mutual interaction of the vortex patches, the initial velocity field is
perturbed by the rotational and co-rotational motion of the patches, and the strength
of the perturbations depends on the aspect ratio of the initially elliptic vortices. To
characterize the transport induced by the vortex system, we compute the manifolds
of the fixed points of the flow. We characterize the tangle dynamics by identifying
the fluid enclosed in each region (inner core, inner recirculation, outer recirculation
and outer flow) with a different colour. Lobe dynamics allows us to analyse how the
colour-coded fluid is stirred and transported under the effect of the perturbations.

To quantify stirring and its sensitivity to the size of the domain, we consider three
concentric, circular domains. One domain nearly encloses the outer separatrices, one
is about 14 times smaller and one is about three times larger than the first one.
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To quantify the sensitivity of stirring to the geometry of the initial concentration
field, we consider as an initial scalar field a simple configuration where two different
concentrations are delimited by a straight-line interface of adjustable orientation.
We use two diagnostics to characterize stirring: stretching of the interface and the
mix-norm. The time evolution of stretching, or the number of lamellae, is a classical
diagnostic, which has been used to quantify stirring in diffusionless systems (e.g. Ottino
1982; Khakhar & Ottino 1986; Franjione & Ottino 1987; Ottino 1989, 1990; Muzzio,
Swanson & Ottino 1991; Chakravarthy & Ottino 1996 and references therein). The
mix-norm, recently introduced by Mathew et al. (2005), is a multiscale measure of
mixing. It is defined as the root mean square of the average values of a zero-mean
concentration field over a dense set of subsets contained in the flow domain. It can
be used to quantify mixing in terms of the geometry of the initial concentration
field in flows with or without molecular diffusion. The reader is referred to the
work by Mathew et al. (2005) for a detailed derivation of the mix-norm and to
Mathew et al. (2007) for an application of the mix-norm to mixing control. These two
diagnostics characterize stirring in contradicting ways and present different sensitivity
to the parameters considered. We discuss in detail the discrepancies between the two
diagnostics.

This article is organized as follows. In § 2, we present the mathematical model used
to simulate the time evolution of the vortices. In § 3, we analyse the phase portrait
and the dynamics of the vortex system. In § 4, we discuss the tangle dynamics and the
mechanisms responsible for the transport and stirring of fluid. In § 5, we characterize
stretching and stirring in an unbounded domain. Concluding remarks are presented
in § 6.

2. Mathematical modeling
The system under study is comprised of two initially elliptical, identical vortex

patches embedded in an irrotational, incompressible fluid occupying a two-
dimensional, unbounded domain. Each vortex is represented by a compact, simply
connected area of uniform vorticity, referred to as the Kirchhoff vortex, or the
vortex patch. Since viscous forces are assumed to be negligible, the vorticity transport
equation guarantees the vorticity distribution inside the vortices to remain uniform
and the system can be described by the Euler equations. Under these assumptions,
the time evolution of the vortices can be simulated using contour dynamics. Note
that the position of the joint centre of vorticity and the total angular impulse are
conserved (Melander et al. 1986). As time evolves, however, the shape of the vortices
departs from being elliptical due, in general, to self- and mutual interactions.

We adimensionalize the problem by using as a characteristic length
√

A/π and a
characteristic time 1/ω. Numerically, we implement contour dynamics by representing
each contour Ck , k = 1, 2, with N marker points located at coordinates (Xk,l, Yk,l),
k = 1, 2 and l =1, 2, . . . , N . We compute the velocity at each marker point by replacing
the line integral over each contour Ck with the sum of the integrals over all circular
arcs connecting adjacent marker points (see Pozrikidis 2001). We obtain

u(Xk,l, Yk,l) = − 1

4π

2∑
m=1

ωm

N∑
n=1

∫
Em,n

ln
(
d ′2) t(x ′, y ′) dl(x ′, y ′),

k = 1, 2, l = 1, 2, . . . , N, (2.1)
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(xc1, yc1)

(xc2, yc2)

(x0, y0)

y

x

ϕ

ρ

α

Figure 1. Sketch of two identical, elliptical vortex patches co-rotating symmetrically around
the joint centre of vorticity (x0, y0) located at the origin of the Cartesian axes. The points
(xc1, yc1) and (xc2, yc2) are the centroids of the patches, α is the angle of co-rotation, ϕ is the
angle of rotation of one patch around itself and ρ is the half-separation between the centroids
of the patches.

where ωm is the vorticity of the mth patch, (x ′, y ′) are the integration variables,
d ′2 = (Xk,l − x ′)2 + (Yk,l − y ′)2 is the distance between the marker and the integration
points, Em,n is the circular arc connecting the nth and (n+ 1)th points on the mth
contour, t is the unit vector oriented counterclockwise tangent to the contour and dl

is the differential arclength along each arc Em,n. The motion of the contours is then
obtained by integrating in time the set of 2N ordinary differential equations of the
form

drk,l

dt
= u(Xk,l, Yk,l), k = 1, 2, l = 1, 2, . . . , N, (2.2)

where rk,l is the vector identifying the lth marker point on the kth contour, i.e.

rk,l = Xk,l î + Yk,l ĵ , where î and ĵ are the axis unit vectors. The elliptical shape, position
and orientation approximating the vortex patches are described by the approximate
aspect ratio λ= b/a and area A, where b and a are the approximate semi-minor
and semi-major axes of the patch, respectively, the approximate coordinates of the
centroids (xck, yck), k =1, 2, the orientation angle ϕ and the co-rotation angle α. A
sketch of the vortex system is shown in figure 1. Without loss of generality, in all
our simulations, we consider a pair of initially elliptical vortices of area A= π and
vorticity ω = 1. According to Melander et al. (1988), the total dimensionless angular
impulse σ of the system can be written as σ = 4ρ2 + λ+ 1/λ. The latter equation is
used to set the initial separation of the vortices for a chosen value of their initial
angular impulse and aspect ratio, and to monitor the accuracy of the simulation by
verifying the conservation of the angular impulse.

During the time evolution of the system, we recover the approximate elliptic
shape, position and orientation of the vortex patches from the sequence of marker
points describing each contour Ck , k = 1, 2. We approximate the coordinates of the
centroid of a patch with the centre of mass of the marker points tracing its contour.
The dimensionless centroid half-separation, ρ, is computed as the distance from the
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position of one of the centroids, (xck, yck), to the joint centre of vorticity (x0, y0). The
semi-major axis, a, of the ellipse approximating the shape of the patch is obtained
by computing the maximum distance between all possible pairs of marker points of
the contour C and diving by 2. The semi-minor axis, b, is then computed by recalling
that the area of the vortex is constant and given by A= abπ = π. The co-rotation
angle, α, is obtained by computing the rotation of the vector identifying the centroid
of a vortex with respect to its initial orientation. The rotation angle of a vortex about
itself, ϕ, is obtained by computing the rotation of the major axis of the elliptic patch
with respect to its initial orientation and then subtracting the co-rotation angle, α.
Note that in all simulations presented in this article, with the exception of two cases
(see figures 23a and 23b), the shape of the vortices departs from being elliptical but
an ellipse can still be fitted accurately to the marker points describing the contour.

We simplify the problem and reduce the computational cost by a factor 2
by imposing radial symmetry, i.e. r1,l = −r2,l , l = 1, 2, . . . , N . We verified that
computations with and without radial symmetry imposed are identical. Consequently,
we drop the subscript k identifying the two vortex patches. We choose the initial
number of marker points, N , as the smallest integer such that Lc/N < 0.05, where
Lc is the initial length of the contour C of the vortex patch. The spatial accuracy is
preserved during the simulation by introducing a new marker point when the distance
between two adjacent marker points becomes larger than 0.1 or, in the case of high
curvature, when the angle subtended by the circular arc becomes greater than π/4.
The time integration is performed using a second-order Runge–Kutta scheme with
time step dt = 0.05.

3. Phase portrait and system dynamics
In this section, we discuss the phase portrait and the time evolution of the variables

describing the approximate elliptic shape of the pair of vortices. Figure 2 shows the
phase portrait in the (ϕ, λ)-plane. The trajectories correspond to the time evolution
of the pairs of co-rotating, initially elliptic vortices of angular impulse σ = 24.4,
starting from the following initial conditions: orientation ϕ = 0 and aspect ratios
λ= 0.40, 0.50, 0.60, 0.70, 0.80, 0.84, 0.8947. For the sake of clarity, we present the
phase portrait unwrapped over the interval −π <ϕ � π. Note, however, that for this
choice of the angular impulse, the phase portrait is not strictly periodic because the
vortices depart from being elliptical due, in general, to self-interaction and mutual
interaction.

The phase portrait is characterized by an elliptic point located at (ϕ = 0, λ≈ 0.8947)
and a separatrix, which divides the portrait into two regions, see figure 2. In one region,
the open trajectories represent vortex patches rotating around themselves while co-
rotating around the joint centre of vorticity (x0, y0). In the other region, the trajectories
encircling the elliptic point represent vortex patches that co-rotate around the joint
centre of vorticity, while their shape oscillates in time around the initial orientation
ϕ = 0. The trajectories encircling the elliptic point are not perfectly closed curves
because the vortex system is affected by noise due to the numerical discretization,
small deviations of the patches from the elliptic shape and the fact that the rotation
angle ϕ is less accurately computed as the shape of the vortex patches becomes
close to circular. The elliptic point λ=0.8947 is the limiting case of the latter type
of motion and identifies a pair of nearly circular patches whose rotation angle, ϕ,
is nearly zero. In figure 2, this point appears as a dot because the aspect ratio of
the patches is affected by perturbations of order O(10−4). The dynamics of pairs of
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Figure 2. Phase portrait of a pair of co-rotating initially elliptic vortices of angular
impulse σ = 24.4 with the following initial conditions: ϕ = 0 and λ= 0.40, 0.50, 0.60,
0.70, 0.80, 0.84, 0.8947.

vortices with an initial aspect ratio less than 0.40 is not represented because, for the
angular impulse σ = 24.4, the vortex patches rapidly lose their elliptic shape and start
merging within half a period of co-rotation (cf. Melander et al. 1988; Cerretelli &
Williamson 2003a).

In figure 3(a), we compare the time evolution of the co-rotation angle, α, for pairs
of elliptic vortices of initial aspect ratios λ=0.40 and 0.8947. The co-rotation angle
oscillates mildly with time, following a linear trend, and the slope indicates that the
angular velocity of co-rotation increases as the initial aspect ratio decreases. Indeed,
the first period of co-rotation is about 134.50 for λ=0.40 and 139.90 for the limiting
case λ= 0.8947.

Figure 3(b) shows the time evolution of the rotation angle, ϕ, for pairs of vortices of
initial aspect ratios λ= 0.40, 0.50, 0.60, 0.70, 0.84, 0.8947. The results are in accordance
with the phase portrait, see figure 2. The behaviour of the rotation angle changes
radically for open and closed trajectories. For open trajectories, i.e. 0.40 � λ< 0.80,
the average angular velocity increases as the initial aspect ratio increases. Also, the
amplitude and frequency of the fluctuation of the rotation angle increase for increasing
values of the initial aspect ratio. For closed trajectories, i.e. 0.80 � λ� 0.8947, the
average angular velocity is zero, because the shape of the vortices oscillates with
respect to the initial orientation of the patches. The amplitude of the oscillations
decreases while the frequency increases with the aspect ratio. Hence, the separatrix in
the phase portrait identifies a jump in the dynamics of the vortex pair.

Figure 3(c) shows the time evolution of the half-separation of the centroids, ρ,
for pairs of vortices with initial aspect ratios λ=0.40, 0.60, 0.84, 0.8947. Due to
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Figure 3. (a) Time evolution of the co-rotation angle α. (b), (c) and (d ) Time evolution,
over one period of co-rotation, of the rotation angle ϕ, the half-separation of the centroids
ρ and the aspect ratio λ, respectively. Vortex pairs are identified by their initial aspect ratios
λ= 0.40 (solid line), 0.50 (�), 0.60 (∗), 0.70 (�), 0.84 (dash-dotted) and 0.8947 (dotted).

a strong mutual interaction and a gradual departure from the elliptic shape, the
initial half-separation of two vortex patches oscillates with time. The amplitude of the
fluctuations increases for decreasing values of the aspect ratio, while the frequency
increases for increasing values of the aspect ratio.

Figure 3(d ) shows the time evolution of the aspect ratio, λ, for pairs of vortices
of initial aspect ratios λ=0.40, 0.50, 0.60, 0.70, 0.84, 0.8947. The amplitude of the
oscillations increases as the initial aspect ratio increases from λ=0.40 up to λ≈ 0.80.
The trend abruptly reverses as the separatrix is crossed, providing further evidence
that there exists a jump in the dynamics of the vortex pair. The amplitude decreases
for λ> 0.80 and becomes nearly zero for the limiting case λ≈ 0.8947.

4. Tangle dynamics and fluid transport
The geometry of the flow induced by a pair of like-signed elliptic vortices, when

seen in a frame of reference rotating with the vortex pair, can be deduced plotting
the level set of the associated stream function ψr (t, x, y) (Dritschel 1985; Melander
et al. 1988; Fuentes 2001; Cerretelli & Williamson 2003a ,b), which is given by the
transformation (Fuentes 2001)

ψr (t, x, y) = ψf (t, x, y) + 1
2

Ω(t) [(x − x0)
2 + (y − y0)

2], (4.1)
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E3 E4

H2

H3

E1

E2

H1

Figure 4. Stream function at time t = 0 as observed in a rotating frame of reference. The
elliptic points E1 and E2 are due to the presence of the real vortices, while E3 and E4, called
‘ghost vortices’, are due to the rotating frame. The hyperbolic points are labelled H1, H2 and
H3, and their homoclinic and heteroclinic orbits define the inner core regions (black), the
inner recirculation region (dark grey), the outer recirculation regions (light grey) and the outer
flow (white).

where ψf (t, x, y) is the stream function at time t as observed in a fixed frame of
reference, Ω(t) is the angular velocity of the rotating frame of reference chosen equal
to the co-rotation angular velocity of the vortex pair and (x0, y0) are the coordinates
of the centre of co-rotation of the patches, i.e. the joint centre of vorticity. Figure 4
shows, at time t = 0, the stream function ψr . The three hyperbolic and four elliptic
points are shown as filled and open circles, respectively. The elliptic points, E1 and
E2, are due to the presence of the vortices and coincide with their centroids, while
the other two, E3 and E4, called ‘ghost vortices’ (Melander et al. 1988), appear as
a consequence of using a rotating frame. The hyperbolic points labelled H1, H2

and H3 are connected by heteroclinic or homoclinic orbits. These orbits, also called
‘separatrices’, divide the flow into different regions (Cerretelli & Williamson 2003a):
the outer (or free-flow) region, where fluid particles simply move around the vortex
system; two outer recirculation regions, where particles rotate around the ‘ghost’
vortices; an inner recirculation region, where particles rotate around the two real
vortices and two inner core regions, one for each real vortex, that have in common
solely the hyperbolic point H1. In figure 4, these regions are depicted with different
shades of grey. Note that the size and shape of these regions depend on the initial
aspect ratio of the vortices, but the topology of the fixed points and the separatrices
is common to all cases.

We consider as the unperturbed system the velocity field and streamlines associated
with the initial condition when the major axes of the vortex patches are aligned.
During the time evolution, the rotation of the patches on themselves generates a
time-periodic perturbation of the velocity field as the aspect ratio λ, separation of the
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centroids 2ρ and rotation angle ϕ of the patches change with time, see figures 3(b)
to 3(d ). This perturbation has a strong effect on the geometry of the heteroclinic and
homoclinic orbits. If the perturbation is sufficiently strong, the separatrices of the
unperturbed flow, represented in figure 4, form complicated structures, called chaotic
tangle. The orbits still depart smoothly from the corresponding hyperbolic point,
but undergo to strong oscillations as they approach a different hyperbolic point,
for heteroclinic orbits, or the same point, for homoclinic orbits. The analysis of the
tangle dynamics (e.g. Rom-Kedar et al. 1990) is fundamental for understanding fluid
transport in time-periodic flows. Rom-Kedar et al. (1990) performed a dynamical
system type of analysis of a two-dimensional, inviscid, incompressible flow comprised
of a pair of point vortices of opposite sign and an oscillating strain field. In the
absence of perturbations, i.e. the strain field, the vortex pair translates with constant
velocity and transports a constant amount of fluid trapped in the recirculation zones.
On the contrary, when the strain field is added, fluid is entrained and detrained from
the recirculation zones and chaotic particle motion occurs. Rom-Kedar et al. (1990)
have shown that the transport and dispersion of fluid particles can be quantified by
analysing the intersections of the stable and unstable manifolds at given time slices.
In this study, given the finite time and aperiodicity of the vortex system, we use tangle
dynamics to describe the transport of fluid induced by a vortex pair over a finite time,
namely one period of co-rotation.

To characterize the perturbations affecting the homoclinic orbit stemming from
the hyperbolic point H1, we perform a linear stability analysis of the velocity field
induced by a pair of elliptic vortices about the joint centre of vorticity. Expanding in
Taylor series the two components of the velocity field (D. Vainchtein 2005, private
communication), we obtain

U (x, y) = M11x + M12y

= C1 [κ1y + 2κ2x]

+ C2{cos(2ψ)[κ3y + 4κ1κ2x] + sin(2ψ)[κ3x − 4κ1κ2y]}, (4.2)

V (x, y) = M21x + M22y

= C1 [κ1x − 2κ2y]

+ C2{cos(2ψ)[κ3x − 4κ1κ2y] − sin(2ψ)[κ3y + 4κ1κ2x]}, (4.3)

where

C1 =
1

ρ4
, C2 =

3

4ρ8

1 − λ2

λ
, (4.4)

κ1 = y2
c − x2

c , κ2 = xcyc, κ3 = x4
c − 6x2

c y
2
c + y4

c , (4.5)

and (xc, yc) are the coordinates of the centroid of one patch, with the other located at
(−xc, −yc). The eigenvalues and eigenvectors of the matrix M determine the dynamics
of the flow in the neighbourhood of the hyperbolic point (x0, y0). The two eigenvalues
are real, equal in magnitude and opposite in sign for any value of the aspect ratio.
Thus, the point H1 is a saddle point during the entire evolution of the system. The
two eigenvectors represent two subspaces: the unstable subspace, identified by the
eigenvector corresponding to the real positive eigenvalue, and the stable subspace,
identified by the eigenvector corresponding to the real negative eigenvalue. These
spaces are invariant subspaces of the linearized equations. As for the linearized
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Figure 5. Time evolution of the coefficients C1 (a) and C2 (b) of the strain field induced around
the hyperbolic point located at the joint centre of vorticity (x0, y0) by pairs of elliptic vortices
of initial aspect ratios λ= 0.40 (solid line), λ= 0.60 (∗), 0.84 (dash-dotted) and 0.8947 (dotted).

system, the nonlinear system has two invariant manifolds: the stable manifold, which
consists of the orbits of the nonlinear system tangent to the stable subspace, and
similarly an unstable manifold which is tangent to the unstable subspace.

Hence, (4.2) and (4.3) describe a strain field generated by the vortex pair around the
point (x0, y0). The first term on the right-hand side depends solely on the coordinates
of the centroids and is responsible for the time modulation of the amplitude of the
strain field. The second term, instead, depends on the coordinates of the centroids,
the aspect ratio, λ, and the angle ψ =α + ϕ, which is the sum of the co-rotation, α,
and rotation, ϕ, angles, and is responsible for the angular reorientation of the strain
field. Figures 5(a) and 5(b) show the time evolution of the coefficients C1 and C2,
respectively, for pairs of elliptic vortices of initial aspect ratios λ= 0.40, 0.60, 0.84
and 0.8947. Note that the average value of the coefficient C2 is nearly two orders of
magnitude smaller than C1 and, also, that the value of both coefficients oscillates in
time with amplitude increasing and frequency decreasing as the aspect ratio decreases.
Figure 6 shows, over a period of co-rotation, the angles swept by the eigenvectors
of the stability matrix M. The eigenvectors for the case λ= 0.40 oscillate nearly
12◦, see figure 6(a). This oscillation reduces to nearly 1◦ for the case λ= 0.84, see
figure 6(b).

Under the action of the strain field (4.2)–(4.3), the stable and unstable manifolds
of the hyperbolic points deform and create a tangle. Following the work by Fuentes
(2001, 2005), we compute, in correspondence to the time slice t0 = 0, the tangle formed
by the orbits of the saddle point H1. The unstable manifold is obtained by selecting, at
time t0 −	t , a short material line of length l = 0.04 crossing, along the direction of the
unstable eigenvector, the saddle point H1 and evolving it up to t = t0 in the rotating
frame of reference. Similarly, the stable manifold at time t0 is obtained by selecting,
at time t0 + 	t , a short material line of length l = 0.04 crossing, along the direction
of the stable eigenvector, the saddle point H1 and evolving it backwards in time up
to t = t0 in the rotating frame of reference. The time interval 	t is chosen sufficiently
large to allow a clear and quite complete development of the manifolds. Figure 7
shows the intersections of the stable and unstable manifolds with the time slice t0 = 0,
computed using a time interval 	t corresponding to three periods of rotation, 3T , of
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Figure 6. Angular range swept, over a period of co-rotation, by the eigendirection of the
unstable (black) and stable (grey) manifolds computed for pairs of elliptic vortices of initial
aspect ratios λ= 0.40 (a) and 0.84 (b).

the elliptic vortices with initial aspect ratios λ= 0.40, 0.60, and three and six periods
of oscillation of the vortices with aspect ratio λ= 0.80. The different motion of the
vortices with aspect ratio λ< 0.80 or λ� 0.80 has major effects on the structure of the
tangle formed by the separatrices. When λ< 0.80, large perturbations are created by
the rotation of the patches, and few periods of rotation are sufficient for the tangle
to develop and show its complexity. In this range of λ, the vortices perform complete
rotations around themselves and wind the separatrices in a tight spool around their
contours. The complexity of the tangle increases as the initial aspect ratio decreases,
see figure 7(a–b). On the contrary, when λ� 0.80, the shape of the vortices oscillates
around its initial orientation yielding a weaker perturbation and, therefore, the loss
of the wrapping mechanism. The separatrices, being only slightly deformed, overall
maintain their unperturbed structure. Figures 7(c) and 7(d ) show, as an example, the
tangle for λ= 0.80. In this case, the deformations of the tangle are minimal when 	t

corresponds to three periods of oscillation and slightly increase when computed over
six periods of oscillation.

To investigate the transport of fluid generated by a pair of co-rotating initially
elliptic vortex patches of initial aspect ratio λ= 0.40, we simulate the time evolution
of three material lines coinciding, at t = 0, with the separatrices of the co-rotating
stream function, depicted in figure 4. In other words, we simulate and analyse the
tangle dynamics. We colour-code black, the fluid enclosed in the inner core regions;
dark-grey, the fluid in the inner recirculation region; light-grey, the fluid in the outer
recirculation regions; and white, the fluid in the outer flow. Figure 8(a) presents the
initial distribution of the colour-coded fluid. Figure 8(b–f ) shows the snapshots of
the time evolution of the colour-coded fluid at times corresponding to rotation angles
ϕ = π/2, π, 3π/2, 2π and 4π. The evolution is characterized by large deformations of
the separatrices and the formation of lobes. New lobes form and develop over every
half a period of rotation, T/2. Note how the black and dark-grey fluids, initially
enclosed in the inner core regions and in the inner recirculation region, respectively,
are transported into the outer recirculation regions by complex lobes. The light-grey
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Figure 7. Intersections with the time slice t0 = 0 of the stable (dotted line) and
unstable (solid line) manifolds of the saddle point located at the joint centre of vorticity.
The first row shows the results computed over three periods of rotation, 3T , for pairs of
vortices of initial aspect ratios λ= 0.40 (a) and 0.60 (b). The second row shows the results
computed over three (c) and six (d ) periods of oscillations for a vortex pair of initial aspect
ratio λ= 0.80.

fluid, instead, tends to be entrained into the inner recirculation region surrounding
the vortex patches.

Figure 9 presents a comparison of the degree of transport of the colour-coded fluid
for vortex pairs of initial aspect ratios λ=0.40 and 0.84. Note that the vortex pairs
evolve differently and, consequently, the snapshot for the case λ= 0.40 is taken at a
time corresponding to three periods of rotation, 3T , while for the case λ= 0.84 the
time corresponds to three periods of oscillations. As suggested by the linear stability
analysis previously described, the perturbation induced around the saddle point H1

and the deformation of its separatrices increase for decreasing values of the initial
aspect ratio of the vortices. Therefore, the best transport of fluid is induced by a pair
of vortices of small initial aspect ratio; in our case λ= 0.40. On the contrary, the
transport of fluid is minimal for the case λ= 0.84, see figure 9(b).
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Figure 8. (a) Distribution at t = 0 of the colour-coded fluid in the four different regions
delimited by the separatrices of the co-rotating stream function, for a pair of vortices of initial
aspect ratio λ= 0.40: inner core regions (black), inner recirculation region (dark-grey), outer
recirculation regions (light-grey) and outer flow region (white). (b)–(f ) Snapshots of the time
evolution of the colour-coded fluid, taken at times corresponding to rotation angles ϕ = π/2
(b), π (c), 3π/2 (d ), 2π (e) and 4π (f ).
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Figure 9. Snapshots of the transport of the colour-coded fluid after three periods of
rotation for the case λ= 0.40 (a) and three periods of oscillations for λ= 0.84 (b).

5. Characterization of stretching and stirring
We characterize stretching and stirring on a circular domain centred at the joint

centre of vorticity, (x0, y0), because the evolution of a pair of like-signed initially
elliptic vortices has radial symmetry. The radius of the domain should be carefully

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

65
2X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000652X


258 F. Rizzi and L. Cortelezzi

chosen since the physical domain is unbounded and, consequently, the quantification
of stretching and stirring depends on the radius chosen. To investigate the effect of
the size of the domain, we consider three circular domains of dimensionless radii
R =0.5, 7 and 20. The domain of radius R = 7 is suggested by the dynamical system
analysis presented in § 4, where it has been shown that stirring and transport are
confined by the outer separatrices in a region of nearly radius 7. The domain of
radius R =0.5 identifies a region between the vortex pair where we expect stirring
to be mostly dominated by the dynamics of the saddle point H1 located at the joint
centre of vorticity. This radius should be considered small with respect to vortex
half-separation, ρ. Note that this case is characterized by a substantial transport of
fluid in and out of the domain. The domain of radius R = 20 identifies a region where
the details of the vortex interaction become negligible and stirring is dominated by
the dynamics of the outer flow. This radius should be considered large with respect
to the vortex half-separation, ρ. In this case, there is no transport of fluid in and out
of the domain.

To investigate stretching and stirring, we consider as initial concentration of the
scalar field a simple configuration often analysed in the literature, where two uniform
concentrations are separated by a straight-line interface. Since stirring and stretching
depend on the geometry of the initial concentration field, we explore their dependence
by considering the following straight-line interfaces: y = 0, y = x, x = 0, y = −x. Recall
that y = x and y = −x are, respectively, the eigendirections at time t = 0 of the
unstable and stable manifolds of the hyperbolic point H1, see § 4. Since we consider
a diffusionless system, we quantify stretching simply by simulating the time evolution
of the interface. However, the concentration field must be reconstructed at each time
t to quantify stirring.

5.1. Stretching

Ottino (1989) showed that ‘. . .from a kinematical viewpoint fluid mixing is the efficient
stretching and folding of material lines and surfaces.’. In particular, stirring leads to
a typical lamellar structure. When molecular diffusion is negligible, the lamellae
are separated by an interface which is passively advected, therefore maintaining its
identity. As the degree of stretching of the interface increases, the contact area between
the fluids increases accordingly and, consequently, the scale of segregation decreases.
In this case, stirring can be quantified in terms of the number and thickness of the
lamellae or in terms of stretching of the interface. When the rate of stretching of
fluid elements is linear, stirring results to be minimal. On the contrary, exponential
stretching can be seen as the fingerprint of chaotic motion of fluid particles and,
therefore, is associated with efficient stirring. The quality of stirring, however, cannot
be uniquely related to stretching but must also be evaluated in terms of the efficient
distribution of stretching on the domain (Muzzio et al. 1991).

On a circular domain of radius R = 0.5, the dynamics is mostly dominated by the
saddle point H1 located at the joint centre of vorticity and the transport of fluid
in and out of domain is substantial. Consequently, stretching of the interface is not
well defined because segments of the interface are continuously advected in and out
of the domain. In this case, therefore, we quantify stirring in terms of the number
of lamellae. Figure 10(a–b) shows the linear–log plots of the time evolution of the
number of lamellae produced by pairs of vortices of initial aspect ratios λ= 0.40 and
0.84, when the initial interfaces are y =0, y = x, x = 0 and y = −x. Note that the
number of lamellae is a discontinuous function of time; however, for convenience,
we plot it as a continuous function. For a given initial orientation of the interface,
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Figure 10. (a)–(b) Linear–log plots of the time evolution of the number of lamellae computed
on a domain of radius R = 0.5, for pairs of co-rotating vortices of initial aspect ratios
λ= 0.40 (a) and 0.84 (b). (c)–(f ) Linear–log plots of the stretching of the interface induced
by pairs of co-rotating vortices of initial aspect ratios λ=0.40 and 0.84, computed on circular
domains of radii R = 7 and 20. The initial orientations of the interface are: y = 0 (solid line),
y = x (dotted), x = 0 (dashed) and y = −x (dash-dotted).

the time evolution of the number of lamellae is exponential and increases as the
initial aspect ratio decreases. Initially, no lamellae are formed. As the number of
lamellae starts increasing, the growth rate depends on the initial aspect ratio of the
vortices. For λ= 0.40, the number of lamellae increases in well-distinct steps, each
step separated from the next by nearly half a period of rotation. This behaviour
is lost for the case λ= 0.84, where the number of lamellae increases in small and
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asynchronized steps. This is due to the fact that the dynamics of the saddle point H1

is increasingly more perturbed by the rotational motion of the vortices and stirring
is more chaotic, as the initial aspect ratio of the patches decreases. The overall time
evolution of the number of lamellae is exponential with time: for λ= 0.40 it scales as
∼exp(t/15), whereas for λ=0.84 it scales as ∼exp(t/32).

On the circular domains of radii R = 7 and R = 20, since the transport of fluid in
and out of the domain is negligible, we quantify stirring in terms of stretching of the
interface. Figure 10(c–f ) shows the linear–log plots of the time evolution of the ratio
L(t)/L0, where L(t) is the length of the interface at time t and L0 = R is the length
at time t =0, induced by pairs of vortices of initial aspect ratio λ= 0.40 (c and e)
and λ=0.84 (d and f ), for the four initial interfaces considered. Stretching increases
as the initial aspect ratio decreases in all cases. In particular, the time evolution of
stretching is exponential in time for all the aspect ratios considered and, therefore,
can be expressed as

L(t)

L0

∝ e(βt), (5.1)

where β is a coefficient dependent, as we will discuss later, on the rate of divergence
of nearby trajectories.

On the domain R = 7, which encloses the outer recirculation regions shown in
figure 4, stretching is dominated by the rotational and co-rotational motion of the
vortices, and it is sensitive to both initial aspect ratio of the vortices and initial
geometry of the concentration field. Figures 10(c) and 10(d ) show that the vertical
interface, x =0, undergoes to the highest degree of stretching because it crosses,
at t =0, the two vortices and passes through the two elliptic points, E1 and E2,
located at their centroids. Hence, during the evolution, the interface is wrapped into
a tight spiral around the vortices due to their rotational motion. On the contrary, the
interface y =0 undergoes to the lowest degree of stretching because it crosses at t = 0
the elliptic points E3 and E4 of the two ‘ghost’ vortices where the motion is laminar and
recirculation is slow. The degree of stretching for λ=0.40 is characterized by β ≈ 1/17,
while for λ= 0.84 we have β ≈ 1/38. This substantial difference can be explained by
recalling that the vortices of initial aspect ratio λ< 0.80 undergo to complete rotations
around their initial orientation inducing, therefore, a tight wrapping of the interface.
On the contrary, the shape of vortices with λ� 0.80 undergoes to oscillations around
the initial orientation and, consequently, the wrapping of the interface is substantially
reduced. Figures 10(e) and 10(f ) show that the time evolution of stretching computed
on a domain of radius R = 20 is similar to the case R =7. The interfaces x = 0 and
y = 0 still undergo to the highest and lowest degree of stretching, respectively, and the
order of magnitude of the degree of stretching is nearly equivalent. The reason is that
the fluid contained in the free-flow region, i.e. R > 7 (figure 4), undergoes to laminar
transport around the vortex system and, consequently, the degree of stretching of
the segment of the interface that is contained in the free-flow region is negligible
compared to the stretching induced within the region of radius R =7. In the case
R =20, the values of β for the aspect ratios λ=0.40 and 0.84 are slightly lower than
in the case R = 7, because the initial length of the interface is nearly three times longer
than in the case R = 7. This indicates that stretching is not sensitive to the size of the
domain, provided the domain contains the separatrices.

Figure 10(a) shows that for the case λ= 0.40, on the domain R = 0.5, the time
evolution of the number of lamellae is clearly synchronized with the half-period of
rotation of the vortices. Unexpectedly, this relationship seems to be lost, beside a
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Figure 11. (a)–(b) Linear–log plots of the time evolution of the rate of stretching induced by
pairs of co-rotating vortices of initial aspect ratios λ=0.40 (a) and λ= 0.84 (b), computed on
a circular domain of radius R = 7. (c)–(d ) Lin–lin plots of the stretching induced by pairs of
co-rotating vortices of initial aspect ratios λ= 0.40 (c) and λ= 0.84 (d ), on a circular domain
of radius R = 7. The initial orientations of the interface are: y = 0 (solid line), y = x (dotted),
x =0 (dashed) and y = −x (dash-dotted).

weak ondulation, when we plot the time evolution of stretching for the domains
R = 7 (figure 10c) and R = 20 (figure 10e). The rate of stretching, however, is more
revealing. Figure 11(a–b) shows the time evolution of the rate of stretching of all four
initial interfaces, computed on a domain of radius R =7, for pairs of vortices of initial
aspect ratios λ=0.40 and 0.84. In the case λ= 0.40, the rate of stretching increases
in steps about every half a period of rotation of the vortices, and its average value
grows of about a factor 3.25 at each step. The synchronization of stretching with half
a period of rotation of the vortices can clearly be seen by plotting stretching on a
linear–linear plot. Figure 11(c) shows that the time evolution of stretching is almost
linear over every half a period of rotation of the patches but overall exponential.
This behaviour is lost when λ=0.84, see figures 11(b) and 11(d ). This behaviour
appears to be strongly correlated with the fact that pairs of vortices describing open
trajectories in the phase portrait (figure 2), i.e. with initial aspect ratio less than about
0.80, undergo complete rotations around themselves while co-rotating around the
joint centre of vorticity. On the contrary, in the range 0.80 � λ� 0.89, the shape of the
vortices undergoes to small and fast oscillations around the initial orientation, ϕ = 0,
while the patches co-rotate around the joint centre of vorticity. Hence, stretching
induced by the coupling between rotation and co-rotation of the patches is overall
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Figure 12. (a) Finite-time Lyapunov exponent, Λt , computed for the evolution of pairs of
vortices of initial aspect ratios λ= 0.40 (solid line), 0.50 (�), 0.60 (∗), 0.70 (�), 0.80 (�),
0.84 (dashed-dotted) and 0.8947 (dotted). (b) Direct expansion rate at a time corresponding
to one period of co-rotation, computed for pair of vortices with initial aspect ratio λ= 0.40.
The dashed lines identify the separatrices of the system, see figure 4.

exponential and increases as the initial aspect ratio of the vortex pair decreases from
0.8947 to 0.40.

To substantiate the finite-time analysis of stretching presented so far, we compute
the Lyapunov exponents, which provide an estimate of the local rate of divergence
of initially infinitesimally close trajectories. In practice, it suffices to calculate
the maximum Lyapunov exponent, Λmax , because it uniquely determines whether
the system is chaotic or not. It is defined as

Λmax = lim
t→∞

1

t
log

d(t)

d0

, (5.2)

where d(t) and d0 are the distances at time t and t =0, respectively, between a reference
and a test orbit. Since the vortex system is a finite-time system, we resort to compute
the finite-time Lyapunov exponent, Λt , from a set of time-series data (Wolf et al.
1985). To compute Λt , we choose a point near the saddle point, compute its trajectory
for nearly seven periods of co-rotation and average the results obtained from the time
series of the x and y coordinates of this test orbit. This provides us with a large set of
data whose time evolution is sufficiently long for the finite-time Lyapunov exponent to
converge to its asymptotic value. Note that chaotic flows present two main features:
first, an exponential stretching of material lines and second, in general, different
rates of stretching at different spatial locations. Therefore, exponential stretching of
a material line can be characterized as in (5.1), where β is a coefficient obtained by
averaging the Lyapunov exponents computed over the length of the line (Franjione
& Ottino 1987).

Figure 12(a) shows the time evolution of the finite-time Lyapunov exponent Λt ,
computed for pairs of vortices of initial aspect ratios λ=0.40, 0.50, 0.60, 0.70, 0.80,
0.84 and 0.8947, for a test orbit initially located at (0.1, 0.1), i.e. near the saddle point
H1, which is the region of the flow with the highest rate of stretching. Figure 12(a)
shows that Λt has two well-separated asymptotic values: Λt ≈ 0.21 for 0.40 � λ< 0.80
and Λt ≈ 0.15 for λ� 0.80. This can be explained as follows. On the one hand,
vortices with λ< 0.80 perform complete rotations around themselves inducing a
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strong perturbation to the dynamics of the saddle point H1. Hence, the geometry of
the separatrices is radically altered and chaotic motion is induced. On the other hand,
when λ� 0.80 the shape of the vortices oscillates around the initial orientation and
the induced perturbation in the region of the saddle point H1 is minimal, but not
negligible. Consequently, the value of the finite-time Lyapunov exponent is comparable
for pairs of vortices of initial aspect ratio λ< 0.80, but it radically decreases when
the aspect ratio becomes greater than 0.80. This result provides further evidence of a
jump in the dynamics of the vortex system as the initial aspect ratio becomes greater
than 0.80.

To provide a qualitative overall picture of the relationship between stretching of
fluid elements and their initial spatial location, we apply the set-oriented method,
introduced by Padberg et al. (2009), to compute the direct expansion rate (Haller
2001; Padberg et al. 2009). The direct expansion rate measures, over a finite time, the
maximum relative exponential divergence of the trajectories of two points initially
separated by a small distance and, consequently, characterizes the details of the
invariant manifolds of the hyperbolic points of a system, (Haller 2001; Padberg et al.
2009). Note that the direct expansion rate is related to the finite-time Lyapunov
exponents. The direct expansion rate at time t is defined as

Γε(t, x0)=̇
1

t − t0
ln

(
max

x:‖x0−x‖=ε

‖f t (x0) − f t (x)‖
ε

)
, (5.3)

where ε is the initial distance between the points x0 and x, f t (x0) is the trajectory
at time t of the point x0 and f t (x) is the trajectory at time t of the point x. The
set-oriented method introduced by Padberg et al. (2009) to evaluate Γε is based on
two steps. First, the domain of interest is discretized with a collection of n boxes Bk ,
k = 1, 2, . . . , n, and, second, the direct expansion rate for each box Bk is computed as

Ξε(t, Bk)=̇ max
x0∈Bk

Γ̃ε(t, x0, Bk), k = 1, 2, . . . , n, (5.4)

where Γ̃ε(t, x0, Bk) represents the approximation of Γε(t, x0) computed for the box
Bk . The above quantity can be obtained by filling each box with a finite number of
pairs of particles and computing the maximum expansion for this set of particles.
Hence, the resolution of the computation depends on the number of boxes adopted
and the number of pairs of particles introduced in each box. We discretize the domain
(−7 � x � 7) × (−7 � y � 7) with 351 × 351 boxes of dimensions 	x = 	y = 0.04 and
use, within each box, four pairs of particles initially separated by a distance ε = 0.01.
Figure 12(b) shows the result for the case λ= 0.40 computed after one period of co-
rotation. The light and dark regions correspond to high and low values of the direct
expansion rate, respectively. This diagnostic markedly identifies the main transport
barriers of the flow, i.e. the manifolds of the hyperbolic point H1. Note, also, that
the fluid particles undergoing the highest stretching are located in the regions close
to the vortex patches and along the boundaries of the outer recirculation regions.
On the contrary, the fluid elements located inside the vortices and within the outer
recirculation regions are characterized by small values of the expansion rate, due to
the effect of laminar motion and the presence of the elliptic points E1, E2, E3 and E4

(see figure 4).

5.2. Stirring

We quantify the stirring performance of an initially elliptical vortex pair using the mix-
norm. The mix-norm (Mathew et al. 2005) is a multi-scale measure of the ‘mixedness’

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

65
2X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000652X


264 F. Rizzi and L. Cortelezzi

of a concentration field. It is defined as the root mean square of the average values
of a zero-mean concentration field over a dense set of subsets contained in the flow
domain. The reader is referred to the article by Mathew et al. (2005) for a detailed
derivation of the mix-norm and to Mathew et al. (2007) for an application of the
mix-norm to mixing control.

In order to characterize stirring using the mix-norm on a circular domain, we derive
the mix-norm in polar coordinates. The derivation, that follows the work by Mathew
et al. (2005), is not trivial. The reader is referred to the work by Rizzi (2009) for the
details. Here, we present only the final result for a given circular domain Sa of radius
a and a scalar field c ∈ L2

Sa , for example a concentration field. The mix-norm of the
scalar field c on the domain Sa is

Φ(c) =

[ ∞∑
n=1

(A0,n)
2λ0,n +

∞∑
m=1

∞∑
n=1

(
A2

m,n + B2
m,n

) λm,n

2

]1/2

, (5.5)

with

λ0,n =
16a4π

(β0,n)2
[J1(β0,n)]

2

∫ a

0

[
J1

(
β0,n

2a
ρ

)]2
1

ρ2
dρ, m = 0, (5.6)

A0,n =

∫ a

0

∫ π

−π

c(ρ, θ)J0

(
β0,n

a
ρ

)
ρ dρ dθ

πa2
[
J1(β0,n)

]2
, m = 0, (5.7)

λm,n =
16a4π

(βm,n)2
[Jm+1(βm,n)]

2

∫ a

0

[
J1

(
βm,n

2a
ρ

)]2
1

ρ2
dρ, ∀ m �= 0 (5.8)

Am,n =

2

∫ a

0

∫ π

−π

c(ρ, θ)Jm

(
βm,n

a
ρ

)
cos(mθ) ρ dρ dθ

πa2
[
Jm+1(βm,n)

]2
, ∀ m �= 0, (5.9)

Bm,n =

2

∫ a

0

∫ π

−π

c(ρ, θ)Jm

(
βm,n

a
ρ

)
sin(mθ) ρ dρ dθ

πa2
[
Jm+1(βm,n)

]2
, ∀ m �= 0, (5.10)

where Jk(·) is the Bessel function of the first kind of order k, βk,n is the nth zero of
Jk(·), (ρ, θ) are the polar coordinates and λm,n are the eigenvalues of the so-called
mix-operator. The reader is referred to Mathew et al. (2005) for a detailed definition
of the mix-operator. In general, the mix-norm (5.5) cannot be analytically computed
but must be numerically evaluated.

Figure 13 shows the snapshots of the concentration field on a domain of radius
R =7 stirred by pairs of elliptic vortices of initial aspect ratios λ= 0.40, 0.84, 0.8947,
at a time corresponding to one period of co-rotation, when starting from the initial
conditions y =0, y = x, x =0 and y = −x. The frame of reference of the figures
rotates with the vortex pair. We identify two regions of the domain in which stirring
is controlled by different mechanisms: chaotic in the inner core and inner recirculation
regions, and laminar in the outer recirculation regions. This distinction is crucial to
understand the key role that the geometry of the initial concentration field plays with
respect to stirring enhancement.

Stirring confined in the inner core and inner recirculation regions is, after an initial
delay related to the orientation of the interface, chaotic. Figure 13 shows that the
level of chaotic advection decreases sharply as the initial aspect ratio of the vortices
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Figure 13. (Colour online) Snapshots of the concentration field stirred, over one period of
co-rotation, by pairs of vortices of initial aspect ratios λ= 0.40, 0.84 and 0.8947. The domain
has radius R =7 and the initial concentration fields are delimited by the lines y =0, y = x,
x =0 and y = −x. The snapshots are presented in a frame of reference rotating with the vortex
pair.
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Figure 14. Mix-norm, Φ , of the time evolution of the concentration fields initially delimited
by the lines y = 0 (solid line), y = x (dotted), x = 0 (dashed) and y = −x (dash-dotted), see
figure 13. The domain has radius R = 7 and the initial aspect ratios of the vortices are
λ=0.40 (a) and λ= 0.84 (b).

becomes greater than 0.80. Stirring in the outer recirculation regions is laminar and
is characterized by lobes of fluid whose shape and size strictly depend on the initial
orientation of the interface, i.e. on the fraction of grey and white fluids initially
contained in the outer recirculation regions, as shown by each column in figure 13.
The first row of figure 13 shows that the initial concentration field with the horizontal
interface yields to a configuration where the outer recirculation regions are occupied
by two lobes of nearly the same extension, filled with different fluids. This is a
consequence of the fact that the interface y =0 initially crosses the outer recirculation
regions and passes through the elliptic points E3 and E4, see figure 4. Consequently,
the two points of the interface coinciding with E3 and E4 are fixed, and the interface is
stretched and folded around them by the slow swirling motion induced by the ‘ghost’
vortices located at the points E3 and E4. On the other hand, the initial condition
y = x generates single lobes that nearly fill the outer recirculation regions (second row
of figure 13), the vertical interface, x = 0, does not yield to the formation of lobes
(third row of figure 13) because, initially, the outer recirculation regions are filled
with the same type of fluid and, finally, the initial condition y = −x yields to two thin
lobes that occupy only a small area of the outer recirculation regions (fourth row of
figure 13).

Figure 14 shows the time evolution of the mix-norm over one period of co-rotation,
computed for the four geometries of the initial concentration field and vortices of
initial aspect ratios λ= 0.40 and λ= 0.84 (see first and second columns of figure 13).
The mix-norm has the same overall trend for both aspect ratios because its value is
dominated by the laminar stirring induced in the outer recirculation regions, which
occupy 85 % of the domain. Chaotic advection is responsible for the faster decay
of the mix-norm in the case λ= 0.40. Note that for a fixed value of the initial
aspect ratio, for times up to t ≈ 25, the mix-norm decreases more rapidly for the
initial concentration field with a vertical interface, x = 0, than the other cases. This is
because at time t = 0 the vertical interface cuts the vortices in half and passes through
the elliptic points E1 and E2. Consequently, the two points of the interface coinciding
with E1 and E2 are fixed, and the interface is quickly wrapped into a tight spiral
around the vortices forming a fine lamellar structure (see the third row of figure 13).
However, for longer times, the initial concentration field with the horizontal interface,
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Figure 15. Comparison between the mix-norm (a) and stretching of the interface (b) of a
concentration field stirred by a pair of vortices of initial aspect ratio λ= 0.40. The times
t1, . . . , t6 correspond to the instants where stretching of the interface changes slope, see (b),
and the mix-norm has nearly its local maxima, see (a). The domain has radius R = 7 and the
initial concentration field is delimited by the line x = 0.

y = 0, yields to the best stirring performance. This is in disagreement with the result
obtained using stretching of the interface as an indicator for stirring. For the domain
R = 7, a comparison of the two diagnostics shows that this disagreement is due to the
fact that the value of the mix-norm is dominated by the shape and size of the lobes
that are created by the laminar flow in the outer recirculation regions, while stretching
is dominated by the chaotic flow induced in the inner core and inner recirculation
regions.

Interestingly, the mix-norm does not decrease monotonically. There are low- and
high-frequency oscillations due to the evolution of the lobes in the outer recirculation
regions and to the tangle dynamics, respectively. This seems to conflict with the
monotonic evolution of stretching of the interface. However, the local maxima and
minima of the high-frequency oscillations of the mix-norm are strongly coupled to
the changes of stretching of the interface. This becomes evident by comparing the
time evolution of the mix-norm with the stretching of the interface initially vertical,
x = 0, for a pair of vortices of initial aspect ratio λ= 0.40. In this case, there are
no low-frequency oscillations because no lobes are formed in the outer recirculation
region. Figure 15(a) shows that the local maxima of the mix-norm occur at about the
instants of time when stretching of the interface changes slope, see figure 15(b).

The non-monotonic behaviour of the mix-norm can be explained by analysing, as
an example, how the concentration field evolves during the time interval between the
first and second changes of slope of the stretching of the interface, i.e. between times
t1 = 30.05 and t2 = 48.05, see figure 15(b). To this end, we divide the interval [t1, t2]
into five equal subintervals delimited by the time values: τ1 ≡ t1 = 30.05, τ2 = 33.65,
τ3 = 37.25, τ4 = 40.85, τ5 = 44.45, τ6 ≡ t2 = 48.05. The corresponding snapshots of the
concentration fields are presented in figure 16, which shows two different phases of
the evolution of the concentration field. During the first phase (τ1, τ4), depicted in
figures 16(a–d), the fluid elements located in the region near the saddle point, H1,
experience a continuous stretching along the unstable manifold, and this is reflected
by a drop in the mix-norm which reaches its local minimum at τ4 = 40.85. During
the second phase (τ4, τ6), depicted in figures 16(d–f ), the fluid elements located in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

65
2X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000652X


268 F. Rizzi and L. Cortelezzi

(a) (b) (c)

(d) (e) ( f )

Figure 16. (Colour online) Snapshots at times t = 30.05 (a), 33.65 (b), 37.25 (c), 40.85 (d ),
44.45 (e) and 48.05 (f ) of the concentration field stirred by a pair of vortices of initial aspect
ratio λ= 0.40. The domain has radius R = 7 and the initial concentration field is delimited by
the line x = 0. The snapshots are presented in a frame of reference rotating with the vortex
pair.

the region around the saddle point undergo to a continuous folding, which spreads
the lamellae around the saddle point H1, and this is reflected by an increase in the
mix-norm. This also explains the piecewise trend of the stretching of the interface, see
figure 15(b). Stretching is linear during the interval (τ1, τ4) and changes slope during
the folding phase (τ4, τ6). This mechanism of stretching and folding repeats itself
periodically in time over each half-period of rotation and seems to be responsible for
the non-monotonic behaviour of the mix-norm and for the change of the slope of
stretching of the interface, see figure 15.

Figure 17 shows the snapshots of the concentration field advected on a domain of
radius R = 0.5 by pairs of vortices of initial aspect ratios λ= 0.40, 0.84, 0.8947, after
one period of co-rotation, when starting from the initial conditions y = 0, y = x, x = 0
and y = −x. The figures are presented in a frame of reference rotating with the vortex
pair. Note that for domains of this size, i.e. domains with radius small with respect
to the half-separation of the centroids, the flow is dominated by the dynamics of the
saddle point H1, while the dynamics of the other fixed points (E1, E2, E3, E4, H2

and H3) have a negligible effect, see figure 4. The concentration field is increasingly
better stirred, i.e. has an exponentially larger number of lamellae, as the initial aspect
ratio decreases from 0.8947 to 0.40, since the unstable and stable manifolds of the
saddle point H1 undergo to deformations in time whose amplitude increases greatly
as the aspect ratio decreases. Figure 18 shows the time evolution of the corresponding
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Figure 17. (Colour online) Snapshots of the concentration field stirred, over one period of
co-rotation, by pairs of vortices of initial aspect ratios λ= 0.40, 0.84 and 0.8947. The domain
has radius R = 0.5 and the initial concentration fields are delimited by the lines y = 0, y = x,
x =0 and y = −x. The snapshots are presented in a frame of reference rotating with the vortex
pair.

mix-norms. The mix-norm presents, in all cases, large and frequent fluctuations due to
the transport of fluid in and out of the domain. New thick lamellae enter the
domain due to the folding action of the vortices, while the old lamellae become
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Figure 18. Mix-norm, Φ , of the time evolution of the concentration fields initially delimited
by the lines y = 0 (solid line), y = x (dotted), x = 0 (dashed) and y = −x (dash-dotted), see
figure 17. The domain has radius R =0.5 and the initial aspect ratios of the vortices are
λ=0.40 (a) and λ= 0.84 (b).

thinner as the fluid is squeezed out of the domain by the stretching action of the
vortices. The amplitude and frequency of these oscillations increase as the aspect ratio
decreases from 0.8947 to 0.40 because the tangle dynamics becomes more effective.
The mix-norm, for a fixed value of the aspect ratio, seems to depend on the geometry
of the initial concentration field only at the beginning of the evolution and, after an
initial delay, is nearly equivalent in all cases. The stirring performance improves as the
aspect ratio decreases from 0.8947 to 0.40 and, after one period of co-rotation, the
best stirring performance is induced by vortex pairs with initial aspect ratio λ=0.40.

Figure 19 shows the snapshots of the concentration field with initial interface y =0,
advected on a domain of radius R = 20 by pairs of vortices of initial aspect ratio
λ=0.40, 0.84, 0.8947, during one period of co-rotation, at times corresponding to
co-rotation angles α = π/2, π, 3π/2, 2π. The figures are presented in a frame of
reference rotating with the vortex pair. For the sake of clarity, we omit the snapshots
for the other initial concentrations fields (y = x, x = 0 and y = −x) because they yield
to similar conclusions. Note that the details of the chaotic flow around the saddle
point H1 are negligible because the system is dominated by the outer flow and, in
minor part, by the flow in outer recirculation regions. Figure 20 shows the time
evolution of the corresponding mix-norm. The mix-norm is nearly the same in all
cases during the first half of the evolution. The different initial aspect ratio of the
vortices slightly affects the mix-norm during the second half of the evolution. Overall,
the geometrical details of the vortices and the orientation of the initial concentration
field have negligible impact, and stirring is mainly dominated by the outer flow.

5.3. Dependence of stretching and stirring on the angular impulse

To characterize the effects of the angular impulse, σ , we consider a vortex pair of
initial aspect ratio λ=0.60 and vary σ in the range 10 � σ � 39. We compute the time
evolution of the concentration field initially delimited by the line y = 0. As shown in
§ 5 for σ = 24.4, this initial concentration field yields the lowest value of the mix-norm
after one period of co-rotation, regardless of the choice of the aspect ratio.

Since the nominal domain is unbounded, we need to choose a finite-size domain
that allows us to perform a fair comparison of the stirring and stretching induced
by vortex pairs with different angular impulse. We choose a circular domain of
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λ = 0.40
α
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 π

/2
α
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 π

α
 =
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π
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 2

π
λ = 0.84 λ = 0.8947

Figure 19. (Colour online) Snapshots, at times corresponding to the co-rotation angles
α = π/2, α = π, α = 3π/2 and α =2π, of the concentration field with the interface initially
oriented horizontally, y = 0, advected by pairs of vortices of initial aspect ratios λ= 0.40, 0.84,
0.8947 on a domain of radius R = 20. The figures are presented in a frame of reference rotating
with the vortex pair.

dimensionless radius R = 9 because this is the smallest radius for which the transport
of fluid in and out of the domain is minimal for all cases. This domain nearly encloses
the outer separatrices of the vortex pair with the largest angular impulse considered,
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Figure 20. Mix-norm, Φ , of the time evolution of the concentration field initially delimited by
the line y = 0, stirred by vortices of initial aspect ratios λ= 0.40 (solid line), 0.84 (dash-dotted)
and 0.8947 (dotted), see figure 19. The domain has radius R =20.
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Figure 21. Three-dimensional plots of the mix-norm (a) and stretching of the interface (b)
as a function of σ and the normalized time, t̂ , for the time evolution of a concentration field
stirred by a pair of vortices of initial aspect ratio λ= 0.60 and angular impulses σ = 10, 12, 15,
18, 21, 24.4, 27, 30, 33, 36 and 39. The domain has radius R = 9 and the initial concentration
field is delimited by the line y = 0. The thin lines represent the cubic interpolation of the data
computed (thick lines).

σ = 39. Since the period of co-rotation of two like-signed vortices increases as the
angular impulse σ increases, a normalized time, t̂ , is defined in order to compare the
cases considered. For a given σ , we define t̂ as the ratio between the time t and
the period of co-rotation.

Figure 21(a–b) shows the three-dimensional plots of the mix-norm and stretching
of the interface L/L0, as a function of σ and the normalized time, t̂ . The thin lines
are the cubic spline interpolations of the data computed for a vortex pair of initial
aspect ratio λ= 0.60 and angular impulse σ =10, 12, 15, 18, 21, 24.4, 27, 30, 33,
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Figure 22. (a) Rotation angle ϕ as a function of the normalized time t̂ computed for the
vortex pairs of aspect ratio λ= 0.60 and angular impulses σ = 21 (�), 24.4 (×), 27 (dashed),
30 (�), 33 (�), 36 (solid) and 39 (∗). (b) Maximum amplitude of oscillation in degrees of the
eigendirections of the stable and unstable manifolds of the hyperbolic point at the joint centre
of co-rotation, H1, as a function of the angular impulse.

36 and 39. Figure 23 presents the associated snapshots of the concentration field
after one period of co-rotation, in a frame of reference rotating with the vortex
pair.

Figure 21 shows that for σ =10 the time evolution of the mix-norm reaches its
maximum, while stretching reaches its minimum. These diagnostics indicate a poor
degree of stirring. The snapshot of the corresponding concentration field (figure 23a)
shows that the vortices quickly merge, leading to a single elliptic vortex with long
filaments undergoing roll-up and instabilities near the end. In this case, the degree
of stirring is minimal because the hyperbolic point H1 is lost and, with it, the
mechanism responsible for stretching and folding described in § 5.2. As σ increases
from 10 to 30, the mix-norm decreases while stretching increases, indicating that
the stirring performance of the system improves significantly, see figure 21. The
mix-norm presents a minimum at σ ≈ 33, while stretching has a sharp maximum at
σ ≈ 30. For values of σ > 33, the mix-norm mildly increases and stretching quickly
decreases.

The extrema of the diagnostics indicate that for a circular domain of radius R = 9,
the best stirring performance is obtained for a value of the angular impulse in the
range 30 � σ � 33. Apparently, this superior stirring performance is induced by two
competing mechanisms. On the one hand, the rotation angular velocity of the vortices
increases as the angular impulse increases, see figure 22(a). On the other hand,
the amplitude of the oscillations of the eigendirections of the stable and unstable
manifolds at the joint centre of vorticity decreases as σ increases, see figure 22(b). We
envision that for 30 � σ � 33, the oscillations of the eigendirections of the manifolds
corresponding to the saddle point at the joint centre of vorticity are sufficiently strong
to induce a complex tangle and, at the same time, the angular velocity of rotation
of the vortices is sufficiently high to wrap the interface in a tight spool around the
patches, see figures 23(h) and 23(i ). As a consequence, the number of lamellae and
the stretching of the interface increases exponentially inducing a minimum in the
mix-norm and a maximum in stretching of the interface. For values of σ smaller than
30, the oscillations of the eigendirections of the manifolds are larger but the angular
velocity of the vortices is too low to efficiently wrap the interface around the patches,
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(a) (b) (c)

(g) (h)

(j) (k)

(i)

(d) (e) ( f )

Figure 23. (Colour online) Snapshots of the concentration field stirred, over one period of
co-rotation, by a pair of vortices of initial aspect ratio λ= 0.60 and angular impulses σ = 10 (a),
12 (b), 15 (c), 18 (d ), 21 (e), 24.4 (f ), 27 (g), 30 (h), 33 (i ), 36 (j ) and 39 (k ). The domain has
radius R = 9 and the initial concentration field is delimited by the line y = 0. The snapshots
are presented in a frame of reference rotating with the vortex pair.

see figures 23(a–g). For values of σ larger than 33, although the angular velocity of
rotation is higher, the oscillations of the eigendirections of the manifolds are too weak
to generate a tangle complex enough to be efficiently wrapped around the vortices,
figure 23(j–k ).
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6. Summary and conclusions

In this study, we characterized transport, stretching and stirring generated by
a pair of like-signed initially elliptical identical vortex patches with a uniform
vorticity distribution, embedded in an incompressible inviscid fluid occupying a two-
dimensional infinite domain.

We showed that the dynamics of a pair of like-signed vortices is determined by the
initial value of the aspect ratio, λ, of their elliptical shape. For a given angular impulse
σ = 24.4, if the initial aspect ratio is less than 0.40, the patches rapidly deform and
begin merging. Over one period of co-rotation, if 0.40 � λ< 0.80, the vortices rotate
around themselves while co-rotating around the joint centre of vorticity describing,
therefore, open trajectories in the phase portrait. If 0.80 � λ� 0.8947, the shape of
the patches oscillates around its initial orientation while the vortices co-rotate around
the joint centre of vorticity describing closed trajectories in the phase portrait.

We characterized the dynamics of the vortex system in terms of fixed points and
separatrices. The latter divide the fluid domain into the inner core, inner recirculation
and outer recirculation regions, and outer flow. Transport within these regions is
regulated by the rotational and co-rotational motion of the vortices which perturb
the separatrices. We identified two regimes. When the shape of the vortices oscillates
about its initial orientation, i.e. their aspect ratio is 0.80 � λ� 0.8947, the induced
perturbations are weak and the separatrices undergo to small deformations leading to
minimal stirring and transport. When, instead, the vortices rotate around themselves,
i.e. 0.40 � λ< 0.80, the perturbations become stronger as λ decreases and substantially
alter the geometry of the separatrices creating a complicated tangle characterized by
lobes. New lobes form and develop every half a period of rotation. Transport is very
efficient between the inner core and inner recirculation regions, while only a small
amount of fluid from the outer recirculation regions is entrained. Transport in and
out the outer flow is inhibited by the presence of the outer separatrices which remain
nearly unperturbed for all values of the aspect ratio λ.

We quantified stretching and stirring on three circular sub-domains of dimensionless
radii R =0.5, 7 and 20. The domain of radius R = 7, which nearly contains the area
delimited by the outer separatrices, is the sub-domain that we consider as the most
appropriate for characterizing the performance of the vortex system. Since stretching
and stirring depend on the initial configuration of the scalar field, we considered four
simple configurations of the initial scalar field, where two uniform concentrations are
separated by a straight-line interface of different orientations. On the sub-domain of
radius R = 0.5, we quantified stretching in terms of the time evolution of the number
of lamellae because segments of the interface were continuously transported in and
out the domain. In this case, stretching is dominated by the dynamics of the saddle
point located at the joint centre of vorticity, the centre of the domain. The number of
lamellae grows exponentially with time for all the aspect ratios considered, and the
value of the exponent increases as the aspect ratio decreases. For the case R = 7, when
the domain encloses almost exactly the outer separatrices, the interface evolves within
the domain and its stretching can easily be computed. We showed that stretching
depends both on the initial aspect ratio of the vortices and the initial orientation
of the interface. Stretching results from the coupling between the rotational and
the co-rotational motion of the vortices, and increases as their initial aspect ratio
decreases. The time evolution of stretching is piecewise-linear when the vortices rotate
around themselves while co-rotating around the joint centre of vorticity, i.e. when
0.40 � λ< 0.80. The folding phase of the flow is responsible for the change of slope.
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For the case λ=0.40, the slope of stretching increases by about a factor 3.25 at each
half-period of rotation and, therefore, stretching is overall exponential. Stretching is
not piecewise-linear when the vortices have an initial aspect ratio greater than 0.80,
i.e. when the shape of the patches simply oscillates around their initial orientation.
The results for the case R = 20 are similar to those for R = 7, but the stretching of the
interface is reduced because a large part of the interface lies in regions where laminar
transport dominates. The initial orientation of the interface plays, also, a key role on
stretching. We found that regardless of the initial value of the aspect ratio, among all
the orientations considered, the interfaces that initially cross the elliptic points at the
centre of the ‘ghost vortices’ and the elliptic points at the centre of the vortex patches
undergo to the lowest and highest degree of stretching, respectively.

The analysis of stretching over finite time, one period of co-rotation, leads to
the conclusion that stirring is chaotic within the inner core and inner recirculation
regions, while is laminar within the outer recirculation regions and outer flow. To
validate this analysis, we computed the finite-time Lyapunov exponent and the direct
expansion rate for the vortex system. The asymptotic value of the finite-time Lyapunov
exponent is nearly the same for the range 0.40 � λ< 0.80, i.e. when the vortices rotate
on themselves. This value suddenly drops when the shape of the vortices oscillates
around its initial orientation, i.e. when 0.80 � λ� 0.8947, confirming a sudden change
in the dynamics of the vortex system. The direct expansion rate confirms that the
maximum rate of strain of fluid elements is located at the joint centre of vorticity
and along its manifolds.

We used the mix-norm as a diagnostic to quantify the stirring performance of the
vortex system. Since the nominal system is infinite, we considered sub-domains of
different radii. We observed that the mix-norm is very sensitive to the size of the
sub-domain considered, making the choice of the sub-domain critical. We showed
that the stirring performance of the vortex pair seems properly quantified over the
smallest sub-domain that encloses the outer separatrices, i.e. the region of radius
R =7. Within this sub-domain, the mix-norm is dominated by the dynamics of the
fluid in the outer recirculation regions, where there is the formation and development
of lobes whose size and shape depend on the initial orientation of the interface. The
initial concentration field with the interface crossing the elliptic points located at the
centre of the ghost vortices yields, after one period of co-rotation, to the best degree of
stirring.

We found that, in general, the time evolution of the mix-norm does not decrease
monotonically. Due to the continuous reconfiguration of the concentration field, the
mix-norm presents low- and high-frequency oscillations. The local high-frequency
maxima and minima of the mix-norm are related to the changes of slope in the time
evolution of the stretching of the interface. During each half-period of rotation of the
vortices, the mix-norm firstly decreases, because the fluid elements around the saddle
point are being stretched along the unstable manifold; secondly, as stretching ends,
the fluid elements around the saddle point undergo to a phase of folding, and the
mix-norm increases until the next phase of stretching begins.

We showed that the mix-norm and stretching generate conflicting results. Stretching
indicates that the vortex system stirs most effectively the initial concentration field
subdivided by an interface which crosses the elliptic points located at the centroids
of the vortices, while the mix-norm indicates that the best stirring performance is
obtained when the interface crosses the elliptic points located at the centre of the
‘ghost vortices’. We also noticed that the mix-norm is very sensitive to the size of the
domain, while stretching shows negligible sensitivity. These results reinforce previous

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

65
2X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000652X


Stirring, stretching and transport generated by a pair of like-signed vortices 277

(a) (b)

Figure 24. (Colour online) (a) Initial configuration of two vortex pairs (black) with initial
aspect ratio λ=0.40, separated by a dimensionless distance d = 7. The grey region shows
the overlapping of the recirculation regions of the two vortex pairs. (b) Snapshot of the
concentration field after one period of co-rotation of the vortex pairs. The domain has radius
R = 11 and the initial concentration field is delimited by the line y =0.

observations that stretching is not a reliable diagnostic of stirring in the cases when
stretching is not uniform over the domain, i.e. in most practical cases.

We quantified the effects of the angular impulse, σ , on the stirring performance
of the vortex system. For all values of the angular impulse considered, we used the
same domain, the smaller subdomain containing the outer separatrices of the vortex
system with the highest angular impulse. Surprisingly, stretching presented a sharp
maximum at about σ = 30 indicating a high sensitivity to changes in the angular
impulse, while the mix-norm exhibited a weaker minimum at about σ = 33 indicating
a smaller sensitivity. This result indicates that there is an optimal angular impulse
which maximizes stretching and minimizes the mix-norm. We argued that this is due to
the coupling of two mechanisms: the angular velocity of the vortices, which increases
with increasing values of the angular impulse, and the amplitude of oscillations of
the eigendirections of the manifolds at the saddle point located at the joint centre
of vorticity, which decreases as the angular impulse increases. For 30 � σ � 33, the
coupling appears to be the most effective.

In conclusion, the vortex system considered does not stir efficiently most of the
fluid contained in the outer recirculation regions and the outer flow. This seems
to conflict with the experimental evidence that two-dimensional turbulent flows stir
very efficiently. The conflict, however, is only apparent in our opinion. We envision
that efficient stirring in two-dimensional turbulent flows is mainly generated by the
interaction between pairs of vortices with single vortices or with other vortex pairs,
interactions that destroy the outer recirculation regions of the vortex pairs and stir
the outer fluid. Figure 24 supports this interpretation. For the sake of the argument,
we consider two vortex pairs having in common an outer recirculation region and,
consequently, bound to interact. The initial concentration field is subdivided by a
horizontal interface, y =0, which crosses the elliptic points located at the centre
of the ‘ghost vortices’. Figure 24 shows that over one period of co-rotation, the
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fluid contained in the shared outer recirculation region has been stirred due to the
interaction between the two vortex pairs.

Funding was provided by NSERC under contract RGPIN217169.
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